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We introduce an iterative method to univocally determine the adiabatic expansion of the modes of Dirac
fields in spatially homogeneous external backgrounds. We overcome the ambiguities found in previous
studies and use this new procedure to improve the adiabatic regularization/renormalization scheme. We
provide details on the application of the method for Dirac fields living in a four-dimensional Friedmann-
Lemaître-Robertson-Walker spacetime with a Yukawa coupling to an external scalar field. We check the
consistency of our proposal by working out the conformal anomaly. We also analyze a two-dimensional
Dirac field in Minkowski space coupled to a homogeneous electric field and reproduce the known results
on the axial anomaly. The adiabatic expansion of the modes given here can be used to properly characterize
the allowed physical states of the Dirac fields in the above external backgrounds.
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I. INTRODUCTION

The renormalization of expectation values of the stress-
energy tensor—or any other relevant operator—of a quan-
tized field in a curved spacetime is more involved than in
Minkowski because the curvature yields new types of
divergences [1–3] (see also the recent review [4]). One
of the earliest methods developed to deal with this issue is
the so-called adiabatic regularization [5]. It was specially
designed to study the ultraviolet (UV) divergences of the
stress-energy tensor of a quantized scalar field during the
expansion of a homogeneous universe [6,7]. The renorm-
alization subtractions in the adiabatic scheme are integrals
in the three-dimensional momentum space associated
with the homogeneous hypersurfaces of constant cosmic
time t. These subtractions define a regularization procedure
equivalent to the DeWitt-Schwinger renormalization
scheme [8–10]. One advantage of the adiabatic subtractions
is that there are efficient numerical techniques to implement
them [11].
The adiabatic regularization and renormalization method

has been generalized to deal with quantized scalar fields
coupled to other types of homogeneous external fields,
such as electromagnetism [12] or classical scalars [13].
However, a systematic extension of this procedure to deal

with a quantized spin-½ field has proven to be elusive. A
first substantial step in this direction was taken in a set of
recent works [14–16]. In those papers several important
physical examples were considered. In particular, in order
to understand the reheating process after inflation, Ref. [17]
analyzes the Yukawa coupling of a quantized Dirac field to
an external scalar. Also, in Ref. [18] the coupling to an
external electromagnetic field—relevant to the analysis of
pair creation in strong electric fields—has been considered.
The adiabatic expansion of the fermionic modes proposed
in these works seemed to require a generalization of the
conventional WKB ansatz used in the expansion of the
scalar field modes. Although one such generalization has
been proposed in those works and shown to determine
appropriate subtraction terms for the renormalization of
local expectation values, it was not capable of univocally
fixing the proper adiabatic expansion of the field modes.
The main goal of the present work is to solve this problem.
The method proposed here, not related with the WKB
approximation, is based on an iterative procedure involving
unitary transformations. As we will see, it is robust and
self-consistent and can deal with many types of external
fields (gravitational, scalar, or electromagnetic). We have
systematically scrutinized it and shown that its predictions
for the (renormalization) subtraction terms match exactly
those of the approach discussed in Refs. [14,15,17,18].
In particular we have computed the conformal and axial
anomalies emerging for massless fermions and found
an exact agreement with the results obtained by other
methods.
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The plan of the paper is the following. In Sec. II we
provide a general and conceptual overview of the original
adiabatic method for scalar fields. Section III is devoted to a
brief introduction of the treatment of the spin-½ fields.
Next, in Sec. IV we present the fundamentals of the new
method that we propose to uniquely determine the adiabatic
expansion of fermionic modes. In Sec. V we apply the
method for a Dirac field in a four-dimensional Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetime with a
Yukawa coupling to an external scalar field. We evaluate
the renormalization subtractions required to compute the
conformal anomaly. We also consider two-dimensional
fermions coupled to a homogeneous electric field.
Finally, we conclude in Sec. VI with some comments.

II. ADIABATIC EXPANSION OF SCALAR
MODES AND ADIABATIC SUBTRACTIONS

The creation of particles by time-dependent gravitational
fields is a direct consequence of quantum field theory in a
curved spacetime [5,19]. Particle and antiparticle pairs
are spontaneously produced in a way consistent with the
local conservation law of the stress-energy tensor
∇μhTμνi ¼ 0. A prototype scenario is an isotropic expand-
ing universe governed by the FLRW metric ds2 ¼ dt2 −
a2ðtÞðdx2 þ dy2 þ dz2Þ with flat and noncompact slices of
constant t. The time dependence of the expansion factor
aðtÞ is key to the particle creation process, since the
creation operators at early times become a superposition
of creation and annihilation operators at late times. In this
scenario the isometries of the spacetime background are not
enough to uniquely select a global vacuum state. We can at
most determine a set of states, generically referred to as
adiabatic vacua, that play the role of the usual Minkowski
vacuum. In such circumstances the early and late time
vacua need not be equivalent, giving rise to particle
production [1–3,5,19]. Similar arguments explain particle
creation by black holes [20–22].
To review the main ideas let us consider a scalar field ϕ

on a FLRW background satisfying the field equation

ð□þm2 þ ξRÞϕ ¼ 0 ð2:1Þ

and expand it in any complete orthonormal set of elemen-
tary solutions

ϕðt; x⃗Þ ¼
Z

d3kðak⃗fk⃗ðt; x⃗Þ þ a†
k⃗
f�
k⃗
ðt; x⃗ÞÞ: ð2:2Þ

Moreover, one can also write

fk⃗ðt; x⃗Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3a3ðtÞ
p hkðtÞeik⃗·x⃗; ð2:3Þ

