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The Yukawa model in curved spacetime is considered. We consider a complex scalar field coupled to a
U(1) gauge field and also interacting with Dirac fields with a general Yukawa coupling. The local momentum
space method is used to obtain the one-loop effective action, and we adopt the gauge condition independent
background field method introduced by Vilkovisky and DeWitt. The pole parts of the one-loop effective
action that depend on the background scalar field, that we do not assume to be constant, are found and used
to calculate the counterterms and to determine the relevant renormalization group functions. Terms in the
effective action that involve the gradient terms in the scalar field as well as the effective potential are found in
the case where the scalar field and Dirac fields are massless. We also discuss the anomaly that arises if the
pseudoscalar mass term for the Dirac fermions is removed by a chiral transformation.
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I. INTRODUCTION

The study of a general Yukawa model in curved
spacetime was provided recently [1]. The principle aim
of the present paper is to generalize this analysis by the
inclusion of a gauge field. The issue of the possible
dependence on the gauge condition is addressed through
the use of the Vilkovisky-DeWitt [2,3] formalism. We
obtain a result for the effective action, including terms that
involve the background scalar field gradient, at one-loop
order up to and including terms that are quadratic in the
curvature. This means that we do not restrict the back-
ground scalar field to be constant.

There is some previous work on Yukawa interactions
with scalars in curved spacetime. A selected set of
references includes [4—17]. In particular, [17] has looked
at the renormalization group improved effective potential
for the standard model in some detail and shown the
potential importance of the R? terms in cosmology. The
generalization of the original Coleman and Weinberg [18]
analysis to curved spacetime was originally given by [19]
but with the neglect of the R? terms. (See the overview in
[20] based on earlier analysis in Ref. [21].) Yukawa
interactions have also been considered in the asymptotic
safety program for quantum gravity [22-26], as well as in

*http://www. staff.ncl.ac.uk/d.j.toms; david.toms@newcastle

.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/98(2)/025015(20)

025015-1

perturbative quantum gravity [27], including unimodular
gravity [28-30] and scale-invariant gravity [31].

The outline of our paper is as follows. The general model
of a charged scalar field interacting with a gauge filed and a
spinor field through a Yukawa interaction is given in Sec. II.
Both scalar and pseudoscalar mass terms are included, as are
scalar and pseudoscalar Yukawa couplings. A brief descrip-
tion of the background field method [2,3,20,32] is given in
Sec. 111, and the formal expression for the one-loop effective
action is given. All the pole parts for the one-loop effective
action coming from the vector and scalar fields are found.
The local momentum space method originated by Bunch and
Parker [33] is used. In Sec. IV, we evaluate the pole part of
the one-loop effective action that arises from the spinor fields
in two ways: one method uses a perturbative approach like
that for the Bose fields in Sec. III; the other uses a direct
functional integral evaluation. Both methods are shown to
agree. In Sec. V, we combine all the results for the pole terms
from previous sections and work out the necessary counter-
terms and renormalization group functions. The renormal-
ization group is used to evaluate the effective potential and
the gradient part of the effective action in the case where
neither the scalar field nor the spinor field have mass. We
present a short discussion in the last section and comment on
an anomaly that arises [1] if the pseudoscalar mass term for
the fermions is removed by a chiral transformation. Some of
the technical calculations are contained in the Appendices.

II. THE GAUGED YUKAWA MODEL
IN CURVED SPACETIME

We will consider a complex scalar field ®(x) coupled to
a U(1) gauge field A, (x) in a gauge-invariant way. To have
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a gauge-invariant Yukawa interaction, we must consider
two Dirac fields, one uncharged that we will call y(x), and
one charged that we will call ¥(x). We will allow the
possibility of both a scalar and a pseudoscalar Yukawa
couplings. The spacetime dimension will be four, and we
will adopt dimensional regularization [34]. All our con-
ventions for curvature and spinors will follow those in
Parker and Toms [20]. The bare action will be taken to be
(with the subscript “B” signifying a bare quantity)

S = Sqcatar T Svector T Sspinor + Sgrav’ (2'1)

where
Sscalar = /d”x |:<D/4q)B)T(Dﬂq)B) - m3B|(I>B‘2

A
- uRln - 0| 220

1
Syector = _4/ deF#DFﬂw (22]3)

Sspinor = /dvxb_((i},ﬂv,u - m;( - im)(SyS))(

+¥(iy"D, — m,, —im,sys)¥ — O 7(w + iwsys)¥

— OV (w* + iwkys)xl, (2.2¢)
Sgrav = / dv, (AB + kR + alBRﬂyMRﬂwlo-
+ apR"R,, + azpR?). (2.2d)

We use dv, to stand for the invariant spacetime volume
element: dv, = |detg,,(x)|"/?>d"x. The gauge covariant
derivative D, is defined by

D,=V,—ieA, (2.3)
where V,, is the spacetime covariant derivative. The gauge
and spinor fields, as well as the spinor mass terms and
Yukawa couplings, are also bare but as we will not need to
consider their renormalization here we will not indicate this

explicitly. The theory is invariant under the local U(1)
gauge transformation:

D(x) - WD (x), (2.4a)
Y(x) = eWP(x), (2.4b)
A (x) = A, (x) + V,0(x), (2.4¢)
x(x) = x(x). (2.4d)

F,=V,A —V,A, is the usual field strength tensor.
The Yukawa coupling constants are denoted by w and ws
and can be taken as arbitrary complex numbers. We
allow for the possibility of both scalar and pseudoscalar
couplings. Likewise, we include both scalar and pseu-
doscalar mass terms for the spinor fields. As discussed in
[1], it is possible to remove the pseudoscalar mass term
by a chiral transformation on the spinor fields; however,
the effective action is not invariant under this change due
to an anomaly. This anomaly does not affect the one-
loop counterterms, but we will leave the action in the
form given above. y* are the spacetime dependent Dirac
matrices [20] defined in terms of the usual Minkowski
ones [35] y* by y* = e 'y® with e,# the vierbein. (Latin
letters will denote orthonormal frame indices.) ys is
Hermitian with y2 = I, where I the identity matrix and
constant (since it is defined in terms of the local
orthonormal frame y-matrices). The factors of i in
(2.2c) ensure that the action is real. The gravitational
part of the action, S, 18 required to deal with the
vacuum part of the effective action [20,36].

Our aim here is to calculate the curved spacetime
effective potential to one-loop order using the renormali-
zation group. We will, therefore, expand about a general
scalar field background but set the background gauge and
spinor fields to zero. Because we are only working to one-
loop order, we only need to keep terms in the expansion of
the action that are quadratic in the quantum fields (which
are those that are integrated over in the functional integral
that defines the effective action). It is simplest to do this if
we write the complex scalar field in terms of its real and
imaginary parts as

1
O =— (D, +iD,).

v (2.5)

The U(1) gauge symmetry now becomes an O(2)
symmetry for (®;,®,). We can use this symmetry to
take the background scalar field to lie in the @, direction
without any loss of generality. We will, therefore, take
the background field expansion of the complex scalar
field ® to be

CD:L(CP‘Hf’l + ihy).

v (2.6)

where ¢(x) is the background scalar field, which is real,
and ¢, ¢, are the quantum fields that are integrated over
in the functional integral.

