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In a spin-network basis state, nodes of the graph describe unentangled quantum regions of space,
quantum polyhedra. In this paper we show how entanglement between intertwiner degrees of freedom
enforces gluing conditions for neighboring quantum polyhedra. In particular, we introduce Bell-network
states, entangled states defined via squeezed vacuum techniques. We study correlations of quantum
polyhedra in a dipole, a pentagram, and a generic graph. We find that vector geometries, structures with
neighboring polyhedra having adjacent faces glued back to back, arise from Bell-network states. We also
discuss the relation to Regge geometries. The results presented show clearly the role that entanglement
plays in the gluing of neighboring quantum regions of space.
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I. INTRODUCTION

In loop quantum gravity, the geometry of space is
quantized [1–3]. Spin-network states provide an ortho-
normal basis of states for the quantum geometry of space.
Nodes of the spin-network graph admit a geometric
interpretation as quantum polyhedra [4]. As a result, a
discrete picture arises: a spin-network state can be under-
stood as the quantum version of a collection of 3d
Euclidean polyhedra. Each node of the spin-network
graph corresponds to a polyhedron, and two polyhedra
are said to be neighbors if the two corresponding
nodes are connected by a link (see Fig. 1). In this
case, the source sðlÞ and the target tðlÞ of the link l
represent the two adjacent faces of the two neighboring
polyhedra. The classical degrees of freedom(d.o.f.) of the
system are

(i) for each link l of the graph, ðAl;ΘlÞ, the common
area Al of the two adjacent faces and the extrinsic
boost-angle Θl conjugated to this area;

(ii) for each node n of the graph, ðqi; piÞ, the 2Fn − 6
d.o.f. that parametrize the phase space of a poly-
hedron with Fn faces of fixed area. These d.o.f.
describe the shape of the polyhedron up to rescal-
ings. For a given choice of frame, they encode the
unit normals n to the faces of the polyhedron.

The classical phase-space structure that arises from this
construction is called a twisted geometry [5–7]. A typical
point in phase space corresponds to a collection of

largely uncorrelated polyhedra. Consider for instance two
neighboring polyhedra: the shape of two adjacent faces will
in general differ [8,9], while their areaAl is constrained to be
the same. The uncorrelated structure of the classical collec-
tion of polyhedra in a twisted geometry is reflected in the
uncorrelated structure of a spin-network basis state in the
quantum theory. A spin-network state jΓ; in; jli ¼⊗n jini is
a tensor product of the intertwiner state jini of each quantum
polyhedron. In other words, quantum polyhedra in a spin-
network state are unentangled.
This article focuses on configurations in phase space

which have a geometric structure that is more rigid than the
one of generic twisted-geometry configurations. In this
family, the normals to the adjacent faces in neighboring
polyhedra are back to back,

nsðlÞ ¼ −ntðlÞ: ð1:1Þ

When imposed consistently on all couples of neighboring
polyhedra, this condition is nontrivial and defines a new
structure called a 3d vector geometry [10–12]. In a 3d
vector geometry, the planes of the adjacent faces of
neighboring polyhedra are consistently glued, even
though their shapes do not necessarily match. An
example of a vector geometry is shown in Fig. 1. The
condition of back-to-back normals is a constraint on the
intrinsic shapes ðqi; piÞ of the polyhedra, the d.o.f.
(ii) above. Note that no constraint on the extrinsic
curvature Θl is imposed.
Vector geometries are related to the more familiar notion

of Regge geometry [13]. A 3d polyhedral Regge geometry
[4] is obtained by imposing on a vector geometry the extra
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requirement that the shape of shared faces match, therefore defining an even more rigid structure. This hierarchy
of 3d geometric structures is summarized in the table below:

twisted geometry ¼ phase space MΓ: area-matched polyhedra
∪
vector geometry ¼ submanifold VΓ ⊂ MΓ: back-to-back normals
∪
polyhedral Regge geometry ¼ submanifold RΓ ⊂ VΓ: shape-matched polyhedra.

Vector geometries arise in the study of semiclassical
properties of spinfoam models [10–12,14,15]. Our focus
here is not the definition of a spin-foam vertex [16–18], or a
study of the dynamics of loop quantum gravity. Here we are
interested in identifying states of the theory that describe
the quantum geometry of 3d space—both intrinsic and
extrinsic—and reproduce the nearest-neighbor correlated
structure of polyhedra in a classical vector geometry. We
show that, in order to glue neighboring polyhedra, we have
to entangle them. We introduce a class of states that
represents quantum vector geometries and discuss their
relation to Regge geometries.
Building a quantum version of a vector geometry

requires entanglement. This is most easily explained in
terms of a simple bipartite system consisting of two spin-
1=2 particles, which we call the source spin s and the target
spin t in analogy with the endpoints of a link in a spin-
network graph. Let us consider the state

jpi ¼ j↑isj↓it; ð1:2Þ

which is an eigenstate of the z-component of the spin.
Clearly the expectation values of the spins are back to back
on the state jpi, i.e.,

hpjJsjpi ¼ −hpjJtjpi: ð1:3Þ

However, the fluctuations of the two spins are uncorrelated
and therefore, not back to back. This fact can be shown by
taking into account the outcomes of a measurement.
Suppose that we measure the x-component of the spin s

and find a positive value corresponding to the state j→is.
The state of the spin t after the measurement is still j↓it,
which clearly is not back to back to j→is. This behavior is
encoded in the spin correlation function

Cij ≡ hpjJisJjt jpi − hpjJisjpihpjJjt jpi ¼ 0; ð1:4Þ
which vanishes for all components Ji of the spin. This is an
immediate consequence of the fact that the state factorizes:
jpi is the product of a state for the subsystem s and a state
for the subsystem t.
To enforce the requirement that spin fluctuations are

back to back, we have to entangle the spins. Consider for
instance the Bell state jBi [19],

jBi ¼ j↑isj↓it − j↓isj↑itffiffiffi
2

p : ð1:5Þ

In this case, suppose that we measure the observable n · Js
of the spin s and find a positive value corresponding to the
eigenstate j↗is. The state of the spin t after the measure-
ment is now j↙it, which is back to back to the former. This
happens for all directions n because the state jBi is a singlet
state: a state that satisfies

ðJs þ JtÞ2jBi ¼ 0: ð1:6Þ
The back-to-back behavior of spin fluctuations is encoded
in the correlation function

Cij ≡ hBjJisJjt jBi − hBjJisjBihBjJjt jBi ¼ −
1

4
δij; ð1:7Þ

FIG. 1. Left: example of a twisted geometry. Neighboring polyhedra have adjacent faces with the same area, but different shape. Right:
example of a vector geometry. Neighboring polyhedra have adjacent faces glued to each other: their normals are back to back.
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which is nonvanishing and negative, corresponding to the
anticorrelation of fluctuations.
The correlations between the two subsystems can be

quantified in information-theoretic terms using the entan-
glement entropy between subsystems. Given any two
bounded observables Os and Ot which probe only the
subsystem s or t, the rescaled correlation function

CðOs;OtÞ¼
1

kOskkOtk
ðhBjOsOtjBi− hBjOsjBihBjOtjBiÞ

ð1:8Þ

is bounded by the mutual information of the two sub-
systems [20],

1

2
CðOs;OtÞ2 ≤ SðρsÞ þ SðρtÞ − SðρstÞ: ð1:9Þ

Here SðρÞ is the entanglement entropy of a subsystem with
reduced density matrix ρ and Sðρstjρs ⊗ ρtÞ ¼ SðρsÞ þ
SðρtÞ − SðρstÞ is the mutual information between the
subsystems s and t. In the case of the product state jpi,
the mutual information vanishes and therefore the corre-
lation functions of any two operators on s and t vanish. On
the other hand, in the case of the Bell state jBi, the mutual
information of s and t is nonvanishing because of entan-
glement between the two and attains its maximum value
2 log 2. The two spins in the Bell state jBi are maximally
entangled, a property which allows them to be always back
to back.
Similarly to what happens for spins, gluing the adjacent

faces of two neighboring quantum polyhedra requires
entanglement. In this paper we use the formalism of
squeezed spin networks [21,22] to build entangled states
for neighboring quantum polyhedra. The idea can be
illustrated by focusing on a single link of the spin-network
graph. The bosonic Hilbert space of a link l consists of four
oscillators, two at the source and two at the target of the link
[22]. Denoting the creation operators a†As and a†At , where
A ¼ 1, 2 is a spinor index, we define a Bell state of the
link l as

jB; λil ¼ ð1 − jλj2Þ expðλϵABa†As a†Bt Þj0isj0it; ð1:10Þ
where λ ∈ C is a parameter that encodes the average area
Af and the average extrinsic angle Θf of the link. A Bell
spin network on a graph Γ is defined as the gauge-invariant
projection PΓ of a product of link states, i.e.,

jΓ;B; λli ¼ PΓ ⊗
l∈Γ

jB; λlil: ð1:11Þ

We investigate properties of Bell states for the dipole graph
Γ2, the pentagram graph Γ5, and a general graph. We show
that in the large spin limit, a Bell spin-network state
represents a uniform superposition over classical vector
geometries: a superposition over glued polyhedra.

Indications that entanglement in the d.o.f. of the gravi-
tational field play a crucial role for the emergence of a
classical spacetime have surfaced in various approaches to
nonperturbative quantum gravity [21–29]. The connectivity
of space itself is argued to be related to the presence of
entanglement among d.o.f. in distinct regions of space via
holographic arguments [23,24]. Quantum correlations also
reflect metric properties of space in semiclassical gravity—
they provide its architecture—as shown by the generic
validity of an area law for the entanglement entropy of
quantum fields in curved spaces, a property thus expected
to hold for semiclassical states in any theory of quantum
gravity [25]. Procedures for measuring distances and
curvature from the network of quantum correlations have
also been recently discussed in various emergent geometry
scenarios [28,30,31]. This paper explores quantum proper-
ties of the geometry of space and provides a concrete
illustration of the relation between entanglement and
geometry in loop quantum gravity.
The paper is organized as follows. In Sec. II we discuss

classical geometric structures on the phase space associated
to a fixed graph. In Sec. III, we discuss Heisenberg
uncertainty relations for quantum polyhedra and the
uncorrelated structure of quantum twisted geometries.
We introduce then a new class of states with nearest-
neighbors entanglement—Bell-network states. In Secs. IV
and V, we present a detailed analysis of how quantum
polyhedra are glued in the entangled states on the simple
graphs Γ2 and Γ5. We summarize our results and discuss
generalizations in Sec. VI.

II. PHASE SPACE AND GEOMETRIC
STRUCTURES ON A GRAPH

The Hilbert space of loop quantum gravity (LQG)
restricted to a graph Γ can be understood as the quantization
of a classical phase space with a finite number of d.o.f. In
this section we discuss geometric structures in the graph
phase space MΓ.

