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We analyze Feynman diagram calculational issues related to the quantum breaking of supercurrent
conservation in a supersymmetric non-Abelian Yang-Mills theory. For the sake of simplicity, we take a zero
mass gauge field multiplet interacting with a massless Majorana spin-1=2 field in the adjoint representation
of SUð2Þ. We shed light on a long-standing controversy regarding the perturbative evaluation of the
supercurrent anomaly in connection with gauge and superconformal symmetry in different frameworks. We
find that only superconformal symmetry is unambiguously broken using an invariant four dimensional
regularization and compare with the triangle AVV anomaly. Subtleties related to momentum routing
invariance in the loops of diagrams and Clifford algebra evaluation inside divergent integrals are also
discussed in connection with finite and undetermined quantities in Feynman amplitudes.
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I. INTRODUCTION

Anomaly-mediated symmetry breaking is an important
mechanism in field and string theory [1]. Its range of
applications run from phenomenological, such as the
calculation of the decay rate for neutral pions into two
photons [2], the computation of quantum numbers in the
Skyrme model of hadrons [3] and mechanisms for baryo-
genesis in the standard model [4], to theoretical, namely the
study of dualities in gauge theory, the computation of
anomalous couplings in the effective theory of D-branes,
and the analysis of black hole entropy [5,6].
In the particular case of supersymmetry breaking, it is

neither straightforward nor conclusive that supersymmetry
is a symmetry of the full quantum theory in general.
However, as discussed in [7], there have been claims about
supersymmetry anomalies which turned out erroneous
because of the difficulty to distinguish between a genuine
and a spurious anomaly. The latter is an apparent violation
of a supersymmetric Ward identity due to use of a

regularization method that violates supersymmetry, for
instance.
The existence of anomalies may be established in a

regularization independent way. The Adler-Bardeen
anomaly, for instance, can be shown to be determined
by the topological term TrGG̃ algebraically characterized
as a nonvariation under gauge and BRS symmetry. In [8]
was proved that the coefficient of the anomaly is deter-
mined by convergent one-loop integrals. Moreover, in [9] it
was shown that, with local coupling, supersymmetric Yang-
Mills theories have an anomalous breaking of supersym-
metry at one-loop order.
Perturbative evaluation of a quantum symmetry breaking

is therefore intimately related to regularization issues. A
specious anomaly stemming from noninvariant regulariza-
tions appears when finite and regularization dependent
terms are erroneously incorporated into an amplitude. A
symmetry preserving regularization is of considerable
computational utility. Evidently if a model is known before-
hand to be anomaly free, the question of whether there exists
or not an invariant scheme is irrelevant, should the impo-
sition of Ward identities order by order in perturbation
theory not to be considered a nuisance. In this case either,
one employs an invariant scheme and performs renormal-
ization using invariant counterterms or uses noninvariant
counterterms to compensate the symmetry breaking. For the
latter strategy towork, a precise knowledge of the symmetry
content of the model must be known which often requires
nonperturbative [10] information. In fact, the absence of
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anomalies may be proven without recourse to any
regularization by using algebraic properties of the Ward
identities (algebraic renormalization) at least for some
particular cases [7,11–14].
Although dimension regularization [15] is tailor-made for

gauge theories, it is less suited to dimensional sensitive
quantum field theoretical models such as supersymmetric,
topological and chiral gauge theories. Naive dimensional
reduction (DRed) can be shownmathematically inconsistent
[16]. For instance, Lorentz algebra contractions can lead to
equations such as 0 ¼ nðn − 1Þðn − 2Þðn − 3Þðn − 4Þ, valid
only for integer spacetime dimension n and thus it is
incompatible with analytical continuation proposed by
dimensional methods. In [17], a consistent version of
DRed was developed which forbids the use of Fierz
identities, implying that supersymmetry will also not be
respected in general. Nevertheless, in the same reference it is
shown how to identify the breaking of supersymmetry by
means of the quantum action principle, allowing DRed to be
made operational for particular models to a specific loop
order [18]. In the same vein, there were severe difficulties to
renormalize supersymmetric theories in a regularization
independent way: in the Wess-Zumino gauge useful in
practical calculations, the usual way of treating global
symmetries by Ward identities was shown to fail [17,19].
Anomaly mediated supersymmetry breaking is an impor-

tant mechanism in addition to Planck scale mediated and
gauge mediated scenarios [20]. The former is related to
superconformal anomaly and started back in early 1970s
with developments in rigid supersymmetry models [21].
The study of supersymmetry breaking involves the com-
putation of Ward identities connecting Greens functions of
the supercurrent to other matrix elements. For those Ward
identities to hold, no anomalies of the supercurrent should
exist. Although a manisfest gauge and supersymmetry
invariant regularization is still to be constructed some
regularization frameworks that operate in the physical
dimension do exist [22–51]. In particular, implicit regu-
larization (IReg), developed by Batisttel and collaborators,
[23–44] systematically identifies, to arbitrary loop order,
regularization dependent terms as surface terms (resulting
from differences between loop integrals free of external
momenta with the same superficial degree of divergence)
without recourse to an explicit regulator. For a comparison
with other similar emergent schemes, see [45]. IReg has
been shown to be adequate to connect momentum routing
invariance in a diagram, gauge invariance and surface terms
in the corresponding Feynman amplitude and therefore it
will be used as a tool in this contribution.
We revisit an old controversy regarding the diagrammatic

evaluation of the supercurrent anomaly that started with de
Witt and Freedman [52]. For concreteness we study N ¼ 1
super Yang-Mills SUð2Þ theory in four spacetime dimen-
sions. In this model, the supercurrent, the axial current and
the stress-energy tensor belongs to the same multiplet, i.e.,

they transform among themselves under constant super-
symmetry transformations. As the axial-vector current
has an anomaly, one is compelled to conclude that the
supercurrent conservation could be anomalous as well [53].1

The quantum breaking of such symmetry constraints
translates into the violation of one amid three Ward
identities which hold at classical level. As we shall discuss,
different calculational frameworks placed the anomaly in
one of the Ward identities. An important result by Abbott,
Grisaru and Schnitzer [53,56] shows, however, that one
cannot derive the quantum breaking of the supercurrent
conservation from the axial-vector current anomaly.
Moreover in [57], within a four-dimensional approach
called preregularization, it was shown that the supercurrent
anomaly is connected to the inability to reconcile ambi-
guities (in the form of specific momentum routings in the
Feynman diagrams) in a way to preserve simultaneously
gauge and supersymmetry.
The purpose of this work is to shed light on the apparent

clash in the perturbative calculation of the quantum sym-
metry breaking of the supercurrent conservation in N ¼ 1
superYangMills theory in connectionwith gauge invariance
and theRarita-Schwinger constraint (the latter also knownas
superconformal, spin-3=2 or supercurrent trace constraint)
[53]. Subtleties related to Dirac algebra and symmetric
integration within divergent amplitudes, parametrization of
arbitrary (finite) regularization dependent terms and
momentum routing invariance in a framework which oper-
ates in the physical dimension such as IReg will be clarified.
Moreover a comparison with results of the supercurrent
anomaly performed in other regularization frameworks and
a comparison with the Adler-Bardeen-Bell-Jackiw (ABBJ)
triangle anomaly will be presented.
This contribution is organized as follows. In Sec. II, we

present some technical tools and apply them to ABBJ
anomaly. The Feynman rules of SU(2) super Yang-Mills
Lagrangian with massless Majorana spinors in the presence
of an external current Sμ as well as the one-loop correction
to the process Sμ → ψ þ Aμ compose most of Sec. III. It
also contains the correspondingWard identities respected at
classical level and subject to quantum breaking. The results
of the Ward identities within different schemes with focus
in IReg follow in Secs. IVand V. Secs. VI and VII contain a
general discussion and conclusions regarding subtleties
appearing in perturbative evaluation of anomalies. All
technical details are left to Appendices.