Using (2.6), we find from (2.2) that the terms in the
action that are quadratic in the quantum fields are
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1 A A
Squad = 5/ dvx{A/ADA” + RAA, + (VFA,)? — g (O 4 mi + ER)py — (0 + m5 + ER)p, — 160245% - E(ﬂzﬁbg

e2 -
+ eA" PV . — eA' QN ,ip; +- E(pZA/‘AM} + / dvx{)'((i;/”vﬂ —m, —im,sys)y +P(iy*V, —m, —im,sys)¥

] = . 1 * . *
- 7§(PZ(W +iwsys)¥ — E(P‘P(W + lW5Y5))(}'

Because there are no direct couplings between the quantum
Fermi fields (y,¥) and the quantum Bose fields
(A,.¢1.¢,), the functional integral will factorize. The
contributions from the Bose and Fermi fields can be
considered separately, and this will be done in Secs. III
and IV, respectively.

III. CONTRIBUTION TO THE EFFECTIVE
ACTION FROM BOSE FIELDS

To compute the contribution of Bose fields to the effective
action, we must first choose a gauge condition. We will
utilize the Vilkovisky-DeWitt method [2,3] here. All our
conventions and notation will follow [20], where a more
detailed description can be found. The formalism gives a
result for the effective action that is completely independent
of the choice of gauge condition. Although it is possible
to proceed with a general gauge choice, as emphasized
originally by Fradkin and Tseytlin [37], calculations are
considerably simpler if a special gauge condition is chosen,
namely the Landau-DeWitt gauge. If we let ¢’ represent the
complete set of fields in condensed notation, then the set of
gauge transformations can be written as

6¢' = Ki[ploe”, (3.1)
for some K',. Here 5¢* represent the infinitesimal parameters
of the gauge transformation. From (2.4), we have [using (2.5)]

o, = —ebeh,, (3.2a)
¢, = edeqp, (3.2b)
5A, = V¢, (3.2¢)

The expressions for K!, can be simply read off from
comparison with (3.1).

The central idea behind the Vilkovisky-DeWitt method is
to consider a metric on the space of fields and use this to
construct a connection. The effective action can then be
obtained in a completely covariant way that is independent
of how the fields are parametrized, as well as independent
of the gauge condition. The field space metric can be
obtained from the derivative terms in the action by analogy
with the nonlinear sigma model (where a covariant
approach is both obvious and natural). Because of the

(2.7)

sign difference in the [ terms of (2.7) for the gauge and
scalar fields, we can choose the field space metric, g;; in
condensed notation, to be
0
S(x,x'),
} Jotr)

(7
9ij = 0

with the choice (A,. ¢, ¢,) for the condensed index expres-
sion ¢'. With our conventions, if we perform a Wick rotation
to imaginary time, g;; becomes positive definite, hence, the
overall sign choice in (3.3).

If we now write the background field expansion gen-
erally as

(3.3)

@' =L+ 1, (3.4)

where ¢!, is the background field and #' is the quantum
field, then the Landau-DeWitt gauge condition reads

9ijle. Koo n = 0. (3.5)
If we uncondense the indices in (3.5), we have
VHEA, + epg, = 0, (3.6)

for the case under consideration here. The gauge condition
can be enforced with a § function in the functional integral
that defines the effective action along with a Faddeev-
Popov factor that follows from (3.6) in the usual way by
considering the change in (3.6) under the infinitesimal
gauge transformation (3.2). The background field is held
fixed for this. The resulting Faddeev-Popov determinant
is det(0J + e%¢?).

The Vilkovisky-DeWitt connection has two main terms.
The first is the Christoffel connection that follows from the
field space metric g;;. Because there is no dependence on the
fields in (3.3), this will vanish in our case. The second term
in the connection involves the gauge transformation gen-
erator K/, and its derivative. (The exact expression can be
found in [[20], page 378], for example.) However, as noted
by Fradkin and Tseytlin [37], this term makes no contribu-
tion to the effective action at one-loop order if we adopt the
Landau-DeWitt gauge condition. (This is very easy to see at
one-loop order, and an inductive proof [[20], Sec. 7.5.1]
shows that it holds to all orders in the loop expansion.) The
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net result is that we may now proceed as usual in our
evaluation of the effective action with the assurance that
everything is covariant and independent of the gauge
condition. If any other gauge choice than Landau-DeWitt
is made, then the calculation is more involved as the full
Vilkovisky-DeWitt connection must be used.

The one-loop effective action coming from the Bose

fields T\

Bose 1S given by

i SBose

T hoe = /[d(pi]é[V”Aﬂ + epg,] det(0I + e2¢?) e awd
(3.7)

where [dg'] denotes integration over the Bose fields

(A b1, ¢), and SqBSzfg is the quadratic part of (2.7) coming

from just the Bose fields. The 6 function in the integrand
can be exponentiated using the standard representation for
the 6 function,

8(x) = lim(=2zia)~"/2e72",

a—0

(3.8)

extended to functions. Ignoring any overall constants that
can be absorbed into the functional measure, we then have

o = det(01+ ¢27) / 1S (3.9)

where

- 1
S8t = S = [ o9, e (310)

The a — 0 limit is understood in (3.9).
(1)

We are interested in terms in I'y . that contain poles that
involve the background scalar field ¢. We can write
Soond = So + 51+ S, (3.11)

where the subscript on the right-hand side counts the power
of ¢ that occurs. From (2.7) and (3.10), we have

1 1
So = E/ dv, {AﬂDA” +RYAA, — (1 - ;>Aﬂwv A,

—@m+w+ﬁm—@m+w+&m]

(3.12a)
= / dv, [e (1 + i)AﬂqﬁzV”(p —e (1 - é) (pA”V”gbz} ,
(3.12b)

Sy = / dv, [—jwzqﬁ% - <]/12+§Z> PR 5 qozA”A ]
(3.12¢)

Because we will be calculating the effective potential using
the renormalization group functions, it is essential to
consider any possible renormalization of the background
scalar field ¢. This means it is not allowed to assume
that ¢ is constant as this will miss any possible field
renormalization.

The term in S will contribute to the vacuum part of the

effective action that we will consider later. We will initially

concentrate on those terms in Féo)ge that involve the back-

ground scalar field ¢ with the goal of identifying the
renormalization counterterms and the scalar field renorm-
alization factor so that the renormalization group functions
can be found. Because the integrand in (3.9) involves a
Gaussian, it is possible to use the heat kernel method, but
this is complicated by the fact that the resulting operator is
not diagonal in the fields, and additionally that the operator
for the vector fields is not minimal due to the presence of
the A,V#V¥A, term in (3.12a). It would be possible to use
the method of Barvinsky and Vilkovisky [38] or else of
Moss and Toms [39] here, but we will instead make use of a
different method that makes more contact with a traditional
Feynman diagram analysis.

We will treat S; + S, as the interaction part of the action
with S, determining the Green’s functions or propagators.
The one-loop effective action in (3.9) becomes

|y —— Indet( + e2¢?) — i{e'l

NE
Bose ! 2)>

(3.13)

where (- --) means to evaluate using Wick’s theorem with
only terms corresponding to connected diagrams kept. The
basic Green functions are defined by

(A (A, (x)) (3.14a)

= zGW(x, X,

(1)1 () = (2 (x)h2(x')) = iA(x,x'),  (3.14b)

where

{g/”lD + RM — <1 —é) V”V’l} Gy, (x,x) = 85(x, x'),

(3.15a)
(=0 —m? — ER)A(x, x') = &(x, x'). (3.15b)
Terms like (A, (x)¢(x")) that involve different Bose fields

will vanish because S is diagonal in the fields. When the
exponential in (3.13) is expanded in powers of S; + S,,
this will ensure that all terms that are odd in ¢ will vanish.
By simple power counting, which is valid at one-loop order,
all terms that involve ¢ with a power that exceeds four
will be finite and contain no pole terms in dimensional
regularization; these terms can make no contribution to the
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renormalization group functions. If we denote the pole part
of any expression by PP{- -}, it then follows from (3.13)
that

PP{T'\}) } =—iPP{Indet(Od+ e2¢?)} + PP{I',} + PP{T’,}.
(3.16)

where

D = (5:) +5(5}) (3.17)

is quadratic in ¢, and

Fo= (S —3(S382) —op (s (18)

N

is quartic in ¢. We will evaluate the pole parts of I'; and 'y
in the next two subsections. The first term on the right-hand
side of (3.18) will be evaluated in Sec. III C.

