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The Yukawa model in curved spacetime is considered. We consider a complex scalar field coupled to a
Uð1Þ gauge field and also interacting with Dirac fields with a general Yukawa coupling. The local momentum
space method is used to obtain the one-loop effective action, and we adopt the gauge condition independent
background field method introduced by Vilkovisky and DeWitt. The pole parts of the one-loop effective
action that depend on the background scalar field, that we do not assume to be constant, are found and used
to calculate the counterterms and to determine the relevant renormalization group functions. Terms in the
effective action that involve the gradient terms in the scalar field as well as the effective potential are found in
the case where the scalar field and Dirac fields are massless. We also discuss the anomaly that arises if the
pseudoscalar mass term for the Dirac fermions is removed by a chiral transformation.
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I. INTRODUCTION

The study of a general Yukawa model in curved
spacetime was provided recently [1]. The principle aim
of the present paper is to generalize this analysis by the
inclusion of a gauge field. The issue of the possible
dependence on the gauge condition is addressed through
the use of the Vilkovisky-DeWitt [2,3] formalism. We
obtain a result for the effective action, including terms that
involve the background scalar field gradient, at one-loop
order up to and including terms that are quadratic in the
curvature. This means that we do not restrict the back-
ground scalar field to be constant.
There is some previous work on Yukawa interactions

with scalars in curved spacetime. A selected set of
references includes [4–17]. In particular, [17] has looked
at the renormalization group improved effective potential
for the standard model in some detail and shown the
potential importance of the R2 terms in cosmology. The
generalization of the original Coleman and Weinberg [18]
analysis to curved spacetime was originally given by [19]
but with the neglect of the R2 terms. (See the overview in
[20] based on earlier analysis in Ref. [21].) Yukawa
interactions have also been considered in the asymptotic
safety program for quantum gravity [22–26], as well as in

perturbative quantum gravity [27], including unimodular
gravity [28–30] and scale-invariant gravity [31].
The outline of our paper is as follows. The general model

of a charged scalar field interacting with a gauge filed and a
spinor field through a Yukawa interaction is given in Sec. II.
Both scalar and pseudoscalar mass terms are included, as are
scalar and pseudoscalar Yukawa couplings. A brief descrip-
tion of the background field method [2,3,20,32] is given in
Sec. III, and the formal expression for the one-loop effective
action is given. All the pole parts for the one-loop effective
action coming from the vector and scalar fields are found.
The local momentum space method originated by Bunch and
Parker [33] is used. In Sec. IV, we evaluate the pole part of
the one-loop effective action that arises from the spinor fields
in two ways: one method uses a perturbative approach like
that for the Bose fields in Sec. III; the other uses a direct
functional integral evaluation. Both methods are shown to
agree. In Sec. V, we combine all the results for the pole terms
from previous sections and work out the necessary counter-
terms and renormalization group functions. The renormal-
ization group is used to evaluate the effective potential and
the gradient part of the effective action in the case where
neither the scalar field nor the spinor field have mass. We
present a short discussion in the last section and comment on
an anomaly that arises [1] if the pseudoscalar mass term for
the fermions is removed by a chiral transformation. Some of
the technical calculations are contained in the Appendices.

II. THE GAUGED YUKAWA MODEL
IN CURVED SPACETIME

We will consider a complex scalar field ΦðxÞ coupled to
a Uð1Þ gauge field AμðxÞ in a gauge-invariant way. To have
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a gauge-invariant Yukawa interaction, we must consider
two Dirac fields, one uncharged that we will call χðxÞ, and
one charged that we will call ΨðxÞ. We will allow the
possibility of both a scalar and a pseudoscalar Yukawa
couplings. The spacetime dimension will be four, and we
will adopt dimensional regularization [34]. All our con-
ventions for curvature and spinors will follow those in
Parker and Toms [20]. The bare action will be taken to be
(with the subscript “B” signifying a bare quantity)

S ¼ Sscalar þ Svector þ Sspinor þ Sgrav; ð2:1Þ

where

Sscalar ¼
Z

dvx

�
ðDμΦBÞ†ðDμΦBÞ −m2

s BjΦBj2

− ξBRjΦBj2 −
λB
6
jΦBj4

�
; ð2:2aÞ

Svector ¼ −
1

4

Z
dvxFμνFμν; ð2:2bÞ

Sspinor ¼
Z

dvx½χ̄ðiγμ∇μ −mχ − imχ5γ5Þχ

þ Ψ̄ðiγμDμ −mψ − imψ5γ5ÞΨ−Φ†χ̄ðwþ iw5γ5ÞΨ
−ΦΨ̄ðw� þ iw�

5γ5Þχ�; ð2:2cÞ

Sgrav ¼
Z

dvxðΛB þ κBRþ α1BRμνλσRμνλσ

þ α2BRμνRμν þ α3BR2Þ: ð2:2dÞ

We use dvx to stand for the invariant spacetime volume
element: dvx ¼ j det gμνðxÞj1=2dnx. The gauge covariant
derivative Dμ is defined by