II. IREG AND THE ABBJ TRIANGLE ANOMALY

IReg [23–44] is a regularization framework applicable to
arbitrary loop order proposed as an alternative to dimen-
sional schemes. It operates in the physical dimension of the

1For a unified discussion about chiral and conformal anoma-
lies, see [54]. Also, see [55] for a study about path integral
derivation of anomalies.
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underlying quantum field theory avoiding some draw-
backs of dimensional methods, for instance the mismatch
between fermionic and bosonic degrees of freedom that
leads to supersymmetry breaking and ambiguities in the γ5
matrix and Levi-Civita tensor algebra due to dimensional
continuation on the spacetime dimension. Moreover, spu-
rious evaluation of regularization dependent parameters
[58], which is usual in some nondimensional frameworks,
are avoided. IReg operates in momentum space using as
main strategy the isolation of basic divergent loop integrals
(BDIs) of a given superficial degree of divergence that
characterizes the UV divergent behavior of Feynman
amplitudes. The latter is freed from external momentum
dependence by judiciously applying an algebraic identity at
the integrand level:

1

ðk−pÞ2−m2
¼ 1

ðk2−m2Þþ
ð−1Þðp2−2p ·kÞ

ðk2−m2Þ½ðk−pÞ2−m2� : ð1Þ

It resembles in some aspects others four-dimensional
programs such as differential renormalization [22,33]
and the FDR scheme [45,49] in which the intrinsic
divergent pieces are called “vacua”. Infrared divergences
can be regulated either by a fictitious mass at propagator
level or by infrared basic integrals in coordinate space [36].
Tensorial basic divergent integrals in turn may be expressed
as scalar ones plus surface terms (ST). STs encode most of
the regularization dependent pieces of explicit regulariza-
tions. These features are especially useful for dimensional
specific quantum field theories. Moreover the IReg scheme
can be generalized to arbitrary loop order complying with
the BPHZ renormalization program [59]. After subtraction
of subdivergences following the Bogoliubov’s recursion
formula (devised for subtracting nested and overlapping
divergences) it is still possible to define new BDIs and
surface terms characterizing the divergent behavior at
arbitrary loop order. Here, for the sake of brevity, we shall
describe only the one-loop structure of IReg.
To establish our notation, we write one-loop logarithmi-

cally basic divergent integrals as2

Iμ1…μ2n
0 ðm2Þ≡

Z
k

kμ1…kμ2n

ðk2 −m2Þ2þn ; ð2Þ

with similar definitions for linearly and quadratically
divergent objects. One-loop STs are defined by

ϒμν
2w ¼ gμνI2wðm2Þ − 2ð2 − wÞIμν2wðm2Þ≡ υ2wgμν; ð3Þ

Ξμναβ
2w ¼ gfμνgαβgI2wðm2Þ − 4ð3 − wÞð2 − wÞIμναβ2w ðm2Þ

≡ ξ2wðgμνgαβ þ gμαgνβ þ gμβgναÞ; ð4Þ

etc., 2w being the degree of divergence of the integrals
(hereafter we identify the subscripts 0,1,2 with log, lin,
quad). The curly brackets above stand for symmetrization
in the Lorentz indices. It is straightforward to show that STs
are integrals of total derivatives,

υ2wgμν ¼
Z
k

∂
∂kν

kμ

ðk2 −m2Þ2−w ; ð5Þ

ðξ2w − v2wÞðgμνgαβ þ gμαgνβ þ gμβgναÞ

¼
Z
k

∂
∂kν

2ð2 − wÞkμkαkβ
ðk2 −m2Þ3−w : ð6Þ

The differences between integrals with the same degree of
divergence (3) and (4) are regularization dependent and
should be fixed by symmetry constraints or phenomeno-
logy [58]. As shown for instance in [29], such STs are
intimately connected with momentum routing invariance
(MRI) in the loops of a Feynman diagram. By consistently
setting STs to zero order by order in perturbation theory
enforces both MRI and gauge invariance [25,29], allowing
us to conjecture that STs are at the root of some symmetry
breakings in Feynman diagram calculations. For instance in
[29,37–39] it was shown that constrained IReg (i.e.,
systematically setting STs to vanish) is also a necessary
condition for supersymmetry invariance. Similar results
using different theories were obtained for non-Abelian
gauge theories [30,31,38]. More recently, IReg was shown
to be useful in dealing with γ5 algebra issues in Feynman
amplitudes [44,60].
Finally, a mass dimensional parameter in BDIs can be

extracted to define a minimum and mass independent
subtraction scheme via a regularization independent iden-
tity which, at one loop order, reads

Ilogðm2Þ ¼ Ilogðλ2Þ − b ln

�
m2

λ2

�
; ð7Þ

where

b≡ i
ð4πÞ2 ð8Þ

and λ plays the role of a renormalization group scale.
Derivatives of BDIs with respect to λ yield a constant or
another BDI. They are absorbed into renormalization
constants without explicit evaluation allowing the compu-
tation of the usual renormalization group functions.

A. ABBJ anomaly within IREG

As an illustration which will serve to interpret the results
of the supercurrent anomaly, let us present a classical
example, namely the Adler-Bardeen-Bell-Jackiw (ABBJ)
triangle anomaly. Calculational details have been presented

2R
k ≡

R
Λ d4k=ð2πÞ4, Λ being a four-dimensional implicit

regulator (say, a cutoff) just to justify algebraic operations within
the integrands.
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elsewhere [25,29]. Since its discovery [2], the ABBJ
anomaly has been calculated within several approaches
[57,61–68]. An overview on the various regularization
schemes applied in the diagrammatic computation of this
anomaly can be found in [6]. There are also derivations
obtained by the path integral measure transformation [69]
and differential geometry [70,71]. The usual view on the
diagrammatic derivation of chiral anomaly is that it occurs
due to the momentum routing breaking in the internal lines
of Feynman diagrams. Accordingly, the momenta of the
internal lines must assume specific values so that a certain
Ward identity is preserved [72]. This feature was formal-
ized in [57] within a scheme called Preregularization.
It is not uncommon that an anomaly can apparently be

removed and reappear in another guise. This is indeed the
case with the ABBJ anomaly, which is a property of the
fermion triangle with two vector and one axialvector
vertices. The anomaly may affect either the axial or the
vector current, depending on how the theory is regularized.
However, it is not up to the regularization scheme which
identity is to be preserved. Ideally the calculational frame-
work should democratically display the anomaly which, if
not spurious, contains important physical implications.
Besides the triangle anomaly, other examples of inter-
changeable anomalies are gravitational anomalies for
fermions in two-dimensional spacetime [35]. The super-
current anomaly was thought to have the same property but
as we shall discuss in this contribution, at least within a
diagrammatic evaluation, this is not the case.
Standard dimensional regularization [15] is the most

appropriate invariant method for vector gauge invariance.
However, as we have mentioned above, some inconsisten-
cies may appear regarding the manipulation of dimension-
specific objects such as the γ5 matrix and the Levi-Civita
tensor. To circumvent this problem, some rules had to be
added to the method, postulating how the dimensional
continuation of such objects should be performed [73].
Dimensional methods also break supersymmetry and some
ad hoc rules must be incorporated as well. To this end,
some supersymmetric Ward identities of the underlying
model have to be validated to a certain loop order via, say,
the quantum action principle [17]. Alternatively, a strategy
that imposes Ward identities to restore broken symmetries
order by order in perturbation theory could be employed.
However, besides being not practical from the calculational
viewpoint, it can also be misleading when there exists a
genuine anomaly.
In the particular case of the AVV anomaly, the triangle

graph contains an axial vertex and care must be exercised
with divergent amplitudes involving the dimension-specific
object γ5 matrix and its Clifford algebra. That is because
identities regarding the γ5 algebra are not always satisfied
under divergent integrals, even in the physical dimension of
the model [25,60]. A gauge-invariant prescription for the γ5
algebra was proposed in [62] called “rightmost ordering” in

which all γ5 should be moved to the rightmost position of
the amplitude before its spacetime dimensionality is
altered. Another proposal in four dimensions was discussed
in [67]. Moreover, in [60], it can be found a thorough
discussion on calculations involving Clifford algebra
within Feynman amplitudes evaluated in different schemes.
Although the evaluation of the ABBJ anomaly has been

extensively discussed in the literature, we briefly recall
some aspects of its calculation within IReg with the
purpose of comparing with the supercurrent anomaly.
The key features are firstly the parametrization of regu-
larization dependent (and undetermined) quantities as sur-
face terms and secondly MRI in the loops of a Feynman
amplitude while working in the physical dimension where
the Clifford algebra is defined. MRI is known to be fulfilled
in cases where gauge symmetry is not broken at all orders
in perturbation theory upon the use of dimensional regu-
larization [15].
It is legitimate to expect that even in the presence of an

anomaly, vector current gauge invariance continues to
evidence MRI which is built up from energy-momentum
conservation at a diagram vertices. Indeed that is what we
verify by applying a minimal prescription based on the
symmetrization of the trace over the γ matrices involving
γ5. This prescription does not make use of the property
fγ5; γμg ¼ 0, since the vanishing of such anticommutator
inside divergent integrals is the origin of ambiguities [25]
even when applied in the physical dimension [60,74]. Thus,
for the traces involving four and six Dirac matrices and one
γ5, we use