A. The phase space of twisted geometries

Consider a 3d manifold Σ, a cellular decomposition
CðΣÞ, and its dual graph Γ ¼ CðΣÞ� consisting of N nodes
and L links. A simple example is given by a 3-sphere
decomposed in 5 tedrahedral cells with dual graph Γ5 ¼
C5ðΣÞ� given by the complete graph with 5 nodes [17].
When restricted to the graph Γ, the classical phase space
MΓ of loop quantum gravity is the direct product of link
phase spaces, modulo gauge transformations at nodes n,

MΓ ¼ ð⨉
l
MlÞ⫽Gn: ð2:1Þ

The phase space associated with a link l,

Ml ¼ T�SUð2Þ; ð2:2Þ
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is a SUð2Þ cotangent bundle associated with the SUð2Þ
configuration variable gl representing the holonomy of the
Ashtekar connection Ai

a along the link l of the graph. The
full classical phase space M of LQG on a smooth 3d
manifold Σ is the direct sum over graphs Γ of the phase
spaces MΓ. The restriction to a fixed graph corresponds to
a truncation of the theory to a finite number of d.o.f. [32]—
the holonomies along the links of Γ. Remarkably, despite
the truncation, MΓ still encodes a space of geometries,
which are now discrete. They are known as twisted
geometries and provide a generalization of the discrete
geometries considered in Regge calculus [13].
The interpretation of MΓ in terms of twisted geometries

relies on two ingredients. The first [5,6] is the observation
that the link phase space Ml can be decomposed as

Ml ¼ S2 × S2 × T�S1 ð2:3Þ

and parametrized in terms of phase-space variables

ðnsðlÞ;ntðlÞ; Al;ΘlÞ; ð2:4Þ

where n is a unit vector inR3. The second observation [4] is
that a set of F vectors that sums up to zero defines a
Euclidean polyhedron with F faces. Used together with the
decomposition (2.3), this structure provides a decomposi-
tion of the LQG phase space in a Cartesian product

MΓ ¼ ð⨉
l
MlÞ⫽Gn ¼ ⨉

l
T�S1⨉

n
SFðnÞ; ð2:5Þ

where SF is the phase space of a polyhedron with F faces
of fixed area. As a result, a configuration in the phase space
MΓ represents a twisted geometry—a collection of N
polyhedra, one per node of the graph Γ.
In order to illustrate the d.o.f. of a twisted geometry, it is

useful to adopt the notation

l ¼ ðabÞ; sðlÞ ¼ a; tðlÞ ¼ b; a; b ¼ 1;…; N:

ð2:6Þ

The d.o.f. ðAab;ΘabÞ represent the area Aab of the face b of
the polyhedron a, together with its conjugated momentum
Θab. The condition Aab ¼ Aba reflects the fact that, in a
twisted geometry, the area of the face ðabÞ of neighboring
polyhedra coincide. This is not the case for the shape of
the face.
The shape of a face of a polyhedron is determined by a

configuration in the phase space of SFðnÞ. This is the phase
space of a convex Euclidean polyhedron with F faces of
fixed area Aab. It can be parametrized in terms of flux
variables

Eab ¼ Aabnab ð2:7Þ

satisfying the closure constraint

Ga ¼
XF
b¼1

Eab: ð2:8Þ

As stated by the Minkowski theorem [33], a set of vectors
Eab in

SFðaÞ ¼ fEab ∈ S2; b ¼ 1;…; FjGa ¼ 0;

kEabk ¼ Aabg=SOð3Þ ð2:9Þ

identifies uniquely (up to rotations) a convex Euclidean
polyhedron with F faces of area Aab and unit normal nab.
The shape of the polyhedron can be reconstructed using the
algorithm discussed in [4]. Moreover, SF is naturally
equipped with the structure of a phase space, known as
the Kapovich-Millson phase space [34] where the rota-
tionally invariant Poisson brackets are obtained from
functions of Eab on ðS2ÞF. Canonically conjugate variables

ðqai; pajÞ; i; j ¼ 1;…; 2ðF − 3Þ ð2:10Þ

can be defined for instance by introducing the vector
pai ¼

Piþ1
b¼1 Eab. Then we can define qai as the angle

between the vectors pai × Eaiþ1 and pai × Eaiþ2, and the
conjugate momenta as the norms pai ¼ kpaik.

B. Gluing polyhedra: Vector geometries
as a submanifold of MΓ

In order to glue the faces of two polyhedra, we have to
hold them so that they share a plane. In terms of the
variables described above, the gluing condition is that the
normals to the respective faces are back to back,

nab ¼ −nba: ð2:11Þ

Note that the gluing condition does not require that the
faces have the same shape: we can glue a tetrahedron to a
cube. Even if the glued faces have the same shape, the
gluing condition does not require that the edges of the
two faces are aligned: two cubes can be glued with a twist.
The gluing condition becomes nontrivial when, instead
of having just two polyhedra, we have a collection of
polyhedra that we want to glue.
A twisted geometry consists of a collection of polyhedra

with neighboring relations. Gluing neighboring polyhedra
in a twisted geometry results in a geometric structure that is
more rigid than the generic twisted geometry and is called a
vector geometry [10–12].
Technically, a vector geometry is a twisted geometry

ðAab;Θab; nab; nbaÞ such that there exist SOð3Þ elements
Ra at the nodes of Γ that allow us to set

Ranab ¼ −Rbnba; ∀l ¼ ða; bÞ: ð2:12Þ
The rotations Ra can be used to fix a choice of local frame
on each polyhedron. After acting with the Ra’s as gauge
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transformations, the normal-matching conditions reduce to
the requirement that normals are back to back: the faces
have parallel surfaces and can be glued together as in
Fig. 2. Accordingly, if all polyhedra in Γ are isometrically
embedded in R3, they can be rotated so that glued faces are
always parallel with outwards pointing normals oriented in
opposite directions. Note that this definition of a vector
geometry is not formulated in terms of a constraint but in
terms of an existence condition for the rotations Ra
in (2.12).
The conditions (2.12) are defined in some chosen gauge

to which the normals ðnab;nbaÞ refer. Nonetheless, even
though one cannot speak of normal vectors in the gauge-
invariant phase space MΓ, there still is a clear notion of
gauge-invariant vector geometry. The key point is that the
condition (2.12) defining vector geometries is gauge
invariant: if a set of normals fnabg forms a vector geometry,
then its image fUanabg under gauge transformations Ua ∈
SOð3Þ will also form a vector geometry satisfying (2.12)
for a new set of R’s. Hence, the space of vector geometries
is naturally foliated as a union of gauge orbits. We denote
the space of gauge-invariant vector geometries by VΓ.
Vector geometries form a submanifold in the phase space

of twisted geometries, VΓ ⊂ MΓ. We describe two proce-
dures that provide a concrete description of this submani-
fold. The first procedure involves the choice of a trivial
frame on a maximal tree of the graph Γ, as is often done in
lattice gauge theory [35]. On the maximal tree, the back-to-
back condition (2.11) can be imposed trivially. The normals
associated with the leaves of the tree are now constrained:
they are either rotated to be back to back or not. We can
now compute the gauge-invariant phase-space variables
(2.10) for a vector geometry [12],

ðqvecai ; p
vec
ai Þ; i ¼ 1;…; 2ðFa − 3Þ; a ¼ 1;…; N:

ð2:13Þ

This procedure provides a gauge-invariant characterization
of a vector geometry in terms of the shapes of all the
polyhedra present in the collection Γ. Figure 7 illustrates
this procedure for the pentagram graph Γ5 for which a
vector geometry is shown.
The second procedure starts with the non-gauge-invari-

ant phase space ⨉lMl. In this phase space, the gluing
condition can be imposed as a constraint Tl for each link
l ¼ ða; bÞ,

Tl ¼ nab þ nba ≈ 0; ∀l ¼ ða; bÞ: ð2:14Þ

The solution for this set of constraints is a proper
submanifold of the phase space ⨉lMl. This is in fact
the 4L dimensional Lagrangian submanifold AΓ ¼
⨉lMl=Tl studied in [36–39]. It is clear that any vector
geometry satisfies the normal-matching constraints Tl in
some gauge. Similarly, let BΓ ¼ ð⨉lMlÞ=Gn be the
ð6L − 3NÞ-dimensional submanifold of MΓ obtained by
imposing the full set of closure constraints Gn, without
dividing by the gauge orbits. The submanifolds AΓ and BΓ
are not phase spaces, since the constraint algebras do not
close. The intersection AΓ ∩ BΓ describes simultaneous
solutions of both sets of constraints. In this submanifold,
the set of back-to-back normals ðnab;−nabÞ at each link
l ¼ ða; bÞ is selected so that the closure constraints hold at
each node. We can now take gauge orbits of points in
AΓ ∩ BΓ. The space of such orbits is precisely the sub-
manifold VΓ.

C. Matching shapes: Polyhedral Regge
geometries as a submanifold of VΓ

Vector geometries can be seen as an assembly of
polyhedra such that any pair of neighboring faces are
glued back to back. Their shapes however can still be
different. In order to obtain a continuous Regge geometry
additional conditions must be imposed. We now turn to the
description of the conditions that select the space RΓ of
polyhedral Regge geometries which is a submanifold of the
space of vector geometries.
We say that two polyhedra are shape matched if the glued

faces are isometric polygons. A way to enforce this
condition is to require for instance that the length of the
edges and the planar angles between them in the two
polygonal faces match. As edge lengths and planar angles
can be expressed in terms of the variables (2.10), a
polyhedral Regge geometry corresponds to a phase-space
configuration

ðqReggeai ;pRegge
ai Þ; i¼ 1;…;2ðFa−3Þ; a¼ 1;…;N:

ð2:15Þ

An example of 3d Regge geometry is given by 5 regular
tetrahedra glued according to the relations encoded in the

FIG. 2. Example of vector geometry consisting of 5 tetrahedra
with adjacency relations encoded by the pentagram graph Γ5.
Adjacent faces have the same area and back-to-back normals.
Note for instance that the downward-pointing face of the bottom
tetrahedron and the upward-pointing face of the top tetrahedron
have back-to-back normals. The set of back-to-back normals that
describe the same vector geometry is shown in Fig. 7.
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pentagram graph Γ5. This geometry is parametrized by the
shape ðq0; p0Þ of the regular tetrahedron [40–43], together
with the area A0 of its faces and the 10 extrinsic anglesΘab.
This Regge geometry is a special case of a vector geometry
as shown in Sec. IV of [12].

III. GLUING QUANTUM POLYHEDRA
WITH ENTANGLEMENT

In LQG, the Hilbert space of states truncated to a fixed
graph Γ is HΓ ¼ L2ðSUð2ÞL=SUð2ÞNÞ. This space is
spanned by spin networks with graph Γ and admits a
decomposition in terms of spins and intertwiners,

HΓ ¼ ⨁
jl

ð⊗
n
KnÞ: ð3:1Þ

This decomposition reflects the classical decomposition
(2.5) of the phase space MΓ of twisted geometries on a
graph. In particular, the SUð2Þ intertwiner space Kn is the
Hilbert space of a quantum polyhedron, the quantum
version of the phase space (2.9). In this section we review
the geometry of quantum polyhedra, show that in a spin-
network basis state quantum shapes are uncorrelated, and
introduce Bell-network states—a family of states which
describes glued quantum polyhedra and represents a
quantum version of a vector geometry.

