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Inspired by holographic Wilsonian renormalization, we consider coarse graining a quantum system
divided between short-distance and long-distance degrees of freedom (d.o.f.), coupled via the Hamiltonian.
Observations using purely long-distance observables are described by the reduced density matrix that arises
from tracing out the short-distance d.o.f. The dynamics of this density matrix is non-Hamiltonian and
nonlocal in time, on the order of some short time scale. We describe this dynamics in a model system with a
simple hierarchy of energy gapsΔEUV > ΔEIR, in which the coupling between high- and low-energy d.o.f.
is treated to second order in perturbation theory. We then describe the equations of motion under suitable
time averaging, reflecting the limited time resolution of actual experiments, and find an expansion of the
master equation in powers of ΔEIR=ΔEUV, after the fashion of effective field theory. The failure of the
system to be Hamiltonian or even Markovian appears at higher orders in this ratio. We compute
the evolution of the density matrix in three specific examples: coupled spins, linearly coupled simple
harmonic oscillators, and an interacting scalar quantum field theory. Finally, we argue that the logarithm of
the Feynman-Vernon influence functional is the correct analog of the Wilsonian effective action for this
problem.
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I. INTRODUCTION

Quantum entanglement has emerged as a central concept
in the study of the underpinnings of gauge-gravity duality.
The prescription of Ryu and Takayanagi [1,2], and its time-
dependent generalization [3], encodes the entanglement
entropy between spatial regions in the field theory in the
area of minimal or extremal surfaces in the dual spacetime.
Through this, there are good arguments that spatial con-
nectedness in the bulk encodes quantum entanglement of
disjoint regions on the boundary [4–6].
On the other hand, the partitioning of a quantum field

theory according to spatial or spacetime scales is funda-
mental to our physical understanding of quantum field
theory, via the renormalization group. In textbook treat-
ments of renormalization one chooses variables so as to
disentangle the “UV” and “IR” degrees of freedom (d.o.f.).

However, there are many contexts in which one does not do
this, or even wish to:
(1) As argued in Ref. [7], integrating out large Euclidean

momenta in a path integral leads to a reduced density
matrix for the IR modes, and the higher-derivative
terms are precisely the sign of entanglement between
the UV and IR.

(2) The entanglement spectrum of a reduced density
matrix for low-momentum modes can be a useful
way to characterize the long-wavelength behavior of
a lattice theory [8].

(3) There is a venerable history of treating “slow”
variables (defined in various ways) as an open
quantum system interacting with “fast modes” to
provide a microscopic underpinning of stochastic
and hydrodynamic equations. For classic work see
Refs. [9–13]. Some recent work (hardly an exhaus-
tive list!) includes Refs. [14–18].

(4) Fluctuations of the cosmic microwave background
radiation are analyzed by momentum scale, and
different momentum modes are entangled [19–25].

(5) It is useful to treat the IR region of jets in high-
energy particle collisions as an open quantum
system, cf. Ref. [26] and the references therein.
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One important setting where choosing variables to “dis-
entangle” theUVand IRd.o.f. canobscure the physics is in the
AdS=CFT correspondence. In this case, there is ample
evidence that spacetime scale in a quantum field theory
(QFT) is related via gauge-gravity duality to the radial
direction in the dual asymptotically anti–de Sitter (AdS)
space [27,28], with the region of anti–de Sitter space close
to the boundary dual to the UV region of the quantum field
theory (i.e., “scale-radius duality”). Various prescriptions
have emerged for relating the radial evolution of bulk fields
to the renormalization group flow of the dual field theory
[29–35]. Of these, theWilsonian prescription of Refs. [34,35]
lends itself most readily to a finite-N generalization [36]. In
this scheme, the IR andUV regions are clearly entangled [36].
In this paper we will explore such open quantum systems

from the quantum-mechanical/quantum-field-theoretic
point of view, with the eventual aim of shedding light
on scale-radius duality. Before doing this, let us recall the
discussion in Ref. [36].
The AdS=CFT correspondence states that the dual of a d-

dimensional large-N conformal field theory [N could be the
rank of a gauge group, or the central charge of a two-
dimensional conformal field theory (CFT)] is string- or M-
theory in AdSdþ1 × X, where X is some space with constant
positive curvature. For CFTs on R1;d−1, one considers a
Poincaré patch of anti–de Sitter space, with coordinates

ds2 ¼ R2
dr2

r2
þ r2

R2
dx2d: ð1Þ

Here dx2d is the flat metric on d-dimensional Minkowski
space, and R is the radius of curvature of AdSd. To
implement a renormalization group flow after the fashion
of Wilson, the authors of Refs. [34,35] proposed the
following. The cutoff Λ is associated with a definite radial
coordinate, rΛ ¼ R2Λ. One breaks up the path integral over
fields propagating on AdSd into modes with r > rΛ and
r < rΛ, interprets the path integral for r < rΛ with fixed
fields at r ¼ rΛ as the generating functions of correlators in
the cutoff theory, and integrates this over the field values at
r ¼ rΛ weighted by the path integral over the fields
for r > rΛ.
In this procedure, nontrivial operators are induced at the

cutoff even when the theory is an unperturbed conformal
field theory [36]. In particular, at a given cutoff Λ, one
induces terms in the Wilsonian action of the form

ΔSΛ ¼
Z

ddxddyγabðx − y;ΛÞOaðxÞObðyÞ ð2Þ

where Oa correspond to single-trace operators dual to
supergravity fields. The kernel γ is nonlocal over spacetime
distances of order Λ−1. In the holographic picture, these
operators have a clear interpretation [36]. If one excites the
bulk in the “infrared” region r < rΛ, these excitations can
propagate out to the region r > rΛ. The induced term (2)

acts precisely to describe the transfer of these modes
between the IR and UV regions on time scales of order
Λ−1. In other words, they take care of the fact that the IR
region comprises an open quantum system.1

In this work we will study simple quantum systems
which capture the spirit of the split between infrared and
ultraviolet modes seen in quantum field theories. We will
focus on theories with a hierarchical structure of energy
levels governed by level splittings ΔEIR ≪ ΔEUV. This
structure, the underpinning of the Born-Oppenheimer
approximation, is the basis of Wilson’s pioneering work
[39–42], and provides a conceptual underpinning for
effective field theory [43].
As we will argue, experiments with limited spatial

resolution are described by an “IR density matrix,” a
reduced density matrix which arises from tracing out
short-distance modes. However, realistic experiments also
have limited resolution in time, so we will implement a
straightforward, physical time-averaging procedure to
describe them. We will compute the master equation
describing the time evolution of the time-averaged IR
density matrix. We will find that the master equation can
be organized in a power series in ðΔEIR=ΔEUVÞ after the
fashion of effective field theory, for which we can begin to
identify parallels with the discussion in Ref. [36].
The study of open quantum systems is a well-developed

subject (see the reviews [20,44,45], e.g., the treatment of
fast or ultraviolet modes as an environment for slow,
infrared modes. Our work contributes an abstract treatment
that leads to an effective-field-theory-like expansion of the
master equation for reduced density matrices of subsys-
tems.2 We focus on this abstract language for two reasons.
First, it highlights essential physics—the presence of a
hierarchy of energy scales. Second, an abstract approach is
best suited to our goal of understanding gauge-gravity
duality, for which the variables that appear in a path-
integral approach to the gauge theory have by themselves
no clear dual (to begin with they are not even gauge
invariant).
In the following section, we will embark on our

computation of the master equation in perturbation theory
for a simple quantum system motivated by the essential
structure of quantum field theories. After implementing a

1Note that the relationship between this holographic cutoff and
any factorization of the Hilbert space is an open question (see for
example Ref. [37] for a discussion). In large-N vector models
dual to higher-spin theories in anti–de Sitter space, the associated
cutoff appears to be a point-splitting cutoff on gauge-invariant
bilocal operators [38]. This is an important issue that we will put
aside for the moment.

2A notable exception is the recent work [46,47], which treated
the “IR” mode classically, and derived a dissipative dynamics for
that mode. Another is the related set of papers which considered
the density matrix for low-mass fields after integrating out high-
mass fields [48–50]. These are complementary to the present
work.

AGON, BALASUBRAMANIAN, KASKO, and LAWRENCE PHYS. REV. D 98, 025019 (2018)

025019-2



physical time averaging, we will see a Born-Oppenheimer-
type expansion emerge, in which non-Hamiltonian and
non-Markovian dynamics appear starting at second order in
1=ΔEUV. We provide a simple expression for the time
evolution of Rényi entropies of the IR density matrix. We
will work two simple examples—a coupled spin system
and the Caldeira-Leggett model [51] at zero temperature—
to see how this expansion plays out, and then describe the
master equation for scalar quantum field theories with
cubic interactions. Such master equations for low-spatial-
momentum modes have been computed for four-dimen-
sional theories via the influence functional approach [19],
and our work further contributes a Born-Oppenheimer-like
framework and a time-averaging procedure for understand-
ing the effects of finite time resolution.
In the conclusions we will draw what lessons we can for

gauge-gravity duality, relating the appearance of non-
Hamiltonian and non-Markovian terms to nonlocal terms
that emerge [36] in the Wilsonian approach of Refs. [34,35].
We will argue that the natural framework for understanding
this work would be to use the results of Refs. [34,35] to
compute an influence functional [52,53] for the IR modes,
and note further that the logarithm of the influence functional
is the natural extension to the Wilsonian effective action to
understanding finite-time processes. We will then provide
some further speculations regarding the use of these results
for understanding gauge-gravity duality.
In the appendices we review some concepts which may

be unfamiliar for some of our audience (while being bread
and butter to others). First, we address a common confusion
we encountered when discussing this work: textbook
treatments of renormalization do not consider entanglement
between UV and IR modes. We review various approaches
to renormalization of quantum field theories to explain
how, in those cases, these modes are disentangled. Next, we
discuss some issues with states with initial entanglement.
We then discuss an obstruction to computing the von
Neumann entropy for the IR density matrix, in perturbation
theory. Finally, we review the path-integral approach to
computing the dynamics of density matrices, and in
particular the Feynman-Vernon influence functional.
Since the first version of this work appeared on the arXiv,

a number of interesting papers on related subjects have
appeared, including Refs. [24–26,49,50,54–56]. Further,
the results in this paper were further built on by two of us
in Ref. [57].