Tr½γμγβγνγργ5� ¼ 4iϵμβνρ and ð9Þ
−i
4
Tr½γμγνγαγβγγγδγ5�
¼−gαβϵγδμνþgαγϵβδμν−gαδϵβγμν−gαμϵβγδνþgανϵβγδμ

−gβγϵαδμνþgβδϵαγμνþgβμϵαγδν−gβνϵαγδμ−gγδϵαβμν

−gγμϵαβδνþgγνϵαβδμþgδμϵαβγν−gδνϵαβγμ−gμνϵαβγδ;

ð10Þ

which can be obtained replacing γ5 by its definition in four
spacetime dimensions, γ5 ¼ i

4!
ϵμναβγμγνγαγβ. A similar

approach as encoded in Eq. (10) was used in [60,67].
Notice that if we had used the following identity to reduce
the number of Dirac matrices,

γμγβγν ¼ gμβγν þ gνβγμ − gμνγβ − iϵμβνργργ5; ð11Þ

then both Eq. (9) and the anticommuting property γ5γργ5 ¼
−γρ would lead to

Tr½γμγβγνγξγαγλγ5� ¼ 4iðgβμϵνξαλþgβνϵμξαλ−gμνϵβξαλ

−gλαϵμβνξþgξλϵμβνα−gξαϵμβνλÞ: ð12Þ
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However, it is completely arbitrary which three γ matrices
should be taken in order to apply Eq. (11). A different
choice would give Eq. (12) with Lorentz indexes permuted.
Such arbitrariness turns out to be relevant in connection
with symmetry breakings. Thus, the anticommutation
property fγμ; γ5g ¼ 0 should be avoided inside a divergent
integral. Moreover, it has been shown that this operation
can assign an a priori nonvanishing value to an arbitrary
surface term [25].
The amplitude of the Feynman diagrams in Fig. 1 is

given by

Tμνα ¼ −i
Z
k
Tr

�
γμ

i
=kþ =k1 −m

γν
i

=kþ =k2 −m

× γαγ5
i

=kþ =k3 −m

�
þ ðμ ↔ ν; p ↔ qÞ: ð13Þ

where the arbitrary routings kis obey the following relations
due to energy-momentum conservation at each vertex

k2 − k3 ¼ pþ q;

k1 − k3 ¼ p;

k2 − k1 ¼ q: ð14Þ
Equation (14) allow us to parametrize the routing ki as

k1 ¼ αpþ ðβ − 1Þq;
k2 ¼ αpþ βq;

k3 ¼ ðα − 1Þpþ ðβ − 1Þq; ð15Þ

where α and β are arbitrary real numbers which express the
freedom to choose the routing of internal lines. Similar
equations for the other diagram are obtained by inter-
changing p ↔ q. After taking the trace with the help of
Eq. (10), we apply the IReg scheme to obtain

Tμνα ¼ 4iυ0ðα − β − 1Þϵμναβðq − pÞβ þ T̃μνα; ð16Þ

where υ0 is a surface term (generally explicitly evaluated in
other regularization schemes) as defined in (5) and T̃μνα is
the finite part of the amplitude sketched in Appendix D.
The vector and axial Ward identities for the massless
theory read:

pμTμνα¼−4iυ0ðα−β−1Þϵανβλpβqλ;

qνTμνα¼4iυ0ðα−β−1Þϵαμβλpβqλ;

ðpþqÞαTμνα¼8iυ0ðα−β−1Þϵμνβλpβqλ−
ϵμνβλ

2π2
pβqλ: ð17Þ

The number υ0ðα − β − 1Þ is arbitrary since υ0 is a (finite)
difference between two logarithmic divergences and α and
β are real numbers that we are free to choose as long as
Eq. (14) representing energy-momentum conservation
hold. We can parametrize this arbitrariness in a single
parameter a by redefining 4iυ0ðα − β − 1Þ≡ 1

4π2
ð1þ aÞ.

Then the Ward identities become

pμTμνα ¼ −
1

4π2
ð1þ aÞϵανβλpβqλ;

qνTμνα ¼ 1

4π2
ð1þ aÞϵαμβλpβqλ;

ðpþ qÞαTμνα ¼ 1

2π2
aϵμνβλpβqλ: ð18Þ

Notice that the anomaly is democratically displayed in the
Ward identities (18). For vector gauge invariance to be
preserved, one chooses a ¼ −1 and thus the axial identity
is violated by a quantity equal to − 1

2π2
ϵμνβλpβqλ. On the

other hand, chiral symmetry is maintained at the quantum
level for a ¼ 0, and the vector identities are violated. The
choice a ¼ −1 sets STs to zero [25,29]. In these references
it was proved that setting STs to zero assures momentum
routing invariance and consequently gauge invariance in
Abelian gauge theories to arbitrary loop order. In other
words MRI in Feynman diagrams is a necessary and
sufficient condition for gauge invariance in Abelian gauge
theories. Although no general proof has been constructed,
the same appears to hold for non-Abelian gauge invariance
in Feynman diagram calculations [31,38]. In our result, it
was crucial to take the symmetrized version of traces
involving γ5 matrix as displayed in (10) rather than (12).3

T
p q

. 5

k k2

k k3

k k1

p

q

p q

p

q

k k1

k k2

k k3

. 5

FIG. 1. Triangle diagrams which contribute to the ABBJ anomaly. We label the internal lines with arbitrary momentum routings.

3In [34] the vector current Ward identities were satisfied when
the surface term assumed a nonvanishing value that cancelled a
finite term in order to preserve gauge symmetry. This was a
byproduct of identity (12) which was used in that calculation.
Therefore, it was thought that the anomaly was due to the
breaking of the momentum routing invariance.
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In summary, we have seen that within a four-dimensional
regularization scheme such as IReg and taking into account
some subtleties related to Clifford algebra inside divergent
integrals (symmetrization of the trace), arbitrary momen-
tum routing amounts to gauge invariance. Such a routing
arbitrariness in a Feynman graph is always accompanied by
a surface term, which is set to zero on gauge invariance
grounds. Indeed even in the case when the axial Ward
identity is chosen to be verified in the ABBJ anomaly, the
momentum routing may be absorbed in the choice of the
arbitrary ST. Thus it seems plausible to disregard particular
momentum routings in the discussion of Ward identities,
even in anomalous cases, in favor of intrinsic arbitrary
parameters hidden in perturbation theory in the form of
STs. The latter should be left as an adjustable parameter if
not fixed on symmetry principles of the underlying
model [25,58].