Dμ ¼ ∇μ − ieAμ; ð2:3Þ

where ∇μ is the spacetime covariant derivative. The gauge
and spinor fields, as well as the spinor mass terms and
Yukawa couplings, are also bare but as we will not need to
consider their renormalization here we will not indicate this
explicitly. The theory is invariant under the local Uð1Þ
gauge transformation:

ΦðxÞ → eieθðxÞΦðxÞ; ð2:4aÞ

ΨðxÞ → eieθðxÞΨðxÞ; ð2:4bÞ

AμðxÞ → AμðxÞ þ∇μθðxÞ; ð2:4cÞ

χðxÞ → χðxÞ: ð2:4dÞ

Fμν ¼ ∇μAν −∇νAμ is the usual field strength tensor.
The Yukawa coupling constants are denoted by w and w5

and can be taken as arbitrary complex numbers. We
allow for the possibility of both scalar and pseudoscalar
couplings. Likewise, we include both scalar and pseu-
doscalar mass terms for the spinor fields. As discussed in
[1], it is possible to remove the pseudoscalar mass term
by a chiral transformation on the spinor fields; however,
the effective action is not invariant under this change due
to an anomaly. This anomaly does not affect the one-
loop counterterms, but we will leave the action in the
form given above. γμ are the spacetime dependent Dirac
matrices [20] defined in terms of the usual Minkowski
ones [35] γa by γμ ¼ eaμγa with eaμ the vierbein. (Latin
letters will denote orthonormal frame indices.) γ5 is
Hermitian with γ25 ¼ I, where I the identity matrix and
constant (since it is defined in terms of the local
orthonormal frame γ-matrices). The factors of i in
(2.2c) ensure that the action is real. The gravitational
part of the action, Sgrav, is required to deal with the
vacuum part of the effective action [20,36].
Our aim here is to calculate the curved spacetime

effective potential to one-loop order using the renormali-
zation group. We will, therefore, expand about a general
scalar field background but set the background gauge and
spinor fields to zero. Because we are only working to one-
loop order, we only need to keep terms in the expansion of
the action that are quadratic in the quantum fields (which
are those that are integrated over in the functional integral
that defines the effective action). It is simplest to do this if
we write the complex scalar field in terms of its real and
imaginary parts as

Φ ¼ 1ffiffiffi
2

p ðΦ1 þ iΦ2Þ: ð2:5Þ

The Uð1Þ gauge symmetry now becomes an Oð2Þ
symmetry for ðΦ1;Φ2Þ. We can use this symmetry to
take the background scalar field to lie in the Φ1 direction
without any loss of generality. We will, therefore, take
the background field expansion of the complex scalar
field Φ to be

Φ ¼ 1ffiffiffi
2

p ðφþ ϕ1 þ iϕ2Þ; ð2:6Þ

where φðxÞ is the background scalar field, which is real,
and ϕ1;ϕ2 are the quantum fields that are integrated over
in the functional integral.
Using (2.6), we find from (2.2) that the terms in the

action that are quadratic in the quantum fields are
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Squad ¼
1

2

Z
dvx

�
Aμ□Aμ þ RμνAμAν þ ð∇μAμÞ2 − ϕ1ð□þm2

s þ ξRÞϕ1 − ϕ2ð□þm2
s þ ξRÞϕ2 −

λ

4
φ2ϕ2

1 −
λ

12
φ2ϕ2

2

þ eAμϕ2∇μφ − eAμφ∇μϕ2 þ
e2

2
φ2AμAμ

�
þ
Z

dvx

�
χ̄ðiγμ∇μ −mχ − imχ5γ5Þχ þ Ψ̄ðiγμ∇μ −mψ − imψ5γ5ÞΨ

−
1ffiffiffi
2

p φχ̄ðwþ iw5γ5ÞΨ −
1ffiffiffi
2

p φΨ̄ðw� þ iw�
5γ5Þχ

�
: ð2:7Þ

Because there are no direct couplings between the quantum
Fermi fields ð χ;ΨÞ and the quantum Bose fields
ðAμ;ϕ1;ϕ2Þ, the functional integral will factorize. The
contributions from the Bose and Fermi fields can be
considered separately, and this will be done in Secs. III
and IV, respectively.