II. DYNAMICS OF ρIR IN PERTURBATION
THEORY

A. Motivation

Consider an interacting scalar field theory

H ¼ 1

2
π2ϕ þ

1

2
ð∂ϕÞ2 þ 1

2
m2ϕ2 þ λ

4
ϕ4 ð3Þ

defined on some lattice with spacing a. Now consider a
measuring device which directly couples to ϕ, but has finite
resolution in space and time. That is, if we write the field ϕ
in the Schrödinger picture as

ϕðxÞ ¼
Xπ=a

k¼−π=a

1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
πωðkÞp akeik·x þ H:c:; ð4Þ

then our measuring devices couple to ak, a†k for
jkj < Λ ≪ π

a, and record the time of the measurement with
temporal accuracy δt.
The Hilbert space can be broken up into

H ¼ HIR ⊗ HUV ð5Þ

where HIR is generated by a†k for jkj < Λ and HUV is
generated by a†k for jkj > Λ. Note that we are not directly
breaking up the Hilbert space according to energy scale.
First, for an interacting theory, spatial momentum and
energy will not be directly related. Second, we may be
interested in high-energy objects made up of many low-
energy quanta. After all, the physics of the sun is well
described by the standard model cutoff at a TeV, even
though its total mass is of order 1054 GeV.3

We imagine an experiment of the following form. Begin
with the system in its exact ground state j0i, and act on it
with some infrared operator OIR. Let the resulting state
evolve in time,

jψðtÞi ¼ e−
i
ℏHtOIRj0i: ð6Þ

Now compute the probability of measuring the IR d.o.f. in
some state jai ∈ HIR. We are not making any measure-
ments in HUV, so we should sum the probabilities over all
possible final states in HUV. The result is

Pða; tÞ ¼
X

jui∈HUV

jhujhaje− i
ℏHtOIRj0ij2

¼ trPae−
i
ℏHtOIRj0ih0jO†

IRe
i
ℏHt

¼ trHIR
PaρIRðtÞ ð7Þ

where Pa ¼ jaihaj, and

ρIRðtÞ ¼ trHUV
½e− i

ℏHtjψð0Þihψð0Þjei
ℏHt�: ð8Þ

More generally, the expectation value at time t of mea-
surements of AIR acting on HIR is hAi ¼ trAρIRðtÞ. Based
on this we take ρIR to be the object of interest.

3One may, however, wish to restrict the Hilbert space to states
with low energy density of order ΛD, where D is the spacetime
dimension.
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B. Setup

Wilson emphasized [40,42] that the energy spectrum for
quantum field theories has a hierarchical structure, as
illustrated in Fig. 1. In order to focus on the effects of
this structure, we work with a simpler abstract model that
captures it. That is, we consider a Hilbert space with
product structure

H ¼ HIR ⊗ HUV ð9Þ

and a Hamiltonian of the form

H ¼ HIR ⊗ 1þ 1 ⊗ HUV þ λV ð10Þ

where V acts on both HIR and HUV.
Our goal is to compute the “master equation” for ρIRðtÞ,

that is, the right-hand side of the expression

iℏ∂tρIR ¼ LðρÞm ð11Þ

where, LðρÞ represents a differential operator on ρIR, which
depends on the full ρ through the initial conditions.
Recognizing that measurements in the IR theory will
typically have limited time resolution, we will also deter-
mine the time evolution of a version of ρ that is coarse
grained by time averaging.
We will assume the following:
(1) The interaction λV can be treated perturbatively.

Specifically we will work to order λ2. In perturbation
theory starting from Fock space there is a tight
connection between momentum and energy. Note
that perturbation theory for the density matrix itself
can fail at long times, due to secular terms in the
perturbative expansion [58].

(2) The eigenvalue spacing for HUV, HIR can be
characterized by scales ΔEUV ≫ ΔEIR. This is a

simplification. In general, we expect a local system
to have a nested hierarchy of energy levels, as shown
in Fig. 1, corresponding to different momentum
modes of the fundamental fields. That being said, at
this order of perturbation theory, we will find that we
can also compute the master equation for cubic
scalar quantum field theories.

(3) Factorized initial states. Following much of the
literature on open quantum systems, we will con-
sider initial states for which the UVand IR d.o.f. are
not entangled, so that ρIRð0Þ is a pure state. These
have a master equation which is local in time. This is
of course not the most general situation—small
excitations of the ground state such as Eq. (6) will
in general be highly entangled between the UV and
IR—but it can arise in interesting physical situations.
For example, if we prepare the state by measuring
the IR with a nondegenerate Hermitian operator, the
state will collapse to a product state. Another well-
studied situation is the “interaction quench,” in
which λ is suddenly turned on at t ¼ 0. The
entanglement of spatial regions after a quench has
been well studied, beginning with the pioneering
work of Refs. [59–61].

C. Perturbative calculation

The calculation of the master equation for ρIRðtÞ can be
done by, e.g., projection operator techniques (see
Ref. [45]). To be self-contained, we will rederive results
from the theory of open quantum systems in a manner
consistent with our approximations and perspective.
We consider jΨð0Þi ¼ jψ IRijui, where u labels eigen-

states of HUV; u is some particular state, possibly but
not necessarily the ground state, while jψ IRi is taken to
be some arbitrary state in HIR. In general, when the
initial state of a coupled system and environment is
factorized between the two, the reduced density matrix
of the system satisfies a master equation which is
local in time (see Refs. [45,62,63] for discussion and
references):

iℏ∂tρIRðtÞ ¼ ½HeffðtÞ; ρIRðtÞ� þ ifAðtÞ; ρIRðtÞg þ γ½ρIRðtÞ�
≡ ½Heff ; ρIRðtÞ� þ Γ½ρIRðtÞ�: ð12Þ

Γ labels the non-Hamiltonian part of the master equation
for ρIR, with

AðtÞ ¼ −
1

2

X
k

hklðtÞL†
l ðtÞLkðtÞ;

γ½ρIR� ¼ i
X
k

hklðtÞLkðtÞρIRðtÞL†
l ðtÞ; ð13Þ

where Lk are some set of operators that can depend on
the initial state of the UV d.o.f. but act on the IR, and

ΔEUV

ΔE IR

Energy

FIG. 1. Cartoon of band structure: large jumps correspond to
UV quanta, small jumps to IR quanta.
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hkl is a Hermitian matrix.4 Here k, l are arbitrary indices
that index the Lk; they do not have to have any
particular relation to the UV or IR Hilbert spaces.
This is almost the Kossakowski-Lindblad equation for
Markovian dynamics [64,65]. However, Markovian
dynamics requires that the eigenvalues of h be positive,
and this condition is well known to fail in general.5

Thus Eq. (12) can be non-Markovian even if it looks
local in time, because there can be history dependence
hidden in the operators A and γ diagnosed by the
breakdown of positive definiteness of hij [45,62,63].
We will construct Eq. (12) to second order in perturba-

tion theory, using the fact that the finite-time evolution of
ρIR, simply denoted as ρ hereafter, has a Kraus representa-
tion (see for example Refs. [62,63]). Thus

ρIRðtÞ≡ ρðtÞ ¼
X
α

KαðtÞρð0ÞK†
αðtÞ ð14Þ

in terms of certain operatorsKα that can be derived from the
time evolution.6 In our example, the density matrix σðtÞ≡
jΨðtÞihΨðtÞj in the full Hilbert space HIR ×HUV satisfies
unitary evolution:

σðtÞ ¼ UðtÞσð0ÞU†ðtÞ; ð15Þ

where

UðtÞ ¼ e−iðHIRþHUVÞtTe−iλ
R

t

0
dt0VIðt0Þ; ð16Þ

VI is the perturbation in the interaction picture, and T is the
time-ordering operator. The time evolution of ρðtÞ in our
case is

ρðtÞ ¼ TrUVσðtÞ ¼ TrUVUðt; 0Þσð0ÞU†ðt; 0Þ
¼

X
u

hujUðt; 0ÞjuijIRihIRjhujU†ðt; 0Þjui

¼
X
u

hujUðt; 0Þjuiρð0ÞhujU†ðt; 0Þjui ð17Þ

where jui and jIRi are the UVand IR parts of the factorized
initial state, jui is a basis for the UV Hilbert space with one
basis element being jui, and ρð0Þ ¼ jIRihIRj is the initial
reduced density matrix for the IR modes. So the Kraus
operators can be taken to be

Ku ¼ hujUðt; 0Þjui ð18Þ

with u indexing UV d.o.f., and jui being the UV part of the
initial state. Thus the Kraus operators are treated as
functions of u that are initial-state dependent, but we have
suppressed the state dependence in our notation.
We can rewrite the master equation (12) and (13) in terms

of the Kraus operators. First, we can perturbatively expand

ρðtÞ ¼ ρð0ÞðtÞ þ λρð1ÞðtÞ þ λ2ρð2ÞðtÞ þ � � � ;
Heff ¼ HIR þ λHð1Þ

eff þ λ2Hð2Þ
eff þ � � � ;

A ¼ λAð1Þ þ λ2Að2Þ þ � � � ;
γ ¼ λγð1Þ þ λ2γð2Þ þ � � � ð19Þ

Here ρð0Þ is the density matrix of the initial IR state evolved
in time by the IR HamiltonianHIR. The master equation for
time evolution can be determined by representing ρðtÞ in
the Kraus representation and expanding Ku in the pertur-
bation. We find to Oðλ2Þ

Ku ¼ exp f−iðHeff þ iAÞtg;
γ ¼ i∂t

X
u≠u

KuðtÞρð0ÞK†
uðtÞ; ð20Þ

whereKu is a partial matrix element for transitions between
an initial UV state u to itself; γ controls transitions out of u
into other UV states, while A describes the associated loss
of unitarity in the subspace jui ⊗ HIR. The sum in the
expression for γ runs over the part of the UV Hilbert space
that is orthogonal to the initial state jui.
Since Ku≠u is nonvanishing only at OðλÞ and higher,

γ ¼ λ2γð2Þ þ � � � The form of the time-local master equation
(and direct computation) also shows that A ¼ λ2Að2Þ þ � � �
Thus, to order OðλÞ we simply get a correction to the
effective Hamiltonian in the master equation:

Hð1Þ
eff ¼ hujVjui: ð21Þ

At order Oðλ2Þ, Að2Þ; γð2Þ can be written in the form (13) by
choosing the indices k, l to each run over the composite

4Such state dependence is not usually discussed in Wilsonian
renormalization: in particle physics examples, one usually as-
sumes that the UV theory is in the ground state. More generally,
the Born-Oppenheimer discussion in Appendix A shows that
even the effective Hamiltonian (A6) depends on the state of the
UV modes.

5In the Kossakowski-Lindblad equation, following from the
assumption that the time evolution of ρ is described by a
completely positive dynamical semigroup, h, L are time
independent. However, a more general definition of Marko-
vian behavior includes divisible dynamical maps [66], in
which hk, Lk can be time dependent, but the eigenvalues of h
remain positive.

6The Kraus representation guarantees that the map ρð0Þ →
ρðtÞ is “completely positive.” This representation is possible
when the initial state is disentangled between the IR and the UV.
For intermediate times t0, the state will be entangled, and the map
from ρðt0Þ → ρðtÞ will not be completely positive. This may
include t0 arbitrarily close to t, as diagnosed by the nonpositivity
of the eigenvalues of h; this nonpositivity for infinitesimal time
evolution means that the evolution will not be Markovian, as
entanglement has been generated.
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index k; l ¼ um with the index u ≠ u running over a basis
for the part of the UV Hilbert space which is orthogonal to
the initial state, and m ∈ f1; 2g. With this notation, we can
write the operators on the right-hand side of Eq. (13) that
define A and γ as

Lu1 ¼ hujVjui; ð22Þ

Lu2 ¼
Z

t

0

dt0hujVIðt0 − tÞjui; ð23Þ

where V and VI are the interactions in the Schrodinger and
interaction pictures respectively. The effective Hamiltonian
and other operators that govern the master equation at this
order can be written in terms of Lum:

Hð2Þ
eff ¼ −

i
2

X
u≠u

hu1;u2ðL†
u1Lu2 − L†

u2Lu1Þ; ð24Þ

Að2Þ ¼ −
1

2

X
u≠u

hu1;u2ðL†
u1Lu2 þ L†

u2Lu1Þ; ð25Þ

γð2Þ ¼ i
X
u≠u

hu1;u2ðLu1ρ
ð0ÞL†

u2 þ Lu2ρ
ð0ÞsL†

u1Þ; ð26Þ

where hum;u0m0 ¼ δðu; u0Þjm −m0j and ρð0ÞðtÞ is the density
matrix of the initial IR state evolved in time by the IR
Hamiltonian HIR.