III. SUPERCURRENT ANOMALY IN SUSY
NON-ABELIAN GAUGE THEORY

TheN¼1 supersymmetric andgauge invariantYang-Mills
SU(2) Lagrangian in the Wess-Zumino gauge reads [21]

L ¼ −
1

4
Fa
μνFaμν þ i

2
ψ̄aγμðDμψÞa þ

1

2
CaCa

þ η�a∂μDab
μ ηb þ

1

2ξ
½∂μA

μ
a�2;

≡ Linv þ Lghost þ Lgauge; ð19Þ

where

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
ν; ð20Þ

a ¼ 1; 2; 3 are color indices, ψa is a massless Majorana
spinor (transforming in the adjoint representation), super-
symmetric partner of the gauge fields Ac

ν and Ca is an
auxiliary field which we will drop out later as it does not
couple to any field in the computation of the supercurrent.
The covariant derivative is defined as

ðDμψÞa ¼ ∂μψ
a þ gϵabcAb

μψ
c: ð21Þ

The action correspondent to Linv is invariant under
supersymmetry transformations,

δAa
ν ¼ iϵ̄γμψa; ð22aÞ

δψa ¼ σμνϵFa
μν þ ϵCa; ð22bÞ

δCa ¼ ϵ̄γμDμψ
a; ð22cÞ

where σμν ¼ 1
4
½γμ; γν� and ϵ is a constant spinor.

The Noether current associated to the invariance of (19)
under (22) is

S̄μϵ ¼ −iðψ̄aγμσ
αβϵÞFa

αβ ð23aÞ

or equivalently, by the Majorana condition for ϵ and ψðxÞ

ϵ̄Sμ ¼ −iðϵ̄σαβγμψaÞFa
αβ: ð23bÞ

Likewise, defining global supersymmetric transforma-
tions as in (22) but substituting γμ with γμγ5 and σμν with
σμνγ5 leads to a conserved Noether current, which is just
(23) with γμ → γμγ5. The result is not affected by which
definition of the transformation one uses as a γ5 factor can
be absorbed into the transformation properties of the
fields [75].4

In order to study the on mass-shell anomalies of the
supercurrent we consider the process

Sμ → ψ þ Aμ ð24Þ

for on-shell bosons and fermions (therefore, no need to
consider mass and wave function renormalization at the
one-loop level). The Feynman rules for the bubble and
triangle graphs that contribute to the process (24) required
to evaluate quantum breakings of the supercurrent Ward
identities are displayed in Fig. 2 in the Feynman gauge. In
[52] it was shown that matrix elements of this current
between physical states are gauge invariant and conserved:

∂μhphysjSμjphysi ¼ 0: ð25Þ

The external physical state is a fermion with momentum p
and color index a, and a gauge field with momentum q and
color index b, namely ju; p; aijε; q; bi. The transition
amplitude to vacuum state reads

hphysjSμjphysi ¼ h0jS̄μju; p; aijε; q; bi ¼ SabμνενbðqÞuaðpÞ:
ð26Þ

For on-shell bosons and fermions all factors of =p in
Sabμν adjacent to uaðpÞ vanish as well as factors of p2, q2

or qν in Sabμν :

ενðqÞqν ¼ 0; =puðpÞ ¼ 0; p2 ¼ q2 ¼ 0; ð27Þ

in which =p should be moved to the rightmost position to
apply (27).
The Ward identities which express supersymmetry,

gauge and superconformal (spin-3=2 constraint) invariance
of the supercurrent read

4Indeed should one employ the supercurrent definition with
the γ5-matrix into the Feynman rules, we see that applying, for
instance, the rightmost positioning (gauge invariant) prescription
for the γ5 matrix [62] leads to the same results for the quantum
corrections modulo a γ5 factor.
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ðpμ − qμÞSabμν ¼ 0; ð28Þ

qνSabμν ¼ 0; ð29Þ

γμSabμν ¼ 0; ð30Þ

where qν is the momentum of the external gauge field. They
are readily satisfied at tree level

ðSabμνÞtree ¼ −2iσβνγμqβδab; ð31Þ

but an anomaly occurs at quantum level. Many authors
have calculated this anomaly and there has been some
controversy about whether the anomaly is in the divergence
or in the trace of the supercurrent. We display their results
in Table I.
We proceed with the calculation of the supercurrent at

one-loop order in a fully four-dimensional setting using
IReg. Feynman rules displayed in Fig. 2 yield, for the
diagrams depicted in Fig. 3, the following superficially
linearly divergent amplitude:

ðSabμνÞ1−loop ≡ Σab
μν ¼ Σab

μνA þ Σab
μνB þ Σab

μνC þ Σab
μνD; ð32Þ

in which

Σab
μνA ¼ σρνγμγαγ

ρ

Z
k

4g2δabNα
A

ðkþ sAÞ2ðkþ pþ sAÞ2
;

Σab
μνB ¼ −σηβγμ

Z
k

2g2δabNβνη
B

ðkþ sBÞ2ðkþ qþ sBÞ2
;

Σab
μνC ¼ −σαζγμ

Z
k

4g2δabNαζ
Cν

ðkþ sCÞ2ðk − pþ sCÞ2ðk − qþ sCÞ2
;

Σab
μνD ¼ σωηγμ

Z
k

4g2δabNωη
Dν

ðkþ sDÞ2ðk − pþ sDÞ2ðk − qþ sDÞ2
;

ð33Þ

with

FIG. 2. Feynman rules: (a) Gauge boson and fermion propagators and interaction vertices. (b) Supercurrent Sabμν vertices.

TABLE I. Supercurrent anomaly in SYM N ¼ 1 in the Wess-Zumino gauge within different regularization schemes. Notice that the
three Ward identities cannot be satisfied simultaneously at quantum level just as the AVV triangle.

Framework Gauge invariance Supercurrent conservation Spin constraint (Rarita Schwinger constraint)

Rosenberg method [53] ✓ ✗ ✓
Preregularization [57] ✓ (✗) ✗ (✓) ✓
Cutoff [57] ✓ (✗) ✗ (✓) ✓
Analytical regularization [76] ✓ ✗ ✓
Point-splitting [77,78] ✓ ✗ (✓) ✓ (✗)
Dimensional reduction [75,79] ✓ ✗ (✓) ✓ (✗)
Dimensional regularization [78,80] ✓ ✓ ✗
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Nα
A ¼ ðkþ pþ sAÞα;

Nβνη
B ¼ −gβνðkþ 2qþ sBÞη þ gνηð−kþ q − sBÞβ

þ gβηð2kþ qþ 2sBÞν;
Nαζ

Cν ¼ ð=k − =qþ =sCÞγνð=kþ =sCÞγαðkζ − pζ þ sζCÞ;
Nωη

Dν ¼ ð−=kþ =p − =sDÞγβð−kþ q − sDÞω
× ½ð−2kþ q − 2sDÞνgβη þ ðk − 2q − sDÞβδην
þ ðkþ qþ sDÞηδβν �: ð34Þ

We used σαβ ≡ 1
4
½γα; γβ� and, for SUð2Þ, C2ðGÞ ¼ 2.

Moreover

siα ≡mipα þ niqα; ð35Þ

ði ¼ A;…; DÞ are arbitrary internal momentum routings.
In evaluating the integrals displayed in (33), it is

important to bear in mind that, for any regularization that
operates in the physical dimension, the order in which the
Clifford algebra is performed (before or after integration in
internal momenta) yields different results.5 In order to avoid
ambiguous symmetric integrations in the physical space-
time dimension (and define a consistent framework with a
unique relation to the quantum action principle)[60,81] the
algebra should be executed before integration. We illustrate
this feature in Appendix A.
In the amplitudes (33), we refrain to apply on-shell

conditions (27) at the level of the integrals which avoids the
introduction of a proper regularization scheme to treat
infrared divergences. Therefore, only a fictitious mass μ is
added in the propagators to regularize spurious infrared
divergences that appear when ultraviolet divergences are
isolated in terms of a BDI, namely Ilogðμ2Þ. The limit μ → 0

is taken in the end of the calculation. The regularization
independent relation (7) introduces a renormalization group
scale λ ≠ 0 in the BDI’s in terms of which renormalization
constants are defined. As the sum of amplitudes in Eq. (32)
contributing to the one-loop correction of the supercurrent
is infrared finite (since we refrain to apply on-shell

conditions at the beginning), a precise cancellation of
spurious infrared regulators will take place among the
various terms. At this stage, on-shell conditions (27) can
be judiciously applied to simplify the final result. We
emphasize that, without a proper regularization scheme
for infrared divergences, the naive application of on-shell
conditions can lead to spurious cancellations (see
Appendix B) as in [53,57,76].