A. PP{I',}
By using (3.12b) along with (3.14), it can be shown that

(82) = —e? / dvdvy Kl + é)zvﬂ(p(x)v/”(p(xl)(;ﬂb(x, ¥)A(x.x') — z<1 - %) P(X) V" (x') G (x. ') VFA(x, x')

n (1 ‘i)zco(x)co(x’)%(x, X)VEVEA(x, )|

In a similar way,

(S,) =i / dv, [— (% + g) @*(x)A(x, x)

62

+ = @*(x)G*,(x. x)}

5 (3.20)

The calculation of (3.19) is the most involved, so we will do
it first.

To evaluate the pole parts of the products of Green
functions, we will use the local momentum space method of
Bunch and Parker [33] and dimensional regularization [34].
An outline of the details is given in Appendix A. Details
of the extraction of the pole terms of the Green function

expressions are given in Appendix B.
If we use (BS), (B10), and (B18) in (3.19), we obtain

PPUSHY = g [ dnif (a= 59000

e e ()

(3.21)

Using (B2) and (B3) in (3.20) results in

PP{(S,)} :g,i%/dUX{e: <Z— 1>R¢)2
- <;1+;Z> [mz + <§—2>R] ¢2}. (3.22)

Using (3.21) and (3.22) in (3.17), we find that

(3.19)
|1>1>{r2} _# / dvx{;(S @)V
ot
« [m% n (g—é)R} (,02}, (3.23)

before the @ — 0 limit is taken. Note that the terms in 1/«
that occur separately in (3.21) and (3.22) cancel to leave a
result that is finite as @ — 0. This cancellation provides a
useful check on the algebraic technicalities since the @ — 0
limit must exist. The final result for the pole terms in the
effective action that are quadratic in ¢ coming from the
scalar and vector fields is (now letting ¢ — 0)

1 5 1
PP{I,} = %/dvx{i ViV, — Z—lezR(p2

e () o

B. PP{I,}

We will now use (3.18) to evaluate the pole terms in
the one-loop effective action that arise from the Bose fields
and that are quartic in the background scalar field ¢.
We will take each of the four terms in (3.18), in turn,
using (3.12b) for Sy and (3.12c¢) for S,.

L. PP{(s)}

It is convenient to write (3.12¢) as the sum of the two
terms,
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S =- [ dn.) B¢%+ (1”2 : >¢2} (3.250)

o2
Sy = E/dvxqoz(x)A”A”. (3.25b)
It then follows that
(83) = (831) + (53,). (3.26)

The cross term (S,;S,,) vanishes since it does not give rise
to a connected Feynman diagram. Using (3.14), it can be
shown that

22 A e?\2
2N _ _»n |2 IAERTRR
(s3,) = 2{16+<12+2a)]/dvx

x / vy ()P () A2 (x, ),
(83,) = /dv /dvx(p

Power counting shows that the pole parts of both
A*(x,x') and G*(x,x')G,,(x,x') come from the ﬂat

(3.27a)

(X)G* (x, x )G,w(x, x).

(3.27b)

(S12S01) = 2ie? < —é) (ﬁ 5 >/dv /dv//dv p(x

<S%2522> =

e (1=2) fan fae [t

spacetime parts of the local momentum space expansions
described in Appendix A. From (B19) and (B20), we find

i 5/12+/1e2+e4+3 " a?
—5 — et —e
8r2e \ 72 4o 4 4

X / dv,.p*(x),

when the results from (3.27a) and (3.27b) are combined.

PP{(§3)} = -

(3.28)

2. PP{(835,)}

We can write the result in (3.12b) for S as the sum of the
two terms

Su —e(l—i—é) / v, A" (x) s (x)V,0(x).  (3.29a)

a

Sy = —e(l —1) / dv,p(x)A" (x)V,r(x).  (3.290)

Power counting shows that

PP{(S15,)} = PP{(S1,5,)}. (3.30)

If we use S, = 5,1 + S5, as in (3.25), we have
@*(x")G* (x, X )V,Ax, x")V,AX, x"),  (3.31a)
(X @?(x")G*(x, X") G, (¥, ")V, V, A(x, x'). (3.31b)

The pole parts of the Green’s function expressions appearing in (3.31) are evaluated in (B21) and (B22) in Appendix B. It

can be shown that

1 (a—1)* (2
PP — = ($? =7 dv.g*(x). 32
{Jisis} =S (245w ) [t (3:32)
3. PP{(S‘I‘>}
If we use (3.29), it can be seen, based on power counting, that
PP{(S1)} = PP{(S},)}
4
—oe(1-2) [an. [ave [ave [ avrproerotnon)
x G* (x,x')G*( x”,x’”)VﬂV’l’A(x, XNVINVIA(X, X", (3.33)

The pole part of the product of the Green’s functions here is evaluated in (B23) from Appendix B and gives
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_eta=1)

PP{ — — (S% P m— 4(x). 34
{-550} = L[t 330
If we now combine the three terms found in (3.28),

(3.32), and (3.34), the pole part of I'y from (3.18) turns out

to be

1 5 1 a 5
PP{I,} = ——— |22+ [ 1=2)2e? + 2t
T} =g [722 +6( 2)’16 +4e]

X / dv,.p*(x).

All the potentially troublesome terms in o' and a2 that
arose at intermediate stages and which would have pre-
vented taking the Landau-DeWitt limit « — 0 have can-
celled. The limit @ — O can now be taken in (3.35) to obtain
the gauge-independent result. It must be remembered that
this is only part of the effective action, and the ghost fields
and fermions must also be included.

327%ea

(3.35)

C. Ghost contribution

From (3.13), the ghost contribution to the one-loop
effective action is

=0

ehost = —iIndet(0 + °¢?).

(3.36)
We will first use the perturbative approach utilized in the
earlier sections to evaluate the pole part. The result will then
be checked with the heat kernel method.

Start by writing (3.36) as a functional integral over the
Faddeev-Popov ghost fields ¢(x) and c¢(x) which are treated
as anticommuting:

=0

ghost = —lln/dcdc Jane 0@ (3 37)

We can treat the e@? part as an interaction term,

Sg;fost = /dvx(pz(x)i‘(x)c(x). (3.38)
As in (3.13), we find
Tl = —i{e" o), (3.39)

with (---) meaning to Wick reduce the expression with
only connected terms kept. If we just concentrate on the
terms that involve the background field ¢ and that can
contain poles, we have

PRI} = PP{(SEL) +5 (SHh0D). (340

The Wick reduction is performed by treating ¢,c as
anticommuting with the basic relation

(c(x)e(x)) = —=id (x,x'), (3.41)

where

=0A,(x.x") = 6(x,x). (3.42)
The signs were chosen here so that A (x, x") coincides with
the scalar field Green’s function A(x,x’) in (3.15b) with
m? = 0 and £ = 0. We immediately have the local momen-

tum space expansion from (Al4a) and (A14b) as

p 12

Byl %) :/(2n)”epy[pz+3R” Pupib”?
1

—ng—4+-..], (3.43)

where terms up to and including p~* have been shown.
Using (3.38) and (3.41), we have

(Sthos) = i€ / dv?(x)Ay(x, x), (3.44a)

(St =¢* [ v [ dvv? (¢

Using the dimensionally regulated result of (Bla) and
(B1b), it is easy to show that

A, (x,x") Ay (¥, x).