Expression in terms of UV correlation functions: There
is an elegant expression for the various terms in the master
equation in terms of correlation functions of UVoperators.
Let us write

λV ¼
X
a

ΦaOa; ð27Þ

where Oa, Φa are sets of UVand IR operators respectively.
Using the path-integral formalism in Appendix D, and
defining the connected two-point function

GW
abðt0; t00Þ ¼ hOI

aðt0ÞOI
bðt00Þi − hOI

aðt0ÞihOI
bðt00Þi; ð28Þ

where hOIðτÞi¼TrUVOIðτÞρUVð0Þ with ρUVð0Þ ¼ juihuj,7
we find that Eq. (13) can be written in terms of the
following set of operators8:

ham;bm0 ¼ λ2δabjm −m0j;
La1 ¼ Φað0Þ;

La2 ¼
Z

t

0

dτGW
abðt; τÞΦbðτ − tÞ; ð29Þ

and

Hð2Þ ¼ i
X
ab

Z
t

0

dτðGW
abðτ; tÞΦI

aðτ − tÞΦI
bð0Þ −GW

abðt; τÞΦI
að0ÞΦI

bðτ − tÞÞ;

Að2Þ ¼
X
ab

Z
t

0

dτðGW
abðτ; tÞΦI

aðτ − tÞΦI
bð0Þ þ GW

abðt; τÞΦI
að0ÞΦI

bðτ − tÞÞ;

γð2Þ ¼ i
X
ab

Z
t

0

dτðGW
abðτ; tÞΦI

bð0Þρð0ÞðtÞΦI
aðτ − tÞ þGW

abðt; τÞΦI
bðτ − tÞρð0ÞðtÞΦI

að0ÞÞ: ð30Þ

Non-Markovianity: A natural question is whether the evolution, packaged in this form, is Markovian. It is well known to
those who study coarse-grained quantum systems that it is not, in general. Assume the particularly simple case that V
commutes withHIR but not withHUV (when ½V;HUV� ¼ 0, Γ vanishes). A short calculation of the non-Hamiltonian part of
the master equation gives

X
u≠u;m;m0

hum;um0
�
LumρðtÞL†

um0 −
1

2
fL†

umLum0 ; ρg
�

¼
X
u≠u

2 sinðEuutÞ
Euu

�
hujVjuiρðtÞhujV†jui − 1

2
fhujV†juihujVjui; ρðtÞg

�
ð31Þ

where Euu ¼ Eu − Eu, and Eu is the energy of jui with respect to HUV. In general, if Euu ≥ ΔEUV for u ≠ u, the sine term
will lead to oscillations at the scaleΔEUV. Since the matrix elements in the sum are therefore not positive definite, we know
on general grounds [62,63] that the evolution is not Markovian.

7The super index I refers to the fact that those operators are described in the interaction picture of quantum mechanics.
8This framework generalizes easily to include an arbitrary initial density matrix for the UV d.o.f., again assuming the density matrix

for the full system is factorized between UV and IR at t ¼ 0.
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Evolution of UV-IR entanglement: One of the motiva-
tions for this work is to understand the structure of
entanglement between the UV and IR. It is straightforward
to see that entanglement evolves precisely because of the
non-Hamiltonian part of the evolution. For reasons we
discuss in Appendix C (see also Ref. [7]), the von Neumann
entropies are difficult to compute in perturbation theory, but
the Rényi entropies

SnðtÞ ¼ −
ln TrρnðtÞ
n − 1

ð32Þ

are easily seen to satisfy the equation

dSnðtÞ
dt

¼ in
n − 1

Tr½ρn−1ðtÞΓðtÞ�
TrρnðtÞ : ð33Þ

D. Time averaging

Realistic apparatuses have limited accuracy in specifying
the time that a given measurement takes place. To find the
probability of a given outcome, one should average Pða; tÞ,
the probability of outcome a at a time t, over a time interval
determined by an appropriate window function fδtðτ; tÞ
where t is the peak of the window function and δt is the
width. A typical example is a Gaussian

fg;δtðτ − tÞ ¼ 1ffiffiffi
π

p
δt
e−ðτ−tÞ2=δt2 : ð34Þ

With this normalization, the sum of Eq. (7) over all possible
orthogonal outcomes (a) is equal to 1. Given a time-
dependent function FðtÞ, we denote the time average as

FðtÞ ¼
Z

dτfδtðτ; tÞFðτÞ: ð35Þ

In the case of the Gaussian window function, this expres-
sion can be written in Fourier space as

FðtÞ ¼
Z

dωffiffiffiffiffiffi
2π

p e−ω
2δt2=4eiωtF̃ðωÞ: ð36Þ

As expected, there is a sharp exponential cutoff
for ω > δt−1.
In applying this averaging to Eq. (12), we will consider

ΔEIR ≪ δt−1 ≡ Ec ≪ ΔEUV. Thus we will throw away
terms in Eq. (12) which have frequencies of OðΔEUVÞ as
these will be exponentially suppressed after time averaging.
We will, however, keep terms of order O½ðΔEIR=EcÞk�.
We now wish to compute a master equation for the time-

averaged density matrix ρðtÞ The nontrivial time depend-
ence of the terms in Eq. (12) arises from Lu;2 in Eq. (23). If
we study a matrix element of L2 in the basis jii of IR
eigenstates with energies Ei, we find that

hijLu;2jji ¼
1 − e−iðEuuþEijÞt

iðEuu þ EijÞ
hijhujVjuijji ð37Þ

where Eij ¼ Ei − Ej. The first term will, in general, survive
time averaging.
We find by construction that to second order in pertur-

bation theory in V, the time-averaged evolution equation9

for ρ takes the form

i∂tρðtÞ ¼ ½Heff ; ρðtÞ� þ ifA; ρðtÞg þ γðtÞ: ð39Þ

The time-averaged operators are most easily written in the
basis of eigenstates of HIR, and are

Hð2Þ ¼ −
1

2

X
u≠u

X
ij

�hu; ijVju; ji
ðEuu þ EijÞ

hujVjuijiihjj

þ hu; ijVju; ji
ðEuu − EijÞ

jiihjjhujVjui
�
; ð40Þ

Að2Þ ¼ −
1

2

X
u≠u

X
ij

�hu; ijVju; ji
ðEuu þ EijÞ

hujVjuijiihjj

−
hu; ijVju; ji
ðEuu − EijÞ

jiihjjhujVjui
�
; ð41Þ

γð2Þ ¼
X
u≠u

X
ij

�hu; ijVju; ji
ðEuu þ EijÞ

jiihjjρð0ÞhujVjui

−
hu; ijVju; ji
ðEuu − EijÞ

hujVjuiρð0Þjiihjj
�
: ð42Þ

Effective theories via Born-Oppenheimer expansion:
These operators can be written in the form (13) and
(26). Let us choose k; l ¼ um with ðu ≠ u, m ∈ f1; 2gÞ,
and hum;u0m0 ¼ δðu; u0Þjm −m0j. Then define

9Up to second order in perturbation theory we find that
Eq. (39) is valid, namely, the time average of the operator
products appearing in the master equation equals the product of
their time averages. Of course, this is not generally the case. For
example, the time average of a product of functions has the closed
expression

¯FðtÞGðtÞ ¼ F̄ðtÞḠðtÞ þ
X∞
n¼1

δt2n

2nn!
dnF̄ðtÞ
dtn

dnḠðtÞ
dtn

; ð38Þ

when a Gaussian window function is considered. If the time
variation of F, G is slow compared to δt, with characteristic
frequency Ω, then the average of the product is the product of the
averages up to corrections of order OððΩδtÞ2Þ. However, when
the functions F, G both have fast oscillatory behaviors charac-
terized by a frequency ω those corrections can add up to an
exponentially large factor and then the leading term on the right-
hand side of Eq. (38) will not be a good approximation to its left-
hand side. Consider for example the case F ¼ eiωtF0 and G ¼
e−iωtG0 where F0 and G0 are constants.
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Lu;1 ¼ hujVjui;

Lu;2 ¼ −i
X
ij

jiihijhujVjuijjihjj
Eu;u þ Eij

: ð43Þ

It is then easy to show that Eqs. (12) and (13) reduce to
Eq. (39) with the operators defined as in Eqs. (40)–(42). We
can write Lu;2 in a more basis-independent form by
expanding the denominator in a power series in
ðEij=EuuÞ and noting that EijjiiOijhjj ¼ ½HIR; jiiOijhjj�:

Lu;2 ¼ −i
hujVjui
Euu

− i
X∞
k¼1

½…½Vu;HIR�;…; HIR�
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{k times

Ekþ1
uu

ð44Þ

where Vu ¼ hujVjui is an operator acting on HIR. The
expansion in IR operators of increasingly high dimension
weighted by inverse powers of EUV is what we would
expect from a good effective field theory, and is a central
consequence of the hierarchical nature of the spectrum of
the full (unreduced) theory.
Leading-order approximation: The master equation to

the leading order in ΔEIR=ΔEUV is

Hð2Þ ¼ −
X
u≠u

V†
uVu

Euu
−
1

2

X
u≠u

�
V†
u½Vu;HIR� − ½V†

u; HIR�Vu

ðEuuÞ2
�

þO
�

1

E3
uu

	
;

Að2Þ ¼ −
1

2

X
u≠u

½V†
uVu;HIR�
E2
uu

þO
�

1

E3
uu

	
;

γð2Þ ¼
X
u≠u

�½Vu;HIR�ρð0ÞV†
u þ Vuρ

ð0Þ½V†
u; HIR�

E2
uu

�

þO
�

1

E3
uu

	
: ð45Þ

To leading order in 1=Euu, the evolution of ρ is completely
Hamiltonian. This is consistent with our discussion of the
Born-Oppenheimer approximation in Appendix A 3, and
with the results of Refs. [46,47]. Our results display the
kind of decoupling that occurs in Wilsonian renormaliza-
tion: the effects of transitions to excited states of the UV
d.o.f. are suppressed by powers of 1=EUV.
One may ask whether the time averaging we have

implemented leads to a Markovian master equation.
Once again, this will not happen beyond the leading order
in EIR=EUV for which the evolution is Hamiltonian. If we
consider the restricted case ½HIR; Vu� ¼ auVu, au ∈ R, we
find Að2Þ ¼ γð2Þ ¼ 0, so that the evolution is not only
Markovian but Hamiltonian. Outside of this approximation,
Lu2 at orderOð1=E2

uuÞ is not proportional to Lu1, so that the
negative eigenvalue of hui;uj will contribute to Eq. (13). To
go further we must examine more specific cases.