IV. LORENTZ DECOMPOSITION OF THE
ONE-LOOP CORRECTION TO THE

SUPERCURRENT

Lorentz covariance allows the following decomposition
for Σab

μν

Σab
μν ¼ =qγνγμB0 þ gμν=qB1 þ qμγνB2 þ pνγμB3

þ pμγνB4 þ pνqμ=qB5 þ pμpν=qB6; ð36Þ

in which on-shell conditions (27) were taken into account
(and thus the coefficients of γνγμ=p, gμν=p, qνγμ, qμqν=q and
qμqν=p are zero).
The coefficients B0, B1, B2, B3, and B4 possess regu-

larization dependent STs (and an ultraviolet divergence in
B0) which is renormalizable and plays no role in the Ward
identities. On the other hand B5 and B6 are finite and well
determined (regularization independent). Notice that since
the supercurrent does not couple to any field in the
Lagrangian, the anomaly does not spoil the renormaliz-
ability of the theory. The Ward identities (30) in terms of
the Lorentz decomposition of the one-loop correction to the
supercurrent (36) read

qνΣab
μν ¼ðB1þB2þp ·qB5Þqμ=qþp ·qγμB3

þðB4þp ·qB6Þpμ=q;

ðpμ−qμÞΣab
μν ¼ ½B1−B3þðB5−B6Þp ·q�pν=q

þðB2−B4Þp ·qγν;

γμΣab
μν ¼ðB2−B1Þ=qγνþ2ð2B3þB4þp ·qB6Þpν:

ð37Þ

In Table II, we display the values assumed by the
coefficients B1, …, B4 in terms of the coefficient B5. As
we shall show in the next section B6 ¼ −B5.

FIG. 3. Bubble and triangle graphs contributing to the process Sμ → ψ þ Aμ.

5The FDR scheme [49], although defined in the physical
dimension, avoids this issue by appending a new set of rules to
the method which ultimately results in the introduction of “extra”
integrals, absent in IReg, for instance.

BATISTA, HILLER, CHERCHIGLIA, and SAMPAIO PHYS. REV. D 98, 025018 (2018)

025018-8



V. ON-SHELL EXPRESSION OF Σab
μν

In Appendix C, we exhibit details of the computation of
the amplitudes which lead to the one-loop correction to the
supercurrent Σab

μν . Here, we show the complete expression
in order to discuss the relation between gauge invariance,
surface terms and MRI in Feynman diagrams. This is
accomplished in a fully four-dimensional framework in
which, as discussed earlier, we regularize the amplitudes
taking heed of subtleties involving the noncommuting
character of operations like Clifford algebra contractions
and on-shell/massless limits under the integration sign of a
divergent amplitude. Thus, for the coefficients appearing in
Eq. (36), we get (see Appendix C)

B0

g2δab
¼ −6Ilogðλ2Þ þ ð−2nC þ 2nD þ 2nA − 13Þν0

þ 2

3
b

�
−3 − π2 þ 6 ln

�
−p2

λ2

�
− 9 ln

�
2p · q
λ2

�

þ 12 ln

�
−q2

λ2

�
þ 6Li2

�
1 −

2p · q
p2

�

þ 6Li2

�
1 −

2p · q
q2

��
;

B1

g2δab
¼ 4½ðnD − nA − 2nC þ 3Þν0 þ ðnC − nDÞξ0 − 2b�;

B2

g2δab
¼ 4½ðnD − nA − 2nC − 3Þν0 þ ðnC − nDÞξ0 þ b�;

B3

g2δab
¼ 2½ð5mD þ 2mA − 4mC þ 2Þν0 þ 2ðmC −mDÞξ0�;

B4

g2δab
¼ 4½ð−2mA −mC − 2Þν0 þ ðmC −mDÞξ0 þ b�;

B5

g2δab
¼ 4b

ðp · qÞ ¼ −
B6

g2δab
: ð38Þ

where Li2 is the dilogarithm function and we made explicit
the routing dependence as defined in (35).
Table II shows apparently the possibility of a “demo-

cratic” display of the anomaly among the three Ward

identities involving the supercurrent just as in the ABBJ
anomaly. The B coefficients involve regularization depen-
dent terms which somewhat explain the controversial
results using different frameworks exposed in Table I.
Under the light of the ABBJ anomaly example discussed
earlier, one can easily verify that STs in (38) are always
accompanied by arbitrary momentum routings and thus
setting STs to zero amounts to implement MRI and
consequently vector gauge invariance, namely

qνΣab
μν ¼ 0;

ðp − qÞμΣab
μν ¼ 0;

γμΣab
μν ¼ 3i

4π2
g2δab=qγν; ð39Þ

showing that the supersymmetry Noether current remains
conserved and the spin-3=2 constraint presents an anomaly.

VI. A DIGRESSION ON THE RESULTS OF
THE LITERATURE

Although the value of the anomaly agrees in the different
frameworks, there is no consensus regarding which Ward
identity is anomalous at one-loop level. In [53], the same
model was discussed, and an evaluation of the anomaly in
the divergence of the supercurrent was presented. Their
strategy was based in imposing both gauge invariance and
the spin constraint which maintains the spin-3=2 character
of the supercurrent. The latter was obtained at the cost of
factoring out the matrix product σαβγμ throughout the
calculation in the amplitudes,

Σab
μν ¼ σαβγμΣab

αβν ¼ δabσαβγμ½A0ðγβgαν − γαgβνÞ=q
þ A1ðgβνpα − gανpβÞ þ A2ðpαγβ − pβγαÞγν
þ A3ðqβγα − qαγβÞγν þ A4ðpαqβ − pβqαÞγν=q
þ A5ðqαγβ − qβγαÞpν=qþ A6ðpβγα − pαγβÞpν=q

þ A7ðpβqα − pαqβÞpν þ A8ðgανqβ − gβνqαÞ�; ð40Þ

TABLE II. Values assumed by B1;…; B4 coefficients in terms of the coefficient B5 (momentum routing and surface term independent)
for an anomaly in each of the Ward identities. We have used the result B5 ¼ −B6.

W. I. Anomaly B1 B2 B3 B4

Gauge ✓

−2B5ðp · qÞ B5ðp · qÞ 0 B5ðp · qÞSusy ✓
Spin-3=2 γμΣab

μν ¼ 3B5ðp · qÞ=qγν
Gauge ✓

− B5

2
ðp · qÞ − B5

2
ðp · qÞ 0 B5ðp · qÞSusy ðp − qÞμΣab

μν ¼ 3
2
B5ðp · qÞ½pν=q − ðp · qÞγν�

Spin-3=2 ✓
Gauge qνΣab

μν ¼ −B5ðp · qÞqμ=qþ B5ðp · qÞ2γμ − 2B5ðp · qÞpμ=q
−B5ðp · qÞ −B5ðp · qÞ B5ðp · qÞ −B5ðp · qÞSusy ✓

Spin-3=2 ✓
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because the identity γμσαβγμ ¼ 0 ensures γμSμ ¼ 0. The
coefficients A0, A1, A2, A3 and A8 that multiply tensors of
first rank, after a shift in linearly divergent integrals in k,
contain surface terms due to the shift in the momentum
integral as well as finite unambiguous terms. On the other
hand A4, A5, A6 and A7 coefficients that multiply third rank
tensors are finite and unambiguous. Thus the imposition of
gauge invariance, qνΣab

αβν ¼ 0, leads to relations among the
Ai’s in such a way that the supercurrent anomaly is
determined only by A4 to A7 coefficients. They applied
the Rosenberg method [75] which assigns values for the
surface terms so that Ward identities are respected, viz.
gauge invariance and spin-3=2 constraint. The latter con-
straint derives from the algebraic identity γμσ