A. Quantum polyhedra and the Heisenberg
uncertainty relations

Let us consider, within the graph Γ, a node n of valency
F. The intertwiner Hilbert space Kn is the invariant sub-
space of the tensor product of F representation of SUð2Þ
associated with the links of Γ at the node n,

Knðjn1;…; jnFÞ ¼ InvðHðjn1Þ ⊗ � � � ⊗ HðjnFÞÞ: ð3:2Þ

The geometry of an intertwiner state jini ∈ Kn is deter-
mined by the flux operators

Ena ¼ a0Jna; ð3:3Þ

defined in terms of SUð2Þ generators Jna and the elemen-
tary area a0 ¼ 8πGℏγ with Immirzi parameter γ. An
intertwiner state jini satisfies

Gnjini ¼ 0 ð3:4Þ

where Gn is the Gauss constraint

Gn ¼
XF
a¼1

Ena; ð3:5Þ

the quantum version of the closure constraint (2.8). The
dimension of intertwiner space is

dimKn ¼
1

π

Z
2π

0

�YF
a¼1

sinðð2jna þ 1Þθ=2Þ
sinðθ=2Þ

�
sin2ðθ=2Þdθ;

ð3:6Þ

and recoupling techniques provide an efficient way of
building an orthonormal basis of Kn.
States in Kn are quantum polyhedra [4] with F faces of

definite area: they are eigenstates of the area operator Ana,

Anajini ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ena · Ena

p
jini ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnaðjna þ 1Þ

p
jini: ð3:7Þ

The quantum shape of the polyhedron is measured by the
shape operator

gabðnÞ ¼ Ena · Enb ð3:8Þ

which in the Penrose spin-geometry theorem plays the role
of a quantization of the metric [4,44,45]. This operator
measures the dihedral angle θabðnÞ between the planes of
the faces ðnaÞ and ðnbÞ of the polyhedron [46].
Different components of the shape operator gabðnÞ do

not commute,

½gabðnÞ; gacðnÞ� ¼ ia0Ena · ðEnb × EncÞ: ð3:9Þ

As a result of this noncommutativity, Heisenberg uncer-
tainty relations for a quantum geometry follow: in any state
jini, the dispersions ΔgabðnÞ in the quantum shape of the
polyhedron satisfy the inequality

ΔgabðnÞΔgacðnÞ ≥
a0
2
jhinjEna · ðEnb × EncÞjinij: ð3:10Þ

As a result, states with sharply defined features for the faces
ðnaÞðnbÞ have maximal dispersion in the features of faces
ðnaÞðncÞ—unless the three faces lie in a plane so that the
right-hand side of Eq. (3.10) vanishes.
Coherent states for a quantum polyhedron can be built

by starting with coherent spin states jj;ni, eigenstates
of the spin J · n corresponding to the largest eigenvalue,
J · njj;ni ¼ þjjj;ni [47]. Choosing a set of unit vectors
nna satisfying the closure condition

P
ajnanna ¼ 0 and

projecting them to the gauge-invariant subspace, one
obtains the expression [47,48]

jΦnðnnaÞi ¼
Z
SUð2Þ

dg ⊗
F

a¼1
ðUðgÞjjna; nnaiÞ ð3:11Þ

for a coherent intertwiner peaked on the shape of the
classical polyhedron with normals jnanna [4]. Clearly, in a
coherent state jΦnðnnaÞi, fluctuations in the shape of the
polyhedron are present as required by the uncertainty
relations (3.10).
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B. Quantum twisted geometries: Spin-network
basis states are unentangled

Spin-network basis states

jΓ; jl; ini ¼ ⊗
n
jini ð3:12Þ

provide an orthonormal basis of the graph Hilbert space
HΓ. They are simultaneous eigenstates of the area operators
and of a maximal commuting set of shape operators in the
intertwiner space of each node. They represent quantum
twisted geometries with definite area Al, maximal
dispersion of the extrinsic angle Θl, and uncorrelated
quantum shapes of polyhedra.
Using coherent intertwiners jΦnðnnaÞi, a semiclassical

twisted geometry can be built: the spin-network state

jΓ; jl;ΦnðnnaÞi ¼ ⊗
n
jΦnðnnaÞi ð3:13Þ

is peaked on a collection of polyhedra with average shape
prescribed by the classical data encoded in the normals nab.
In particular the normals can be chosen so that a classical
vector geometry is reproduced in average, or even a
polyhedral Regge geometry. However, fluctuations around
the average are uncorrelated. Suppose that we measure the
shape of a polyhedron and find a given outcome. The shape
of a neighboring polyhedron is uncorrelated, and therefore
the two adjacent faces cannot be glued. This phenomenon
can be made precise in terms of correlation functions. Let
us consider operatorsOn0 andOn00 which measure the shape
of the quantum polyhedra n0 and n00. The correlation
function

hΓ; jl;ΦnjOn0On00 jΓ; jl;Φni
− hΓ; jl;ΦnjOn0 jΓ; jl;ΦnihΓ; jl;ΦnjOn00 jΓ; jl;Φni ¼ 0

ð3:14Þ
vanishes despite the fact that the nodes n0 and n00 can be
neighbors. Equivalently, for the state (3.13), we can
compute the mutual information of the nodes n0 and n00
and show that it vanishes. The geometry of quantum
polyhedra in a spin-network state is unentangled.
The bosonic representation of LQG [21,22,49–51] pro-

vides a useful tool for illustrating the lack of rigidity of a
quantum twisted geometry. In this representation, the
Hilbert space HΓ is obtained as a subspace of a bosonic
Hilbert space Hbos describing 4L harmonic oscillators,
where L is the number of links in the graph. Explicitly, the
bosonic Hilbert space is a tensor product of local Hilbert
spaces attached to the endpoints of links:

Hbos ¼ ⊗
L

l¼1
ðHsðlÞ ⊗ HtðlÞÞ; ð3:15Þ

where each spaceHsðlÞ andHtðlÞ is associated with a pair of
harmonic oscillators. As a result, there are four oscillators
at each link, which we denote by aAsðlÞ; a

B
tðlÞ, A;B ¼ 0, 1.

We also use the notation i ¼ 1;…; 2L to denote the seeds
or endpoints of links. We then introduce link and node
constraints:

Ll ¼ IsðlÞ − ItðlÞ ≈ 0; Ii ¼
1

2
δABa

A†
i aBi ; ð3:16Þ

Gn ¼
X
i∈n

a0Ji ≈ 0; Ji ¼
1

2
σABa

A†
i aBi : ð3:17Þ

Bosonic states jsi ∈ Hbos in general do not solve these
constraints. The link constraint Ll matches the spins
jsðlÞ ¼ jtðlÞ ¼ jl at the source and target of a link
l ¼ ðs; tÞ, generating Uð1Þ transformations at each link.
The node constraint Gn imposes invariance under SUð2Þ
gauge transformations at the node n. The LQG Hilbert
space HΓ is the proper subspace of Hbos where these
constraints are solved.
The vacuum state j0iΓ,

j0iΓ ¼ ⊗
2L

i¼1
j0ii; with aAi j0ii ¼ 0; ð3:18Þ

satisfies all the constraints and is unentangled as it is a
product over the 2L seeds of the graph. A spin network
with coherent intertwiners is also unentangled as it can be
written as [22]

jΓ; jl;Φni ¼
Xþji

mi¼−ji

�Y
n

½Φn�mðn;1Þ���mðn;FnÞ

�

×

�Y2L
i¼1

ða0†i Þji−miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðji −miÞ!
p ða1†i Þjiþmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðji þmiÞ!

p �
j0iΓ;

ð3:19Þ
which is a product over nodes of the graph. This formula
shows again that a spin-network state with coherent
intertwiners describes a quantum twisted geometry with
no gluing of fluctuations of adjacent polyhedra.

C. Entanglement and Bell-network states

Having clarified that in order to glue quantum polyhedra
we have to entangle them, we now move to the construction
of a class of states with this property.
Squeezed vacua provide a powerful tool for capturing

correlations in LQG [21,22]. On a graph Γ with L links, a
squeezed vacuum jγi ∈ Hbos is labeled by a squeezing
matrix γijAB which belongs to the Siegel disk D ¼ fγ ∈
Matð4L;CÞjγ ¼ γt and 1 − γγ† > 0g and encodes 2-point
correlation functions. The squeezed vacuum is defined by

jγi ¼ detð1 − γγ†Þ1=4 exp
�
1

2
γijABa

A†
i aB†j

�
j0i: ð3:20Þ

The indices i; j ¼ 1;…; 2L specify link endpoints, and
A;B ¼ 0, 1 distinguish between the two oscillators at a
given link endpoint. Intuitively, a nonzero coefficient γABij of
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the squeezing matrix introduces correlations between the
oscillator A at i and the oscillator B at j. Note that the
bosonic state jγi is nongauge invariant and nonarea
matched. A squeezed state inHΓ is obtained by projection,
jΓ; γi ¼ PΓjγi. The projection can be implemented either
via the use of the resolution of the identity in the spin-
network basis,

PΓ ¼
X
jl;in

jΓ; jl; inihΓ; jl; inj; ð3:21Þ

or more directly via the loop expansion, jΓ; γi ¼ PΓjγi ¼P
□
Z□F

†
□
j0iΓ, as discussed in [21]. Here we are interested

in correlations between neighboring polyhedra; therefore,
we focus on linkwise squeezing. We consider a squeezing
matrix with a block-diagonal form with respect to the links
of the graph, i.e., such that γABij ¼ 0 for i ≠ j. The squeezing
matrix is then given by

γijAB ¼
8<:

λlϵAB; if i ¼ tðlÞ; j ¼ sðlÞ;
−λlϵAB; if i ¼ sðlÞ; j ¼ tðlÞ;
0 else;

ð3:22Þ

where λl ∈ C, with jλlj < 1. In the following we show that
squeezed vacua with this structure describe glued poly-
hedra, a quantum version of the vector geometries dis-
cussed in Sec. II B. We call these states Bell-network states.
A Bell-network state on a graph Γ is parametrized by

complex numbers λl (one per link of the graph and with
jλlj < 1). It is given by

jΓ;B; λli ¼ PΓ⊗
l
jB; λlil; ð3:23Þ

where jB; λil is the squeezed state

jB; λli ¼ ð1 − jλlj2Þ expðλlϵABa†As a†Bt Þj0isj0it ð3:24Þ
associated with a link of the graph. The geometric inter-
pretation of the parameter λ can be identified by computing
the expectation values of the area operator and the
holonomy operator on the link. We have that the expect-
ation value of the area is

hB; λljAljB; λli ¼ a0
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
pjðλlÞ ð3:25Þ

with pjðλlÞ ¼ ð1 − jλlj2Þ2ð2jþ 1Þjλlj4j. In particular the
expectation value diverges for jλlj → 1 as it happens also
for the expectation value of the spin

hB; λljIljB; λli ¼
X
j

jpjðλlÞ ¼
jλlj2

1 − jλlj2
: ð3:26Þ

The absolute value of λl is thus fixed by the average spin
at the link. In addition, the phase θl of λl ¼ jλljeiθ is fixed
by the mean value of the holonomy hl at l. In the bosonic
representation, the holonomy operator is given by [22,51]

ðhlÞAB ≡ ð2ItðlÞ þ 1Þ−1
2ðϵACaC†tðlÞaB†sðlÞ − ϵBCaAt aCs Þ

× ð2IsðlÞ þ 1Þ−1
2: ð3:27Þ

For the Bell state jB; λli, we can compute the mean value of
the trace of the holonomy hl:

hB;λljðhlÞAAjB;λli¼−2cosðθlÞcðjλljÞ;

cðjλljÞ ¼ ð1− jλlj2Þ2
X∞
n¼1

jλlj2nþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p
:

ð3:28Þ

In the limit jλlj → 1 of large spins, cðjλljÞ goes to 1, and
we have

hB; λljðhlÞAAjB; λli ≃ −2 cosðθlÞ: ð3:29Þ

This approximation is quite accurate as soon as one leaves
the Planck scale. As an illustration, for a mean spin of order
hjli ≃ 10, we already have cðjλljÞ ≃ 0.995. We see that the
phase of the squeezing parameter determines the mean
value of the trace of the holonomy.
The state jB; λli is a generalization of the Bell states

(6.1) discussed in the Introduction: it satisfies the condition

ðJs þ JtÞ2jB; λli ¼ 0; ð3:30Þ

where Js and Jt are defined in terms of bosonic operators in
Eq. (3.17). Therefore, in a Bell state the fluxes at the source
and at the target of a link are back to back, not only at the
level of expectation values—the fluctuations are anticorre-
lated, too. This is best shown by expanding the state over a
spin basis,

jB; λli ¼ ð1 − jλlj2Þ
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
λ2jl jB; ji; ð3:31Þ

where jB; ji is the maximally entangled state of spin j (see
Appendix A),

jB; ji ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
Xþj

m¼−j
ð−1Þj−mjj;misjj;−mit; ð3:32Þ

which has the same form as (6.1).
Using the decomposition (3.31), a Bell-network state can

then be expressed as a sum over spins,

jΓ;B;λli¼
X
jl

�Y
l

ð1− jλlj2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jlþ1

p
λ2jll

�
jΓ;B;jli;

ð3:33Þ

where jΓ;B; jli has a remarkably simple form. It is a
superposition of intertwiner states
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jΓ;B; jli ¼
X
in

AΓðjl; inÞ⊗
n
jini; ð3:34Þ

with amplitude given by the symbol of the graph Γ,

AΓðjab; iaÞ ¼
X
fmg

Y
n

½in�m1���mFn ; ð3:35Þ

i.e., the contraction of intertwining tensors ½in�m1���mFn

according to the combinatorics of the graph Γ. Techniques
for computing the SUð2Þ invariant amplitude AΓ for general
graphs have been developed in [52], where a generating
function was introduced in a coherent state representation.
The asymptotic behavior for large spins jl has also been
recently investigated in [12], and such analysis can be
applied to the study of Bell-network states in the limit of
large average spin, jλlj → 1.
The Bell-network state introduced here in Eqs. (3.23)

and (3.24) provide a quantum version of the vector
geometries discussed in Sec. II B: they are defined starting
with objects that have back to back fluxes before projec-
tion. Clearly, to discuss the quantum gluing of polyhedra,
one has to work at the gauge-invariant level, i.e., after
projection. In the next two sections we show the quantum
gluing on specific examples for the graphs Γ2 and Γ5.