E. Examples

We will work through two simple quantum-mechanical
examples capturing our hierarchy of energy levels, in order
to build up our intuition for the different possible dynamics
of ρðtÞ. In the first example of coupled spins, the non-
Hamiltonian contributions will vanish upon time averaging.
The second example is the well-studied case of coupled
linear oscillators [51]; we will work with a different
spectrum and quantum state for the “bath,” highlighting
the differences between our results and those in Ref. [51].
Finally, we will give the time-averaged master equation for
a scalar QFT with cubic self-couplings, which to second
order in perturbation theory can be computed with the
formulas given. This problem makes contact with the
holographic setting of Ref. [36].

1. Coupled spins

First consider an IR spin coupled to k ¼ 1 � � �M UV
spins, all in the 2jþ 1-dimensional irreducible representa-
tion of SUð2Þ with spin j. Thus the Hilbert space is HIR ¼
HjIR , HUV ¼⊕k HjUV;k . We take the Hamiltonian to be

HIR ¼ −μIRBSzIR;

HUV ¼ −
XM
k¼1

μUV;kBS
z
UV;k;

λV ¼ λS⃗IR ·
XM
k¼1

S⃗UV;k; ð46Þ

where S⃗ are the usual spin operators, satisfying ½Si; Sj� ¼
iℏϵijkSk and B is a fixed constant (a magnetic field). We
take μIR ≪ μUV, so that this system has the hierarchical
structure of energy levels we discussed above.
We can rewrite the interaction term as

λV ¼ λ
X
k

SzIRS
z
UV;k þ

λ

2

�
S−IR

X
k

SþUV;k þ SþIR
X
k

S−UV;k

	

ð47Þ
where S� ¼ Sx � iSy are the raising and lowering oper-
ators in the basis of Sz eigenstates. We write states in the
basis jjIR; mIRi

Q
kjjUV;kmUV;ki where j is the total angular

momentum and m is the eigenvalue of Sz. It is straightfor-
ward to see that the ground state of H ¼ HIR þHUV þ λV
is independent of λ to all orders in perturbation theory:

j0i ¼ jjIR; m ¼ jIRi
Y
k

jjUV; m ¼ jUVi: ð48Þ

Thus, it is natural to consider an initial state of the form

jψð0Þi ¼ CmðS−;IRÞjIR−mj0i ¼ jjIR; mi
Y
k

jjUV; m ¼ jUVi

ð49Þ
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which results from perturbing the ground state by an action
of the operator ðS−IRÞj−m.
The terms in the non-time-averaged equation of motion

(12) to second order are

Heff ¼ HIR − λℏ

�X
k

gkjk

	
SzIR −

X
k

2λ2ℏ2g2kjk
ðμUV;k − μIRÞB

× ð1 − cos ½ðμUV;k − μIRÞBt�ÞS−IR; SþIR;

Að2Þ ¼ −
X
k

λ2ℏ2g2kjk
2ðμUV;k − μIRÞB

sin ½ðμUV;k − μIRÞBt�S−IRSþIR;

γð2Þ ¼
X
k

2iλ2ℏ2g2kjk
ðμUV;k − μIRÞB

sin ½ðμUV;k − μIRÞBt�

× SþIRρ
ð0ÞðtÞS−IR; ð50Þ

where ρð0Þ is the density matrix of the initial IR state
evolved in time by the IR Hamiltonian HIR.
A, γ can be written in the form (13) if the indices are

expanded to ðkmÞ where k labels the UV oscillators and
m ∈ f1; 2g. With this notation,

hkm;lm0 ¼ δkljm −m0j;

Lk1 ¼ ℏ

ffiffiffiffi
jk
2

r
SþIR;

Lk2 ¼ ℏ
ffiffiffiffiffiffiffi
2jk

p exp
n
− iðμUV;k−μIRÞBt

2

o
sin

hðμUV;k−μIRÞBt
2

i
ðμUV;k − μIRÞB

SþIR:

ð51Þ
In this example, the non-Hamiltonian terms Að2Þ; γð2Þ are

rapidly oscillating, and vanish after time averaging. For
completeness we compute the effective Hamiltonian for the
time-averaged equation at Oðλ2Þ:

Heff ¼ HIR − λℏ

�X
k

gkjk

	
SzIR

−
2λ2ℏj
B

�X
k

g2k
μk − μIR

�
S−IRS

þ
IR þOðλ3Þ

¼ −μ̃BSzIR þ βðSzIRÞ2 − Eg ð52Þ
where

μ̃ ¼ μIR −
ℏλ
B

X
k

gkjk −
ℏ2λ2

B

X
k

g2kjk
μk − μIR

;

β ¼ ℏλ2

B

X
k

g2kjk
μk − μIR

;

Eg ¼ −
ℏ3jðjþ 1Þ

B

X
k

g2kjk
μk − μIR

: ð53Þ

Heff is related to HIR by renormalization of the magnetic
moment, coupling β, and vacuum energy.

2. Linear oscillators

Following Refs. [44,51], we consider HIR as the Hilbert
space of a simple harmonic oscillator, andHUV as a bath of
harmonic oscillators, with the Hamiltonian comprising a
linear coupling between them:

HIR ¼ P2

2M
þ 1

2
MΩ2X2;

HUV ¼
X
k

�
p2
k

2mk
þ 1

2
mkω

2
kx

2
k

�
;

λV ¼
X
k

CkxkX; ð54Þ

where we take Cl ∼OðλÞ. Of course, this can be solved
exactly by a change of variables. However, in the spirit of this
paper we are interested in the dynamics of the “bare” variable
X, to which we imagine our measuring devices couple.
In order to match what we expect from a quantum field

theory calculation such as that outlined in the Introduction,
we will take the frequencies ωk ≫ Ω. Furthermore, we will
assume that the UVoscillators are in an eigenstate of HUV
(such as the ground state) at leading order in perturbation
theory. The resulting system then differs from those studied
in Refs. [44,51]. Those works considered the oscillators xk
to be some “environment,” with a spectrum designed
phenomenologically to model quantum Brownian motion
or dissipation. The environment contains oscillators with
arbitrarily low frequency, to model dissipation of energy
and phase coherence into an environment, over time scales
long compared to a given experiment. Furthermore, we are
most interested in the UV oscillators that are initially in
their ground state; thus, our treatment is closest to the zero-
temperature limit of Refs. [44,51]. In this case, some
approximations made in those works fail. Finally, we
implement time averaging differently, by directly averaging
the density matrix over a coarse-graining kernel. The net
result is a qualitatively different master equation for the
density matrix.
As stated,we assume that at t ¼ 0, theUVoscillators are in

anenergyeigenstate jui ¼ Q
ljnli. In this case, thefirst-order

shift of the Hamiltonian vanishes, because the expectation
value of xl vanishes in energy eigenstates of the harmonic
oscillator. Using Eqs. (40)–(42) we find that the operators in
the second-order time-averaged equation (39) are

Hð2Þ ¼ −
1

2

X
l

ð2nl þ 1ÞC2
l

mlðω2
l −Ω2Þ

�
X2 −

ℏ
2Mωl

�
;

Að2Þ ¼ −
1

2

X
l

ð2nl þ 1ÞC2
l

2Mmlωlðω2
l −Ω2Þ fX;Pg;

γð2Þ ¼ i
X
l

ð2nl þ 1ÞC2
l

2Mmlωlðω2
l − Ω2Þ ðPρ

ð0ÞðtÞX þ Xρð0ÞðtÞPÞ:

ð55Þ
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At this order, the Hamiltonian is changed by a shift in the
oscillator frequency and the ground-state energy. We can
rewrite A, γ in the form (13) if we let m run from 1 to 2 and
define

h12 ¼ h21 ¼
X
l

ð2nl þ 1ÞC2
l

2mlðω2
l −Ω2Þ ;

h11 ¼ h22 ¼ 0; ð56Þ

L1 ¼ X;

L2 ¼ −i
�
X þ i

P
Mωl

	
: ð57Þ

Thus the eigenvalues of the hij matrix are �h12. As we
explained before, the lack of positive definiteness implies that
the evolution of ρ is not Markovian beyond the leading order
in Ω=ωl.
Before continuing, it is worth comparing the form of our

master equation to that of Caldeira and Leggett [51]. This
arises when
(1) xl describes a continuous spectrum of oscillators,

for which

X
l

C2
lfðωlÞ →

Z
dωρðωÞCðωÞ2fðωÞ; ð58Þ

and ml ¼ m, with

ρC2ðωÞ ¼ 2mηω2

π
θðΛ − ωÞ ð59Þ

where Λ is some UV cutoff, and η is a phenom-
enologically determined coefficient.

(2) Furthermore, the oscillators xl are placed at finite
temperature T ≫ Λ.

In this case they derived a master equation [Eq. (5.12) in
Ref. [51]] which can be rewritten in the form (12)–(13) with
the indices i; j ∈ f1; 2g and10

h12 ¼ h21 ¼
ηΛ
2ℏ

;

L1 ¼ X; ð60Þ

L2 ¼ −i
�
X −

ℏ
2MΛ

P

	
þ 2kT

Λ
X; ð61Þ

where η is a function of CðωÞ and the UV cutoff, and Λ is a
UV energy scale that accounts for the frequency renorm-
alization. Note the relative factor of −i in the coefficient of
P, as well as the additional temperature-dependent term

proportional to X in L2. In general, their master equation is
also not Markovian, unless we were to take the limit
kT → ∞, ηkT finite (cf. Ref. [45]).
As discussed in Ref. [57], this model captures some

essential features of local quantum field theories, if we
choose CðωÞ appropriately. In particular, there can be
divergences when the number of states grows sufficiently
rapidly with energy.

3. Scalar QFT with cubic self-coupling

At second order in perturbation theory, it is straightfor-
ward to apply our formulas to scalar quantum field theories.
We give a brief description here of the cubic theory in d
spatial dimensions. A fuller account of our computation,
and an interpretation of the resulting divergences, can be
found in Ref. [57]. Here our goal is to demonstrate features
of the master equation also found in a holographic context
in Ref. [36].
Consider the Lagrangian

L ¼ 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 −

g
3!
ϕ3: ð62Þ

The master equation for the quartic theory in four dimen-
sions was computed in Ref. [19], via the Feynman-Vernon
influence functional. We wish to consider Eq. (62) in light
of our more abstract conceptualization; in addition, with
our Hamiltonian regulator, we will find some dimension-
dependent issues that would be absent in four dimensions.
The scalar field in the interaction picture can be

decomposed as follows:

ϕðx; tÞ ¼
Z
jk⃗j<Λ

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωðkÞ

p faIRðkÞeik⃗·x⃗ þ a†IRðkÞe−ik⃗·x⃗g

þ
Z
M>jk⃗j>Λ

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωðkÞ

p
× faUVðkÞeik⃗·x⃗ þ a†UVðkÞe−ik⃗·x⃗g

¼ ϕIRðx; tÞ þ ϕUVðx; tÞ ð63Þ

where ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
, Λ is the spatial coarse-graining

scale, andM is the cutoff. The dual conjugate momentum is

πðx; tÞ ¼
Z
jk⃗j<Λ

ddkð−iωðkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωðkÞ

p faIRðkÞeik⃗·x⃗ − a†IRðkÞe−ik⃗·x⃗g

þ
Z
M>jk⃗j>Λ

ddkð−iωðkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωðkÞ

p
× faUVðkÞeik⃗·x⃗ − a†UVðkÞe−ik⃗·x⃗g

¼ πIRðx; tÞ þ πUVðx; tÞ: ð64Þ

The normalized single-particle momentum eigenstates are
jki ¼ ffiffiffiffiffiffiffiffi

2ωk
p

a†kj0i, where ½ak; a†k0 � ¼ δdðk − k0Þ.