αβγμ ¼ 0.
The problem in maintaining the structure σαβγμ factored

out is that it clashes with the property of performing the
Dirac algebra before integration to avoid spurious sym-
metric integration in the physical dimension. While this
approach seems a matter of choice, it is not immaterial as
discussed in Appendix A. More importantly, an anomaly of
the supercurrent suggests that a similar situation may
develop in the context of supergravity models (as pointed
out in [53] itself) which may pose problems due to
renormalizability issues. In a subsequent work [56], an
anomaly killing mechanism was developed at one-loop
level by including interactions of the Yang-Mills meson and
Majorana spinors with the noninteracting scalar Wess-
Zumino multiplet. Evidently we can map the expansion
(36) into (40). For instance, the coefficients that define the
spin-3=2 constraint in (37) read

B1 ¼ B2 ¼ 8ðA3 − A0 − ðp · qÞA4Þ;
B3 ¼ 4½A1 þ 2A2 − ð2A6 þ A7Þðp · qÞ�;
B4 ¼ −8ðA1 þ 2A2Þ;
B6 ¼ 8ð2A6 þ A7Þ; ð41Þ

which automatically yields zero for the spin-3=2 constraint
in (37).
In [57] within a fully four-dimensional approach method

called preregularization, STs are explicitly evaluated using
symmetric integration (Appendix B) but arbitrary momen-
tum routings are chosen in such a way that gauge invariance
or the supersymmetry Noether current is conserved at one-
loop level while the spin-3=2 constraint is maintained as
their Lorentz decomposition is similar to [53].
Analytic regularization [76] also preserves gauge invari-

ance and the spin-3=2 constraint. On-shell conditions are
applied before Feynman parameter integrations. Fermionic
and bosonic propagators are modified in this method
introducing a regularization parameter κ,

1

=k − =p
→

=kþ =p
½ðkþ pÞ2�1þκ

1

ðk − qÞ2 →
1

½ðk − qÞ2�1þκ : ð42Þ

In order to preserve gauge invariance in analytic regulari-
zation, in (32) either the bosonic (Σab

μνA and Σab
μνB) or the

fermionic (Σab
μνC and Σab

μνD) propagators should be modified.
Using Point-Splitting regularization, in [77] was shown an
anomaly for spinor current which, however, could be
removed by a redefinition of the gauge invariant conserved
current keeping the spin-3=2 constraint satisfied.
Hagiwara and collaborators [78], on the other hand,

employed dimensional, Pauli-Villars and point-splitting
regularizations to show that there exists an anomaly in
the superconformal current but not in the divergence of the
supercurrent. They emphasize the importance of picking up
a definite regularization in studying the anomaly of the
supercurrent. Otherwise, due to its specific structure, all
the contributions to the one-loop correction would have the
form σαβγμΣαβν which naturally grants privilege to the spin-
3=2 constraint to be satisfied and consequently ∂μSμ ≠ 0.
In Ref. [82], it is argued that it is not a matter of simply
redefining loop momenta that would shift the anomaly from
the supersymmetric current into the spin-3=2 constraint as
this would have important implications on the multiplet
structure of currents and anomalies.
In [83], the supercurrent and superconformal anomalies

were evaluated for off-shell N ¼ 1 supersymmetric Yang-
Mills theory within the Fujikawa method and the heat
kernel regularization scheme. They obtain no one-loop
supercurrent anomaly and a superconformal anomaly that
agrees with our calculation.
Finally, dimensional methods were discussed in [75,78–

80]. In [80], conventional dimensional regularization was
employed, setting the anomaly at the superconformal
sector, a result that was later confirmed by [78]. In [79],
dimensional reduction was used, with the same outcome.
As discussed in this reference, for the calculation at hand at
least at one-loop order, the two schemes are equivalent.
The reason is that ϵ-scalars, which need to be introduced in
the dimensional reduction scheme to avoid a mismatch
between fermionic and bosonic degrees of freedom, do not
contribute to the Ward identities studied here. In [75],
instead of embedding the theory in a quasi-four-dimensional
space (which will enforce the introduction of ϵ-scalars, for
instance), the supercurrent was defined in strictly four
dimensions. Therefore, the identity γμσαβγμ ¼ 0 is satisfied
by construction which leads to γμSμ ¼ 0. Since gauge
symmetry still holds in this scheme, the only available
Ward identity to be violated will be ∂μSμ, which is the result
found by the authors.
These results are all summarized in Table I.

VII. DISCUSSION AND CONCLUSIONS

It is well known that in dimensional specific models
which includes chiral, supersymmetric and topological
field theories, Feynman diagram calculations cannot be
handled in standard dimensional regularization. Despite
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some generalizations in dimensional methods to tackle the
algebra of parity violating objects such as the γ5-matrix
constructed in [19], issues related to the possibility of
spurious anomalies and bundersome Ward identities to be
imposed order by order on the Green’s functions make it
worthwhile seeking for a framework that fully operates in
the physical dimension. Yet IReg adequately addresses the
problem of evaluation of undetermined regularization
dependent surface terms related to momentum routing in
Feynman diagrams to all loop orders, care must be exercised
in the formal treatment of Lorentz tensors and γ5 matrices as
discussed in [60] even in nondimensional methods [25,44].
In the particular instance of the supercurrent anomaly, we
have seen that Clifford algebra does not commute with
integration in the loop momenta. Novel schemes that do not
rely on dimensional continuation in the spacetime dimen-
sion have been proposed and developed. The motivation for
this progress has been to broaden the conceptual basis as
well as to enable efficient, automated analytical and numeri-
cal calculational methods to test beyond the standard model
theories within precision observables.
Relying on a fully four-dimensional approach in which

regularization dependent terms are left to be fixed on
symmetry grounds, we have calculated the supercurrent
anomaly of the zero mass Yang-Mills multiplet interacting
with a single massless Majorana spin 1=2 field trans-
forming in the adjoint representation of SUð2Þ for sim-
plicity. Momentum routing invariance, an obviously
desired property of Feynman diagram calculations, is
known to be connected to gauge invariance as discussed
in the introduction. We have seen that setting surface terms
to zero automatically implements momentum routing
invariance in the one-loop correction to the supercurrent.
The quadridivergence of the supercurrent as well as gauge
symmetry remains conserved at quantum level, whereas the
superconformal invariance translated by the spin-3=2 con-
straint is broken as seen in Eq. (39).
Unlike the ABBJ anomaly in which the anomaly shifts

between the Ward identities as shown in Eq. (18), the
violation of one of the three Ward identities as shown in
Table II is not affected by a simple choice of STs,
displacing the anomaly from one Ward identity to another.
This suggests that the “democracy” in the perturbative
calculation of the anomaly as seen in ABBJ anomaly [58]
does not occur. For example, for an anomalous supercurrent
conservation,

ðp − qÞμΣab
μν ¼ 3ig2

8π2
δabðpν=q − ðp · qÞγνÞ ð43Þ

and spin-3=2 constraint and gauge invariance satisfied one
must have both ν0¼b=2, ξ0¼5b=6 and 5mDþ6mA−2mC¼
−6, 2nD þ 3nA þ nC ¼ 0. On the other hand, an anomalous
gauge Ward identity,

qνΣab
μν ¼ ig2

4π2
δab½ðp · qÞγμ − 2pμ=q − qμ=q� ð44Þ

and supercurrent and spin-3=2 conservation fulfilled is
obtained only if ν0¼b=2, ξ0¼5b=6 and5mDþ6mA−2mC¼
6, 2nD þ 3nA þ nC ¼ 3.
Our results in IReg agree with those obtained in dimen-

sional regularization and dimensional reduction (in the
case in which the theory is embedded in a quasi-four-
dimensional space as customary). Although, at one-loop
order, there is no difference between these two-dimensional
schemes for the Ward identities here studied, we believe
that IReg would reproduce the results of dimensional
reduction at higher loop (in this case, it is expected that
the dimensional schemes differ by finite terms, due to the
inclusion of ϵ-scalar contributions). This fact has recently
been observed in the case of nonsupersymmetric theories
[45,60]. Finally, it should be noticed that, as reported in [60],
the correlation between IReg and dimensional schemes is
only possible if subtleties involving the Clifford algebra are
dealt with properly. By doing so one ultimately obtains a
consistent framework for Feynman diagram calculations in
the physical dimensions, in the sense that all regularization-
dependent terms that appear are directly connected with
MRI and gauge symmetry as in [25,29].
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APPENDIX A: DISCUSSION ON THE
AMBIGUITIES RELATED TO THE CLIFFORD