III. CONTRIBUTION TO THE EFFECTIVE
ACTION FROM BOSE FIELDS

To compute the contribution of Bose fields to the effective
action, we must first choose a gauge condition. We will
utilize the Vilkovisky-DeWitt method [2,3] here. All our
conventions and notation will follow [20], where a more
detailed description can be found. The formalism gives a
result for the effective action that is completely independent
of the choice of gauge condition. Although it is possible
to proceed with a general gauge choice, as emphasized
originally by Fradkin and Tseytlin [37], calculations are
considerably simpler if a special gauge condition is chosen,
namely the Landau-DeWitt gauge. If we let φi represent the
complete set of fields in condensed notation, then the set of
gauge transformations can be written as

δφi ¼ Ki
α½φ�δϵα; ð3:1Þ

for someKi
α. Here δϵα represent the infinitesimal parameters

of thegauge transformation. From (2.4),we have [using (2.5)]

δϕ1 ¼ −eδϵϕ2; ð3:2aÞ

δϕ2 ¼ eδϵϕ1; ð3:2bÞ

δAμ ¼ ∇μδϵ: ð3:2cÞ

The expressions for Ki
α can be simply read off from

comparison with (3.1).
The central idea behind the Vilkovisky-DeWitt method is

to consider a metric on the space of fields and use this to
construct a connection. The effective action can then be
obtained in a completely covariant way that is independent
of how the fields are parametrized, as well as independent
of the gauge condition. The field space metric can be
obtained from the derivative terms in the action by analogy
with the nonlinear sigma model (where a covariant
approach is both obvious and natural). Because of the

sign difference in the □ terms of (2.7) for the gauge and
scalar fields, we can choose the field space metric, gij in
condensed notation, to be

gij ¼
�−gμν 0

0 I

�
δðx; x0Þ; ð3:3Þ

with the choice ðAμ;ϕ1;ϕ2Þ for the condensed index expres-
sion φi. With our conventions, if we perform aWick rotation
to imaginary time, gij becomes positive definite, hence, the
overall sign choice in (3.3).
If we now write the background field expansion gen-

erally as

φi ¼ φi⋆ þ ηi; ð3:4Þ

where φi⋆ is the background field and ηi is the quantum
field, then the Landau-DeWitt gauge condition reads

gij½φ⋆�Ki
α½φ⋆�ηj ¼ 0: ð3:5Þ

If we uncondense the indices in (3.5), we have

∇μAμ þ eφϕ2 ¼ 0; ð3:6Þ

for the case under consideration here. The gauge condition
can be enforced with a δ function in the functional integral
that defines the effective action along with a Faddeev-
Popov factor that follows from (3.6) in the usual way by
considering the change in (3.6) under the infinitesimal
gauge transformation (3.2). The background field is held
fixed for this. The resulting Faddeev-Popov determinant
is detð□þ e2φ2Þ.
The Vilkovisky-DeWitt connection has two main terms.

The first is the Christoffel connection that follows from the
field space metric gij. Because there is no dependence on the
fields in (3.3), this will vanish in our case. The second term
in the connection involves the gauge transformation gen-
erator Ki

α and its derivative. (The exact expression can be
found in [[20], page 378], for example.) However, as noted
by Fradkin and Tseytlin [37], this term makes no contribu-
tion to the effective action at one-loop order if we adopt the
Landau-DeWitt gauge condition. (This is very easy to see at
one-loop order, and an inductive proof [[20], Sec. 7.5.1]
shows that it holds to all orders in the loop expansion.) The
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net result is that we may now proceed as usual in our
evaluation of the effective action with the assurance that
everything is covariant and independent of the gauge
condition. If any other gauge choice than Landau-DeWitt
is made, then the calculation is more involved as the full
Vilkovisky-DeWitt connection must be used.
The one-loop effective action coming from the Bose

fields Γð1Þ
Bose is given by

eiΓ
ð1Þ
Bose ¼

Z
½dφi�δ½∇μAμ þ eφϕ2� detð□þ e2φ2ÞeiSBosequad ;

ð3:7Þ
where ½dφi� denotes integration over the Bose fields
ðAμ;ϕ1;ϕ2Þ, and SBosequad is the quadratic part of (2.7) coming
from just the Bose fields. The δ function in the integrand
can be exponentiated using the standard representation for
the δ function,

δðxÞ ¼ lim
α→0

ð−2πiαÞ−1=2e− i
2αx

2

; ð3:8Þ

extended to functions. Ignoring any overall constants that
can be absorbed into the functional measure, we then have

eiΓ
ð1Þ
Bose ¼ detð□þ e2φ2Þ

Z
½dφi�eiS̃Bosequad ; ð3:9Þ

where

S̃Bosequad ¼ SBosequad −
1

2α

Z
dvxð∇μAμ þ eφϕ2Þ2: ð3:10Þ

The α → 0 limit is understood in (3.9).