10In fact the master equation in Ref. [51], which yields the
operators Li we report, is missing a term of order kT=Λ; this term
is argued to be small even in the kT ≫ Λ limit. We discussed this
further in Ref. [57].
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There is thus a decomposition of the Hilbert space

H ¼ HIR ⊗ HUV: ð65Þ

We can split the Hamiltonian accordingly into H ¼ HIR þ
HUV þ gV where

HIR;UV ¼ 1

2
ð∂ϕIR;UVÞ2 −

1

2
m2ϕ2

IR;UV −
g
3!
ϕ3
IR;UV;

gV ¼ g
2
ϕIRϕ

2
UV þ g

2
ϕ2
IRϕUV: ð66Þ

In essence, each oscillator with UV momentum acts as a
separate harmonic oscillator.
We will take the initial state to be of the form

jΨi ¼ jψiIRj0iUV, where j0iUV is the vacuum with respect
to HIR. With gV defined as above there are two classes of
matrix elements that contribute to Eqs. (30) and (40)–(42),
i.e., toHeff , A and γ that control the time evolution of the IR
density matrix.

(1) Creation of a single particle inHUV: This means that
the relevant components of ϕ2

IR will be two nearly
collinear particles in HIR with total momentum
k⃗1;IR þ k⃗2;IR ¼ k⃗UV. Both IR and UV momenta must
have magnitudes close to the scale Λ that splits IR
from UV.

(2) Creation of two particles in HUV: The matrix
elements that contribute will have two excitations
in HUV with nearly back-to-back momenta that sum
to a momentum with magnitude below Λ. There is a
much larger set of possibilities: almost any magni-
tude of UV momentum will be allowed, and for each
value k there will be a sphere in phase space of
volume ∼kd−1 of possible UV momenta.

The importance of each type of term depends on the IR
momenta, and on the number of dimensions. For low
enough IR momenta, only the second type of term can
contribute. For simplicity, we will focus on this possibility.
A straightforward application of our formalism yields

Hð2ÞðtÞ ¼ −
i
4

Z
t

0

dτ
Z
uv

ddk
2ωk

ddk0

2ωk0
½h0jVjkk0ihkk0jVIð−τÞj0i − H:c:�;

Að2Þ ¼ −
1

4

Z
t

0

dτ
Z
uv

ddk
2ωk

ddk0

2ωk0
½h0jVjkk0ihkk0jVIð−τÞj0i þ H:c:�;

γð2Þ ¼ i
2

Z
t

0

dτ
Z
uv

ddk
2ωk

ddk0

2ωk0
½h0jVjkk0iρð0Þhkk0jVIð−τÞj0i þ H:c:�: ð67Þ

The integral of the time-dependent matrix element is

Z
t

0

dτuvhkk0jVð−τÞj0iuv ¼ λ

Z
ddx
ð2πÞd e

−iðkþk0Þ·x
Z

t

0

dτϕirð−τÞe−iðωkþωk0 Þτ

¼ −iλ
Z

ddx
ð2πÞd e

−iðkþk0Þ·x
Z
ir

ddpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωp

q
�
apð1 − eiðωp−ωk−ωk0 ÞtÞ

ωk þ ωk0 − ωp
þ a†−pð1 − e−iðωpþωkþωk0 ÞtÞ

ωk þ ωk0 þ ωp

�
eipx:

ð68Þ

It is clear that H, A, γ will have time dependence on scales of order the UV momenta, which range from Λ to M.
Next, let us consider the time-averaged quantities Hð2Þ and Að2Þ. This amounts to dropping the rapidly oscillating

exponential terms in Eq. (68) to find

Z
t

0

dτ
Z
uv

ddk
2ωk

ddk0

2ωk0
h0jVjkk0ihkk0jVð−τÞj0i → −iλ2

Z
ddx
ð2πÞd ϕirðxÞ

Z
ir

ddpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωp

q ðap þ a†−pÞeipx

×
Z
uv

ddk
2ωk

ωk þ ωp−k

2ωp−k½ðωk þ ωp−kÞ2 − ω2
p�

− λ2
Z

ddx
ð2πÞd ϕirðxÞ

Z
ir

ddpiωpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωp

q ða†−p − apÞeipx

×
Z
uv

ddk
2ωk

1

2ωp−k½ðωk þ ωp−kÞ2 − ω2
p�
: ð69Þ
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Note that the second and third lines, proportional to −iλ2,
will contribute to H, while the fourth and fifth lines,
proportional to −λ2, will contribute to A, γ.
Let us first examine the correction to the Hamiltonian. If

jp⃗j;ωp ≪ Λ ≪ M, we can expand the integral

Z
uv

ddk
2ωk

ωk þ ωp−k

2ωp−k½ðωk þ ωp−kÞ2 − ω2
p�

¼ FðM;ΛÞ
�
1þ hd1

p⃗2

Λ2
þ � � �

	
ð70Þ

where

F ¼ F0

8>><
>>:

Λd−3 d < 3;

lnðMΛÞ d ¼ 3;

Md−3 d > 3;

ð71Þ

and F0, hd1 are dimensionless constants. The neglected
terms include both higher orders in p⃗2 as well as terms
suppressed by powers of ðΛ=MÞ2. These terms give
corrections to the Hamiltonian of the form

Hð2Þ ∝ λ2
Z

ddxFðM;ΛÞ
�
ϕ2
0 þ

hd1
Λ2

π∇⃗2
ϕþ � � �

	
ð72Þ

where the dots indicate terms of higher order in ∇⃗2=M2,

∇⃗2=Λ2. It is thus clear that we will get terms with spatial
nonlocalities on scales Λ, M. Note that for d ≥ 3, we find
divergent contributions to the mass, consistent with stan-
dard treatments of scalar QFT.
Next consider corrections to Að2Þ. In this case,

Z
uv

ddk
2ωk

1

2ωp−k½ðωk þ ωp−kÞ2 − ω2
p�

¼ GðM;ΛÞ
�
1þ h̃d1

p⃗2

Λ2
þ � � �

	
ð73Þ

where

G ¼ G0

8>><
>>:

Λd−4 d < 4;

lnðMΛÞ d ¼ 4;

Md−3 d > 4;

ð74Þ

and G0, h̃
d
1 are dimensionless coefficients. These will lead

to corrections of the form

Að2Þ ∝ λ2
Z

ddxGðM;ΛÞ
�
ϕπ þ h̃d1

Λ2
ϕ∇⃗2

π þ H:c:þ � � �
	
:

ð75Þ

Again, it is clear that the additional terms (higher-order in

∇⃗2=M2, ∇⃗2=Λ2) lead to spatial nonlocality on scales of
order Λ, M. The terms of the form fπ;ϕg are clearly
analogous to the fX;Pg terms which appear in Að2Þ for the
linearly coupled oscillator.
We can see from Eqs. (71) and (74) that we also have

new divergences in high enough dimension. In prior studies
of quartic scalar field theory [19], the non-Hamiltonian
terms in the master equation (derived from the influence
functional) had no divergences. There are two differences
here. We look at more general spacetime dimensions, and
we adopt a spatial regulator appropriate to our Hamiltonian
treatment, after the fashion of Ref. [67]. This was discussed
in more depth in Ref. [57].
The upshot is that we have non-Markovian behavior,

indicating the development of entanglement between the
UV and IR, and nonlocality on the order of the cutoff Λ.
This is precisely the structure hinted at in Ref. [36].

III. DISCUSSION AND CONCLUSIONS

A. Relation to the holographic renormalization group

The results in Ref. [36] indicate that the “IR region” of an
AdS geometry, i.e., the interior region far from the
spacetime boundary, functions as an open quantum system.
However, following Refs. [34,35], this work computed the
Feynman path integral assuming vacuum boundary con-
ditions in the far past and far future, integrating out d.o.f.
beyond some radial position. As we note in Appendix A,
this only makes sense if we have foreknowledge of the
d.o.f. we are integrating out. Such foreknowledge for
interacting systems makes sense if either
(1) we are working with renormalized variables in

which the Hamiltonian is block diagonal between
low and high energies, and wish to only measure
these redefined variables in the low-energy Hilbert
space, or

(2) we are computing scattering amplitudes for asymp-
totic states of well-separated particles.

The supergravity modes inside a radial cutoff in AdS=CFT
clearly do not correspond to the renormalized variables in
point 1. As for point 2, in global AdS coordinates there are
no good well-separated asymptotic states in AdS, as all
excitations oscillate on time scales of order RAdS. More
generally, the analog of S-matrix elements, for which an
Lehmann-Symanzik-Zimmermann (LSZ)-type reduction
applies, are correlators of local CFT operators, dual to
non-normalizable modes supported near the AdS boundary
[68–70].
Nonetheless, we can already learn something from

Ref. [36]. The first point is that the holographic
Wilsonian action is nonlocal in time. Thus, this action
cannot describe purely Hamiltonian dynamics, exactly as
expected for an open quantum system. The time scale
which describes mixing between the IR and the UV is of
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order the cutoff. This is exactly what we found for the
density matrix dynamics in Sec. II. The non-time-averaged
master equation has oscillations at time scales of order
ΔEUV, which become time independent upon time averag-
ing. Similarly, UV-IR entanglement evolves on time scales
of order ΔEUV.
As we will discuss below, for open quantum systems the

correct analog of the Wilsonian action is the logarithm of
the Feynman-Vernon influence functional, computed via
path-integral techniques as we describe in Appendix B.
Applying this approach to the AdS=CFT correspondence
with a bulk radial cutoff faces the challenge because the
gauge theory interpretation of such a cutoff remains unclear
[36–38]. However, in the limit that we can study small
quantum fluctuations in anti–de Sitter space, it would be of
great interest to compute the dynamics of a density matrix
for scalar fields supported in the region r < rΛ in AdS
spacetime, dual to scalar operators on the boundary.