IV. BELL-NETWORK STATES: GLUING
QUANTUM POLYHEDRA ON Γ2

We describe the geometry of Bell-network states on the
dipole graph.

A. The dipole graph Γ2

The dipole graph Γ2 is formed by two nodes n ¼ s, t
connected by four links l ¼ 1, 2, 3, 4, as represented in
Fig. 3. The graph Γ2 is dual to a triangulation of the
three-sphere formed by two tetrahedra. The space of states

of loop quantum gravity on Γ2 is the Hilbert space
HΓ2

¼ L2ðSUð2Þ4=SUð2Þ2Þ of gauge-invariant SUð2Þ
states on the graph. An orthonormal basis for HΓ2

is
provided by spin-network states jis; it; jli, where jl is
the spin associated with the link l, the index is labels an
orthonormal basis of the intertwiner space Ksðj1; j2; j3; j4Þ
associated with the node s and similarly for the target
node t. In the holonomy representation, a spin-network
state is given by the wavefunction

ψ isitjlðhlÞ ¼ hhljis; it; jli
¼
X
ml;nl

Y
l

½DjlðhlÞ�ml
nl ½is�n1n2n3n4 ½it�m1m2m3m4

;

ð4:1Þ
where spinor indices of intertwiners are lowered
using the isomorphism ϵðjÞ∶HðjÞ → HðjÞ� defined by vm ¼
ð−1Þj−mv−m. Intertwiners in this state are unentangled: the
state is factorized

jis; it; jli ¼ jisijiti; ð4:2Þ
and connected two-point functions of all gauge-invariant
observables gabðnÞ ¼ Ena · Enb vanish,

Cabcdðn; n0Þ ¼ his; it; jljgabðnÞgcdðn0Þjis; it; jli
þ −his; it; jljgabðnÞjis; it; jli
× his; it; jljgcdðn0Þjis; it; jli ¼ 0: ð4:3Þ

On the other hand, Bell-network states have nontrivial
correlations as we now discuss.
To define Bell-network states, it is useful to introduce the

bosonic representation of HΓ2
[22,49], where each link is

associated with four harmonic oscillators. We denote the
Hilbert space of states of this collection of 16 oscillators by

Hð16Þ
bos and label each link endpoint by an index i. The space

of states on the dipole graph Γ2 is embedded unitarily in the
oscillator model under the map:ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jlþ1

p
½DjlðhlÞ�ml

nl↦ð−1Þjl−nl jjl;mlitðlÞjjl;−nlisðlÞ;
ð4:4Þ

where

jj; mii ¼
ða0†i Þjþmða1†i Þj−mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþmÞ!ðj −mÞ!p j0ii; ð4:5Þ

and j0ii is the local vacuum state annihilated by the
operators aAi . The states jj; mi at each link endpoint are
spin states with spin j and magnetic number m, and (4.5) is
the usual Schwinger oscillator model of angular momen-
tum. Note that the map (4.4) is not surjective: the space
of states of loop quantum gravity is a proper subspace

FIG. 3. Dipole graph Γ2. The source (s) and target node (t) are
connected by four links l ¼ 1;…; 4. The graph is dual to the
triangulation of the 3-sphere formed by two tetrahedra glued along
their boundaries. A spin-network state is labeled by spins jl and
intertwiners is, it. The vector geometry associated with the dipole
graph is also shown in Fig. 4
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HΓ2
⊂ Hð16Þ

bos of the bosonic representation selected by the
area-matching and Gauss constraints (see [22]). The area-
matching constraint is the requirement that only products of
source and target local states jjl; mlit and jj0l; nlis with the
same spins are allowed, jl ¼ j0l, as required by the map
(4.4). The Gauss constraint imposes gauge invariance at
each node n. We denote the projection to the space of area-

matched, gauge-invariant states by PΓ2
∶Hð16Þ

bos → HΓ2
.

B. Bell-network state on Γ2

Consider the Bell-network state jΓ2;B; λli ∈ Hð16Þ
bos

obtained by squeezing the vacuum state with the squeezing
matrix λlϵAB at each link, Eq. (3.24), and then projecting to
the gauge-invariant subspace:

jΓ2;B; λli ¼
1

N
PΓ2

exp

�X
l

λlϵABa
†A
sðlÞa

†B
tðlÞ

�
j0iΓ2

ð4:6Þ

where N is a normalization. As the squeezing produces
entangled bosonic pairs at the source and the target of a
link, the squeezed vacuum is already area matched. As a
result, the projection operator PΓ acts nontrivially at nodes
only and is given by PΓ ¼ PtPs, with

Ps ¼
X
k

jikihikj; ð4:7Þ

and jiki ∈ Kðj1; j2; j3; j4Þ an orthonormal basis of inter-
twiners at s. The Bell-network state on Γ2 can then be
expressed as

jΓ2;B; λli ¼
1

N

X
jl

�Y
l

λ2jl
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimKðjlÞ
p

jΓ2;B; jli

ð4:8Þ

where dimKðjlÞ is the dimension of the 4-valent inter-
twiner space,

dimKðjlÞ ¼ minðj1 þ j2 − jj1 − j2j; j3 þ j4 − jj3 − j4jÞ;
ð4:9Þ

and jΓ2;B; jli is the Bell-network state at fixed spins,

jΓ2;B; jli ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimKðjlÞ
p XdimKðjlÞ

k¼1

jikitjĩkis: ð4:10Þ

Note that the intertwiner ĩk is obtained from jiki by acting
on all intertwiner indices with the antilinear map ζ∶HðjÞ →
HðjÞ defined by

ṽm ¼ ðζvÞm ¼ ðv−mÞ�ð−1Þj−m: ð4:11Þ

Thismap (4.11) corresponds to the operation of time-reversal
for spin states in HðjÞ. Hence, if the states jiki form an
orthonormal set of eigenstates of an observable Ô, then the
states jĩki form an orthonormal basis of eigenstates of the
time-reversed operator ζÔζ−1. Now, the action of time-
reversal on area operators Ena only amounts to a change of
sign, ζEnaζ

−1 ¼ −Ena, and as a result the Penrose metric
operator gab is not affected by this operation. Since any
observable Ô of the intrinsic geometry can bewritten in terms
of components of the Penrose metric, it follows that the
intertwiners jiki and jĩki describe the same local intrinsic
geometry. This leads to a simple geometric interpretation of
the projected state jΓ2;B; jli: it consists of a perfectly
correlated state such that if themeasurement of an observable
Ô of the geometry of the quantum tetrahedron s has an
outcome ok, then the observation of the same quantity at the
quantum tetrahedron t gives the same result.
Note that this property is valid for any local observable

Ô, since any basis of orthonormal intertwiners can be used
in Eq. (4.7). Such a behavior mirrors that of Bell states for a
pair of spin 1=2 systems, where observations of the
individual spins J · n are perfectly correlated for measure-
ments performed in arbitrary directions n. In the present
case, instead of spins, each subsystem is a quantum
tetrahedron, and observations of individual shapes are
perfectly correlated.

C. Properties at fixed spins ð j1;…; j4Þ
We illustrate some properties of the Bell-network state

on Γ2 projected to fixed spins jl. The state jΓ2;B; jli is
given by Eq. (4.10).
The reduced density matrix for the subsystems s is

immediate to compute,

ρs ¼ TritðjΓ2;B; jlihΓ2;B; jljÞ ¼
1

dimKðjlÞ
1s: ð4:12Þ

FIG. 4. Vector geometry associated with the dipole graph of
Fig. 3. This geometry consists of two regular tetrahedra. As a
result we have shape-matching of adjacent faces and curvature
along the edges with deficit angle δ ¼ 2π − 2 arccosð1=3Þ. In
order to show that this Regge configuration is also a vector
geometry it is sufficient to twist one of the two tetrahedra by the
appropriate angle that sets all the normals of adjacent faces back
to back.
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As this density matrix is maximally mixed, the entangle-
ment entropy of the subsystem s is simply the log of the
dimension of the intertwiner space at s,

SðρsÞ ¼ −Trðρs log ρsÞ ¼ logðdimKðjlÞÞ: ð4:13Þ
The same happens for the subsystem t. On the other hand,
for a dipole graph, the subsystem st coincides with the full
system which is in a pure state and therefore its entropy
vanishes. As a result the mutual information of the
subsystems s and t is

Sðρs ⊗ ρtkρstÞ ¼ SðρsÞ þ SðρtÞ − SðρstÞ
¼ 2 logðdimKðjlÞÞ: ð4:14Þ

Now we focus on observables Os andOt which probe only
the subsystem s or t. We define expectation values and
dispersions as usual,

hOsi ¼ hΓ2;B; jljOsjΓ2;B; jli;
ΔOs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hOs

2i − hOsi2
q

; ð4:15Þ

and the norm of an observable as its largest eigenvalues,
kOk ¼ maxðokÞ. For any two observables in s and t, the
information theoretic inequality [20]

1

2

�hOsOti − hOsihOti
kOskkOtk

�
2

≤ Sðρs ⊗ ρtkρstÞ: ð4:16Þ

holds, with a nonvanishing right-hand side for Bell-net-
work states as checked above.
Let us now consider the observables gabðsÞ ¼ Esa · Esb

and gabðtÞ ¼ Eta · Etb which measure the shape of the
quantum tetrahedra s and t. We define also the angle
operator

bcos θabðsÞ ¼ gabðsÞffiffiffiffiffiffiffiffiffiffiffiffi
gaaðsÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
gbbðsÞ

p ; ð4:17Þ

which measures the cosine of the angle between the
normals of the faces a and b of the quantum tetrahedron
s. Its expectation value can be computed using standard
techniques in recoupling theory and is given by

hbcosθabðsÞi¼ 1

dimKðjlÞ
XdimKðjlÞ−1

k¼0

×
ðk0þkÞðk0þkþ1Þ−jaðjaþ1Þ−jbðjbþ1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðjaþ1Þjbðjbþ1Þp ;

ð4:18Þ

where k0 ¼ maxðjj1 − j2j; jj3 − j4jÞ for the observable
hcos θ12ðsÞi and defined by permutation for the other
components. In the special case of spins all equal,

jl ¼ j0, we have dimKðj0Þ ¼ 2j0 þ 1, k0 ¼ 0 and
average angle1

hbcos θabðsÞi ¼ −
1

3
; ðfor j1 ¼ j2 ¼ j3 ¼ j4Þ ð4:20Þ

which coincides with the dihedral angle of a regular
tetrahedron. For equal spins, the expectation value
of the geometry of a quantum tetrahedron in a Bell state
on Γ2 is a regular tetrahedron with faces of area
Aab ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0ðj0 þ 1Þp

. Therefore, in average the shapes
of the two tetrahedra match: we do not just recover a vector
geometry but in average a Regge geometry on Γ2. Clearly,
as implied by the Heisenberg uncertainty relations, the
dispersion around the average cannot be vanishing. We find

Δðcos θabÞ ¼
1

3
ffiffiffi
5

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16þ 3

j0
−

3

j0 þ 1

s !
⟶
j0→∞ 4

3
ffiffiffi
5

p ;

ð4:21Þ
which remains finite in the limit of large spins.
Next we compute the correlation function for operators

gabðsÞ and gabðtÞ describing observations of the same angle
in the two tetrahedra:

Cababðs; tÞ ¼
hgabðsÞgabðtÞi − hgabðsÞihgabðtÞi

kgabðsÞkkgabðtÞk

¼ 16

45

�
jðjþ 1Þ þ 3=16

j2

�
⟶
j→∞ 16

45
: ð4:22Þ

The correlation function remains finite for j → ∞, showing
that the fluctuations of the geometry remain correlated in
the semiclassical limit of large spins.