where hkðtÞ obeys the equation

ḧk þ ðω2
k þ σÞhk ¼ 0: ð2:4Þ

Here ω2
k ¼ k2=a2 þ m2 and σ ¼ ð6ξ − 3=4Þ _a2=a2þ

ð6ξ − 3=2Þ̈a=a. The hk are constrained to satisfy the
normalization condition

hk _h
�
k − h�k _hk ¼ 2i: ð2:5Þ

It is physically reasonable to demand that the allowed
solutions (defining the set of adiabatic vacua) behave as

hkðtÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffi
ωkðtÞ

p e−i
R

t
ωkðt0Þdt0 ; ð2:6Þ

for large k or, equivalently, for slow varying frequencies. To
find the higher-order terms in the proposed asymptotic
adiabatic series one has to enforce the normalization
condition (2.5). This can be achieved by introducing the
WKB-type ansatz

hkðtÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffi
WkðtÞ

p e−i
R

t Wkðt0Þdt0 : ð2:7Þ

Now, plugging this ansatz into the second-order wave
equation (2.4) the zero-order condition (2.6) determines
univocally the higher-order terms in the adiabatic expan-
sion. One finds

WkðtÞ ∼ ωk þ ωð2Þ
k þ � � � ; ð2:8Þ

where

ωð2Þ
k ¼ 1

2
ω−1=2
k

d2

dt2
ω−1=2
k þ 1

2
ω−1
k σ;

and all the terms of odd adiabatic order are zero.
At any given order an adiabatic vacuum can be asso-

ciated with each hkðtÞ having the asymptotic expansion
(2.7); however, in the absence of any extra condition, there
is no way to choose a preferred one. An exception to this
happens for ξ ¼ 1=6 and m ¼ 0 because we can take the
conformal vacuum, defined as the zero-order term in the
adiabatic expansion, which is itself an exact solution.
Something similar happens in the de Sitter spacetime
where a remarkable example is provided by the so-called
Bunch-Davies adiabatic vacuum [23]. This can be charac-
terized as the unique adiabatic vacuum compatible with the
ten-dimensional isometry group of de Sitter metric. For
more general cosmological scenarios see [24,25].
A fundamental advantage of the above adiabatic expan-

sion is that it can be used to identify the UV divergences
that plague the expectation values quadratic in fields. The
most important observable is the stress-energy tensor
hTμνðt; x⃗Þi. Another relevant physical quantity is the
self-correlation function hϕ2ðt; x⃗Þi, which can be used to
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illustrate the basic subtraction procedure [1]. Assuming that
the field can be written as (2.2) one has

hϕ2ðt; x⃗Þi ¼ 1

4π2a3ðtÞ
Z

∞

0

dkk2jhkðtÞj2: ð2:9Þ

If the vacuum is also assumed to be an adiabatic state, one
can use the expansion (2.7) with (2.8) to write a formal
asymptotic expansion

hϕ2i∼ 1

4π2a3

Z
∞

0

dkk2
�

1

ωk
þ 1

Wð2Þ
k

þ 1

Wð4Þ
k

þ�� �
�
; ð2:10Þ

where

W−1
k ¼ ω−1

k þ ðW−1
k Þð2Þ þ ðW−1

k Þð4Þ þ � � � ð2:11Þ

is the corresponding adiabatic expansion of W−1
k according

to (2.8). The expansion (2.10) tells us what the UV
divergences in the k-integral for the expectation value
(2.9) are. These divergences are independent of the
(adiabatic) vacuum state. In this case it is easy to see that
the divergences appear in the zeroth- and second-order
terms ðW−1

k Þð0Þ ≔ ω−1
k and ðW−1

k Þð2Þ. The terms of higher
adiabatic order (4 and beyond) are all finite; hence, no
additional subtractions are necessary.
Once the UV divergences have been identified they can

be removed by using standard renormalization methods
(involving a covariant regularization scheme) and intro-
ducing appropriate covariant counterterms into the original
Lagrangian. It is possible to bypass this more involved
procedure by directly subtracting the relevant leading terms
in the asymptotic expansion (2.10). Moreover, to guarantee
the covariance of the overall procedure one should subtract
the full terms ðW−1

k ÞðnÞ at the required adiabatic orders. This
way one can find expressions for renormalized quantities
that could differ, at most, by standard finite, covariant
terms, when compared with any other manifestly covariant
renormalization scheme. Only second adiabatic order sub-
traction terms for hϕ2i and four adiabatic order for hTμνi are
required in the minimal subtraction scheme. The renor-
malized expression for hϕ2iren is then defined by the
momentum integral

hϕ2iren ≔
1

4π2a3

Z
∞

0

dkk2ðjhkj2−ω−1
k − ðW−1

k Þð2ÞÞ ð2:12Þ

for any expansion rate aðtÞ. During the expansion of the
universe, the quantities hϕ2iren and hTμνiren acquire nonzero
values originating in particle creation and vacuum polari-
zation effects. We note that a natural source of finite
ambiguities appears in defining the frontier between
the zeroth adiabatic order and the higher adiabatic order.
The zero adiabatic subtraction term can be defined at the
arbitrary scale μ instead of the natural mass scale μ ¼ m.

This way one rewrites the basic equation (2.4) as
ḧkþðk2=a2þμ2þ σ̃Þhk ¼ 0, where now σ̃¼ðm2−μ2þσÞ
is considered a quantity of second adiabatic order. The new
value for hϕ2irenðμÞ differs from hϕ2irenðμ ¼ mÞ by

hϕ2irenðmÞ − hϕ2irenðμÞ

¼ 1

16π2

�
m2 − μ2 þm2 log

m2

μ2
−
�
ξ −

1

6

�
R
3
log

m2

μ2

�
:

ð2:13Þ

Note that this agrees with the results in Refs. [4,21,26]. All
renormalization methods give equal vacuum expectation
values in arbitrary (globally hyperbolic) curved spacetimes
up to finite, covariant ambiguities of the form found above.
We want to remark that the above adiabatic subtraction

procedure satisfies all the conditions necessary to have a
consistent renormalization procedure in a curved spacetime
(Wald axioms) [4,21,26]:
(1) The subtractions are state-independent.
(2) The subtractions are local. This is so because the

relevant subtraction terms ðW−1
k ÞðnÞ do not involve

time integrals and depend locally on the expansion
rate aðtÞ. The time integral in the phase term of (2.7)
does not play any role in the asymptotic expansion
of physical expectation values such as (2.10).