ALGEBRA

Consider the following divergent piece of an amplitude
in four dimensions,

γμγν

Z
k

kμkν

ðk2 −m2Þ3 ≡ γμγνI
μν
logðm2Þ: ðA1Þ

Performing the Dirac algebra and using that =k2 ¼ k2 gives

γμγνI
μν
logðm2Þ ¼ Ilogðm2Þ þ

Z
k

m2

ðk2 −m2Þ3 ; ðA2Þ

where the second term on the rhs is finite and regularization
independent. On the other hand, using (3) enables us to
write
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γμγνI
μν
logðm2Þ ¼ γμγν

�
gμν
4

Ilogðm2Þ þ gμν
4

υ0

�

¼ Ilogðm2Þ þ υ0; ðA3Þ

which is the result performing the Dirac algebra after
manipulating the integrand (and eventually performing the
integration). Recall that υ0 is a regularization dependent
surface term. Such an ambiguity is present in any strictly
four-dimensional regularization (as long as one refrains to
append a set of rules to circumvent this problem as done in
the FDR scheme) and a prescription must be adopted in
order to avoid spurious symmetry breaking. As a matter of
fact such an ambiguity is related to symmetric integration
which at one-loop level means to set

Z
k
kμ1kμ2 ::kμ2nfðk2Þ ¼

Z
k

gfμ1μ2 ::gμ2n−1μ2ngk2n

ð2nÞ! fðk2Þ; ðA4Þ

the curly brackets standing for symmetrization on Lorentz
indices, which is well known to be a forbidden operation
for divergent integrals in the physical dimension [81], while
it is allowed within dimensional regularization. In order to
avoid symmetrical integration, one should perform the
Dirac algebra (contractions, traces) before manipulating
the amplitude integrand. Indeed, within dimensional regu-
larization, performing the γ-matrices contraction before
integration,

γμγνI
μν
logðm2Þ

���before
DR

¼ γμγν
gμν
d

Z
d

k

k2

ðk2 −m2Þ3

¼ d
d
b

�
4π

m2

�
ϵ

ð1 − ϵ=2ÞΓðϵÞ; ðA5Þ

whereas using that

Iμνlogðm2Þ
���
DR

¼ b
4

�
4π

m2

�
ϵ

ΓðϵÞgμν; ðA6Þ

gives

γμγνI
μν
logðm2Þ

���after
DR

¼ b
4

�
4π

m2

�
ϵ

ΓðϵÞð4 − 2ϵÞ: ðA7Þ

with b defined as in (8), which is just the same result as
(A5), namely

b
ϵ
− bγE þ b ln

�
4π

m2

�
−
b
2
: ðA8Þ

On the other hand, while Eq. (A2) reproduces the results of
DR displayed in (A8), performing the Dirac algebra after
integration as in (A3) yields, in DR

b
ϵ
− bγE þ b ln

�
4π

m2

�
; ðA9Þ

that differs by a term −b=2 from (A8). Such a term can
spuriously break symmetries in the underlying theory.
Thus, should we use nondimensional methods to tackle
divergent Feynman amplitudes of theories that are
sensitive to dimensional continuation on the spacetime
dimension, care must be exercised with both the Clifford
algebra which does not commute with integration and
symmetric integration [60].

APPENDIX B: DISCUSSION ON THE
AMBIGUITIES RELATED TO ON-SHELL LIMITS

Consider the UV divergent and IR finite integral (con-
sidering that on-shell conditions such as p2 ¼ 0 are not
immediately applied),

Z
k

1

k2ðkþ pÞ2 : ðB1Þ

We evaluate it by introducing an infrared regulator μ in
intermediate steps and taking the limit μ → 0. The regu-
larization independent relation (7) introduces the renorm-
alization scale λ2 ≠ 0 as below

Z
k

1

k2ðkþ pÞ2 ¼ lim
μ→0

Z
k

1

ðk2 − μ2Þ½ðkþ pÞ2 − μ2�

¼ Ilogðλ2Þ − b ln

�
−
p2

λ2

�
þ 2b:

However, applying on-shell conditions from the start yields

lim
μ→0

Z
k

1

ðk2−μ2Þ½ðkþpÞ2−μ2�

¼ lim
μ→0

�Z
k

1

ðk2−μ2Þ2−2pα

Z
k

kα

ðk2−μ2Þ2½ðk2−2k ·p−m2Þ�
�

¼p2↓0
lim
μ→0

�Z
k

1

ðk2−μ2Þ2−4pα

Z
1

0

dzz
Z
k

kαþpαðz−1Þ
½k2−μ2�3

�

¼Ilogðλ2Þ−blim
μ→0

ln

�
μ2

λ2

�
:

Notice that the two results differ not only by logarithmi-
cally infrared divergent terms (setting p2 → 0 in the first
case and μ2 → 0 in the second), but also by a constant 2b.
Therefore, to use the latter, a proper infrared regularization
scheme is needed, since without it spurious cancellations in
the case of the full one-loop supercurrent calculation may
take place.

APPENDIX C: EXPLICIT RESULTS

The coefficients Bi, i ¼ 0;…; 6 in the Lorentz decom-
position of the one-loop correction to the supercurrent (36)
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receive contributions from each of the amplitudes in
Eq. (33) that represent the diagrams of Fig. 3, namely

Bi ¼ BA
i þ BB

i þ BC
i þ BD

i ; i ¼ 0;…; 6: ðC1Þ

Here, we display each contribution separately as well as
some useful results of integrals cast in IReg.

−2BA
0 ¼ BA

1 ¼ BA
2 ¼ −4g2δabnAν0;

BA
3 ¼ −

1

2
BA
4 ¼ 2g2δab

�
Ilogðλ2Þ þ ð2mA þ 1Þν0

− b ln

�
−
p2

λ2

�
þ 2b

�
;

BA
5 ¼ BA

6 ¼ 0: ðC2Þ

BB
0 ¼ −3g2δab

�
Ilogðλ2Þ − b ln

�
−
q2

λ2

�
þ 2b

�
;

BB
1 ¼ BB

2 ¼ BB
3 ¼ BB

4 ¼ BB
5 ¼ BB

6 ¼ 0: ðC3Þ

BC
0 ¼g2δab

�
−Ilogðλ2Þ−ð2nCþ5Þν0þbln

�
2ðp ·qÞ

λ2

�
þ2b

�
;