(3.44b)

i

PP{AQ(X, X)} = mR,

(3.45a)

PP{A, (x. ¥)A, (¥.x)} = — < 5(x. ).

3.45b
8re ( )

(1)

The pole part of 'y,

from (3.40) by

that depends on ¢ is, therefore, given

1
1
PP{Fg(;h)ost} = 1672

1
dv, {—3 e’Rep? + e4rp4} . (3.406)

As mentioned above, we can use the heat kernel method to
check this result. Use of known heat kernel coefficients
[32,40,41] (see [20,42-45] for reviews) allows us, in
addition, to obtain the vacuum part of the pole part of the
one-loop effective action coming from the ghost fields that is
independent of the background scalar field. (The vacuum
part could also be found by using the local momentum space
method, but this would entail working to higher order in the
expansions than we have done here. See, e.g., [33,46].) For
any covariant derivative D, and any Q(x), we have (using
the notation of [[20], pages 193-194])
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1

PP{iIndet(D? + )} = — / v tEy(x),  (3.47)

8re

where
E, = LR2_LR;¢ _,_LR/MGR I

2\ 180 180 uvio

1 (112 1 2
+ oy WW, + 50 —gRQ, (3.48)

where W, = [D,, D,]. (A total derivative term that cannot
contribute to (3.47) has been omitted here.) For the ghosts,
D, =V, acting on scalars, so W,,, = 0 for the ghost fields.
There is only one field, so the trace in (3.47) is redundant.
The expression for Q is Q = e?¢*(x) from (3.36). We,
therefore, find

M) 1 1, 1
PP{T'y} = dv,( -R*——R"“R
o) =620 <36 9

4
90 3 (3.49)

1 1
+—RMR 1o —= R + et >
The terms that involve ¢ are seen to be the same as those
found earlier in (3.46). In addition to a vacuum contribution,
the ghost fields will only contribute to the £ and A
renormalization group functions.

IV. CONTRIBUTION TO THE EFFECTIVE
ACTION FROM FERMI FIELDS

We now turn to the contributions from the fermion fields
Y and y whose action was given in (2.7). This will be done
in two ways, one using the part of the action that involves ¢
treated as an interaction and proceeding as we did in
Sec. III, and the other way using a functional approach.

A. Perturbative approach

From (2.7), we can define a term in §; that is linear in ¢
as Sl = Sll =+ S12 where

S = \/— dvep(x)y(x)(w + iwsys)P(x),  (4.1)

Fgermion :é/dyx/dyxr/dvxn/dvxm(p(x)QO(x’)C”

xX")(w A+ iwsys) P (", x7) (W + iwgys )y (X", x)].

X (w4 iwsys )y (6

S = \/— dv@(x)P(x) (w* + iwiys)y(x).  (4.2)

From (3.17) and (3.18), we have the parts of the one-loop
effective action that are quadratic and quartic in ¢ as

Fgermion — _ < S2>

: (4.3)

l—'germion — _ < S4>

= (4.4)

Note that there is no term in S, here, and that there are no
terms odd in ¢ as these would involve unequal (odd)
numbers of ¥ and of y fields that integrate to zero in the
functional integral. The essential difference between the
Fermi and Bose cases is that here we must treat the fields ¥
and y as anticommuting in the functional integration.
We will define the Feynman Green’s functions for the
two spinor fields to be W(x,x’) and y(x,x’) where
(iy"V,, —m,, —imysys)¥(x,x') =

=6(x,x'), (4.5)

(iy"V, —m, — im,sys)y(x,x') = =6(x, x'). (4.6)

The basic results needed to evaluate (4.3) and (4.4) are
(Wa(x)¥s(x)) =
(Za(X)ip(x'))

where o and f denote spinor indices.
It is now straightforward to show that (§7) = 2(S;,S},)
and then to show that

[fermion — — /dv /dvx(p Jo(x')

x tr[(w + iwsys)P(x, x') (w* + iwsys)x (¥, x)].
(4.9)

—iWop(x, x'), (4.7)

= —i;{aﬂ(x, x), (4.8)

For (4.4) it follows first that (ST) = 6(S?,5%,), and then that

() (x")tr[(w + iwsys) ¥ (x. x')

(4.10)

Before evaluating the pole parts of the two expressions in (4.9) and (4.10) we will show how they can be obtained using
functional methods. This serves as a useful check on the results.
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B. Functional approach

Write the fermion part of the action in (2.7) in the matrix
form

Sfermion:/dl}x/d’[]x/c‘i’(x),)_((x))(éiiiilli giz”j/)))

()
where
A(x.xX') = (ir"V, = m,, — im,sy5)8(x. %), (4.12a)
B(x.x') = —%W) (w+ iwsys)d(x.x'),  (4.12b)
Clx.x) = —%go(x)(vv* +iwiys)d(nx), (412
D(x.x) = (iy"V, —m, — imsys)d(x. x').  (4.12d)

Integration over the anticommuting fields ¥ and y gives the
full contribution to the effective action coming from the
fermions as

Ffermion = —{Indet [F, (413)

where F is the matrix appearing in (4.11). The only ¢
dependence is through B and C in (4.12b) and (4.12c¢).
We can write

(o o)l D)o %)) e

Note that (A™'B)(x,x') = [dvyA~" (x,x")B(x",x") here.
From (4.5), it can be seen that

A7 (x, x) = =¥(x, X'), (4.15)
and from (4.6) that
D7 (x,x') = —y(x,x'), (4.16)
Using (4.14) in (4.13) results in
r = —iIndet A0 ‘Tr(I + X) (4.17)
fermion — —11NdE€ 0 D tir s .
where
0 A"'B
X = . (4.18)
D'Cc 0

Here we use Tr to denote the functional as well as the Dirac
trace. So e.g., TrX = [dv,trX(x,x) where tr is just the
Dirac trace.

All the dependence on ¢ occurs in X in (4.17). The first
term in (4.17) gives the vacuum contribution that we will
consider later. The term in Tr(/ 4+ X) can be expanded in
powers of X. Because X takes the off-diagonal form given
in (4.18) all terms odd in X will have a vanishing trace.
This means that g mi0n Will be even in ¢, a result that was
also noted above using the perturbative approach. Keeping
terms up to quartic order in ¢ we have

r = —ilndet 40 + iTr(Xz) + iTr(X“) +
. f— _l —_ —_ e,
fermion 0 D 4

2
(4.19)
From (4.18), we have
A-'BD"'C 0
X2 = , (4.20a)
0 D™'CA™'B
AT'BD™!C)? 0
Xt = (< ) ) (4.20b)
0 (D~'CA~'B)?
It is now easy to see that
%Tr(Xz) — [fermion, (4.21)
and that
~Tr(x*) = [lermion, (4.22)

4

where (4.9) and (4.10) are regained.

C. Evaluation of PP{Ifermion}
Suppose that we define

$o (o6, ") =PP{tr[P (o, x) (W* + iwsys )y (x',x) (w+iwsys)] }
(4.23)

We need the local momentum space expansions for the
Feynman Green’s functions. The results follow from [1],

da" .
ve)= G WP+ W (i) o), (424)
where
‘P()(p) _ ﬂ - ml// + imSy/yS (425)

(]72 - mgl - m%y/)

is the flat spacetime expression, and
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1 . 1 -
Wi (ps ') = 3 Ruaipp" P (= my, + ims vs)y "y (p? = myy = m3, )™ = S R(P = my, o+ ims, ys) (p* = my, —m5, )72
1 . . _
+ ZRMP”W— my, + ims,ys)y" (P — m,, + ims,ys)(p* — m, — m;,) 3, (4.26)

contains all terms that are linear in the curvature. Power counting shows that the terms indicated are sufficient to calculate
the pole part in (4.23). Similar expressions hold for the Feynman Green’s function y(x,x’) that we will not indicate
explicitly here.