(3) Covariance is preserved, in particular∇μhTμνiren¼0.
This is so because the concept of “adiabaticity” is
consistent with general covariance. In particular one

can check that ∇μTðnÞ
μν ¼ 0, at any adiabatic order n.

In addition, in Minkowski space the adiabatic subtractions
are equivalent to the conventional normal ordering pre-
scription for μ ¼ m and, hence, hTμνiren ¼ 0 ¼ hϕ2iren.
Throughout this work we maintain the conventional
assumption μ ¼ m in all the computations.
One can also be concerned about the possibility of

oversubtraction. For instance, if one (incorrectly) subtracts
terms up to and including the sixth adiabatic order for the
renormalization of the stress-energy tensor, one finds
spurious covariant terms of the form m−2tμν, where tμν is
a geometric conserved tensor of mass dimension six made
out of local curvature tensors and covariant derivatives.
These terms are not physically allowed since they are not
continuous in themassless limit. This reinforces the choice of
the minimal subtraction scheme mentioned above.
A consequence of the subtractions needed to obtain well-

defined physical quantities is that field relations that are
valid in the classical theory cannot be fully respected at the
quantum level. For instance, for ξ ¼ 1=6 and m ¼ 0, the
scalar field obeys the conformally invariant field equation�

□þ 1

6
R

�
ϕ ¼ 0: ð2:14Þ

However, when evaluating the expectation value
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�
ϕ

�
□þ 1

6
R

�
ϕ

�
ren
; ð2:15Þ

one gets a surprising result: instead of zero, as naively
expected from the classical theory, one finds

�
ϕ

�
□þ1

6
R

�
ϕ

�
ren

¼ −1
2880π2

�
□R−

�
RμνRμν−

1

3
R2

��
;

ð2:16Þ

which in fact turns out to be the negative of the trace
anomaly of the massless conformal field in a FLRW
spacetime. We note in passing that in this situation there
is no particle production and the bulk of the result can only
be attributed to vacuum polarization effects.
Finally, a by-product of the adiabatic expansion is the

fact that one can naturally demand that any physical
vacuum has to be UV regular [25] in the sense that the
large k behavior of modes hkðtÞ defining the state must
approach the one found in Minkowski space at the
appropriate rate. This condition is closely related to the
Hadamard condition in generic backgrounds [27–29]. For
scalar fields, and in order to guarantee that the renormalized
value of hTμνi is finite, the large k behavior of the modes
must be fixed as follows:

jhkj ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωk þ ωð2Þ
k þ ωð4Þ

k

q þOðk−11=2Þ

∼
1

ðk=aÞ1=2 −
Cða;m; ξÞ
4ðk=aÞ5=2 þ Dða;m; ξÞ

32ðk=aÞ9=2 þOðk−11=2Þ

with

Cða;m; ξÞ ≔ ξ0Rþm2;

Dða;m; ξÞ ≔ 4m2
_a2

a2
þ 5m4 þ 10m2R − 4ξ0R

_a2

a2

þ 24ξ0
⃛a
a
_a
a
þ 5ξ02R2 þ 2ξ0□R

þ 10ξ0m2Rþ 8

3
ξ0R2 − 6ξ0RμνRμν;

and ξ0 ≔ ξ − 1
6
and, similarly, for j _hkðtÞj. One denotes such

vacua as fourth-order adiabatic states. One can check, for
instance, that the Bunch-Davies vacuum is indeed of
adiabatic order n ¼ ∞.

III. QUANTIZED DIRAC FIELDS COUPLED
TO HOMOGENEOUS EXTERNAL FIELDS

A. Dirac fields in an homogeneous expanding universe

The covariant Dirac equation in curved spacetime is
given by [1,3]

iγμ∇μψ −mψ ¼ 0; ð3:1Þ

where γμðxÞ are the spacetime-dependent Dirac matrices
satisfying the condition fγμ; γνg ¼ 2gμν and ∇μ is the
covariant derivative associated with the spin connection.
In a spatially flat FLRW universe, the matrices γμðtÞ are
related to the constant Dirac matrices in Minkowski
spacetime γα, obeying fγα; γβg ¼ 2ηαβ, by the simple
relations

γ0ðtÞ ¼ γ0; γiðtÞ ¼ γi=aðtÞ: ð3:2Þ

The Dirac equation takes then the form

�
iγ0∂0 þ

3i
2

_a
a
γ0 þ i

a
γ⃗ · ∇⃗ −m

�
ψ ¼ 0: ð3:3Þ

Introducing the expansion

ψðt; x⃗Þ ¼
Z

d3kψ k⃗ðtÞeik⃗·x⃗

and using the Dirac representation for the γα matrices

γ0 ¼
�
I 0

0 −I

�
; γ⃗ ¼

�
0 σ⃗

−σ⃗ 0

�
; ð3:4Þ

where σ⃗ are the usual Pauli matrices, we can write [14,15]

ψ k⃗ðtÞ ¼

0
B@

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3a3ðtÞ

p hIkðtÞξλðk⃗Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3a3ðtÞ
p hIIk ðtÞ σ⃗·k⃗k ξλðk⃗Þ