We are interested in terms in Γð1Þ
Bose that contain poles that

involve the background scalar field φ. We can write

S̃Bosequad ¼ S0 þ S1 þ S2; ð3:11Þ
where the subscript on the right-hand side counts the power
of φ that occurs. From (2.7) and (3.10), we have

S0 ¼
1

2

Z
dvx

�
Aμ□Aμ þ RμνAμAν −

�
1 −

1

α

�
Aμ∇μ∇νAν

− ϕ1ð□þm2
s þ ξRÞϕ1 − ϕ2ð□þm2

s þ ξRÞϕ2

�
;

ð3:12aÞ

S1 ¼
Z

dvx

�
e

�
1þ 1

α

�
Aμϕ2∇μφ − e

�
1 −

1

α

�
φAμ∇μϕ2

�
;

ð3:12bÞ

S2 ¼
Z

dvx

�
−
λ

4
φ2ϕ2

1 −
�
λ

12
þ e2

2α

�
φ2ϕ2

2 þ
e2

2
φ2AμAμ

�
:

ð3:12cÞ

Because we will be calculating the effective potential using
the renormalization group functions, it is essential to
consider any possible renormalization of the background
scalar field φ. This means it is not allowed to assume
that φ is constant as this will miss any possible field
renormalization.
The term in S0 will contribute to the vacuum part of the

effective action that we will consider later. We will initially

concentrate on those terms in Γð1Þ
Bose that involve the back-

ground scalar field φ with the goal of identifying the
renormalization counterterms and the scalar field renorm-
alization factor so that the renormalization group functions
can be found. Because the integrand in (3.9) involves a
Gaussian, it is possible to use the heat kernel method, but
this is complicated by the fact that the resulting operator is
not diagonal in the fields, and additionally that the operator
for the vector fields is not minimal due to the presence of
the Aμ∇μ∇νAν term in (3.12a). It would be possible to use
the method of Barvinsky and Vilkovisky [38] or else of
Moss and Toms [39] here, but we will instead make use of a
different method that makes more contact with a traditional
Feynman diagram analysis.
We will treat S1 þ S2 as the interaction part of the action

with S0 determining the Green’s functions or propagators.
The one-loop effective action in (3.9) becomes

Γð1Þ
Bose ¼ −i ln detð□þ e2φ2Þ − iheiðS1þS2Þi; ð3:13Þ

where h� � �i means to evaluate using Wick’s theorem with
only terms corresponding to connected diagrams kept. The
basic Green functions are defined by

hAμðxÞAνðx0Þi ¼ iGμνðx; x0Þ; ð3:14aÞ

hϕ1ðxÞϕ1ðx0Þi ¼ hϕ2ðxÞϕ2ðx0Þi ¼ iΔðx; x0Þ; ð3:14bÞ

where

�
gμλ□þ Rμλ −

�
1 −

1

α

�
∇μ∇λ

�
Gλνðx; x0Þ ¼ δμνδðx; x0Þ;

ð3:15aÞ

ð−□ −m2
s − ξRÞΔðx; x0Þ ¼ δðx; x0Þ: ð3:15bÞ

Terms like hAμðxÞϕ1ðx0Þi that involve different Bose fields
will vanish because S0 is diagonal in the fields. When the
exponential in (3.13) is expanded in powers of S1 þ S2,
this will ensure that all terms that are odd in φ will vanish.
By simple power counting, which is valid at one-loop order,
all terms that involve φ with a power that exceeds four
will be finite and contain no pole terms in dimensional
regularization; these terms can make no contribution to the
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renormalization group functions. If we denote the pole part
of any expression by PPf� � �g, it then follows from (3.13)
that

PPfΓð1Þ
Boseg¼−iPPflndetð□þe2φ2ÞgþPPfΓ2gþPPfΓ4g;

ð3:16Þ

where

Γ2 ¼ hS2i þ
i
2
hS21i ð3:17Þ

is quadratic in φ, and

Γ4 ¼
i
2
hS22i −

1

2
hS21S2i −

i
24

hS41i ð3:18Þ

is quartic in φ. We will evaluate the pole parts of Γ2 and Γ4

in the next two subsections. The first term on the right-hand
side of (3.18) will be evaluated in Sec. III C.

A. PPfΓ2g
By using (3.12b) along with (3.14), it can be shown that

hS21i ¼ −e2
Z

dvxdvx0
��

1þ 1

α

�
2∇μφðxÞ∇0νφðx0ÞGμνðx; x0ÞΔðx; x0Þ − 2

�
1 −

1

α2

�
φðxÞ∇0νφðx0ÞGμνðx; x0Þ∇μΔðx; x0Þ

þ
�
1 −

1

α

�
2

φðxÞφðx0ÞGμνðx; x0Þ∇μ∇0νΔðx; x0Þ
�
: ð3:19Þ

In a similar way,

hS2i ¼ i
Z

dvx

�
−
�
e2

2α
þ λ

3

�
φ2ðxÞΔðx; xÞ

þ e2

2
φ2ðxÞGμ

μðx; xÞ
�
: ð3:20Þ

The calculation of (3.19) is the most involved, so we will do
it first.
To evaluate the pole parts of the products of Green

functions, wewill use the local momentum space method of
Bunch and Parker [33] and dimensional regularization [34].
An outline of the details is given in Appendix A. Details
of the extraction of the pole terms of the Green function
expressions are given in Appendix B.
If we use (B8), (B10), and (B18) in (3.19), we obtain

PPfhS21ig ¼ ie2

8π2ϵ

Z
dvx

�
ðα − 5Þ∇μφ∇μφ

þ
�
2 − α −

1

α

��
m2

s þ
�
ξ −

1

6

�
R

�
φ2

�
:

ð3:21Þ

Using (B2) and (B3) in (3.20) results in

PPfhS2ig ¼ 1

8π2ϵ

Z
dvx

�
e2

4

�
α

3
− 1

�
Rφ2

−
�
λ

3
þ e2

2α

��
m2

s þ
�
ξ −

1

6

�
R

�
φ2

�
: ð3:22Þ

Using (3.21) and (3.22) in (3.17), we find that

PPfΓ2g ¼ 1

8π2ϵ

Z
dvx

�
e2

2
ð5 − αÞ∇μφ∇μφ

þ e2
�
α

12
−
1

4

�
Rφ2 −

�
λ

3
þ e2

�
1 −

α

2

��

×
�
m2

s þ
�
ξ −

1

6

�
R
�
φ2

�
; ð3:23Þ

before the α → 0 limit is taken. Note that the terms in 1=α
that occur separately in (3.21) and (3.22) cancel to leave a
result that is finite as α → 0. This cancellation provides a
useful check on the algebraic technicalities since the α → 0
limit must exist. The final result for the pole terms in the
effective action that are quadratic in φ coming from the
scalar and vector fields is (now letting α → 0)

PPfΓ2g ¼ 1

8π2ϵ

Z
dvx

�
5

2
e2∇μφ∇μφ −

1

4
e2Rφ2

−
�
λ

3
þ e2

���
m2

s þ
�
ξ −

1

6

�
R

�
φ2

�
: ð3:24Þ

B. PPfΓ4g
We will now use (3.18) to evaluate the pole terms in

the one-loop effective action that arise from the Bose fields
and that are quartic in the background scalar field φ.
We will take each of the four terms in (3.18), in turn,
using (3.12b) for S1 and (3.12c) for S2.

1. PPfhS22ig
It is convenient to write (3.12c) as the sum of the two

terms,
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S21 ¼ −
Z

dvxφ2ðxÞ
�
λ

4
ϕ2
1 þ

�
λ

12
þ e2

2α

�
ϕ2
2

�
; ð3:25aÞ

S22 ¼
e2

2

Z
dvxφ2ðxÞAμAμ: ð3:25bÞ

It then follows that

hS22i ¼ hS221i þ hS222i: ð3:26Þ

The cross term hS21S22i vanishes since it does not give rise
to a connected Feynman diagram. Using (3.14), it can be
shown that

hS221i ¼ −2
�
λ2

16
þ
�

λ

12
þ e2

2α

�
2
� Z

dvx

×
Z

dvx0φ2ðxÞφ2ðx0ÞΔ2ðx; x0Þ; ð3:27aÞ

hS222i ¼
e4

2

Z
dvx

Z
dvx0φ2ðxÞφ2ðx0ÞGμνðx; x0ÞGμνðx; x0Þ:

ð3:27bÞ

Power counting shows that the pole parts of both
Δ2ðx; x0Þ and Gμνðx; x0ÞGμνðx; x0Þ come from the flat

spacetime parts of the local momentum space expansions
described in Appendix A. From (B19) and (B20), we find

PPfhS22ig ¼ −
i

8π2ϵ

�
5λ2

72
þ λe2

12α
þ e4

4α2
þ 3

4
e4 þ α2

4
e4
�

×
Z

dvxφ4ðxÞ; ð3:28Þ

when the results from (3.27a) and (3.27b) are combined.

2. PPfhS21S2ig
We can write the result in (3.12b) for S1 as the sum of the

two terms

S11 ¼ e

�
1þ 1

α

�Z
dvxAμðxÞϕ2ðxÞ∇μφðxÞ; ð3:29aÞ

S12 ¼ −e
�
1 −

1

α

�Z
dvxφðxÞAμðxÞ∇μϕ2ðxÞ: ð3:29bÞ

Power counting shows that

PPfhS21S2ig ¼ PPfhS212S2ig: ð3:30Þ

If we use S2 ¼ S21 þ S22 as in (3.25), we have

hS212S21i ¼ 2ie2
�
1 −

1

α

�
2
�

λ

12
þ e2

2α

�Z
dvx

Z
dvx0

Z
dvx00φðxÞφðx0Þφ2ðx00ÞGμνðx; x0Þ∇μΔðx; x00Þ∇0

νΔðx0; x00Þ; ð3:31aÞ

hS212S22i ¼ −ie4
�
1 −

1

α

�
2
Z

dvx

Z
dvx0

Z
dvx00φðxÞφðx0Þφ2ðx00ÞGμλðx; x00ÞGν

λðx0; x00Þ∇μ∇0
νΔðx; x0Þ: ð3:31bÞ

The pole parts of the Green’s function expressions appearing in (3.31) are evaluated in (B21) and (B22) in Appendix B. It
can be shown that