It is easily seen that

() = [ G PP{Gan) + PP{Gaauma)) (@27

where

o = / d"q w[(F+ g —my, +ims,ys) (W + iwiys) (4 — m, + ims,ys)(w + iwsys)] (4.28)
) oy [(p + ) = my —m3,1(¢? — m} — m,) ’ '

{2 curved = /(;i%{tr[lpo(l? + @)W+ iwiys) i (q: X)) (w4 iwsys)] + [P (p 4 g: X') (W* + iwkys)yo(q) (w + iwsys)]}.

(4.29)

The pole parts are identified by expanding the integrands of (4.28) and (4.29) in powers of g keeping those terms that
behave like ¢~ for large g. After some calculation, using (B1), it can be shown that

1 i
PP{{s i} = (|w|2 + |ws)?) (—Ep2 + m} + mgw + m; + m§1> —5; [(wm,, + wsms,)(w*m,, + wims,)
— (wms, —wsm,)(w*ms, —wim,,)]. (4.30)
As with the Bose case we have
d"p ;
Pyp? = —[.5(y), 4.31
[ et = =00 @31)

and (B17) is used to return from Riemann normal to general coordinates.

The pole part of (4.29) is simplified by noting that the g=* term comes from the g~' part of ¥, or y,, and the g part
of y; or W,. This means that we may set p = 0 in (4.29) and ignore all the mass terms resulting in a reasonably simple
calculation. The net result is

PP{Cacumea} = 57 (2 + hwsf?)R (432)

24n

Combining (4.30) and (4.32) in (4.27) results in

. 1
PP = [ o =P+ bsPIPA0T,0 -+ (b s PR [+ )0+ i 4. 4

+ (wm, +wsms, ) (w*m,, +wims, ) + (wms, —wsm, ) (wim,, — w*msw)]qoz}. (4.33)
This gives all terms in the one-loop effective action that are quadratic in ¢ coming from the quantized fermions.
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D. Evaluation of PP{[“f‘ermion}

Power counting in (4.10) shows that the pole part will
come from just the flat spacetime terms in the local
momentum space expansion. Furthermore, the fermion
mass terms cannot contribute to the pole. After a bit of
calculation, it can be shown that

P{TE™) = oo [((w? + s

167%¢
— (wwi —w*ws)z]/dvx(p“(x). (4.34)

We now have all terms arising from the fermion fields
that can give rise to the scalar field renormalization, as well
as the renormalization of the nonminimal coupling constant
£, the scalar field mass, and the scalar field quartic coupling
constant. The counterterms and renormalization group
functions will be evaluated in the next section.

V. COUNTERTERMS, RENORMALIZATION
GROUP FUNCTIONS, AND EFFECTIVE
POTENTIAL

A. Gravitational pole terms

We can obtain the gravitational counterterms from the
one-loop effective action by setting the background scalar
field ¢ = 0 and performing the functional integration. The
gravitational part of the one-loop effective action is

Tl = ilndet(0 + m2 + &R)
j 1
+ %lndet {&’D + R — (1 - —) V"V,,}
a

— ilndet(d) — iIndet(i¥ — m,, — ims,ys)

—iln det(lW - m}( - l.m5)(]/5). (51)
Here the @ — O limit is understood as we are using the
Landau-DeWitt gauge. The first term arises from the two
scalar degrees of freedom, the second one from the vector
field, the third term from the ghosts, and the last two terms
from the Dirac spinors. The basic heat kernel result (see
[20] for example) is that

1
PP{lln detD} = —8—2/ detI'EQ(X), (52)
o€

where £ is a second-order differential operator like that in
the first three terms of (5.1), and E,(x) is a coefficient in the
asymptotic expansion of the heat kernel for O. For reviews
see [20,32,42-45] for some of the literature. The most
general derivation of E, was given by Gilkey [40,41] for
the case of minimal operators (those whose leading second
derivative terms involve only [J). For nonminimal oper-
ators, like that for the vector field where V¥V, occurs, see
[38] or [39] and references therein. The Dirac spinor

contributions can be put into a second order from as
in [1] by defining a new covariant derivative. It can be
shown that

1
In det(lW —mgy — im575) = Eln det<D2 + Q), (53)
where
D/" = Vﬂ — m5}/5]//4, (543)
1
0= (m% +3m2 + ZR>I + 2imymsys. (5.4b)

For any operator of the form O = D? + Q, the E,
coefficient is given by (3.48) where W,, = [D,,D,]. For

the Dirac spinors, using (5.4a), it follows that

1

W;w == ZR;w/loylyo— - m% [7;4’ YLJ' (55)
This is sufficient information to evaluate the pole parts of
all terms in (5.1) apart from that for the vector field. Due to
the presence of the V¥V, term, the operator is not of the
form D? + Q where the result of (3.48) can be applied.
Operators where the covariant derivatives do not appear just
in the form D? have been termed nonminimal by Barvinsky
and Vilkovisky [38] and they have developed a technique
to deal with them. (See also [47,48].) The necessary E,
coefficient for the real vector field has also been calculated
using the local momentum expression in [46] and more
generally in [39]. It follows from these references that for
the vector field operator that appears in (5.1),

PP{lndet [&‘D + Rl — <1 - é) V”VD} }

= PP{Indet(5,0J + RY)}, (5.6)
provided that terms that are total derivatives are discounted.
(This is not true if RY is replaced with something else, or if
the total derivatives are included in the E, coefficient;
however, we only require the integrated E, coefficient here.)

The pole terms in Fggv can now be shown to be

PP{T'1),}
1
:—m/dvx{m?—Z(mg,+m5/5)2—2(m)2(—|—m}2{5)2
) NN, 1 5 2 20 2 R
+ f—g ms—g(m,,,+mv,5+ml+mx)

1 47 2, 5
—ERWURMUJF%RWRM<§§2—%>R2}. (5.7)
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B. Counterterms

The bare classical action follows from (2.2) as (keeping

only the background scalar field ® = ¢/+/2 and gravita-
tional field nonzero) as

1 1 1 B
S = /dvx <§v”§03vﬂ¢'3 —Em%B(P% _EfBR(”zB _ﬂqﬁB

+ Ap + kgR + ;g R"*“R,,;, + agR*R,, + a3BR2> :
(5.8)
with the subscript ‘B’ denoting a bare quantity. We

will define the renormalization counterterms, following
‘t Hooft [49], by

pp = p*(1+6Z,)p, (5.9a)
mly = m3 + oms, (5.9b)
S =¢+ 68, (5.9¢)
Iy = ue(A + 82), (5.9d)
Ag = i€ (A + 8A), (5.9)
kg = p¢(k + k), (5.91)
aig = p(o; +6a;). i=1,2,3. (5.9g)

The ‘t Hooft unit of mass p gives the renormalized
quantities the dimensions for all n that they have in the
physical spacetime dimension n = 4.