1
CA; ð3:5Þ

where k ≔ jk⃗j and ξλðk⃗Þ is a constant normalized two-

component spinor ξ†λξλ ¼ 1 such that σ⃗·k⃗
2k ξλ ¼ λξλ:λ ¼

�1=2 represents the eigenvalue for the helicity, or spin
component along the k⃗ direction. hIk and hIIk are scalar
functions, which as a consequence of (3.3) obey the
coupled first-order equations

i∂thIk ¼ mhIk þ
k
a
hIIk ; ð3:6Þ

i∂thIIk ¼ k
a
hIk −mhIIk : ð3:7Þ

The normalization condition for the four-spinor is

jhIkðtÞj2 þ jhIIk ðtÞj2 ¼ 1: ð3:8Þ

This condition enforces the standard anticommutator rela-
tions for creation and annihilation operators defined by the
expansion
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ψðt; x⃗Þ ¼
Z

d3k
X

λ¼�1=2

ðBk⃗;λuk⃗;λðt; x⃗Þ þD†
k⃗;λ
vk⃗;λðt; x⃗ÞÞ;

ð3:9Þ

where

uk⃗;λðt; x⃗Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3a3ðtÞ
p eik⃗·x⃗

 
hIkðtÞξλ

hIIk ðtÞ σ⃗·k⃗k ξλ

!
: ð3:10Þ

These modes are normalized with respect to the Dirac
scalar product

ðuk⃗;λ; uk⃗0;λ0 Þ ¼
Z

d3xa3u†k⃗;dλuk⃗0;λ0 ¼ δðk⃗ − k⃗0Þδλλ0 : ð3:11Þ

The orthogonal modes vk⃗;λðt; x⃗Þ are obtained by charge
conjugation

vk⃗;λ ¼ Cuk⃗;λ ¼ −iγ2u�
k⃗;λ
:

We then have

fBk⃗;λ; B
†
k⃗0;λ0

g ¼ δ3ðk⃗ − k⃗0Þδλλ0 ; ð3:12Þ

fBk⃗;λ; Bk⃗0;λ0 g ¼ 0 ¼ fB†
k⃗;λ
; B†

k⃗0;λ0
g; ð3:13Þ

and similarly for the Dk⃗;λ, D
†
k⃗;λ

operators.

We can add to the Dirac equation (3.1) a Yukawa
coupling with an external scalar field Φ:

ðiγμ∇μ −m − gYΦÞψ ¼ 0: ð3:14Þ

If the classical field Φ is also assumed to be homogeneous
Φ ¼ ΦðtÞ, as the classical background geometry, the
modes for the quantized Dirac field can be expressed as
above. However, the basic equations (3.6) are now replaced
by [17]

i∂thIk ¼ ðmþ sðtÞÞhIk þ
k

aðtÞ h
II
k ; ð3:15Þ

i∂thIIk ¼ k
aðtÞ h

I
k − ðmþ sðtÞÞhIIk ; ð3:16Þ

where sðtÞ ≔ gYΦðtÞ.

B. Two-dimensional Dirac fields in
an homogeneous electric field

The Dirac equation in the presence of an external
homogeneous electric field and a background metric of
the form ds2 ¼ dt2 − a2ðtÞdx2 is

ðiγμ∇μ −mÞψ ¼ 0;

where now

∇μ ≔ ∂μ − Γμ − iqAμ;

Γμ is the spin connection and Aμ is the vector potential. We
assume Aμ ¼ ð0;−AðtÞÞ. It is also useful to use here the
Weyl representation for the Dirac matrices in flat
Minkowski space:

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 1

−1 0

�
: ð3:17Þ

Expanding the field in momentum modes

ψðt; xÞ ¼
Z þ∞

−∞
dkψkðtÞeikx; ð3:18Þ

the Dirac equation takes the form [18]�
∂0 þ

_a
2a

þ i
a
ðkþ qAÞγ0γ1 þ imγ0

�
ψk ¼ 0: ð3:19Þ

We can build two independent spinor solutions

ukðt; xÞ ¼
eikxffiffiffiffiffiffiffiffiffiffiffiffiffi
2πaðtÞp �

hIkðtÞ
−hIIk ðtÞ

�
; ð3:20Þ

vkðt; xÞ ¼
e−ikxffiffiffiffiffiffiffiffiffiffiffiffiffi
2πaðtÞp �

hII�−k ðtÞ
hI�−kðtÞ

�
; ð3:21Þ

where hIkðtÞ and hIIk ðtÞ must satisfy the equations

i∂thIk ¼ −
1

a
ðkþ qAÞhIk −mhIIk ; ð3:22Þ

i∂thIIk ¼ −mhIk þ
1

a
ðkþ qAÞhIIk ð3:23Þ

and also obey the normalization condition (3.8).

IV. AN ITERATIVE APPROACH TO THE
ADIABATIC EXPANSION FOR DIRAC FIELDS

As mentioned in the previous section the dynamical
content of the modes of the Dirac fields can be encoded as a
pair of complex functions of time hIkðtÞ and hIIk ðtÞ satisfy-
ing, for all values of t, the normalization condition (3.8).
For all the models considered in the previous section these
functions satisfy a system of ordinary differential equation
of the form

i∂t

�
hI

hII

�
¼
�
αðtÞ βðtÞ
βðtÞ −αðtÞ

��
hI

hII

�
: ð4:1Þ
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This is, in fact, a Schrödinger equation

i∂th ¼ HðtÞh ð4:2Þ

defined by a matrix, time-dependent Hamiltonian

HðtÞ ¼
�
αðtÞ βðtÞ
βðtÞ −αðtÞ

�
; ð4:3Þ

acting on a two-component wave function h. As a conse-
quence of this, the normalization condition (3.8) is auto-
matically satisfied for all times for initial data satisfying
jhIðt0Þj2 þ jhIIðt0Þj2 ¼ 1.
For generic choices of the functions αðtÞ and βðtÞ this

Schrödinger equation cannot be solved in closed form. In
the following we develop an iterative procedure to trans-
form (4.1) in such a way that we get consistent approx-
imations for its solutions at the desired adiabatic order. The
three basic features of the proposed procedure are
(1) At each step we introduce a change of variables

defined by a unitary transformation. This guarantees
that the normalization condition (3.8) is automati-
cally preserved.