V. BELL-NETWORK STATE ON THE
PENTAGRAM Γ5

We describe the geometry of Bell-network states on the
pentagram graph.

A. The pentagram Γ5

The pentagram graph Γ5 is formed by five nodes
connected by ten links as shown in Fig. 5. It is dual to a
triangulation of S3 with five tetrahedra. We label the nodes
by an index a ¼ 1;…; 5. An oriented link corresponds to
an ordered pair l ¼ ða; bÞ, where a and b are the source and

1In the more general case of two pairs of equal spins, j1 ¼ j2
and j3 ¼ j4, the average values of the angle operators cos θab is

hcos θ12i ¼ −
1

3
; hcos θ34i ¼ −1þ 2

3

j1ðj1 þ 1Þ
j3ðj3 þ 1Þ ;

hcos θ13i ¼ −
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1ðj1 þ 1Þ
j3ðj3 þ 1Þ

s
: ð4:19Þ
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target nodes, respectively. The space of states of loop
quantum gravity on Γ5 is the Hilbert space HΓ5

¼
L2½SUð2Þ10=SUð2Þ5�. A spin-network basis state jΓ5;
jab;iai is labeled by 10 spins jab and 5 four-valent inter-
twiners ia. It is a product state over intertwiners given by

jΓ5; jab; iai ¼ ji1iji2iji3iji4iji5i; ð5:1Þ
where for instance the intertwiner ji1i belongs to the space
K1 ¼ InvðHðj12Þ ⊗ Hðj13Þ ⊗ Hðj14Þ ⊗ Hðj15ÞÞ. The Hilbert
space HΓ5

is a subspace of the bosonic Hilbert space used

to construct squeezed vacua, HΓ5
⊂ Hð40Þ

bos , consisting of 40
oscillators.

B. Bell-network state on Γ5

A Bell-network state on Γ5 is obtained projecting the
associated squeezed vacuum, Eq. (3.24). At fixed spins jab,
we obtain the Bell-network state (explicitly derived in
Appendix B):

jΓ5;B; jabi ¼ PΓ5
jB; jabi ¼

X
ia

f15jgðjab; iaÞ
�
⊗
5

k¼1
jiki
�
;

ð5:2Þ
where the f15jg symbol is the contraction of the inter-
twiners ia along the graph Γ5, the SUð2Þ symbol of the
graph AΓ5

ðjab; iaÞ ¼ f15jgðjab; iaÞ. The expression of the
state is then a superposition over spins

jΓ5;B; λabi ¼
1

N

X
jab

�Y
ðabÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jab þ 1

p
λ2jabab

�
jΓ5;B; jabi;

ð5:3Þ
with parameters jλabj < 1 encoding the average area Aab
and extrinsic angle Θab.

A useful representation of the state is obtained by
implementing the projection into the space of gauge-
invariant states via coherent intertwiners, Eq. (3.11). At
fixed spins jab, the gauge invariant projector at nodes can
be written as [47,48]

Pn ¼
Z

dμðnnaÞjΦnðnnaÞihΦnðnnaÞj; ð5:4Þ

where jΦnðnnaÞi is the coherent intertwiner peaked on the
polyhedron with normals jnanna. The measure dμðnnaÞ is
gauge invariant and can be expressed in terms of gauge-
fixed normals via the shape parameters ðqni; pniÞ [48].
Using this expression, together with Eq. (3.11), we find the
expression of a Bell-network state as a superposition of
coherent intertwiners:

jΓ5;B; jabi ¼
Z

dμðnnaÞf15jgðjab; nabÞ
�
⊗
5

n¼1
jΦnðnnaÞi

�
:

ð5:5Þ
In this formula, the quantity f15jgðjab;nabÞ is the familiar
f15jg symbol expressed in the coherent state basis [10],

f15jgðjab;nabÞ ¼
Z
SUð2Þ5

�Y5
n¼1

dgn

�
×
Y
a<b

hjab; ζnabjUðgaÞ†UðgbÞjjab; nbai:

ð5:6Þ
Correlation functions on this state, hgabðnÞgcdðn0Þi−
hgabðnÞihgcdðn0Þi, can be computed using the same tech-
niques employed in the evaluation of the LQG propagator
[53–57].

C. Large spin limit and vector geometries

The large spin limit of the f15jg symbol is well studied
[10,12]. The integral expression (5.6) can be analyzed via
saddle point methods in the limit of large spins by rescaling
jab → λjab, letting λ → ∞ and studying its asymptotic
expansion in 1=λ. In fact (5.6) can be written as

f15jgðλjab; nabÞ ¼
Z �Y5

n¼1

dgn

�
eλSðjab;nabÞ; ð5:7Þ

with the complex function Sðjab; nabÞ given by

Sðjab; nabÞ ¼
X
ab

2jab log

�
1

2
; ζnab

����g−1a gb

���� 12 ; nba
�
:

ð5:8Þ

The integral is dominated by saddle points where the real
part of this function vanishes,

FIG. 5. Pentagram graph Γ5. The graph is dual to a triangulation
of the three-sphere with five tetrahedra. A spin-network state on
Γ5 is labeled by five intertwiners ikn and ten spins jl attached to
the nodes and links of the graph, respectively. The links are
oriented according to tðlÞ < sðlÞ.
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0 ¼ ReSðjab; nabÞ ¼
X
ab

2jab log
1 − ðRanabÞ · ðRbnbaÞ

2
:

ð5:9Þ
Here Ra ¼ Dð1ÞðgaÞ is the adjoint representation of the
SUð2Þ group element ga. Clearly, this is equivalent to the
requirement for the existence of a vector geometry,
Eq. (2.12),

Ranab ¼ −Rbnba: ð5:10Þ
If the normals nab do not describe a vector geometry, the
symbol f15jgðλjab; nabÞ is exponentially suppressed in the
limit of large spins,

f15jgðλjab; nabÞjnonvec ¼ oðλ−nÞ ∀n > 0: ð5:11Þ
On the other hand, if the set of normals nab describes a
vector geometry, the asymptotic behavior of the f15jg
symbol is not exponentially suppressed and is given by the
expression

f15jgðλjab;nabÞjvec ¼
�
2π

λ

�
6 24

ð4πÞ8
X
σ

eiλSσffiffiffiffiffiffiffiffiffiffiffiffiffi
detHσ

p þOðλ−7Þ;

ð5:12Þ

where σ stands for the set of saddle points gðσÞa that
dominates the integral (5.7), Sσ is the imaginary part of
the function (5.8) evaluated at these saddle points and Hσ

its Hessian.
Using these well-known results on the asymptotics of the

f15jg symbol together with Eq. (5.5), we conclude that in
the large spin limit a Bell-network state represents a
uniform superposition over vector geometries:

jΓ5;B; jabi ≈
�
2π

λ

�
6 24

ð4πÞ8
X
σ

Z
vec-geom

dμðnabÞ

×
e−iλSσffiffiffiffiffiffiffiffiffiffiffiffiffi
detHσ

p
�
⊗
5

n¼1
jΦnðnnaÞi

�
: ð5:13Þ

Therefore, at fixed large spins on Γ5, a Bell-network state
represents five entangled polyhedra with glued adja-
cent faces.

D. Gluing tetrahedra in the 4-1 configuration

The relative weight of different vector geometries in the
expression Eq. (5.13) is determined by the HessianHσ. The
saddle points σ appearing in Eq. (5.12) are vector geom-
etries classified as follows [10,12]:

(i) If at fixed nab there are two inequivalent solutions to
the saddle point equations, then the data fjab; nabg
are necessarily shape matched (SM-2).

(ii) When there is only one set of solutions to the critical
equations up to equivalence, the boundary data can

be shape matched (SM-1) or normal matched
(NM-1).

As Regge geometries are a subset of the space of vector
geometries, it is interesting to study what is their relative
weight. To this end, we choose a specific configuration of
spins and explore the dependence of jdetHj1=2 on the
normals nab.
By choosing an arbitrary node a of the pentagram, the

triangulation associated with Γ5 can be seen as the gluing of
two pieces related by a Pachner move 1-4: a single
tetrahedron a and the polyhedron with four tetrahedra
obtained from it by the inclusion of an internal point (see
Fig. 6). Now, if the data fjab; nabg is that of a shape-
matched 3d Euclidean geometry, then these two pieces can
be isometrically embedded in R3. Reversing the procedure,
we obtain a method for constructing shape-matched con-
figurations: we apply a Pachner move to a tetrahedron
embedded in R3, and then just read off the boundary data
from the explicit embedding in order to build an Euclidean
3d geometry for the triangulation of S3. This allows us, in
particular, to determine the coordinates of the shape-
matched configurations for a given parametrization of
the solutions of the saddle point conditions. The whole
procedure can equally well be based on the Pachner move
2-3. In Appendix E, we construct explicit shape-matched
configurations (SM-1) for 1-4 and 2-3 vector geometries
(Fig. 7) and compute the amplitude of the corresponding
f15jg symbols by computing jdetHj1=2.
In [12] it is shown that, on Γ5, vector geometries with

fixed spins can be parametrized in terms of five indepen-
dent variables ϕ. The five tetrahedra are represented in the
Kapovich-Millson phase space as 4-sided polygons in R3

with edge vectors jabmab, and the geometry is completely
determined for a given set of spins if the face normals mab
are written in terms of the five independent shape variables
ϕ. Four of these shape variables are gauge-invariant 3d
dihedral angles computed from the squared length of
diagonals of the polygons:

ðmca þmcdÞ · ðmca þmcdÞ ¼ 2ð1þ cosϕca;cdÞ; ð5:14Þ

FIG. 6. Pachner move 1-4. A single tetrahedron is divided into a
gluing of four tetrahedra by the introduction of a new vertex i in
its interior.
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ð−mabþmcaÞ · ð−mabþmcaÞ¼ 2ð1þ cosϕab;caÞ; ð5:15Þ

ð−mdbþmcdÞ · ð−mdbþmcdÞ¼ 2ð1þ cosϕdb;cdÞ; ð5:16Þ

ðmab þmdbÞ · ðmab þmdbÞ ¼ 2ð1þ cosϕab;dbÞ; ð5:17Þ

and the remaining variable is a gauge-dependent quantity,
an angle between faces at distinct tetrahedra,

ðmab þmcdÞ · ðmab þmcdÞ ¼ 2ð1þ cosϕcd;abÞ; ð5:18Þ

computed from the squared length of the diagonal of the
parallelogram (mcd;mdc;mab;mba).
We are interested in the 1-4 geometry obtained

by the application of the Pachner move 1-4 to a
regular tetrahedron. Accordingly, the exterior normals
(maf;mbf;mcf;mdf) are fixed to match the normals
(naf; nbf; ncf; ndf) of an explicit embedding of the regular
tetrahedron inR3 (as described in Appendix E). In addition,
the spin jin of the interior faces is related to the spin jout of
the exterior faces by jin ¼ jout=

ffiffiffi
6

p
. This identity cannot

hold for semi-integer spins, but can be arbitrarily well
approximated for large spins, which is the regime we are
interested in. The two independent closure conditions for
the interior tetrahedra read:

mcb ¼ −
1

jin
ðjoutnfb þ jinmdb þ jinmabÞ; ð5:19Þ

mad ¼ −
1

jin
ðjoutnfd þ jinmbd þ jinmcdÞ: ð5:20Þ

Overall we obtain a 1-4 vector geometry with fixed spins
from five shape variables where the nongauge invariant
quantity ϕcd;ab is the angle between normals of different
tetrahedra and the other four variables are the dihedral
angles ϕca;cd;ϕab;ca;ϕdb;ab;ϕab;db.