The counterterm part of the action that will be used to
absorb the one-loop pole terms coming from the full
effective action will be

1
S = / dv, {5Z¢V”(pvﬂgo - (E(sz + mf&Z(p) @*

1 oL A
— (= 2_(Z4Z 4
(25§+§52¢>R(p ( ] +652¢>(p + O0A

+ OkR + Say R*“*R,,,, + Sa;R*R,, + 50:3R2} .
(5.10)

The counterterms in (5.10) are fixed by requiring that
S + PP{T"")} remain finite as ¢ — 0. If all the pole terms
calculated previously in (3.24), (3.35), (3.49), (4.33),
(4.34), and (5.7) are combined, it can be seen that

oZ

(2|w]? + 2|ws|* = 5¢2), (5.11a)

¢~ 162

1 3 A
omd = | (G =5 - IuP = P Jm2
+ 2(|w]* + [ws|*) (my, 4 m3,, +my +m3)

+2(Jwf? = ws[?) (m,m, — ms,ms,)

+2(ww§ + wrws) (m,,ms, + msl,,ml)] , (5.11b)

! 1
b= 247%e (9€* =24 = 6[w|* - 6]ws|*) (f _6>’ (5.11c¢)
o4 = 247%e [_5/12 +184¢% — 54e* - 12/1(|W|2 + |W5|2)

+36(|w|> + [ws[*)? = 36(wwi —w*ws)?], (5.11d)

1
S\ = — 6 2(my, +m3,)* + 2(my 4+ m3)* —m],
(5.11e)
1 2 2 2 2 2
Ok = RIS [my, + ms,, +my; +mzg, - (6& — 1)mg],
(5.11f)
1
5()!1 :—m, (Sllg)
1
602 = —m, (Sllh)
1 1 .
5a3 = 4871-26 <§2 - Z) . (51 11)

C. Renormalization group functions

It is now possible to apply ‘t Hooft’s method [49] to
calculate the renormalization group functions from the
counterterms. We follow the notation and conventions of
[20] with g; representing any of the terms entering the
theory, including the background field ¢. The change in g;
under a change in the renormalization mass scale u is
given by

d
24 =8,. 5.12
Mgl P, (5.12)

The renormalization group functions are found from the
one-loop counterterms given in (5.11) to be
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1
Py = 1672 (5e = 2[w]* = 2|ws|*)g, (5.13a)
1 A 3
Pt = gz | (5 P+ sl =3
= 2(|wl* + [ws|?) (my, +m3,, + my +m3,)
= 2(Jwf? = ws[?)(my,m, — ms, ms,)
= 2(wwi 4+ wrws)(m,ms, + m5y,mx)} , (5.13b)
1 2
Pr = 242 (24 —9e* +6|w|* +6Jws|*)(£——]). (5.13¢)
Pr = 553 527 = 1846 + 54e* + 12(w]” + |ws]?)
T
=36(|w|* + [ws|?)? + 36(wwt —w*ws)?],  (5.13d)
1
Pr=1ga 2my +m3, )2 +2(m +m3,)? —mi,  (5.13¢)
ﬂ":48ﬂ2 [y, +m3, +my+m3, — (66— 1)mg],  (5.13f)
b == 75t (5.13g)
48077 13¢g
b= =30 (5.13h)
@307 :
1, 1 .
T2 \" Ta) 5.13
18(13 48ﬂ2 <§ 4) ( 1)

D. Effective action

In the case where there are no mass scales present in the
classical theory (apart from the fields), the method of
Coleman and Weinberg [18] can be used to evaluate the
terms in the effective action in terms of the renormalization
group functions. We will only be concerned with what is
obtained at one-loop order, rather than the exact results
given in [18], often referred to as renormalization group
improved. The method described in [1] can be used to show
that

1
= [ av, |32 00,0- Vi) =R (o)
R Rt (VR Ryt ()R, (5.14)

where Z(¢), Vo(@), Vi(@),a;(p) are given to one-loop
order by

Z(p) =1+ Aln(¢?/u?), (5.15a)

A
—¢* + By*

Vo(o) a1

{m( 2),) - 265], (5.15b)

1
Vilp) = 55(02 + C¢? [111((,02//42) - 3] , (5.15¢)
a;(¢) = a; + D; In(¢p?*/u?), (5.15d)
where
A=Pylo =1 2(Se = 2|w|* = 2|ws|?), (5.16a)

1 A
&ﬁz +mﬁ(p

1 5
=192 2{ 22+ 22e* +9e* — 6(|w]* + |ws|?)?
+ 6(wwi — w*ws)z], (5.16b)
1 1 -
C_Zﬂf+@§ﬂ(p
= Joo 2 |44+ 12e%)(E - 1/6)
+ (52 = 2|w|* = 2|ws|?)]. (5.16c¢)
and D; =3 f, so that
=a - In(g?/u? 1
a(p) = a 96072 n(@*/u”), (5.17a)
1
a(p) =a - 02 In(¢?/u?), (5.17b)
= 1 & —1/4) In(¢?/u? 5.17
ay(p) = ar+ 5 (& = 1/4)In(¢*/w7).  (5.17¢)

This gives a complete evaluation of those terms in the
one-loop effective action that can be found from renorm-
alization group considerations. The results have been
established in a way that respects gauge invariance,
independence of the choice of gauge condition, and also
in a way that is independent of the choice made for the
scalar field parametrization.

VI. CONCLUSIONS AND DISCUSSION

We have considered the one-loop counterterms for a
charged scalar field interacting with a gauge field and
Dirac spinors through a Yukawa interaction. These counter-
terms were used to calculate the renormalization group
functions and the curved spacetime effective potential up to
and including order R? along with the gradient terms in the
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scalar field in the massless case. The background scalar
field was not assumed to be constant so that the field
renormalization could be calculated. All calculations were
done in a way that respects gauge and field parametrization
invariance and, crucially, independence from the choice of
gauge condition. The local momentum space method was
used along with some heat kernel results. We did not
present a full analysis of all one-loop counterterms and
renormalization group functions as was done in the simpler
case [1], but the methods used there could be applied here
without any essential difficulties.

We included an unconventional pseudoscalar mass term
of the generic form msyysy for each of the two Dirac
spinors in (2.2c). As noted in [1] this term can be trans-
formed away in flat spacetime by a chiral rotation of the
Dirac fields. However, in curved spacetime there is an
anomaly and the effective action is not invariant under the
necessary transformation. For the theory in the present
paper, a similar analysis to that presented in [1] shows that
the change in the effective action under the necessary
transformation is

1 ms ms
Al = ——— |tan™! [ =¥ ) +tan~ ! £
7687 [an <mw> an <mx>}

Aopt v
x/dvxe P'R 1o R e

(6.1)

An outline of the calculation is given in Appendix C.
The details of the calculation are essentially the same as
those that appear in the axial, or chiral, anomaly and are
most easily seen using the path integral method of Fujikawa
[50-52]. The only difference is in the overall coefficient
here that involves the two possible mass terms. The integral
is seen to involve the Pontryagin density just as in the axial
anomaly. This conclusion holds also if a background vector
field is included as seen in Appendix C. There is still some
current interest in such expressions. (See e.g., [53].)

This result in (6.1) is exact. The transformations necessary
to remove the pseudoscalar mass terms, given in (CI) and
(C2), also change the coefficients in the Yukawa interaction.
There is also the option of transforming away either the
scalar or else the pseudoscalar Yukawa interactions instead
of the pseudoscalar mass term. Again, an anomaly like that
in (6.1) will result with w and ws appearing in place of the
masses. Because the anomaly term is finite and is indepen-
dent of the quantized fields it cannot affect the perturbative
evaluation of the counterterms.