(2) At each step it will be evident how to truncate the
resulting equations to reach the desired order in the
adiabatic approximation.

(3) The truncated equations involve a diagonal time-
dependent Hamiltonian and, hence, can be trivially
solved.

The starting point is to diagonalize the matrix
Hamiltonian

HðtÞ ¼ U0ðtÞD0ðtÞU†
0ðtÞ

with

D0ðtÞ ¼
�
ω0ðtÞ 0

0 −ω0ðtÞ

�
; ð4:4Þ

U0ðtÞ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðtÞþαðtÞ
2ω0ðtÞ

q
σβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðtÞ−αðtÞ
2ω0ðtÞ

q
σβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðtÞ−αðtÞ
2ω0ðtÞ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðtÞþαðtÞ
2ω0ðtÞ

q
1
CA; ð4:5Þ

where ω0ðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðtÞ þ β2ðtÞ

p
and σβ denotes the sign of

βðtÞ [which, in all the cases of interest, will be well defined
as βðtÞ will never vanish].
We introduce now another set of variables

h0ðtÞ ≔ U†
0ðtÞhðtÞ:

They satisfy the new Schrödinger equation

i∂th0 ¼ H0ðtÞh0; ð4:6Þ

where

H0ðtÞ ≔ D0ðtÞ − iU†
0ðtÞ∂tU0ðtÞ

has the explicit form

H0 ¼

0
B@ ω0 iσβ

ω0 _α−α _ω0

2ω0

ffiffiffiffiffiffiffiffiffiffi
ω2
0
−α2

p

−iσβ
ω0 _α−α _ω0

2ω0

ffiffiffiffiffiffiffiffiffiffi
ω2
0
−α2

p −ω0

1
CA:

Here we have used dots to represent time derivatives and
lightened the notation by not writing the explicit time
dependence.
The key observation at this point is to realize that the

lowest adiabatic order of the off-diagonal terms of H0 is
one unit higher than that of the corresponding ones in H. If
we repeat now the previous procedure (diagonalization of
the Hamiltonian and “unitary change of variables”), this
same behavior will occur at each iteration order. Once the
nondiagonal elements of the Hamiltonian surpass a certain
adiabatic order n we will discard them. By doing this the
resulting Schrödinger equation can then trivially solved
(because the corresponding Hamiltonian is diagonal) and
by undoing the sequence of changes of variables arrive at
an approximate solution to (4.1).
If at a certain iteration order j ≥ 0 we have hj obtained

from the Schrödinger equation associated with the
Hamiltonian Hj, the objects in the jþ 1 step are given by

hjþ1 ¼ U†
jþ1hj; ð4:7Þ

Hjþ1 ¼ Djþ1 − iU†
jþ1∂tUjþ1; ð4:8Þ

with the diagonal matrix Djþ1 and the unitary matrix Ujþ1

obtained by diagonalizing Hj:

Hj ¼ Ujþ1Djþ1U
†
jþ1: ð4:9Þ

Notice that hjþ1 satisfies the Schrödinger equation

i∂thjþ1 ¼ Hjþ1hjþ1:

The explicit expressions for the Hj, Uj and Dj are

Hj ¼

0
BB@

ωj Sj−1
ωj−1 _ωj−ωj _ωj−1

2ωj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
j−ω

2
j−1

p
S�j−1

ωj−1 _ωj−ωj _ωj−1

2ωj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
j−ω

2
j−1

p −ωj

1
CCA;

Uj ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωjþωj−1

2ωj

q
iSj−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωj−ωj−1

2ωj

q
iSj−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωj−ωj−1

2ωj

q
ð−1Þjþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωjþωj−1

2ωj

q
1
CA;

Dj ¼
�
ωj 0

0 −ωj

�
;
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where the positive frequencies ωj satisfy the recurrence

ω2
jþ1 ¼ ω2

j þ
ðωj−1 _ωj − ωj _ωj−1Þ2
ð2ωjÞ2ðω2

j − ω2
j−1Þ

; ð4:10Þ

with initial data

ω2
0 ¼ α2 þ β2; ω2

1 ¼ ω2
0 þ

ðω0 _α − _ω0αÞ2
4ω2

0β
2

:

The Sj coefficients are given by

Sj ¼
	−isj−1; j even

sj−1; j odd
ð4:11Þ

where

sj ¼ sj−1sgnðωj−1 _ωj − _ωj−1ωjÞ; j ≥ 1;

and

s0 ¼ σβsgnðα _ω0 − ω0 _αÞ:

Several comments are in order now.
First it is important to notice that the lowest adiabatic

weight of the nondiagonal terms of the Hamiltonian Hj is
larger than j (although even higher orders may be present).
This fact suggests a terminating criterion to obtain an
approximate solution valid at adiabatic order n: replace the
HamiltonianHn by its diagonal partDn and approximate hn
by h̃n satisfying the Schrödinger equation

i∂th̃n ¼ Dnh̃n:

This way we get

h̃nðtÞ ¼ Ũnðt; t0Þhðt0Þ

≔

 
expð−i R tt0 ωnÞ 0

0 expði R tt0 ωnÞ

!�
1

0

�
;

where our choice of initial data selects positive frequencies.
The final form for the approximate solution hðtjnÞ of

(4.1) can be obtained by undoing the unitary transforma-
tions introduced above:

hðtÞ ∼ hðtjnÞ ≔ U0ðtÞU1ðtÞ…UnðtÞŨnðt; t0Þhðt0Þ: ð4:12Þ

From this last expression it is straightforward to obtain the
adiabatic expansion of h to order n. In the next section we

will apply the procedure that we have just described to the
computation of different types of anomalies for systems
involving quantized Dirac fermions in an expanding uni-
verse. In the first case the Dirac field will be coupled to a
homogeneous background scalar with a Yukawa interaction
term [10] and in the second to an external homogeneous
electric field and background metric of the FLRW type in
1þ 1 dimensions [18].