PP

�
−
1

2
hS21S2i

�
¼ e2ðα − 1Þ2

16π2ϵ

�
λ

6α
þ e2

α2
þ e2

�Z
dvxφ4ðxÞ: ð3:32Þ

3. PPfhS41ig
If we use (3.29), it can be seen, based on power counting, that

PPfhS41ig ¼ PPfhS412ig

¼ 6e4
�
1 −

1

α

�
4
Z

dvx

Z
dvx0

Z
dvx00

Z
dvx000φðxÞφðx0Þφðx00Þφðx000Þ

×Gμνðx; x0ÞGλσðx00; x000Þ∇μ∇00
λΔðx; x00Þ∇0

ν∇000
σ Δðx0; x000Þ: ð3:33Þ

The pole part of the product of the Green’s functions here is evaluated in (B23) from Appendix B and gives
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PP

�
−

i
24

hS41i
�

¼ −
e4ðα − 1Þ4
32π2ϵα2

Z
dvxφ4ðxÞ: ð3:34Þ

If we now combine the three terms found in (3.28),
(3.32), and (3.34), the pole part of Γ4 from (3.18) turns out
to be

PPfΓ4g ¼ −
1

8π2ϵ

�
5

72
λ2 þ 1

6

�
1 −

α

2

�
λe2 þ 5

4
e4
�

×
Z

dvxφ4ðxÞ: ð3:35Þ

All the potentially troublesome terms in α−1 and α−2 that
arose at intermediate stages and which would have pre-
vented taking the Landau-DeWitt limit α → 0 have can-
celled. The limit α → 0 can now be taken in (3.35) to obtain
the gauge-independent result. It must be remembered that
this is only part of the effective action, and the ghost fields
and fermions must also be included.

C. Ghost contribution

From (3.13), the ghost contribution to the one-loop
effective action is

Γð1Þ
ghost ¼ −i ln detð□þ e2φ2Þ: ð3:36Þ

We will first use the perturbative approach utilized in the
earlier sections to evaluate the pole part. The result will then
be checked with the heat kernel method.
Start by writing (3.36) as a functional integral over the

Faddeev-Popov ghost fields c̄ðxÞ and cðxÞwhich are treated
as anticommuting:

Γð1Þ
ghost ¼ −i ln

Z
½dcdc̄�ei

R
dvxc̄ðxÞð□þe2φ2ÞcðxÞ: ð3:37Þ

We can treat the e2φ2 part as an interaction term,

Sintghost ¼ e2
Z

dvxφ2ðxÞc̄ðxÞcðxÞ: ð3:38Þ

As in (3.13), we find

Γð1Þ
ghost ¼ −iheiSintghosti; ð3:39Þ

with h� � �i meaning to Wick reduce the expression with
only connected terms kept. If we just concentrate on the
terms that involve the background field φ and that can
contain poles, we have

PPfΓð1Þ
ghostg ¼ PPfhSintghosti þ

i
2
hðSintghostÞ2ig: ð3:40Þ

The Wick reduction is performed by treating c̄; c as
anticommuting with the basic relation

hcðxÞc̄ðx0Þi ¼ −iΔgðx; x0Þ; ð3:41Þ

where

−□Δgðx; x0Þ ¼ δðx; x0Þ: ð3:42Þ

The signs were chosen here so that Δgðx; x0Þ coincides with
the scalar field Green’s function Δðx; x0Þ in (3.15b) with
m2

s ¼ 0 and ξ ¼ 0. We immediately have the local momen-
tum space expansion from (A14a) and (A14b) as

Δgðx; x0Þ ¼
Z

dnp
ð2πÞn e

ip·y

�
1

p2
þ 2

3
Rμνpμpνp−6

−
1

3
Rp−4 þ � � �

�
; ð3:43Þ

where terms up to and including p−4 have been shown.
Using (3.38) and (3.41), we have

hSintghosti ¼ ie2
Z

dvxφ2ðxÞΔgðx; xÞ; ð3:44aÞ

hðSintghostÞ2i¼ e4
Z

dvx

Z
dvx0φ2ðxÞφ2ðx0ÞΔgðx;x0ÞΔgðx0;xÞ:

ð3:44bÞ

Using the dimensionally regulated result of (B1a) and
(B1b), it is easy to show that

PPfΔgðx; xÞg ¼ i
48π2ϵ

R; ð3:45aÞ

PPfΔgðx; x0ÞΔgðx0; xÞg ¼ −
i

8π2ϵ
δðx; x0Þ: ð3:45bÞ

The pole part of Γð1Þ
ghost that depends on φ is, therefore, given

from (3.40) by

PPfΓð1Þ
ghostg ¼ 1

16π2ϵ

Z
dvx

�
−
1

3
e2Rφ2 þ e4φ4

�
: ð3:46Þ

Asmentioned above, we can use the heat kernel method to
check this result. Use of known heat kernel coefficients
[32,40,41] (see [20,42–45] for reviews) allows us, in
addition, to obtain the vacuum part of the pole part of the
one-loop effective action coming from the ghost fields that is
independent of the background scalar field. (The vacuum
part could also be found by using the local momentum space
method, but this would entail working to higher order in the
expansions than we have done here. See, e.g., [33,46].) For
any covariant derivative Dμ and any QðxÞ, we have (using
the notation of [[20], pages 193–194])
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PPfi ln detðD2 þQÞg ¼ −
1