2

We now proceed to compare the contributions of shape-
matched and normal-matched configurations to the f15jg
symbols for the chosen spin configuration. The shape-
matched configuration belongs to the SM-1; therefore, it is
enough to consider SM-1 and NM-1 contributions. In the
limit of large spins, the f15jg symbols have the asymptotic
form given in Eq. (5.12). Therefore, in the asymptotic
limit the ratio between the f15jg symbols for normal-
matched and shape-matched configurations is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detH0j=j detHjp

, where H0 is the Hessian of the shape-
matched configuration (whose coordinates are derived in
Appendix E).
Using the parametrization introduced above, we first

sample points of a subset of 1-4 vector geometries includ-
ing the shape-matched solution. For this purpose, we first
express ðmcd;mabÞ in terms of four parameters as

mT
cd ¼ ðsin θcd cosϕcd; sin θcd sinϕcd; cos θcdÞ; ð5:21Þ

mT
ab ¼ ðsin θab cosϕab; sin θab sinϕab; cos θabÞ: ð5:22Þ

The other two interior normals in (5.14) are fixed to
the shape-matched solutions mca ¼ nca, mca ¼ ndb,
and mcb;mad are determined by the following closure
conditions:

mcb ¼ −
1

jin
ðjoutnfb þ jinndb þ jinmabÞ; ð5:23Þ

mad ¼ −
1

jin
ðjoutnfd þ jinnbd þ jinmcdÞ: ð5:24Þ

Then we look for solutions within the interval ½0; 2π� of
θ≡ θcd ¼ θab. This choice of parametrization leads to
equalities among the gauge-invariant quantities:

cosϕab;ca − cosϕab;db ¼ cosϕca;cd − cosϕdb;cd ¼
ffiffiffi
2

p
cosθ;

ð5:25Þ

FIG. 7. Graphical representation of the 1-4 vector geometry
shown in Fig. 2. The representation is generated by using the
maximal tree method. Each colored point labels a node of the
pentagram. The set of normals at each node satisfies the closure
condition (2.8). Dashed black arrows stand for the antialigned
normals which connect the neighboring nodes: naðaþ1Þ ¼
−nðaþ1Þa, a ¼ 1;…; 4. Dashed colored arrows stand for the
remaining normals with nab ¼ −nba and fða; bÞ ¼ 1;…;
5ja < b and a ≠ b − 1g.

2The 2-3 vector geometries are too constrained for our
purposes. We could start with two regular tetrahedra glued back
to back and let the interior geometry of the piece formed by three
tetrahedra free. A simple counting argument shows, however, that
this interior geometry is rigidly fixed. In general, a vector
geometry is described by 40 parameters in 20 normalized vectors.
We have 10 equations from the solutions to the critical equations.
Two tetrahedra are constructed to be regular such that 7 normals
are fixed in the vectorial geometry. There are also 3 closure
conditions for the 3 free tetrahedra. The total number of
constraints is 10 × 2þ 7 × 2þ 3 × 2 ¼ 40 which is exactly
the total number of parameters in a vector geometry. Therefore,
the vectorial equations are too constrained to allow for configu-
rations other than the shape-matched one.
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where all these gauge-invariant quantities are exactly equal
to 1=2 at the shape-matched configuration. The correspond-
ing solutions for ϕab;ϕcd are obtained by the normalization
conditions on mcb;mad.
Now we can plot the relative magnitude of jdetHj−1=2

with respect to the shape-matched configuration for a
sample of exact vector geometries. The results are dis-
played in Fig. 8. We find that the shape-matched configu-
ration SM-1 is present in the superposition (5.13) and
interestingly it gives the contribution with the largest
amplitude. Therefore the Bell-network state on Γ5

describes a superposition of glued tetrahedra with a
significant contribution given by a Regge geometry.

VI. SUMMARY AND DISCUSSION

In loop quantum gravity, spin-network basis states are
eigenstates of local operators. These operators measure the
quantum geometry of nodes and links of a spin-network
graph. As a result, nearby nodes in a spin-network basis state
are unentangled: their geometry has uncorrelated fluctua-
tions. At the classical level this behavior corresponds to a
twisted geometry—the geometry of a collection of polyhedra
with uncorrelated shapes. In this paper we introduced a class
of states with nearest-neighbors correlations that guarantee
that neighboring polyhedra are glued at adjacent faces. We
dub these states Bell-network states as they are built by
entangling nearby nodes in a way that generalizes the spin-
spin correlations in a Bell state of two spin-1=2 particles.
Bell-network states are built using squeezed vacuum

techniques and are labeled by L complex numbers λl, one
per link of a graph Γ. The modulus and phase of the
parameter λl encode the average area and extrinsic angle
ðAl;ΘlÞ of a link of the graph. The quantum geometry of
nearby nodes is entangled in such a way that the normals to
adjacent faces of neighboring polyhedra are always back to
back, i.e., nsðlÞ ¼ −ntðlÞ. This condition guarantees that

the planes of the adjacent faces can be glued to each other.
We note that this condition does not impose that the
geometry is flat or that the shapes of the faces match.
The geometric structure that arises has been previously
studies in the spin-foam literature and is called a vector
geometry. Remarkably, a Bell-network state is not peaked
on any single vector geometry. The picture that arises from
our analysis is that, at fixed spins, a Bell-network state can
be understood as a uniform superposition over all vector
geometries. This behavior reflects the one of a Bell state of
two spin-1=2 particles,

jBi ¼ j↑isj↓it − j↓isj↑itffiffiffi
2

p ¼
ffiffiffi
2

p Z
d2n
4π

jnisj− nit; ð6:1Þ

which can also be understood as a uniform superposition of
back-to-back spins jnisj− nit over all directions n.
For a generic graph Γ, a Bell-network state is given by

the expression

jΓ;B; λli ¼ Pn exp

�X
l

λlϵABa
†A
sðlÞa

†B
tðlÞ

�
j0iΓ; ð6:2Þ

where Pn is the gauge-invariant projector at nodes of the
graph and the exponential of a†AsðlÞa

†B
tðlÞ squeezes links of the

graph creating entangled pairs at its endpoints. The state
can be expanded on an overcomplete basis of states
consisting of uncorrelated intertwiners jΦnðfngÞi peaked
on a polyhedron with fixed face areas and normals:

jΓ;B; λli ¼
X
jl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jl þ 1

p
λ2jll

×
Z

dμðfngÞAΓðjl; fngÞ⊗
n
jΦnðfngÞi ð6:3Þ

where the amplitude AΓðjl; fngÞ is the SUð2Þ symbol
associated with the graph Γ and expressed in a coherent
basis. In the large spin limit it is know that this amplitude
suppresses exponentially all configurations of normals
except the ones for which there exists a choice of rotation
matrices Rn for which [12]

RsðlÞnsðlÞ ¼ −RtðlÞntðlÞ: ð6:4Þ

This is exactly the defining condition of a classical vector
geometry.
We studied in detail properties of Bell-network states

on simple graphs. On the dipole graph consisting of
two tetrahedra we analyzed the correlation functions and
showed that the shape of the two quantum tetrahedra are
correlated in such a way that the two are always glued.
In the case of the pentagram graph consisting of five
tetrahedra we used the relation to SUð2Þ f15jg symbols,
where vector geometries are known to appear in the large
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0.2
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FIG. 8. Sampling of exact relative magnitudes ðjdetH0j1=21−4Þ=
ðjdetHj1=21−4Þ in terms of the cosine of the gauge-invariant 3d
dihedral angles ϕab;db and ϕcd;bd. The relative magnitude reaches
its maximum at the shape-matched configuration (SM-1) with
nab · ndb ¼ ncd · nbd ¼ 1=2.
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spin limit as saddle point configurations, to show explicitly
the gluing of tetrahedra in the 4 − 1 configuration.
The results presented show clearly the role of entangle-

ment in the gluing of quantum regions of space. Bell-
network states encode nearest-neighbor correlations in
quantum polyhedra that enforce the gluing conditions.
Long-range correlations are unconstrained and can be
included via quantum squeezing as discussed in [21,22].
As shown in this paper, the mutual information of the
quantum geometry of nearby nodes provides a powerful
tool to quantify the strength of correlations. With the
inclusion of long-range correlations, these same techniques
can be extended to the study of entanglement between large
regions of space consisting of many d.o.f., a calculation of
relevance for the identification of the semiclassical regime
of loop quantum gravity.
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APPENDIX A: MUTUAL INFORMATION AND
CORRELATIONS IN THE BELL STATE OF SPIN j

We compute the mutual information and the spin
correlations in the Bell state of spin j,

jB; ji ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
Xþj

m¼−j
ð−1Þj−mjj; misjj;−mit: ðA1Þ

As the state is pure and the reduced density matrix ρs ¼
1

2jþ1
1 is maximally mixed, we have that the mutual

information in the source and target of the Bell state is

Sðρs⊗ ρtkρstÞ¼ SðρsÞþSðρtÞ−SðρstÞ¼ 2 logð2jþ1Þ:
ðA2Þ

The spin expectation values on the Bell state vanish

hB; jjJisjB; ji ¼ 0; hB; jjJitjB; ji ¼ 0; ðA3Þ
and the spin-spin correlation functions are

Cij ¼ hB; jjJisJjt jB; ji ¼ −
jðjþ 1Þ

3
δij: ðA4Þ

Note that the spin operator is a bounded operator with norm
kJik ¼ j. Therefore the information-theoretic inequality

ðCijÞ2
2kJisk2kJitk2

≤ SðρsÞ þ SðρtÞ − SðρstÞ ðA5Þ

applies, as can also be checked explicitly noticing

that ðjþ1Þ2
18j2 ≤ 2 logð2jþ 1Þ.