V. APPLICATIONS

We apply now the method developed in the previous
section to some anomaly computations in two important
physical examples.

A. Dirac fermion coupled to a homogeneous
background scalar field with a Yukawa interaction

in an expanding universe

By comparingEqs. (3.15) and (3.16)with (4.3)we see that

αðtÞ ¼ mþ sðtÞ; ð5:1Þ

βðtÞ ¼ k
aðtÞ ; ð5:2Þ

where sðtÞ describes the homogeneous scalar field coupled to
the Dirac field, aðtÞ is the scale factor, m is the Dirac field
mass and k labels the Fourier modes (we will drop the k
indices that should appear in hI and hII). The adiabatic order
of s is one and the scale factor a has adiabatic order zero.
In order to work out the conformal anomaly (see [17] and

later on), we need to compute hðtj4Þ by using (4.12). It is
important to keep in mind that the relevant part of
Ũ4ðt; t0Þhðt0Þ is just the phase exp ð−i

R
t ω4Þ which drops

out of the computations of the anomaly, which is closely
related to hψ̄ψi. For this reason we will not give the explicit
form of ω4. A similar cancellation of the potential con-
tribution of the nonlocal term

R
t ω4 happens in all compo-

nents of the vacuum expectation values of the renormalized
stress-energy tensor. Only local terms like ω4ðtÞ are
relevant to determine the renormalization subtraction terms
at the instant t, in accordance with the locality requirement
of any renormalization scheme.
The product U0ðtÞU1ðtÞ…U4ðtÞ can be exactly com-

puted in principle; however we only need its adiabatic
expansion to fourth order. After a long but conceptually
direct computation (that can be conveniently performed
with the help of Mathematica™) we get

hI ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþm
2ω

r �
1þ ðω −mÞ

X4
n¼1

ϕðnÞ
�
exp

�
−i
Z

ω4

�
;

where ω2 ¼ m2 þ k2=a2 and
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ϕð1Þ ¼ −
im _a
4aω3

þ s
2ω2

;

ϕð2Þ ¼ −
mä
8aω4

þ 11m3 _a2

32a2ω6
−

m2 _a2

32a2ω5
−

m _a2

8a2ω4
þ 7im2s _a

8aω5
þ ims _a
8aω4

−
is _a
4aω3

−
5ms2

8ω4
−

s2

8ω3
−

i_s
4ω3

;

ϕð3Þ ¼ þ ia
…
m

16aω5
þ 129im5 _a3

128a3ω9
−
3im4 _a3

32a3ω8
−
19im3 _a ä
32a2ω7

−
97im3 _a3

128a3ω7
þ im2 _a3

32a3ω6
þ im _a3

16a3ω5
þ im2 _a ä
32a2ω6

þ im _a ä
4a2ω5

þ 9m2sä
16aω6

þ msä
16aω5

−
sä

8aω4
−
77im3s2 _a
32aω7

−
im2s2 _a
2aω6

þ 11m2 _a _s
16aω6

þ 41ims2 _a
32aω5

−
m _a _s
16aω5

þ is2 _a
8aω4

−
3_a _s
8aω4

−
143m4s _a2

64a2ω8

þ 103m2s _a2

64a2ω6
−

s _a2

8a2ω4
þ 15m2s3

16ω6
þms3

4ω5
þ 7ims_s

8ω5
−

3s3

16ω4
−

̈s
8ω4

þ is_s
8ω4

;