B. Coarse graining in the path integral

Because we are computing time-dependent inclusive
probabilities for measurements of operators supported in

the IR, the correct object to coarse grain is not a transition
amplitude but the density matrix for the system. The
computation of the density matrix in path-integral language
goes back to Feynman and Vernon [52]. Let us state the
essential formulas here; the derivation, and a perturbation
theory calculation relevant for Sec. II C, can be found in
Appendix D.
We assume following Ref. [52] that the density matrix at

time t ¼ 0 is factorized between the IR and the UV: that is,
there is no initial entanglement. Let capital letters X, Y
denote quantum-mechanical variables describing the IR,
and lowercase letters x, y denote quantum variables
describing the UV. We assume the action can be written as

S½X; x� ¼ SIR½ _X;X� þ SUV½_x; x� þ δS½x; X�: ð76Þ

The corresponding Hamiltonian will take the form (10).
Note that this is a somewhat restrictive action; in particular,
the interactions involve coordinates and not velocities.
The density matrix for the IR d.o.f. X, as a function of

time, can be written as

ρðX; Y; tÞ ¼
Z

dX0dY 0JðX; Y; t;X0Y 0; 0ÞρinitðX0; Y 0; 0Þ;

JðX; Y; t;X0Y 0; 0Þ ¼
Z

YðtÞ¼Y;XðtÞ¼X

Yð0Þ¼Y 0;Xð0Þ¼X0
DXDYe

i
ℏSIR½X�− i

ℏSIR½Y�F ½XðtÞ; YðtÞ�; ð77Þ

where ρinit is the initial density matrix for the IR d.o.f., and the influence functional

F ½XðtÞ; YðtÞ� ¼
Z

dx0dy0dxρUðx0; y0; 0Þ

×
Z

yðtÞ¼x;xðtÞ¼x

yð0Þ¼y0;xð0Þ¼x0
DxDye

i
ℏSU ½x�− i

ℏSU ½y�þ i
ℏδS½x;X�− i

ℏδS½y;Y� ð78Þ

contains the dependence on the initial state of the UV d.o.f.,
as well as the interactions between the UV and IR d.o.f. In
general this cannot be written in the form F½X�G½Y�. The
influence functional encodes the same data as the terms
Heff ; A; γ in the master equation (see Appendix D).
The point of stating these well-known results is to

emphasize that the correct analog of the Wilsonian effective
action, in the case that the IR and UVare entangled and one
is asking questions about finite-time processes, is the
influence functional. This point has been made eloquently
in a number of papers, including Refs. [19,20,48].
However, this approach has not been applied to holographic
Wilsonian renormalization. It should be.
The Wilsonian approach to renormalizing the path

integral is based on the Euclidean path integral, and the
coarse graining is over Euclidean space (that is, the cutoff
is placed on Euclidean momenta). In a real-time context

this cutoff makes less sense, and indeed the authors of
Refs. [16,19,20,48] coarse grained with respect to spatial
momenta. However, in most physical processes we will
also have finite accuracy in determining the times at which
we prepare and measure the system, and temporal coarse
graining is required. It would be of great interest to find a
simple path-integral implementation of the time averaging
that we discussed in this paper.

C. Additional questions

Strongly coupled systems: In using the phrase “coarse
graining” in our perturbative treatment, we implied that we
could assign an energy scale to the d.o.f. we were tracing
out, corresponding to a short distance scale. This makes
sense in weakly coupled quantum field theories, in which
the energy and momenta of single quanta are tied together
and there is some meaning to these single quanta. In
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strongly coupled systems, especially those without quasi-
particle excitations, this relation breaks down. It would be
interesting to study our coarse graining in such examples,
either analytically or numerically.
Cosmological perturbations: Primordial non-

Gaussianities in cosmic microwave background fluctua-
tions and large-scale structure measure correlations
between quantum fluctuations at different scales, induced
by interactions in the inflaton sector. We expect the initial
state to have a degree of quantum entanglement between
scales, following the discussions in this paper, which
should help seed the classical correlations one actually
observes.
Some discussion of entanglement between scales during

inflation appears in Ref. [23]. In this work, the entangle-
ment between short- and long-wavelength modes is used to
justify a Lindblad equation describingMarkovian evolution
for the long-wavelength modes, based on an argument that
the Hubble scale sets a natural time scale for the decay of
correlations of short-wavelength modes. It would be
interesting to perform a more quantitative, first-principles
analysis of entanglement between scales in some specific
model, following the discussion here. For example, as we
have noted, even when correlation functions are essentially
local in time, the dynamics of long-wavelength modes can
still fail to be Markovian.
Holographic renormalization: In our setup, the evolution

equation for ρ is local on scales larger thanΔEUV. This is in
accord with the discussion of holographic gauge theories in
Refs. [34–36,38], in which theWilsonian effective action of
a strongly coupled field theory was nonlocal on the scale of
the cutoff, reflecting the propagation of excitations into and
back out of the UV region. However, string theory suggests
that there are other nongravitational theories in which the
time scale over which excitations are supported in the UV
becomes arbitrarily large.One example is little string theory:
in the holographic dual, massless excitations propagating
into the UV region take an infinite time to reach the
“boundary.” This is tied to the exponential (Hagedorn)
growth of states at high energies in this theory. It would
be interesting to explore the dynamics of ρIR in this setting.
More generally we would like a more precise under-

standing of the relationship between the framework in this
paper and that of Wilsonian renormalization in holographic
gauge theories, in which one “integrates out” a section of the
geometry [30,34–36]. For example, this could cast an
interesting light on black hole entropy. There is evidence
that bulkquantumcorrections to the entanglement entropyof
quantum fields between the interior and exterior of a
“stretched horizon” outside the black hole are mapped to
the Wald entropy of the black hole, using the renormalized
gravitational action (see Refs. [71,72] and references
therein); and there are conjectures that the full Bekenstein-
Hawking/Waldentropyof theblackholecanbeconsideredas
an entanglement entropy (see for example Ref. [73]).

In holographic theories, black holes are dual to high-
energy states with thermal behavior. In closed quantum
systems, the eigenstate thermalization hypothesis [74,75]
states that a class of quantum operators will have expect-
ation values and correlation functions which appear to be
thermal. In many examples, these are local operators
supported in a spatial subregion of the system, and the
excited quantum state is strongly entangled between the
subregion and its complement so that the reduced density
matrix looks approximately thermal (see Ref. [76] for a
recent discussion, and further references.) Of course, this is
not the only way to decompose the Hilbert space such that
the state is entangled between the components. The
stretched horizon appears at some radius in the AdS–black
hole geometry, whose value should be dual to some scale in
the field theory dynamics. Studying entanglement between
d.o.f. at different scales could shed light on this system.11
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APPENDIX A: RELATION TO AND
DIFFERENCES FROM WILSONIAN

RENORMALIZATION

Textbook treatments of Wilsonian renormalization
explicitly disentangle IR and UV d.o.f. via a change of
variables. This point of view is important for computing the
low-energy spectrum and the S matrix of asymptotic states

11On a related note, Ref. [71] studied the progressive con-
tribution of longer and longer wavelengths of bulk fields to the
black hole entanglement entropy.
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with low energies and long wavelengths. Below we contrast
this approach with the work in this paper.

1. Path-integral approach

The standard discussion of Wilsonian renormalization
(cf. Refs. [41,77]) begins with a Euclidean path integral

Z ¼
Z

DϕðxÞe−SΛ0 ½ϕ� ðA1Þ

for a field theory with UV cutoff Λ0. One breaks up ϕðxÞ
into ϕ ¼ ϕs þ ϕf, where the “slow” fields ϕs are supported
on Euclidean momenta jkj < Λ and the “fast” fields ϕf are
supported on Euclidean momenta Λ < jkj < Λ0. We coarse
grain the theory by integrating over ϕf to find

Z ¼
Z

Dϕse−SΛ½ϕs�: ðA2Þ

For long-wavelength questions, we can work with this
latter presentation.
When Z represents the partition function in a classical

equilibrium statistical physics problem, the interpretation is
clear: SΛ will represent the spatially coarse-grained
classical Hamiltonian of the system. If we want to compute
equal-time correlators in the analytical continuation to real
time, we need to impose periodic boundary conditions in
the integral over the high frequencies, while fixing the IR
modes on two sides of a cut in time [7]. This yields an
effective action and an associated density matrix that can be
used to compute equal time correlation functions. But when
Z represents the quantum-mechanical vacuum-vacuum
transition amplitude computed via Euclidean continuation,
the decimation procedure above fixes both the initial and
final state of the short-wavelength d.o.f. For the inclusive
finite-time probabilities discussed in the Introduction,
this procedure is not appropriate, beyond the leading order
in a Born-Oppenheimer approximation. Note that when
describing scattering of initially well-separated particle
states into final states of the same form, the interactions
are effectively inoperative at early and late times, and the
assumption that the short-distance modes are in their
ground state is essentially correct. This standard treatment
is designed to produce transition amplitudes between initial
and final asymptotic states where only the low-energy
modes are excited. By contrast, we are interested in finite-
time questions for states that have UV-IR entanglement,
including the natural ground states of interacting theories,
and states produced by the action of coarse-grained
operators.
For the inclusive finite-time questions we are discussing

in this paper, the decimation procedure is best applied to
spatial momenta, in the real-time path integral developed
by Feynman and Vernon [52] for density matrices. In this
case, the analog of the Wilsonian effective action will

include terms describable as a renormalized Hamiltonian,
together with a nontrivial “influence functional” which
encodes the time development of entanglement between the
IR and UV d.o.f. We discuss this in Appendix D.
A further issue arises from the fact that higher-derivative

interactions are generically induced. These will include
terms that are functions of ϕ̈s and higher derivatives still,
arising from nonlocalities on the scale of the running
cutoff.12 In general, the Wilsonian action SΛ will not have
an interpretation as an action that can be derived from the
Legendre transform of a Hamiltonian, unless one adds
Stückelberg fields. Such a procedure amounts to adding the
short-distance d.o.f. back in. The interpretation of these
higher-derivative terms is clear in the holographic picture of
Wilsonian renormalization [36]: they reflect the fact that the
IR d.o.f. comprise an open quantum system, and that there
are memory effects on the time scale of the UV dynamics.

2. Hamiltonian approach

There is an alternative literature on Hamiltonian
approaches to renormalization, pioneered originally by
Wilson [39,40], and applied first to a model of pion-
nucleon scattering and later to the Kondo problem, imple-
mented by a successive diagonalization of d.o.f. with a
hierarchy of energy scales. In these models the d.o.f. of
some quantum field are coupled through a localized defect.
At each step one diagonalizes the Hamiltonian of the high-
energy d.o.f. coupled to the defect, and works in the ground
states of these d.o.f. This diagonalization mixes the (iso)
spin states of the defect with excitations of the high-energy
modes of the quantum field: at each step, the low-energy
spin d.o.f. becomes more delocalized.
Variants for interacting quantum fields (without a defect)

can be found in, for example, Refs. [42,78]. The authors of
Ref. [42] removed divergences by making a transformation
to “band-diagonal” form in which the Hamiltonian has no
matrix elements between states with an energy difference
larger than some value. The authors of Ref. [78] imple-
mented partial diagonalization of the Hamiltonian by
removing only the matrix elements between the IR band
and the high-energy d.o.f.
As in Wilson’s work, the goal of the Hamiltonian

approach to renormalization is to extract the spectrum.
To do so, we reorganize the theory in terms of effective low-
energy d.o.f. where the original low-frequency components
of the Hilbert space are appropriately dressed by the high-
frequency components so as to partially diagonalize the
Hamiltonian between the UVand the IR. If one is studying
thermodynamics at low temperatures, or the dynamics
of quasiparticles built from the renormalized variables,
the low-energy Hilbert space can be treated as a closed
quantum system. Similarly, such an approach is also

12A related discussion, which partially inspired this paper, can
be found in Ref. [7].