ðC4Þ

BC
1 ¼ 2g2

9
δab

�
−3Ilogðλ2Þ þ 9ð3 − 4nCÞν0

þ 6ð3nC − 1Þξ0 þ 3b ln

�
2ðp · qÞ

λ2

�
− 20b

�
; ðC5Þ

BC
2 ¼ 2g2

9
δab

�
−3Ilogðλ2Þ − 9ð1þ 4nCÞν0

þ 6ð3nC − 1Þξ0 þ 3b ln

�
2ðp · qÞ

λ2

�
− 2b

�
; ðC6Þ

BC
3 ¼ 2g2

9
δab

�
−3Ilogðλ2Þ þ 9ð1 − 4mCÞν0

þ 6ð3mC − 1Þξ0 þ 3b ln
�
2ðp · qÞ

λ2

�
− 2b

�
; ðC7Þ

BC
4 ¼ 4g2

9
δab

�
3Ilogðλ2Þ − 9mCν0

þ 3ð3mC − 1Þξ0 − 3b ln

�
2ðp · qÞ

λ2

�
þ 8b

�
; ðC8Þ

BC
5 ¼ −2BC

6 ¼ −
8g2δab

3

b
ðp · qÞ : ðC9Þ

BD
0 ¼ g2δab

�
−2Ilogðλ2Þ þ 2ðnD − 4Þν0

þ 2b −
2bπ2

3
þ 4b ln

�
−
p2

λ2

�
− 7b ln

�
2ðp · qÞ

λ2

�

þ 5b ln

�
−
q2

λ2

�
þ 4bLi2

�
1 −

2ðp · qÞ
p2

�

þ 4bLi2

�
1 −

2ðp · qÞ
q2

��
; ðC10Þ

BD
1 ¼ 2g2

9
δab

�
3Ilogðλ2Þ þ 9ð3þ 2nDÞν0

þ 6ð1 − 3nDÞξ0 − 3b ln

�
2ðp · qÞ

λ2

�
− 16b

�
; ðC11Þ

BD
2 ¼ 2g2

9
δab

�
3Ilogðλ2Þ þ 9ð−5þ 2nDÞν0

þ 6ð1 − 3nDÞξ0 − 3b ln

�
2ðp · qÞ

λ2

�
þ 20b

�
; ðC12Þ

BD
3 ¼ 2g2

9
δab

�
−6Ilogðλ2Þ þ 45mDν0

þ 6ð1 − 3mDÞξ0 − 16bþ 9b ln

�
−
p2

λ2

�

− 3b ln

�
2ðp · qÞ

λ2

��
; ðC13Þ

BD
4 ¼ 4ig2

9
δab

�
6Ilogðλ2Þ − 9ν0 þ 3ð1 − 3mDÞξ0 þ 19b

− 9b ln

�
−
p2

λ2

�
þ 3b ln

�
2ðp · qÞ

λ2

��
; ðC14Þ

−2BD
5 ¼ BD

6 ¼ −
8g2δab

3

b
ðp · qÞ : ðC15Þ

The following integrals are useful (the on-shell limits
(p2 → 0; q2 → 0) have already been judiciously taken):

Z
k

1

k2ðkþ pÞ2 ¼ Ilogðλ2Þ þ 2bþ b ln

�
−
λ2

p2

�
; ðC16Þ

Z
k

kα

k2ðkþpÞ2¼
pα

2

�
−Ilogðλ2Þþν0−2b−b ln

�
−
λ2

p2

��
;

ðC17Þ
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Z
k

1

k2ðk − pÞ2ðk − qÞ2

¼ b
2p · q

�
−4ln22 − 4 ln 2 ln

�
−
p · q
q2

�

− ln2
�
−
p · q
q2

�
þ π2

3

�
; ðC18Þ

Z
k

kα

k2ðk−pÞ2ðk−qÞ2

¼ b
2p ·q

�
−pα ln

�
−

p2

2p ·q

�
þqα ln

�
−

q2

2p ·q

��
; ðC19Þ

Z
k

k2

k2ðk − pÞ2ðk − qÞ2 ¼ Ilogðλ2Þ þ 2b − b ln

�
2p · q
λ2

�
;

ðC20Þ
Z
k

kαkβ

k2ðk − pÞ2ðk − qÞ2

¼ gαβ

4

�
Ilogðλ2Þ − ν0 þ b

�
3 − ln

�
2p · q
λ2

���

þ b
4p · q

�
pαpβ ln

�
−

p2

2p · q

�
− qαqβ ln

�
−

q2

2p · q

�

þ ðpαqβ þ pβqαÞ
�
; ðC21Þ

Z
k

kαkβkη

k2ðk−pÞ2ðk−qÞ2

¼ 1

36
pfηgαβg

�
3Ilogðλ2Þ−3ξ0þb

�
8þ3 ln

�
λ2

2p ·q

���

þ 1

36
qfηgαβg

�
3Ilogðλ2Þ−3ξ0þb

�
8þ3 ln

�
λ2

2p ·q

���

−
b

12p ·q
ðpfαpβqηg þpfαqβqηgÞ

þbpαpβpη

6p ·q
ln

�
−

p2

2p ·q

�
þbqαqβqη

6p ·q
ln

�
−

q2

2p ·q

�
;

ðC22Þ
Z
k

k2kα

k2ðk − pÞ2ðk − qÞ2

¼ ðpþ qÞα
2

�
Ilogðλ2Þ − ν0 þ b

�
2 − ln

�
2p · q
λ2

���
;

ðC23Þ

where

pfηgαβg ¼ pηgαβ þ pβgαη þ pαgβη

pfαpβqηg ¼ pβpηqα þ pαpηqβ þ pαpβqη:

APPENDIX D: CALCULATION OF THE FINITE
PART OF THE AVV TRIANGLE

We perform the computation of the finite part of the
triangle diagram, T̃μνα. Since it does not depend on the
routing, we choose k1 ¼ 0, k2 ¼ q e k3 ¼ −p to get:

Tμνα ¼ −i
Z
k
Tr

�
γμ

i
=k −m

γν
i

=kþ =q −m
γαγ5

i
=k − =p −m

�

þ ðμ ↔ ν; p ↔ qÞ
¼ −8iυ0ϵμναβðq − pÞβ þ T̃μνα; ðD1Þ

in which

T̃μνα¼4ibfϵαμνλqλðp2ξ01ðp;qÞ−q2ξ10ðp;qÞÞ
þϵαμνλqλð1þ2m2ξ00ðp;qÞÞ4ϵανλτpλqτ½ðξ01ðp;qÞ
−ξ02ðp;qÞÞpμþξ11ðp;qÞqμ�ðμ↔ν;p↔qÞg: ðD2Þ

The functions ξnmðp; qÞ are defined as

ξnmðp; qÞ ¼
Z

1

0

dz
Z

1−z

0

dy
znym

Qðy; zÞ ; ðD3Þ

with

Qðy;zÞ¼ ½p2yð1−yÞþq2zð1−zÞ−2ðp ·qÞyz−m2� ðD4Þ

obeying the property ξnmðp; qÞ ¼ ξmnðq; pÞ.
Those integrals satisfy the following relations which we

have also used in the derivation of Eq. (D2)

q2ξ11ðp;qÞ− ðp ·qÞξ02ðp;qÞ

¼ 1

2

�
−
1

2
Z0ððpþqÞ2;m2Þþ1

2
Z0ðp2;m2Þþq2ξ01ðp;qÞ

�
;

ðD5Þ

p2ξ11ðp;qÞ− ðp ·qÞξ20ðp;qÞ

¼ 1

2

�
−
1

2
Z0ððpþqÞ2;m2Þþ1

2
Z0ðq2;m2Þþp2ξ10ðp;qÞ

�
;

ðD6Þ

q2ξ10ðp; qÞ − ðp · qÞξ01ðp; qÞ

¼ 1

2

�
−Z0ððpþ qÞ2; m2Þ þ Z0ðp2; m2Þ þ q2ξ00ðp; qÞ

�
;

ðD7Þ

p2ξ01ðp; qÞ − ðp · qÞξ10ðp; qÞ

¼ 1

2

�
−Z0ððpþ qÞ2; m2Þ þ Z0ðq2; m2Þ þ p2ξ00ðp; qÞ

�
;

ðD8Þ
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q2ξ20ðp;qÞ−ðp ·qÞξ11ðp;qÞ

¼1

2

�
−
�
1

2
þm2ξ00ðp;qÞ

�
þ1

2
p2ξ01ðp;qÞþ

3

2
q2ξ10ðp;qÞ

�
;

ðD9Þ

p2ξ02ðp;qÞ−ðp ·qÞξ11ðp;qÞ

¼1

2

�
−
�
1

2
þm2ξ00ðp;qÞ

�
þ1

2
q2ξ10ðp;qÞþ

3

2
p2ξ01ðp;qÞ

�
;

ðD10Þ

where Zkðp2; m2Þ is defined as

Zkðp2; m2Þ ¼
Z

1

0

dzzk ln
m2 − p2zð1 − zÞ

m2
: ðD11Þ

The derivation of the relations(D5)–(D10) are easily
performed by integration by parts. A complete review on
the evaluation of one-loop n-point functions in a four-
dimensional setup can be found in [84].
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