ϕð4Þ ¼ þ a
::::
m

32aω6
−
29_a a

…
m3

64a2ω8
þ _a a

…
m2

64a2ω7
þ 7_a a

…
m

32a2ω6
−

41ä2m3

128a2ω8
−

ä2m2

128a2ω7
þ ä2m
8a2ω6

þ 951_a2äm5

256a3ω10
−
7_a2äm4

64a3ω9
−
767_a2äm3

256a3ω8

þ 3_a2äm2

64a3ω7
þ 11_a2äm

32a3ω6
−

9635_a4m7

2048a4ω12
þ 10859_a4m5

2048a4ω10
−

309_a4m4

2048a4ω9
þ 421_a4m6

2048a4ω11
−
337_a4m3

256a4ω8
þ _a4m2

128a4ω7

þ _a4m
32a4ω6

þ 83s4m
128ω6

−
2451is _a3m6

256a3ω11
þ 75is _a3m5

256a3ω10
þ 2431s2 _a2m5

256a2ω10
þ 2757is _a3m4

256a3ω9
þ 143s2 _a2m4

256a2ω9
þ 385is3 _am4

64aω9

þ 387i _a2 _sm4

128a2ω9
þ 285is _a äm4

64a2ω9
−
51is _a3m3

256a3ω8
−
2483s2 _a2m3

256a2ω8
þ 95is3 _am3

64aω8
−
9i _a2 _sm3

32a2ω8
−
143s _a _sm3

32aω8
þ 3is _a äm3

32a2ω8

−
117s2äm3

64aω8
−
195s4m3

128ω8
−
337is _a3m2

128a3ω7
−
103s2 _a2m2

256a2ω7
−
299is3 _am2

64aω7
−
367i _a2 _sm2

128a2ω7
−
77is2 _sm2

32ω7

−
203is _a äm2

64a2ω7
−
19i_s äm2

32aω7
−
5s2äm2

16aω7
−
19i _a ̈sm2

32aω7
−
11isa

…
m2

32aω7
−
59s4m2

128ω7
þ is _a3m
32a3ω6

þ 121s2 _a2m
64a2ω6

þ 11_s2m
32ω6

−
47is3 _am
64aω6

þ i _a2 _sm
8a2ω6

þ 99s _a _sm
32aω6

−
is2 _sm
2ω6

−
is _a äm
16a2ω6

þ i_s äm
32aω6

þ 53s2äm
64aω6

þ i _a ̈sm
32aω6

þ 9s̈sm
16ω6

−
isa

…
m

32aω6
þ is _a3

16a3ω5
þ s2 _a2

32a2ω5
−

_s2

32ω5
þ 13is3 _a

32aω5
þ 7i _a2 _s
16a2ω5

þ s _a _s
8aω5

þ 13is2 _s
32ω5

þ is _a ä
4a2ω5

þ i_s ä
4aω5

þ s2ä
16aω5

þ 3i _a ̈s
8aω5

þ s̈s
16ω5

þ isa
…

16aω5
þ i s

…

16ω5
þ 11s4

128ω5
:

The asymptotic expansion for hII can be easily obtained
from that of hI by performing the exchange m ↦ −m
and s ↦ −s.
It is important to keep in mind that it is not straightfor-

ward to compare our asymptotic expansion for h with the
expressions used in Ref. [17]. This is so because of the
inherent arbitrariness of the procedure used there. We will
discuss the origin of that arbitrariness in Sec. VI. In any
case the physical results obtained by both methods match
exactly. We will illustrate this by evaluating the conformal
anomaly.
To compute the conformal anomaly Cf in the adiabatic

renormalization/regularization method, we have to start
with a massive field and take the massless limit at the end of
the calculation. Therefore,

Cf ¼ gμνhTm
μνiren − gYΦhψ̄ψiren ¼ − lim

m→0
mhψ̄ψið4Þ: ð5:3Þ

Since the renormalized expectation values hTμνiren require
subtractions up to and including the fourth adiabatic order,

the adiabatic subtractions for hψ̄ψi above should also
include them. Only the fourth-order subtraction term
hψ̄ψið4Þ survives in the massless limit and produces the
anomaly

Cf ¼ − lim
m→0

m
π2a3

Z
∞

0

dkk2ðjhIIj2 − jhIj2Þð4Þ; ð5:4Þ

where the subscript ð4Þ is used to indicate that we take only
the terms that are of adiabatic order four. Applying the
adiabatic expansion computed in this section and comput-
ing the integrals we obtain exactly the same result as in
Ref. [17]:

Cf ¼
a
::::

80π2a
þ s2ä
8π2a

þ ä2

80π2a
þ 3s_s _a

4π2a
þ s2 _a2

8π2a2

þ 3_a a
…

80π2a2
−

_a2ä
60π2a3

þ s̈s
4π2

þ _s2

8π2
þ s4

8π2
: ð5:5Þ

This result can be nicely rewritten in covariant form as
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Cf ¼
1

2880π2

�
−11

�
RαβRαβ−

1

3
R2

�
þ6□R

�

þ g2Y
8π2

�
∇μΦ∇μΦþ2Φ□Φþ1

6
Φ2Rþg2YΦ4

�
: ð5:6Þ

We finally remark that the covariant expression obtained
here for the conformal anomaly shows the covariance of the
adiabatic renormalization method. However, intermediate
calculations involving the expansion of the modes, like the
above expressions for ϕðnÞ, need not to be rephrased in
terms of curvature tensors. The same applies for large-k
expansion of the modes characterizing the allowed physical
states, like the constants C,D, in Sec. II, or the constants α,
β, etc., in Sec. VI. This should not be regarded as a
drawback, since generically the renormalized expectation
values of local operators are consistent with covariance.

B. Electromagnetic fields

In this case, in view of (3.22), the functions αðtÞ
and βðtÞ are

αðtÞ ¼ −
1

aðtÞ ðkþ qAðtÞÞ; ð5:7Þ

βðtÞ ¼ −m; ð5:8Þ
where AðtÞ describes a homogeneous electric field
(E ¼ − _A) and q denotes the electric charge. Now the
adiabatic order of A is one (see the discussion in Ref. [18]).
In order to compute the subtraction terms for relevant

observables, i.e., the electric current hjμi ¼ −qhψ̄γμψi, the
axial current hjμAi ¼ hψ̄γμγ5ψi and the energy momentum
tensor hTμνi, we only need to approximate the solution to
adiabatic order two. Therefore, we need to compute hðtj2Þ
by using (4.12). As in the previous case there is an
irrelevant phase factor that we will not give here. After a
straightforward computation we find now

hI ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − k=a

2ω

r
ð1þ ϕð1Þ þ ϕð2ÞÞ exp

�
−i
Z

ω2

�
;

where ω2 ¼ m2 þ k2=a2 and

ϕð1Þ ¼ −
Aq
2aω

−
Akq
2a2ω2

þ im2 _a
4aω3

−
i _a
4aω

−
ik _a

4a2ω2
;

ϕð2Þ ¼ A2kq2

2a3ω3
−
5A2m2q2

8a2ω4
þ A2q2

2a2ω2
−
7iAkm2q _a
8a3ω5

þ iAkq _a
2a3ω3

−
3iAm2q _a
4a2ω4

þ iAq _a
2a2ω2

þ iq _A
4aω2

þ ikq _A
4a2ω3

−
kä

8a2ω3
þ m2ä
8aω4

−
ä

8aω2
þ 3km2 _a2

8a3ω5
−

k _a2

8a3ω3

−
11m4 _a2

32a2ω6
þ 15m2 _a2

32a2ω4
−

_a2

8a2ω2
:

The asymptotic expansion for hII can be obtained from that
of hI by substituting aðtÞ for −aðtÞ and introducing a global
minus sign [18].
With the help of these expressions one can immediately

work out the chiral and conformal anomalies in the
massless limit. The formal expression for h∇μj