COARSE GRAINED QUANTUM DYNAMICS PHYS. REV. D 98, 025019 (2018)

025019-15



appropriate for S-matrix elements of well-separated par-
ticles. In this case, the initial state lies in the low-energy
Hilbert space, and the final state will as well. In this way, if
one studies the scattering into final states of well-separated
particles (or low-energy bound states), one can work
entirely within the closed quantum system of the low-
energy Hilbert space.
The calculations we describe in this paper, however,

assume that measuring devices couple to the bare variables
with some finite spatial resolution, and that measurements
are made at finite time. In this setting, low- and high-
momentum modes cannot be easily separated, and thus the
measurable d.o.f. form an open quantum system.

3. Born-Oppenheimer approximation

Our treatment of long-wavelength modes is closest to the
Born-Oppenheimer approximation. In textbook form
[43,79], one separates the quantum-mechanical d.o.f. into
“fast variables” Y and “slow variables” x. To implement the
approximation, one considers the case that eigenstates of x
form a (possibly overcomplete) basis of the Hilbert space
described by the slow d.o.f., and considers Hamiltonians of
the form

H ¼ Hx þHYðxÞ: ðA3Þ

For example, x could be the positions of heavy nuclei, and
Y the positions of electrons moving in the backgrounds of
these nuclei.
Consider x to take some frozen value and treat it as a

background field. Then the Hilbert space of the “fast” d.o.f.
can be written in eigenstates jn; xi

HYðxÞjn; xi ¼ EnðxÞjn; xi: ðA4Þ

Let ΔEx, ΔEYðxÞ be the gap between eigenvalues of Hx,
HYðxÞ. The simplest version of the Born-Oppenheimer
approximation works when ΔEY∼EnðxÞ−EmðxÞ≫ΔEx,
for all x where the wave function of the slow d.o.f. has
appreciable support. Let E0ðxÞ be the instantaneous ground
state. One can write the general wave function as

jΨðtÞi ¼
Z

dx0ψðx0; tÞjx0ixj0; x0iY

þ
X
n>0

Z
dx0δψnðx; tÞjx0ixjn; x0iY; ðA5Þ

where the subscripts x and Y on the kets indicate states in
the“slow” and “fast”Hilbert spaces labeled by the indicated
quantum numbers, while ψ and δψn are the weights of the
linear combination defining the full state. A state like
jn; x0iY indicates that the “fast” modes Y are in an energy
eigenstate of HYðx0Þ with quantum number n. This “fast”
eigenstate depends on the“frozen” value x0 of the slow

variable through the dependence in HYðx0Þ. Meanwhile
jx0ix indicates a state in the “slow”Hilbert space indexed by
the slowly changing value x0.
To lowest order in the Born-Oppenheimer approxi-

mation ΔEx=ΔEY ≪ 1, the leading n ¼ 0 term satisfies
the time-dependent Schrödinger equation with effective
Hamiltonian

Heff ¼ Hx þHBerry þ E0ðxÞ ðA6Þ

where HBerry are the additional terms induced by Berry’s
phase [43,80,81].13 In this approximation, the reduced
density matrix for the slow d.o.f. can be written as

ρIR ¼
Z

dx0dx00ψ0ðx0Þψ�
0ðx00ÞtrY ½jx0ixj0; x0iYYh0; x00jxhx00j�:

ðA7Þ

This describes a mixed state if F ðx0; x00Þ ¼
trY ½jx0; 0iYYhx00; 0j� is not factorizable in x0 and x00.
Nonetheless, its evolution is unitary, with Hamiltonian
Heff , in this approximation. The failure of unitarity—that
is, the status of the IR d.o.f. as an open quantum system—
will appear at higher orders in the Born-Oppenheimer
approximation, for finite-time processes. This includes
processes like recoil of the heavy d.o.f. This has been dis-
cussed in the classical limit of the IR d.o.f. in Refs. [46,47];
corrections to the leading adiabatic limit lead to friction and
dissipation.
This framework is essentially what we desire. However,

we are interested in the more general case of systems for
which the coupling between IR and UV d.o.f. cannot be
simply expressed in terms of an IR operator which can be
diagonalized. An example of this is the Hamiltonian for two
coupled spins,

H ¼ −μLBSzL − μHBS
z
H þ λS⃗L · S⃗H ðA8Þ

where μL ≪ μH, and the total spin S⃗2L=ℏ2 ¼ jLðjL þ 1Þ is
not too large. There is no basis which diagonalizes S⃗L. On
the other hand, for jL ≫ 1, or for long-wavelength modes
in a spin chain, there is a semiclassical limit in which the
spin can be treated as a semiclassical variable.

APPENDIX B: ENTANGLED INITIAL STATES

When the initial state is entangled between the UV and
IR, the evolution of the IR density matrix is harder to
characterize. (See Sec. 4 of Ref. [63] for a preliminary
discussion of this case.) Let us consider the specific initial
state

13In the case that there are N near-degenerate eigenstates with
energies close to E0, ψ0 is replaced by an N-component wave
function, with a non-Abelian UðNÞ Berry phase [82].
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jΨð0Þi ¼ 1ffiffiffi
2

p ðjχiju1i þ jζiju2iÞ ðB1Þ

where ju1;2i are eigenstates of HUV with eigenvalues E1;2,
and jχi; jζi are states in HIR which we will take to be
linearly independent. The initial density matrix is

ρð0Þ ¼ 1

2
ðjχihχj þ jζihζjÞ: ðB2Þ

As we will see, the complication will arise because each
term will evolve differently, in a fashion dependent on the
UVeigenstates they are coupled to. At zeroth order in λ, the
density matrix is simply

ρð0ÞðtÞ ¼ 1

2
e−iHIRtðjχihχj þ jζihζjÞeiHIRt

¼ 1

2
ðjχðtÞIihχðtÞIj þ jζðtÞIihζðtÞIjÞ ðB3Þ

where jψðtÞIi ¼ e−iHIRtjψð0Þi. ρð0ÞðtÞ evolves by
Hamiltonian evolution, iℏ∂tρ

ð0ÞðtÞ ¼ ½HIR; ρð0ÞðtÞ�.
At first order in λ, a calculation identical to those of

Sec. II yields

iℏ∂tρ
ð1ÞðtÞ ¼ ½HIR; ρð1ÞðtÞ�

þ ½V11; jχðtÞIihχðtÞIj þ ½V22; jζðtÞIihζðtÞIj�
þ ½V12e−iE21t; jζðtÞIihχðtÞIj
þ ½V21eiE21t; jχðtÞIihζðtÞIj� ðB4Þ

where Vij ¼ huijVjuji, and E21 ¼ E2 − E1 ∼ EUV. There
is no obvious sense in which the evolution is Markovian.
The time averaging of the first-order evolution

equation (B4) is straightforward: we simply drop the final
line, which oscillates rapidly at a time scale of order 1=EUV.
The resulting equation is

iℏ∂tρðtÞ ¼ ½Heff;1;
1

2
jχðtÞihχðtÞj� þ ½Heff;2;

1

2
jζðtÞihζðtÞj�

ðB5Þ

where

Heff;i ¼ HIR þ huijVjuii: ðB6Þ

This is not a Hamiltonian evolution.

APPENDIX C: UV-IR ENTANGLEMENT

Having computed the density matrix, we can ask how
entangled the systems become with time. The most robust
quantity to compute is the von Neumann entropy

SðtÞ ¼ −TrρðtÞ ln ρðtÞ: ðC1Þ

This can be difficult to compute in practice. A simpler set of
quantities to calculate are the Rényi entropies for ρðtÞ:

SnðtÞ ¼ −
ln TrρnðtÞ
n − 1

: ðC2Þ

If the resulting expression yields a smooth n → 1 limit, one
may use these to compute the von Neumann entropy.
We must take some care when computing S in pertur-

bation theory, due to the logarithm. If the unperturbed
density matrix has zero eigenvalues and the perturbation is
sufficiently generic, we expect the full density matrix to
have eigenvalues that scale as λp. Thus, there will be terms
that scale as λp ln λ in the von Neumann entropy, and
perturbation theory will break down: this fact was dis-
cussed in Ref. [7]. While the Rényi entropies for fixed
integer n > 1 can have good analytic expansions in λ, it is
straightforward to see that the λ → 0, n → 1 limits will not
commute. For a simple example, consider the density
matrix

ρ ¼
�
1 − aλ 0

0 aλ

	
; ðC3Þ

for which

Sn ¼ −
1

n − 1
ln½ð1 − aλÞn þ ðaλÞnÞ�

¼ 1

n − 1
ln½ð1 − aλÞeðn−1Þ lnð1−aλÞ þ ðaλÞeðn−1Þ lnðaλÞÞ�:

ðC4Þ

Note that in the cases we are studying, these entropies
capture both the degree to which the initial IR density
matrix is in a mixed state, as well as any entanglement that
arises from time evolution of the coupled system.
Therefore, the most interesting question for us is the
evolution of these quantities with time. Focusing on the
Rényi entropies with integer n (so that we are sure to work
with well-defined quantities), we find

dSnðtÞ
dt

¼ in
n − 1

Tr½ρn−1ðtÞi∂tρðtÞ�
TrρnðtÞ : ðC5Þ

If we insert Eq. (12), the contributions from Heff will
vanish, due to the cyclicity of the trace, so that

dSnðtÞ
dt

¼ in
n − 1

Tr½ρn−1ðtÞΓðtÞ�
TrρnðtÞ : ðC6Þ

Thus we see that the non-Hamiltonian components of the
time evolution specified by Γ in Eq. (12) are precisely
responsible for producing UV-IR entanglement as time
passes.
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Let us focus on the particular case that the initial IR state
is an energy eigenstate jii of the IR Hamiltonian, and work
to Oðλ2Þ. Since Γ is nonvanishing only at Oðλ2Þ, we can
evolve ρðtÞ with HIR alone, and it will remain pure.
Therefore we can replace ρn−1 → ρ with n > 1. Then,
using our known expressions for Γ, we find

dSnðtÞ
dt

¼ 2n
n − 1

X
u≠u;j≠i

sinωuu;i jt

ωuu;i j

jhu; ijVju; jij2;

SðtÞ ¼
Z

t

0

dt0
dSnðt0Þ
dt

¼ 2n
n − 1

X
u≠u;j≠i

1 − cosωuu;i jt

ω2
uu;i j

jhu; ijVju; jij2;

SðtÞ ¼ 2n
n − 1

X
u≠u;j≠i

1

ω2
uu;i j

jhu; ijVju; jij2: ðC7Þ

The Rényi entropies thus vary on the time scale of the UV
d.o.f. Note that SnðtÞ ≥ 0 always; thus the time average is
nonvanishing and also time independent (because the
oscillations are at the UV time scale and the IR state is
an eigenstate of the unperturbed Hamiltonian).