It is possible to generalize the analysis that we have
presented here to the non-Abelian case. It is also possible to
work in a more general choice of gauge and see exactly
how the gauge condition parameters disappear from the
effective action if the Vilkovisky-DeWitt formalism is used
as was done in the pioneering calculation of Fradkin and
Tseytlin [37]. The details are somewhat more involved than
those presented here and will be given elsewhere.

APPENDIX A: LOCAL MOMENTUM
SPACE EXPANSIONS

Consider the Green function G* j(x.x") where i and j refer
to any type of indices (e.g., vector or tensor). For the case of
spacetime indices, it is advantageous to refer them to a local
orthonormal frame by using the vierbein formalism as noted
in [46]. Suppose that the Green’s function obeys

[(A*)1;0,0, + (B")';0, + C'j]G/ i (x, x) = §;8(x, x').
(Al)

Here, A*, B*, and C are some functions of x that are specific
to the Green’s function being considered. They
will be specified for scalars in (A9) and for vectors in
(A10) below.

The basic idea behind the local momentum space method
[33] is to introduce Riemann normal coordinates at the
point in spacetime whose local coordinates are x’* and to
expand about that point using

X=X yr, (A2)
Expressions for A, B¥, and C are developed as a power

series in y*. We will take (suppressing the indices i and j
here)

AR (x) = AR (X) + Aoy 4o (ABa)
B (x) = B!, y* + - - -, (A3b)
C(X) = C(.X/) + Caya T <A3C)

The absence of a linear term in (A3a) and a zeroth-order
term in (A3b) will be seen to hold in our case but the
method does not rely on either of these assumptions. For
the Green’s function, we take

G = [ LL grrGi(pa).  (A4)
j K (2”)" j 2 b
where G';(p; x’) can depend on the origin of the Riemann
normal coordinates. We can expand G';(p;x’) as an
asymptotic series in p whose coefficients depend on the
terms in the expansions given in (A3). If we write
G'j(p:x') = Go'j(p:x') + Gyly(pix') + . (AS)
where the subscript 0,2, ... counts the dimension (in units

of mass or inverse length) of the coefficient of p, it can be
shown that [46]
—(A* (X)) ;pup Go'x = 8. (A6)

and that
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Gzij(P;X’> = G21ij(p§x/) + Gzz’j(P?x’) + Gz3ij(P§x/)v

(A7)
where
Gzlij(PQX/) = _GOik(p;x/)(Awaﬂ)kz
<o PG ()
Gzzij(l’;x/) = Goik(PQXI)(B”a)kz
X o Gl () (A8b)
G23ij(l’§x') = —Goik(PQx’)(c(x/))leolj(PW/)- (A8c)

Because it follows from (A6) that G, ~ p~2 for large p
from (A8), we can conclude that G, ~ p™ for large p.
Higher-order terms in the expansion (AS5) will fall off even
faster than p~*. This means that we will not need any of the
higher-order terms in our calculation.

The scalar field Green’s function obeys (3.15b). By
comparison with (Al), we can identify (leaving off the
spacetime coordinates)

AW = — gt (A9a)
Bt = gT | (A9b)
C=-m?-¢ER. (A9c¢)
For the vector field, from (3.15a), we have
1
eyt =g = (1= 1) (et + e, (AL0w
a

1
(B")*, = 2¢"w,*, — 5Zg’1”r’ja + (1 - a) e“ﬁeb"rﬁlg

1
— (1 - —) (ee s + e™e w, ), (A10b)
a

(€)= g"0,0,) — ¢ T},0,%, + ¢ ®,° 0, + R,

1 1
- <1 ——) ee 0, ) + (1 ——> e“"ec’“l—'ﬁyw/fb

a a

1
- <1 _a> et etw,C 0, (A10c)

Here we use a, b, ¢, d to denote orthonormal frame indices
with the vierbein e“, defined as usual by

G = eaﬂebbnab‘ (All)

w,, is the spin connection for the vector field which is

given by [[20], page 223]

a _ _, U
Wy = eb(aﬂ

e, —The). (A12)
Spacetime indices are raised and lowered with the space-
time metric g,, and orthonormal frame indices are raised
and lowered with #,,. The expansions of the metric,
vierbein, and connections in Riemann normal coordinates

that we require are

1
g/w(x) = M + §Rﬂavﬂyay/j e (A13a)
1
FUx) =1 = SRy (A13b)
1
F//}v (X) = g (Rll;wa + Riwa)ya +ee (A13C)
1
e“”(x) = e“,l(x') (5f, + ER’laﬂﬂy“yﬂ + - > s <A13d)
1
e (x) = e (X) <5’j - ER"(Mﬂy“yﬂ + - '>, (Al3e)
a 1 a a
Wy b(x):_R buay + e (A13f)

2

All curvature terms on the right-hand side of (A13) are
evaluated at the origin of Riemann normal coordinates x’.
Note that R, = ¢*;(x')e," (X' )R ,,,(x’) in (A13f).

By substituting (A13) into (A9) and (A10), we can find
the expressions required to evaluate the Green’s function
expansion terms in (A6). After some calculation, it can be
shown that

Ao(p) = & (Al4a)

p
/ 1 —4 2 -4 2 1112 -6
Ay(psx') = 5—3 Rp™ +mip™ + 3R pup,p™
(A14b)

Go“y(p) = =8ip™ >+ (1 —a)pp,p~, (Al4c)

1 2
Gy (p;x') = §52RP_4 + 3 (a—1)Rp“pyp~°

1 2
+ela- T)R,p~* — §5ZR””pﬂpyp‘6

+2(1 — a)R*p,p,p°ppp~"

2
+§(l —a)R“”b”pﬂpbp_ﬁ. (Al44)
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These give the terms in the Green’s function expansion that
we will need. They agree with those in [46], where the
higher-order terms in the expansion for the vector field
Green’s function can be found.

APPENDIX B: POLE PARTS OF PRODUCTS
OF GREEN FUNCTIONS

In this appendix, we will describe how the results found
for the Green’s functions in Appendix A can be used to
evaluate the pole terms in the products of Green functions
needed in our evaluation of the pole part of the one-loop
effective action. Because we are using dimensional regu-
larization it suffices to evaluate momentum space integrals
whose integrands behave like p~ for large p. This avoids
the necessity of combining denominators using Feynman or
Schwinger parameters. The basic integrals needed are

d'p 1 i
kP o e Bl
U ) = e B1a
d"p puPy i
kP - ) B1b
{ (2z)" p° } 327[267]’” (B1b)
PP{ / d'p Wf}
(277.')” pS
i
T T 1927% (Mo + Muillue + Muoin)- (Blc)

From (A14b), it can be seen that

PP{A(x, x)} = —— [m% + (5—1)4. (B2)
8n7e 6
This result can also be obtained from the known coef-
ficients in the heat kernel expansion as described originally
in [54] and provides a check on the local momentum space
expansion.
From (A14d), it can be shown that

i a 1

8n’e (6 2>R'
This result can also be obtained from the known heat
kernel coefficient for nonminimal operators as found in
[46] or [39].

Turning next to A(x, x')G%,(x, x"), we have upon using
the local momentum space expansions (A4) for each Green
function,

PP{G*,(x,x)} = (B3)

da" .
A(x, )G (x, x') :/ D oeirypa,(p:x'),  (B4)

(27)"

where

(p—q:x)G%(q;x').  (BS)

Fab(p;x,) :/(;i:z.?nA

Only terms in the integrand of (B5) that behave like g=* for
large g will result in a pole, so it is clear that the flat
spacetime expressions (A14a) and (A14c) can be used here.
The result is

L (a+3)8,

PP{F",(p;x')} = e (B6)

giving

)

PP{A(x, X )G (x,x')} = e

(B7)

The presence of the Dirac 6 on the right-hand side of (B7)
allows us to deduce that

PP{A(x,x')G"(x,x')} =

=352, (@ 3)g" (x)3(x.x')

(B8)

upon the return to general coordinates.