8π2ϵ

Z
dvxtrE2ðxÞ; ð3:47Þ

where

E2 ¼
�
1

72
R2 −

1

180
RμνRμν þ

1

180
RμνλσRμνλσ

�
I

þ 1

12
WμνWμν þ

1

2
Q2 −

1

6
RQ; ð3:48Þ

where Wμν ¼ ½Dμ; Dν�. (A total derivative term that cannot
contribute to (3.47) has been omitted here.) For the ghosts,
Dμ ¼ ∇μ acting on scalars, so Wμν ¼ 0 for the ghost fields.
There is only one field, so the trace in (3.47) is redundant.
The expression for Q is Q ¼ e2φ2ðxÞ from (3.36). We,
therefore, find

PPfΓð1Þ
ghostg¼

1

16π2ϵ

Z
dvx

�
1

36
R2−

1

90
RμνRμν

þ 1

90
RμνλσRμνλσ−

1

3
e2Rφ2þe4φ4

�
: ð3:49Þ

The terms that involve φ are seen to be the same as those
found earlier in (3.46). In addition to a vacuum contribution,
the ghost fields will only contribute to the ξ and λ
renormalization group functions.

IV. CONTRIBUTION TO THE EFFECTIVE
ACTION FROM FERMI FIELDS

We now turn to the contributions from the fermion fields
Ψ and χ whose action was given in (2.7). This will be done
in two ways, one using the part of the action that involves φ
treated as an interaction and proceeding as we did in
Sec. III, and the other way using a functional approach.

A. Perturbative approach

From (2.7), we can define a term in S1 that is linear in φ
as S1 ¼ S11 þ S12 where

S11 ¼ −
1ffiffiffi
2

p
Z

dvxφðxÞχ̄ðxÞðwþ iw5γ5ÞΨðxÞ; ð4:1Þ

S12 ¼ −
1ffiffiffi
2

p
Z

dvxφðxÞΨ̄ðxÞðw� þ iw�
5γ5ÞχðxÞ: ð4:2Þ

From (3.17) and (3.18), we have the parts of the one-loop
effective action that are quadratic and quartic in φ as

Γfermion
2 ¼ i

2
hS21i; ð4:3Þ

Γfermion
4 ¼ −

i
24

hS41i; ð4:4Þ

Note that there is no term in S2 here, and that there are no
terms odd in φ as these would involve unequal (odd)
numbers of Ψ and of χ fields that integrate to zero in the
functional integral. The essential difference between the
Fermi and Bose cases is that here we must treat the fields Ψ
and χ as anticommuting in the functional integration.
We will define the Feynman Green’s functions for the

two spinor fields to be Ψðx; x0Þ and χðx; x0Þ where

ðiγμ∇μ −mψ − imψ5γ5ÞΨðx; x0Þ ¼ −δðx; x0Þ; ð4:5Þ

ðiγμ∇μ −mχ − imχ5γ5Þχðx; x0Þ ¼ −δðx; x0Þ: ð4:6Þ

The basic results needed to evaluate (4.3) and (4.4) are

hΨαðxÞΨ̄βðx0Þi ¼ −iΨαβðx; x0Þ; ð4:7Þ

hχαðxÞχ̄βðx0Þi ¼ −iχαβðx; x0Þ; ð4:8Þ

where α and β denote spinor indices.
It is now straightforward to show that hS21i ¼ 2hS11S12i

and then to show that

Γfermion
2 ¼ i

2

Z
dvx

Z
dvx0φðxÞφðx0Þ

× tr½ðwþ iw5γ5ÞΨðx; x0Þðw� þ iw�
5γ5Þχðx0; xÞ�:

ð4:9Þ

For (4.4) it follows first that hS41i ¼ 6hS211S212i, and then that

Γfermion
4 ¼ i

8

Z
dvx

Z
dvx0

Z
dvx00

Z
dvx000φðxÞφðx0Þφðx00Þφðx000Þtr½ðwþ iw5γ5ÞΨðx; x0Þ

× ðw� þ iw�
5γ5Þχðx0; x00Þðwþ iw5γ5ÞΨðx00; x000Þðw� þ iw�

5γ5Þχðx000; xÞ�: ð4:10Þ

Before evaluating the pole parts of the two expressions in (4.9) and (4.10) we will show how they can be obtained using
functional methods. This serves as a useful check on the results.
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B. Functional approach