APPENDIX D: PATH-INTEGRAL FORMALISM

The time evolution of the reduced density matrix has a
path-integral formalism going back to Feynman and
Vernon [52,53], which points to an avenue for a systematic
computation of higher-order corrections. Related results
appear in the literature (see Ref. [45] for a discussion and
references).
Many readers may be familiar with this formalism in the

context of quantum Brownian motion [51] and quantum
dissipation [44,83,84]; the coupled oscillator model (54) is a
classic example towhich this formalism has been applied. As
we discussed in Sec. III D 2, the “bath” of oscillators xl in
thesemodels contains a continuum of oscillators down to low
frequencies, with a spectrum designed so that energy is
dissipated into the bath without returning to the observed
system over the lifetime of the experiment. Furthermore the
bath is typically taken to be at finite temperature. In our
discussion, the “bath” consists of d.o.f. with high frequencies,
which are generally in the ground state at leading order in λ.

1. Review of the influence functional

We wish to compute the density matrix starting with
some known state j0i of the full system that evolves

forward in time. The density matrix should express the
probability that the final IR state is jψi. This can be
written as

Pψ ¼
X
u

hujhψ jUðt; 0Þj0ih0jUðt; 0Þ†jψijui: ðD1Þ

The amplitude hujhψ jUðt; 0Þj0i can be expressed as a path
integral with the boundary conditions at times 0; t inte-
grated against the wave function for j0i; hujhψ j. Similarly,
the amplitude h0jUðt; 0Þ†jψijui would be represented as
the complex conjugate of this path integral: when the
system enjoys time reversal invariance, this can be
described in terms of paths propagating backwards in time.
The result is a path integral over paths moving forward then
backwards in time, with the UV d.o.f. at t set equal and
summed over. This is reminiscent of the Schwinger-
Keldysh formalism for “in-in” expectation values
[85–88]; indeed, if one was to sum the above expression
over all final states, one would arrive at the path-integral
expression for such expectation values.
To make this discussion more explicit, consider a system

for whichHIR describes the states of a particle with position
X, and HUV the states of a particle with position x. We
consider an action of the form

S½x; X� ¼ SU½_x; x� þ SI½ _X;X� þ δS½x; X� ðD2Þ

where we write the interaction δS in the form

δS½x; X� ¼ −λ
X
a

Z
t

0

dt0OUV
a ΦIR

a

¼ −λ
X
a

Z
t

0

dt0Oa½x�Φa½X�: ðD3Þ

We are assuming the interaction term depends on the
coordinates only and not on the velocities; thus the
correction to the action is minus the correction to the
Hamiltonian. We have factored out a small dimensionless
parameter λ ≪ 1 to better organize a perturbative treatment
of the system. As in the previous section, we also assume
that the initial state of the system can be described by a
factorized density matrix

σðx; X; y; Y; t ¼ 0Þ ¼ ρIRðX; Y; 0ÞρUVðx; y; 0Þ: ðD4Þ

The density matrix for the IR d.o.f. X is

ρðX; Y; tÞ ¼
Z

dX0dY 0JðX; Y; t;X0Y 0; 0ÞρIRðX0; Y 0; 0Þ;

JðX; Y; t;X0Y 0; 0Þ ¼
Z

YðtÞ¼Y;XðtÞ¼X

Yð0Þ¼Y 0;Xð0Þ¼X0
DXDYe

i
ℏSI ½X�− i

ℏSI ½Y�F ½XðtÞ; YðtÞ�; ðD5Þ
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where ρIR is the initial density matrix for the IR d.o.f., and the influence functional

F ½XðtÞ; YðtÞ� ¼
Z

dx0dy0dxρUVðx0; y0; 0Þ

×
Z

yðtÞ¼x;xðtÞ¼x

yð0Þ¼y0;xð0Þ¼x0
DxDye

i
ℏSU ½x�− i

ℏSU ½y�þ i
ℏδS½x;X�− i

ℏδS½y;Y� ðD6Þ

contains the dependence on the initial state of the UV d.o.f.,
as well as the interactions between the UVand IR d.o.f. We
will now pass to computing F to order Oðλ2Þ.

2. Perturbation theory for the influence functional

We expand Eq. (D6) to second order in δS½x; X� −
δS½y; Y� to find

F ½X; Y� ¼ F ð0Þ þ λF ð1Þ½X; Y� þ λ2F ð2Þ½X; Y� ðD7Þ

using the representation (D3). Up to first order, we find

F ð0Þ ¼ 1;

F ð1Þ ¼ −i
ℏ

X
a

Z
t

0

dt0hOI
aðt0ÞiðΦa½X� −Φa½Y�Þ;

where

hOI
aðt0Þi≡ TrUVðOI

aðt0ÞρUVð0ÞÞ
¼ TrUVðOI

aðt0 − tÞρUVðtÞÞ≡ hOI
aðt0 − tÞit: ðD8Þ

The superscript I denotes the interaction picture, and ρUðtÞ
evolves as

i∂tρUVðtÞ ¼ ½HUV; ρUVðtÞ� ðD9Þ

in this expression.
The second-order correction is

F ð2Þ ¼ −
λ2

2ℏ2

X
a;b

Z
t

0

dt0dt00PF
a;bðt0; t00ÞΦI

a½Xðt0Þ�ΦI
b½Xðt00Þ�

−
λ2

2ℏ2

X
a;b

Z
t

0

dt0dt00P̃F
a;bðt0; t00ÞΦI

a½Yðt0Þ�ΦI
b½Yðt00Þ�

þ λ2

ℏ2

X
a;b

Z
t

0

dt0dt00PW
a;bðt0; t00ÞΦI

a½Xðt0Þ�ΦI
b½Yðt00Þ�:

ðD10Þ

where

PF
a;bðt0; t00Þ ¼ TrUVTðOI

aðt0ÞOI
bðt00ÞÞρUVð0Þ; ðD11Þ

P̃F
a;bðt0; t00Þ ¼ TrUVT̃ðOI

aðt0ÞOI
bðt00ÞÞρUVð0Þ; ðD12Þ

PW
a;bðt0; t00Þ ¼ TrUVOI

aðt0ÞOI
bðt00ÞρUVð0Þ; ðD13Þ

and T̃ denotes time antiordering. Note that the time-ordered
two-point function, the antitime-ordered two-point func-
tion, and the Wightman function appear for essentially the
same reason that they do in the Schwinger-Keldysh
formalism for in-in expectation values. Finally, note that
all of the operators should be understood as being in the
interaction picture.
AtOðλ2Þ, we can exponentiate theOðλÞ term, to arrive at

F ¼ eλF
ð1Þ ð1þ λ2F̃ ð2ÞÞ þOðλ3Þ: ðD14Þ

The effect is to shift PF, P̃F, and PW to GF, G̃F, GW , where

GF;W
a;b ðt; t0Þ ¼ PF;W

a;b ðt; t0Þ − hOaðtÞihObðt0Þi ðD15Þ

and G̃F ¼ ðGFÞ� as before.

3. Relating the influence functional
to the master equation

If we insert Eq. (D14) into Eq. (D5), F ð1Þ can clearly be
absorbed into a shift in the action of the form

δSð1Þ½X� ¼ −
Z

t

0

dt00λhOaðt0ÞiΦa½Xðt0Þ�: ðD16Þ

As a shift in the Hamiltonian, this is identical to the result
(21) derived via operator methods, if the initial state of the
UV d.o.f. is the pure state jui.
Next, by taking the time derivative of Eq. (D5) using

Eq. (D14), we can write the master equation to this order in
terms of UV Green functions:

i∂tρ
ð2ÞðtÞ ¼ ½HIR; ρð2Þ� þ ½Hð1Þ; ρð1Þ�

þ iλ
Z

t

0

dτGW
abðτ; tÞΦbð0Þρð0ÞðtÞΦaðτ − tÞ

þ iλ
Z

t

0

dτGW
abðt; τÞΦbðτ − tÞρð0ÞðtÞΦað0Þ

− iλ
Z

t

0

dτGW
abðt; τÞΦað0ÞΦbðτ − tÞρð0ÞðtÞ

− iλ
Z

t

0

dτGW
abðτ; tÞρð0ÞðtÞΦaðτ − tÞΦbð0Þ:

ðD17Þ
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This can be written in the form (12)–(13) if we write
Lk ¼ Lam, m ∈ f1; 2g, and set

ham;bm0 ¼ λ2δabjm −m0j;
La1 ¼ Φað0Þ;

La2 ¼
Z

t

0

dτGW
abðt; τÞΦbðτ − tÞ ðD18Þ

(where again τ is a complex parameter which factors out of
the master equation, but is included so that Lai all have the
same dimension).14 Finally, the operators in Eq. (12) then
become

Hð2Þ ¼ i
Z

t

0

dτðGW
abðτ; tÞΦaðτ − tÞΦbð0Þ

−GW
abðt; τÞΦað0ÞΦbðτ − tÞÞ;

Að2Þ ¼
Z

t

0

dτðGW
abðτ; tÞΦaðτ − tÞΦbð0Þ

þGW
abðt; τÞΦað0ÞΦbðτ − tÞÞ;

γð2Þ ¼ i
Z

t

0

dτðGW
abðτ; tÞΦbð0Þρð0ÞðtÞΦaðτ − tÞ

þGW
abðt; τÞΦbðτ − tÞρð0ÞðtÞΦað0ÞÞ: ðD19Þ

A calculation shows that these expressions are equivalent to
those in Sec. II.

4. Criteria for Markovian behavior

The expressions for Hð2Þ, Að2Þ, and Γð2Þ above indicate a
necessary condition for time-local, Markovian evolution,
namely that GW

ab (the unordered Wightman function) falls
off rapidly for jτ − tj ≥ δt. In typical quantum systems, this
requires the following (see for example Refs. [89,90]):
(1) The operators O should have matrix elements

between the initial UV state jui and a set of UV
energy levels that are finely spaced by the inverse of
a time scale tP much larger than the scale of the
experiment; at scales of order tP one expects
quasiperiodic behavior characteristic of Poincaré
recurrences.

(2) The matrix elements of O contributing to the
correlation function should have a finite width Γ
in energy, leading to exponential falloff at a time
scale Γ−1. For finite-temperature correlators, where
the Boltzmann factor cuts off large-energy states,
this may be of order the inverse temperature.

Local correlators alone are not sufficient to guarantee
behavior that is Markovian in the strict sense of the
dynamical map being divisible. As an example, for a
Brownian particle coupled to a spectrum of harmonic
oscillators at finite temperature TB [51], correlators fall
off on a time scale of order T−1

B . However, even on time
scales long compared to T−1

B , the master equation fails to be
Markovian up to a term scaling as γ=TB (see Sec. 3.6.2 of
Ref. [45]), where γ controls the spectral density of the
oscillators and sets the time scale for relaxation of the IR
system. For zero-temperature dynamics there is even less
reason for Markovian dynamics to emerge. Since our
model two-scale systems do not satisfy the above assump-
tions, we do not expect Markovian behavior.
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