μ
Ai has

divergences up to second adiabatic order. Therefore, one
can write

h∇μj
μ
Airen ¼ − lim

m→0
2imhψ̄γ5ψið2Þ: ð5:9Þ

By expressing h∇μj
μ
Ai in terms of hk we arrive at

h∇μj
μ
Airen ¼ −

2im
2πa

Z þ∞

−∞
dkðhII�hI − hI�hIIÞð2Þ;

and using the adiabatic series expansion, it leads immedi-
ately to the axial anomaly in two dimensions

h∇μj
μ
Airen ¼

q _A
aπ

¼ −
q
2π

ϵμνFμν; ð5:10Þ

where ϵ01 ¼ jgj−1=2 ¼ a−1. A similar calculation leads to
the conformal anomaly

hTμ
μiren ¼ − lim

m→0

m
2πa

Z þ∞

−∞
dkðhI�hII þ hII�hIÞð2Þ:

Using again the adiabatic expansion and integrating the
corresponding adiabatic terms we get

hTμ
μiren ¼ −

R
24π

: ð5:11Þ

VI. CONCLUSIONS AND COMMENTS

Some comments regarding the method that we have
developed in the paper are in order. First of all we would
like to point out that, at variance with the approach used in
Refs. [14,17,18], there is no arbitrariness in the expressions
for h at any iterative order. This is due to the fact that we do
not need the adiabatic expansion of the integrands in the
exponential term appearing in the expansions

h ∼ ðϕð0Þ þ � � � þ ϕðnÞÞ exp
�
−i
Z

ωn

�
:

Remember that in the approach used in Refs. [14,17,18] the
main idea was to introduce expansions of the type

h∼ ðFð0Þ þ �� �þFðnÞÞexp
�
−i
Z

ωð0Þ þωð1Þ þ �� �þωðnÞ
�
;

find the conditions imposed by Eqs. (3.8), (3.15), and
(3.16) on the unknown terms FðjÞ and ωðjÞ at all the
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adiabatic orders starting from the first and solve for them.
The ambiguity that had to be fixed in that context was due
to the possibility of adding the time derivative of an
arbitrary object inside the integral in the exponent and
compensating it by modifying the corresponding FðjÞ (this
happens, for instance, if an integration by parts is per-
formed). Although the local subtraction terms required for
renormalization were found to be free of any ambiguity,
and hence there was no problem to determine “physical”
quantities such as hTμνiren, the arbitrariness in the adiabatic
expansion of the modes is somewhat inconvenient, first
because it is not clear a priori that the simplest form of the
different terms has been found and, second, because usually
the form for the first and second components of h do not
display some obvious symmetries of Eqs. (3.15) and (3.16).
A third and more important reason to rely on the form of the
adiabatic expansion that we give in the paper is that it can
be used to constrain the allowed physical quantum states of
the Dirac field. As in the case of the massive scalar field
[25], in order to ensure that they lead to finite expectation
values for the renormalized stress-energy tensor, they must
be of adiabatic order four of higher (in four-dimensional
spacetimes).
In the case of a Dirac field coupled to a background

scalar through Yukawa interactions, the large-k limit
quantum states must obey the asymptotic UV condition

jhIj ∼





ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþm
2ω

r �
1þ ðω −mÞ

X4
n¼1

ϕðnÞ
�



þOðk−5Þ

∼
1ffiffiffi
2

p þ αðm; s; aÞ
2
ffiffiffi
2

p ðk=aÞ −
βðm; s; aÞ
8
ffiffiffi
2

p ðk=aÞ2

−
γðm; s; aÞ

16
ffiffiffi
2

p ðk=aÞ3 þ
δðm; s; aÞ

128
ffiffiffi
2

p ðk=aÞ4 þOðk−5Þ;

where

αðm; s; aÞ ≔ mþ s;

βðm; s; aÞ ≔ ðmþ sÞ2;

γðm; s; aÞ ≔ 2̈sþ 6_s
_a
a
þ 3ðmþ sÞ3 þ 1

3
ðmþ sÞR;

δðm; s; aÞ ≔ ðmþ sÞ
�
8̈sþ 24_s

_a
a
þ 11ðmþ sÞ3

þ 4

3
ðmþ sÞR

�
;

and analogously for jhIIj, after the exchange m ↦ −m
and s ↦ −s.
In the case of the electric field background in two spacetime

dimensions the vacuum states have to be of adiabatic
order two or higher for the renormalized stress-energy

tensor to be finite. The corresponding UV condition has
the form

jhIj ∼





ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − k=a

2ω

r
ð1þ ϕð1Þ þ ϕð2ÞÞ





þOðk−3Þ

∼
m

2ðk=aÞ −
mqðA=aÞ
2ðk=aÞ2 þOðk−3Þ;

jhIIj ∼ 1 −
m2

8ðk=aÞ2 þOðk−3Þ:

It is important to point out that the conservation of khk2
is a direct and trivial consequence of the dynamics of the
Schrödinger equation. This is qualitatively different from
the situation in the scalar field case that makes use of the
WKB approximation. In fact, the attempts to approach the
study of the Dirac field in cosmological backgrounds based
on the idea of working with second-order equations for h
are hindered by the difficulty of dealing with the con-
servation of the norm in that context.
From the purely computational point of view it is worth

pointing out that in many physical applications (i.e.,
anomaly computations, etc.) the relevant part of the
approximate expression (4.12) is the product of unitary
matrices

U0ðtÞU1ðtÞ…UnðtÞ:

If one wants an adiabatic expansion of this expression, it is
necessary to get it for the different Uj. Owing to the square
roots appearing in their explicit expressions, in particular,
in the off-diagonal terms (see Sec. IV), in order to reach a
certain adiabatic order n it is usually necessary to compute
the adiabatic expansions of the ωj to order 2n. In practice
this is not a problem from the computational viewpoint, at
least for the examples that we have presented in the paper.
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