APPENDIX B: DERIVATION OF THE BELL
STATES ON A PENTAGRAM GRAPH

The projection of jBγi ∈ Hbos to the space of spin
network states HΓ5

⊂ Hbos is

jΓ5;Bγi ¼ PΓ5
jBγi: ðB1Þ

Fixing the spins, we obtain a Bell state with determined
spins:

jΓ5;Bγ; jabi ¼ PΓ5
jBγ; jabi; ðB2Þ

where

jBγ; jabi ¼ ⊗
a<b

X
mab

ð−1Þjab−mab jjab;mabi ⊗ jjba;−mabi:

ðB3Þ

We adopt the convention that a ket jjab; mabi with spin jab
lives at the endpoint a of the link ab. The state jBγ; jabi is by
construction area matched. The projection to the space of
gauge-invariant states is easily constructed using the ortho-
normal intertwiner basis labeled by the virtual spins ia:

PΓ5
¼ ⊗

a
Pa; Pa ¼

X
ia

jiaihiaj; ðB4Þ

where jiai ∈ Ha ¼ Inv½ ⊗
b∶a≠b

Vjab �.
We represent the orthonormal intertwiners in the mag-

netic basis as

ji1i ¼
X
m

½i1�m12m13m14m15 jj12; m12i

⊗ jj13; m13i ⊗ jj14; m14i ⊗ jj15; m15i; ðB5Þ

and similarly for the other values of a. The dual bases with
respect to the standard Hilbert space inner product and to
the ϵ bilinear form are

hi1j ¼
X
m

½ī1�m12m13m14m15hj12; m12j ⊗ hj13; m13j

⊗ hj14; m14j ⊗ hj15; m15j;

½i1j ¼
X
m

�Y
b

ð−1Þj1b−m1b

	
½i1�−m12;−m13;−m14;−m15hj12; m12j

⊗ hj13; m13j ⊗ hj14; m14j ⊗ hj15; m15j:

The antilinear time-reversal operator is defined as ζji1i ¼
ji1�, with
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ji1� ¼
X
m

�Y
b≠1

ð−1Þj1b−m1b

	
½ī1�−m12;−m13;−m14;−m15 jj12; m12i ⊗ jj13; m13i ⊗ jj14; m14i ⊗ jj15; m15i:

The projector PΓ5
can be implemented node by node. We first represent the state jBγ; jabi (before the projection) as a

superposition of tensor products of node states in the form

jBγ; jabi ¼
X
mab

⊗
a
jBγaðmabÞi: ðB6Þ

Then we project each of the components in the above expansion to the gauge-invariant subspace. The representation (B6) is
not unique, and we can choose, for instance,

jBγ1i ¼ jj12; m12i ⊗ � � � ⊗ jj15; m15i;
jBγ2i ¼ ð−1Þj12−m12 jj21;−m12i ⊗ jj23; m23i ⊗ jj14; m14i ⊗ jj15; m15i;

jBγ3i ¼
�Y
b<3

ð−1Þjb3−mb3

	
jj31;−m13i ⊗ jj32;−m23i ⊗ jj34; m34i ⊗ jj35; m35i;

jBγ4i ¼
�Y
b<4

ð−1Þjb4−mb4

	
jj41;−m14i ⊗ jj42;−m24i ⊗ jj43;−m34i ⊗ jj45; m45i;

jBγ5i ¼
�Y
b<5

ð−1Þjb5−mb5

	
jj51;−m15i ⊗ jj52;−m25i ⊗ jj53;−m35i ⊗ jj54;−m45i;

by attaching the signs ð−1Þjab−mab in (B3) always to the source node, at all links. Then the projected node states are

P1jBγ1ðmabÞi ¼
X
i1

½ī1�m12;m13;m14;m15 ji1i;

P2jBγ2ðmabÞi ¼
X
i2

ð−1Þj12−m12 ½ī2�−m12;m23;m24;m25 ji2i;

P3jBγ3ðmabÞi ¼
X
i3

�Y
b<3

ð−1Þjb3−mb3

	
½ī3�−m13;−m23;m34;m35 ji3i;

P4jBγ4ðmabÞi ¼
X
i4

�Y
b<4

ð−1Þjb4−mb4

	
½ī4�−m14;−m24;−m34;m45 ji4i;

P5jBγ5ðmabÞi ¼
X
i5

�Y
b<5

ð−1Þjb5−mb5

	
½ī5�−m15;−m25;−m35;−m45 ji5i:

Taking their tensor product and summing over the indices mab, we obtain

jΓ5;Bγ; jabi ¼
X
mab

�Y
c<d

ð−1Þjcd−mcd

	X
ia

�
⊗
5

k¼1
jiki
�
½ī1�m12;m13;m14;m15 ½ī2�−m12;m23;m24;m25

× ½ī3�−m13;−m23;m34;m35 ½ī4�−m14;−m24;−m34;m45 ½ī5�−m15;−m25;−m35;−m45

¼
X
mab

X
ia

�
⊗
5

k¼1
jiki
�
½ī1�m12;m13;m14;m15 ½ī2�m12

m23;m24;m25

× ½ī3�m13;m23

m34;m35 ½ī4�m14;m24;m34

m45 ½ī5�m15;m25;m35;m45

¼
X
ia

�
⊗
5

k¼1
jiki
�
15jðjab; iaÞ; ðB7Þ

where the 15j symbol is the contraction of the intertwiners determined by the graph Γ5:

15j ¼ ½i1�m12m13m14m15 ½i2�m12

m23m24m25 ½i3�m13m23

m34m35 ½i4�m14m24m34

m45 ½i5�m15m25m35m45
; ðB8Þ

with indices raised and lowered with the ϵ-isomorphism.
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APPENDIX C: HESSIAN OF THE
f15jg-SYMBOL ACTION

We derive explicitly the Hessian of the action for the 15j
symbol. The action for the asymptotic problem of the
15jðjab; nabÞ symbol is

Sðj;nÞ½X� ¼
X
b<a

2jab lnhζnabjX−1
a Xbjnabi; ðC1Þ

where it encodes a global SUð2Þ continuous symmetry and
a discrete � symmetry at each vertex a, given by X0

a ¼
ϵaYXa with Y ∈ SUð2Þ and ϵa ¼ �: In order to find the
critical points to the action, we need to compute the
variation of the action with respect to the SUð2Þ group
elements Xa. The variation of the SUð2Þ group element is
simply δX ¼ τX with the variation of its inverse δX−1 ¼
−X−1τ, where τi ¼ 1

2
iσi is the suð2Þ algebra element.

Therefore, the partial derivative of the action with respect
to a SUð2Þ element Xj

d is

∂Sðj;nÞ½X�
∂Xj

d

¼
X
b<a

2jab


h−ndbjX−1
d ð−τjÞδadXbjnbdi

h−ndbjX−1
d Xbjnbdi

þ h−nadjX−1
a τjδbdXdjndai

h−nadjX−1
a Xdjndai

�
ðC2Þ

¼
X
b<d

2jdb
h−ndbjX−1

d ð−τjÞXbjnbdi
h−ndbjX−1

d Xbjnbdi

þ
X
a>d

2jad
h−nadjX−1

a τjXdjndai
h−nadjX−1

a Xdjndai
; ðC3Þ

where j− nabi is obtained by the action of the antilinear
map ζ on coherent states, which takes n to −n. The
stationarity of the action δSðj;nÞ½X� ¼ 0 leads to a set of
complex vector equations:X

b≠a
jabvab ¼ 0; vab ¼ −vba; ðC4Þ

where the vector vab is defined as

vab ¼
h−nabjX−1

a σXbjnbai
h−nabjX−1

a Xbjnbai
ðC5Þ

and the minus sign of the second term in the variation of the
action can be taken in a single expression by knowing that the

epsilon inner product ϵðTα; βÞ ¼ −ϵðα; TβÞ for algebra
element T and ϵðgα; βÞ ¼ ϵðα; g−1βÞ for group element g.
As the action of the group element on coherent states jnabi
produces a new set of coherent states jn0abi, Xajnabi ¼
jn0abi, we can simplify the vector vab expression:

vab ¼
h−n0abjσjn0bai
h−n0abjn0bai

¼ ðn0ba − n0abÞ − ið−n0ab × n0baÞ
1 − n0abn0ba

¼ −n0ab; ðC6Þ
where we used the scalar product of coherent states and the
projector Pn¼jnihnj¼ 1

2
ðIþσ ·nÞ. It is clear that the sta-

tionarymethods canbe extended for the real part of the function
so that the real part of the action is maximized by setting the
imaginary part to zero, n0ab and n0ba should be antiparallel,
Xanab ¼ −Xbnba. Therefore we have ten equations

Xanab ¼ −Xbnba ðC7Þ
formaximizing the action and five equations for the stationarity
of the action X

b≠a
jabnab ¼ 0: ðC8Þ

The solutions to the critical equations (C7)–(C8) contain an
interpretation in terms of the BF theory. They can be con-
sidered as the solutions of a four-dimensional BF theory with
group SUð2Þ discretized on a 4-simplex. Therefore, the
solutions can be parametrized by the Xa and bab ¼
jabXanab. These are the discrete connection and B-field
variables, respectively. The critical equations are now
expressed in terms of the bab:X

b∶b≠a
bab ¼ 0; bab ¼ −bba; ðC9Þ

which determines a vector geometry by 20 three-dimensional
vectors bab. The Xa variables are a discrete version of the
connection on a BF theory. This is due to the gluing of two
4-simplexes followed by the identification of the nab variables
on a common tetrahedron. In terms of the vector geometry (bab
variables), this implies that the gluing takes place after the
action of the corresponding Xa for the tetrahedron.
Aswehave the critical points to the action,we can evaluate

the Hessian of the action. The Hessian is the second
derivative of the action with respect to the group element:

Hij
cd ≡

∂2Sðj;nÞ½X�
∂Xi

c∂Xj
d

¼
X
b<d

2jdb


h−ncbjX−1
c ðτiτjÞδcdXbjnbci

h−ncbjX−1
c Xbjnbci

þ h−ndcjX−1
d ð−τjτiÞδbcXcjncdi

h−ndcjX−1
d Xcjncdi

−
h−ndbjX−1

d ð−τjÞXbjnbdi
h−ndbjX−1

d Xbjnbdi2
ðh−ncbjX−1

c ð−τiÞδcdXbjnbci þ h−ndcjX−1
d τiδbcXcjncdiÞ

�
þ
X
a>d

2jad


h−ncdjX−1
c ð−τiτjÞδcaXdjndci

h−ncdjX−1
c Xdjndci

þ h−nacjX−1
a ðτjτiÞδcdXcjncai

h−nacjX−1
a Xcjncdi

−
h−nadjX−1

a ðτjÞXdjndai
h−nadjX−1

a Xdjndai2
ðh−ncdjX−1

c ð−τiÞδacXdjndci þ h−nacjX−1
a τiδcdXcjncaiÞ

�
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for the case c < d and c > d with using the definition of vab we have

c < d∶ −
1

2
jcd

�h−ndcjX−1
d ð−δij − iϵijkσkÞXcjncdi
h−ndcjX−1

d Xcjncdi
þ vjdcv

i
dc

	
¼ −

1

2
jcdð−δij − iϵijkvkcd þ vicdv

j
cdÞ

c > d∶ −
1

2
jcd

�h−ncdjX−1
c ð−δij − iϵijkσkÞXdjndci
h−ncdjX−1

c Xdjndci
þ vjcdv

i
cd

	
¼ −

1

2
jcdð−δij − iϵijkvkcd þ vicdv

j
cdÞ; ðC10Þ

and for c ¼ d,

c¼ d∶−
1

4


X
b<c

2jbc

�h−nbcjX−1
c ðδijþ iϵijkσkÞXbjnbci

h−ncbX−1
c Xbjnbcij

−vjcbv
i
cb

�
þ
X
a>c

2jac

�h−nacjX−1
a ðδijþ iϵijkσkÞXcjncai

h−nacjX−1
a Xcjncai

−vjacviac

��
¼−

1

4

X
b≠c

2jbcðδijþ iϵijkvkcb−vicbv
j
cbÞ; ðC11Þ

where we have used the identity σiσj ¼ δij þ iϵijkσk. The
Hessian of the action, as a second derivative test of a function,
can be used to express the asymptotic expansion of the
integral over the group elementsX, which corresponds to the
15j symbol proportional to eλS given by the boundary data:

f15jgðλj; nÞ ∼
�
2π

λ

�
6 1ffiffiffiffiffiffiffiffiffiffiffi

detH
p eλSðXÞ; ðC12Þ

where the action S for the 15j symbol is evaluated at the
critical points derived above. In order to apply the method of
extended stationary phase we need to ensure that the sta-
tionary points are isolated. This is accomplished by fixing
SUð2Þ elements as X0

a ¼ ðX5Þ−1Xa for a ¼ f1;…; 4g. The
“gauge-fixed” integral formulas then have isolated critical
points related only by the discrete symmetries and can now
be evaluated using an extended stationary phase. After gauge
fixing and deriving the expression of the Hessian Hij

cd for a
given boundary data fjab; nabg, we can perform the explicit
calculation of the Hessian matrix H:

H ¼

2666664
H11 H12 … H14

H21 H22 … H24

..