We also need PP{G*(x,x')V,A(x, x') }. We can use the
local momentum space expansions for the Green functions
to write

V,A(x,x" )G, (x,x')
:/ dnp eip.y/ d"q l( _ )A( _ .xl)Ga ( 'X/)
(2”))1 (27[)” Pu—du P—q; »\4; .

(B9)

Power counting again shows that the pole term coming
from the integrand in (B9) that behaves like g~* can be
found using the flat spacetime terms (Al4a) and (Al4c).
After some calculation, and returning to general coordi-
nates, it follows that

i
3272

PP{G"(x,x')V,A(x,x")} = - (a—=3)V¥6(x,x").

(B10)

The last term needed for the evaluation of (S2) in (3.19)
is PP{G"(x,x")V,V,A(x,x")}. The calculation of this
expression is a bit more involved than the previous ones.
We can write
F(x,x') = G"(x,x)\V,V,A(x,x') = F,(x,x') G (x, x'),

(B11)

with

F(x,x) = e (x)e (' )V,V,A(x, x'). (B12)
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By using the expansion (A13e) and that for the scalar field
Green function (A4) along with (Al4a) and (Al4b), it
follows that

N_ [ dp

1 a =2 1 apv -4
—gRbP —§R pPuPuP + s

e'ry {p“phAl (p;x') + pppp>

(B13)

where the higher-order terms not shown fall off faster than
p~2. Because the vector field Green function behaves at
least like p~2, these higher-order terms cannot contribute to
the pole part of G*(x,x")V,V, A(x, x"). We then find that

n

F(x,x’) = eaﬂ(x/)ehv(x/) / (Cziﬂl)jn eip-yFubW(p;x/), (B14)
where
Fy (pix') = /%Gab(%xl) [(P,, _(Zﬂj(f;;z_ 2
1
6Rllv(p q)
- %R/"y( ~a)(po—4,)(p—q)™*
+Uu—QMQn—QJAMp—qm®+~}.
(B15)

The integrand of (B15) can now be expanded in powers
of g keeping terms that behave like g=*. Both (Al4c) and
(A14d) must be used here. After some calculation, it
follows that

PP{F(x, )} = —— [3(1 _ )0, — am?

872 |4
5 1
+(12a—1—aéj> } 5(y).

To return from Riemann normal to general coordinates, we
must use [1]

(B16)

(Dx + ;R) 8(x, x') = 0,8(y). (B17)

This leads to the result that

PP{G"(x,x')V,V,A(x,x')}

i (3

)] o

(B18)

In Sec. III, we need PP{A%(x,x’)}. This is easily
evaluated using the flat spacetime part of the local
momentum space expansion given in (Al4a). The curva-
ture term in (A14b) cannot contribute to the pole part. It is
easily shown that

PP{A%(x,x')}
= PP{/ é;l;n ei"'y/ (czi:;;]n Ao(p - Q)AO(Q)}

=—=>590
8re (x, %),

(B19)

In a similar way, by using (Al4c), it can be shown that

PP{G" (x,x')G,, (x.x')}

:PP{ / (‘21;’;” eiry / 2 {)] Gy (P—Q)GOW(CI)}

=52 6(3—1—0{ )6(x, x').

(B20)

In (3.3la), we require PP{G"(x,x')V,A(x,x")
V,A(x',x")}. Power counting shows that the curvature
corrections to the Green’s functions cannot contribute to
the pole coming from the product of Green’s functions. The
calculation is, therefore, identical to the flat spacetime
result, and it is easy to show that

PP{G™ (x,x')V,A(x, x") VL A(x, ")}

= 5 x")B( ). (B21)
8re
In a similar way, the expression needed in (3.31b) can be
shown to be

PP{G*(x,x")G"y(x',x")V,V,A(x,x')}

2
= —%5()6, xX)8(x', x").

B22
8re ( )

To evaluate the product of the Green’s functions in
(3.33), it can again be shown that the pole terms come only
from the flat spacetime expansions in the local momentum
space expressions. It can be shown that

PP{G* (x,x")G* (x",x"")V,V]A(x, x"
)
ia

=3 S(x, xXM)S(x", x")5(x!, X"
n’e

VIVLAW. &)

(B23)
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APPENDIX C: THE ANOMALY

We outline the main steps in the derivation that leads up
to (6.1) in this appendix. The path integral approach of
Fujikawa [50-52] is used here and we follow our earlier
paper [1]. We also make use of [[20], Sec. 5.9] for some of
the intermediate details.

The spinor fields y and ¥ in (2.2c¢) can be transformed as

x(x) = ey (x), (C1)

Y(x) = e7 s (x), (C2)

where the angles 9 and @ are chosen to eliminate the
pseudoscalar mass terms. Specifically, we choose

m

sin(29) = W, (C3a)
cos(29) = (%?+m7;1§5)”2 (C3b)
sin(2w) = MW, (C3c)
cos(2w) = —— v (C3d)

(my, + mis)l/z

The Yukawa terms in (2.2c) will also transform, but we do
not require the explicit form of this here. The classical
theories based on the original and transformed fields will
be identical. However, there will be an anomaly in the
quantum theory [1] due to the parity violating pseudoscalar
mass terms.

To calculate this anomaly, it is expedient to adopt
Fujikawa’s [50-52] method and analyze the change in
the measure of the functional integral for the fermion part
of the theory. If we let ¥ be a complete orthonormal set of
solutions to the Dirac equation from (2.2c),

(ir'Vy —my, —imsys)yn(x) = gy (x),  (C4)
and similarly let wpy be a complete orthonormal set of
solutions to

(iy"Dy = my, — imy,sys)wy(x) = Anyy(x),  (C5)
then the effective action for the transformed fields y’ and
¥, that we will call T”, is related to the original effective
action I" for the original fields y and ¥ by

I =T +2ilndet Cyy +2ilndetCyy.  (C6)

The expressions Cy, and Cyy come from the Jacobians in
the functional measure under (C1) and (C2). The explicit
expressions are

CNN/ = COS 195NN/ + l,Ll sin 9 / dvx)_(N(x)}/y(N/(x). (C7)

CNN’ = COS WOy + ip Sinw/d”x‘/_/N(x)Vsll’N’ (x). (C8)

We will allow there to be a background vector field present
in the covariant derivative in (C5) for generality although
this is not central to the calculation.

By making use of the orthonormality and completeness
of the modes yy and yy, it can be shown as described in [1]
that

9
In det CNN’ = —ﬁ/d’l)xtr[]@EQ(X)L (Cg)
~ a ~
Indet Cyy =~ / dv telysEy(x)], (C10)
JT

where E, and E, are the heat kernel coefficients for the
Dirac operators in (C4) and (C5). Making use of (3.48)
shows that

i
In det CNN/ = W/ dUXEiapTRﬂyio.Rﬂpr, (Cll)
~ i
In det CNN’ = 7687[2 / dee/lapTRﬂbio-R"pr
ie’w
e / dv, " F ,,F,,. (C12)
(More details of the derivation can be found in

[[20], Sec. 5.9].)
Substitution of (C11) and (C12) back into (C6) shows
that

(94 w)
38472

/ dvxe"”’l{’Fm,FM.

I'=TI- /dvxe’l"’”RWMR””p,

elw

+ 1672

(C13)

8 and o can be eliminated in terms of the masses using
(C4). This leads directly to (6.1) if the background vector
field is dropped.
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