. ..
. ..

. ..
.

H41 H42 … H44

3777775: ðC13Þ

APPENDIX D: VECTOR GEOMETRY
FOR EQUAL SPINS jab = j

Let us illustrate the structure of the space of vector
geometries in the concrete case of equiareal tetrahedra. It is
convenient to introduce the unit vectors wab ≔ Xanab. We
will determine the dimensionality of the space of solutions
to the critical point equations and discuss the relevant
subspaces. From the condition wab ¼ −wba, only 10 of the

20 vectors wab can be independent—one per link. Consider
the node 1. There are four vectors w1b at the node. We can
use the symmetry under global rotations to fix

w12 ¼ ẑ; w13 ¼ ðsin θ; 0; cos θÞ; ðD1Þ

so that the two first vectors are described by a single
parameter.
(1) For θ ¼ 0, we have w12 ¼ w13 ¼ ẑ, and the closure

relation gives w14 ¼ w15 ¼ −ẑ. This is a degenerate
case, where the normals form a linear object. This
subspace contains a single solution.

(2) For θ ¼ π, w13 ¼ −w12 ¼ −ẑ, and the closure rela-
tion gives w15 ¼ −w14, where w14 can be freely
chosen. The symmetry under global rotations can be
used to force one of the components of w14 to vanish,
leaving one free parameter. Hence, this subspace is
one dimensional. If w14 ¼ �ẑ, then the geometry is
the same as for θ ¼ 0. The normals form a planar
object, and we have again a degenerate geometry.

(3) Now take θ ≠ 0; π. From the closure relationP
b≠1w1b ¼ 0, it follows that the partial sum w12 þ

w13 þ w14 must be a unit vector, equal to −w15. The
possible choices of w14 form a unit sphere centered
at 0þ w12 þ w13, which intersects the unit sphere
centered at the origin 0 at a one-dimensional loop.
Therefore, we have one free parameter associated
with w14, and the space of solutions to the closure
relation, up to global rotations, is two dimensional. If
one takes w14 ¼ −w13 or −w12, then the normals
form a parallelogram, and we have a degenerate
geometry. For any other choice, the normals form a
nondegenerate geometry of nonzero volume, de-
scribing a unique tetrahedron.

In short, the space of solutions of the closure relation at a
node, up to rotations, is two dimensional, and the subset of
degenerate solutions forms a lower dimensional subspace.
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Consider now the node 2. We have w21 ¼ −w12. The
vector w23 is completely free, requiring two free parameters
for its description. As before, we have a single extra
parameter for the description of w24, in order for the
closure relation to admit a solution. The last vector w25

is then fixed by the closure relation. We have three
additional parameters associated with the second node.
For the node 3, the vectors w31 and w32 are fixed by the

previous choices of normals for the nodes 1 and 2. We have
again one free parameter for the possible choices of w34.
However, the same is true for w43 ¼ −w34 at the node 4,
and the intersection of two loops on the sphere is in general
formed by isolated points, and we do not have a new d.o.f.
associated with these nodes. All remaining vectors at the
nodes 3 and 4 are then fixed by the closure relations. The
closure relation at the node 5 imposes an additional
condition, but this is automatically satisfied when the
closure relations at the nodes 1 to 4 and the link conditions
are satisfied.
We conclude that the space of solutions to the critical

point conditions on the pentagram with all spins equal,
jl ¼ j, is characterized by five parameters, and the subset
of degenerate geometries forms a lower-dimensional subset
at the boundary of the parameter space.

APPENDIX E: SHAPE-MATCHED
CONFIGURATIONS FOR A 4-SIMPLEX IN R3

The boundary data of a 4-simplex in R3 is equipped with
a metric of signature 0þþþ and has the same metric
geometry as a linear immersion of the simplex into R3. For
a single solution set Xa to the critical point equations, the
gluing map gab can be either an identity or π rotation with
which the boundary data coincides with the 3d Euclidean
geometry. In other words, the shape-matched normals in 3d
space should form the boundary of a 4-simplex via geo-
metric way. We will construct the boundary of a 4-simplex
in R3 out of local modifications to a 3-manifold triangu-
lation, where a collection of five tetrahedra whose 20 faces
are glued together in ten pairs. There are four such
modifications known as Pachner moves: 1-4 move is
replacing a single tetrahedron with four distinct tetrahedron
meeting at a common internal vertex (see Fig. 9). 2-3 move
is taking two distinct tetrahedra joined along a common
face with three distinct tetrahedra joined along a common
edge. The remaining moves, 3-2 and 4-1 moves, are just
inverse to the 2-3 and 1-4 moves. These moves do not
change the topology of the triangulation at all. We will
consider only 1-4 and 2-3 moves since their critical point
equations or the orientation conditions for the relevant
vector geometry are exactly the same as in 4-1 and 3-2,
respectively.

Consider a regular tetrahedron τf with side length 2 by
having four position vectors of four vertices where the
regular tetrahedron is centered at the origin of the coor-
dinates:

pT ¼
�
1; 0;−

1ffiffiffi
2

p
�
; qT ¼

�
−1; 0;−

1ffiffiffi
2

p
�
;

rT ¼
�
0; 1;

1ffiffiffi
2

p
�
; sT ¼

�
0;−1;

1ffiffiffi
2

p
�
: ðE1Þ

We can construct the edge vectors ek in order to fully
determine the regular tetrahedron:

e1 ¼ p − s; e2 ¼ q − s; e3 ¼ r − s: ðE2Þ

One can obtain the outward normals of the regular
tetrahedron (E ¼ A1−4

out n, A1−4
out ¼ ffiffiffi

3
p

) from the “electric
field” on each face of the tetrahedron:

E1¼
1

2
ðe2× e3Þ; E2¼

1

2
ðe3× e1Þ; E3 ¼

1

2
ðe1× e2Þ

ðE3Þ

with satisfying the closure condition on the regular tetra-
hedron E4 ¼ −ðE1 þ E2 þ E3Þ and the normals related to
the exterior faces of τf are then

ncf ¼ð1=A1−4
out ÞE3; naf ¼ð1=A1−4

out ÞE1;

nbf ¼ð1=A1−4
out ÞE2; ndf ¼−ðncfþnafþnbfÞ; ðE4Þ

where the labelings a, b, c, d correspond to the four interior
tetrahedra τa, τb, τc, τd, respectively. The normals of the
interior faces with area A1−4

in ¼ 1=
ffiffiffi
2

p
belonging to the four

interior tetrahedra are

FIG. 9. Description of the 1-4 move used to construct five glued
tetrahedra by placing a fifth vertex i, origin of the coordinates, in
the center point of the tetrahedron pqrs.
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τb∶ncb ¼
1

2A1−4
in

ðd − f Þ × ða − f Þ;

ndb ¼
1

2A1−4
in

ða − f Þ × ðc − f Þ;

nab ¼
1

2A1−4
in

ðc − f Þ × ðd − f Þ; nfb ¼ nbf;

τd∶nad ¼
1

2A1−4
in

ðb − f Þ × ðc − f Þ;

ncd ¼
1

2A1−4
in

ða − f Þ × ðb − f Þ;

nbd ¼ −ndb; nfd ¼ ndf;

τa∶nca ¼
1

2A1−4
in

ðb − f Þ × ðd − f Þ; nfa ¼ naf;

nda ¼ −nad; nba ¼ −nab;

τc∶nfc ¼ ncf; nac ¼ −nca;

ndc ¼ −ncd; nbc ¼ −ncb; ðE5Þ

where there are in total 4 aligned and 6 back-to-back
conditions on the normals. These conditions can be applied
to the configurations other than shape-matched in the 1-4
vector geometry. As the normals are obtained on a shape-
matched configuration for a 4-simplex, we can compute
jdetHj−1=2 for fixed spins jout ¼ 2, jin ¼ 2=

ffiffiffi
6

p
, which is

related to the ratio of the areas ðAout; AinÞ of the exterior and
interior faces, on this boundary data:

jdetH0j1=21−4 ¼ 0.204947: ðE6Þ

Now we can consider 2-3 move to construct a 4-simplex in
R3 which is shown in Fig. 10.
Consider two regular tetrahedra glued back to back with

side length of 2 by having five position vectors of five
vertices where the regular tetrahedron at the top is centered
at the origin of the coordinates:

pT ¼
�
1; 0;−

1ffiffiffi
2

p
�
; qT ¼

�
−1; 0;−

1ffiffiffi
2

p
�
;

rT ¼
�
0; 1;

1ffiffiffi
2

p
�
; sT ¼

�
0;−1;

1ffiffiffi
2

p
�
;

iT ¼
�
0;
5

3
;−

5

3
ffiffiffi
2

p
�
:

The normals of the two regular tetrahedra τf and τd with
exterior and interior areas A2−3

out ¼ ffiffiffi
3

p
, A2−3

in ¼ ð4=3Þ ffiffiffi
2

p
are

then, respectively, as follows:

ncf ¼ ð1=A2−3
out ÞE3; naf ¼ ð1=A2−3

out ÞE1;

nbf ¼ ð1=A2−3
out ÞE2; ndf ¼ −ðncf þ naf þ nbfÞ;

ncd ¼ ð1=A2−3
out ÞF3; nad ¼ ð1=A2−3

out ÞF1;

nbd ¼ ð1=A2−3
out ÞF2; nfd ¼ −ndf; ðE7Þ

where the vectors Ek are given in (E3) andFk have the same
expression as in the Ek via replacing the vertex s by the
vertex i. The sets of the normals belonging to three interior
tetrahedra τc, τa, and τb are as follows:

τc∶nbc ¼
1

2A2−3
in

ða − f Þ × ðd − f Þ;

nac ¼
1

2A2−3
in

ðd − f Þ × ðb − f Þ;

nfc ¼ ncf; ndc ¼ ncd

τa∶nba ¼
1

2A2−3
in

ðd − f Þ × ðc − f Þ;

nda ¼ nad; nfa ¼ naf; nca ¼ −nac
τb∶nfb ¼ nbf; ndb ¼ nbd;

nab ¼ −nba; ncb ¼ −nbc: ðE8Þ

In the 2-3 vector geometry, there are in total six aligned and
four back-to-back conditions on the normals and the
jdetHj−1=2 for fixed spins jout ¼ 2, jin ¼ joutð4=3Þ

ffiffiffiffiffiffiffiffi
2=3

p
on this boundary data is

jdetH0j1=22−3 ¼ 0.262621: ðE9Þ

FIG. 10. Pachner move 2-3. Two tetrahedra glued back to back
are transformed into three tetrahedra with the inclusion of a new
edge from the vertex s to the vertex i.
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