Write the fermion part of the action in (2.7) in the matrix
form

Sfermion ¼
Z

dvx

Z
dvx0 ðΨ̄ðxÞ; χ̄ðxÞÞ

�
Aðx; x0Þ Bðx; x0Þ
Cðx; x0Þ Dðx; x0Þ

�

×

�Ψðx0Þ
χðx0Þ

�
; ð4:11Þ

where

Aðx; x0Þ ¼ ðiγμ∇μ −mψ − imψ5γ5Þδðx; x0Þ; ð4:12aÞ

Bðx; x0Þ ¼ −
1ffiffiffi
2

p φðxÞðwþ iw5γ5Þδðx; x0Þ; ð4:12bÞ

Cðx; x0Þ ¼ −
1ffiffiffi
2

p φðxÞðw� þ iw�
5γ5Þδðx; x0Þ; ð4:12cÞ

Dðx; x0Þ ¼ ðiγμ∇μ −mχ − imχ5γ5Þδðx; x0Þ: ð4:12dÞ

Integration over the anticommuting fieldsΨ and χ gives the
full contribution to the effective action coming from the
fermions as

Γfermion ¼ −i ln det F ; ð4:13Þ

where F is the matrix appearing in (4.11). The only φ
dependence is through B and C in (4.12b) and (4.12c).
We can write

F ¼
�
A 0

0 D

���
I 0

0 I

�
þ
�

0 A−1B

D−1C 0

��
: ð4:14Þ

Note that ðA−1BÞðx; x0Þ ¼ R
dvx00A−1ðx; x00ÞBðx00; x0Þ here.

From (4.5), it can be seen that

A−1ðx; x0Þ ¼ −Ψðx; x0Þ; ð4:15Þ

and from (4.6) that

D−1ðx; x0Þ ¼ −χðx; x0Þ; ð4:16Þ

Using (4.14) in (4.13) results in

Γfermion ¼ −i ln det
�
A 0

0 D

�
− iTrðI þ XÞ; ð4:17Þ

where

X ¼
�

0 A−1B

D−1C 0

�
: ð4:18Þ

Here we use Tr to denote the functional as well as the Dirac
trace. So e.g., TrX ¼ R

dvxtrXðx; xÞ where tr is just the
Dirac trace.
All the dependence on φ occurs in X in (4.17). The first

term in (4.17) gives the vacuum contribution that we will
consider later. The term in TrðI þ XÞ can be expanded in
powers of X. Because X takes the off-diagonal form given
in (4.18) all terms odd in X will have a vanishing trace.
This means that Γfermion will be even in φ, a result that was
also noted above using the perturbative approach. Keeping
terms up to quartic order in φ we have

Γfermion ¼ −i ln det
�
A 0

0 D

�
þ i
2
TrðX2Þ þ i

4
TrðX4Þ þ � � � :

ð4:19Þ

From (4.18), we have

X2 ¼
�
A−1BD−1C 0

0 D−1CA−1B

�
; ð4:20aÞ

X4 ¼
� ðA−1BD−1CÞ2 0

0 ðD−1CA−1BÞ2
�
: ð4:20bÞ

It is now easy to see that

i
2
TrðX2Þ ¼ Γfermion

2 ; ð4:21Þ

and that

i
4
TrðX4Þ ¼ Γfermion

4 ; ð4:22Þ

where (4.9) and (4.10) are regained.

C. Evaluation of PPfΓfermion
2 g

Suppose that we define

ζ2ðx;x0Þ¼PPftr½Ψðx;x0Þðw�þ iw�
5γ5Þχðx0;xÞðwþ iw5γ5Þ�g:

ð4:23Þ

We need the local momentum space expansions for the
Feynman Green’s functions. The results follow from [1],

Ψðx;x0Þ¼
Z

dnp
ð2πÞne

ip·y½Ψ0ðpÞþΨ1ðp;x0Þþ����; ð4:24Þ

where

Ψ0ðpÞ ¼
=p −mψ þ im5ψγ5
ðp2 −m2

ψ −m2
5ψÞ

ð4:25Þ

is the flat spacetime expression, and
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Ψ1ðp; x0Þ ¼
1

3
Rμαλβpμpβð=p −mψ þ im5ψγ5Þγ0λγ0αðp2 −m2

ψ −m2
5ψ Þ−3 −

1

12
Rð=p −mψ þ im5ψγ5Þðp2 −m2

ψ −m2
5ψÞ−2

þ 1

2
Rμλpμð=p −mψ þ im5ψγ5Þγ0λð=p −mψ þ im5ψγ5Þðp2 −m2

ψ −m2
5ψÞ−3; ð4:26Þ

contains all terms that are linear in the curvature. Power counting shows that the terms indicated are sufficient to calculate
the pole part in (4.23). Similar expressions hold for the Feynman Green’s function χðx; x0Þ that we will not indicate
explicitly here.
It is easily seen that

ζ2ðx; x0Þ ¼
Z

dnp
ð2πÞn e

ip·y½PPfζ2 flatg þ PPfζ2 curvedg�; ð4:27Þ

where

ζ2 flat ¼
Z

dnq
ð2πÞn

tr½ð=pþ =q −mψ þ im5ψγ5Þðw� þ iw�
5γ5Þð=q −mχ þ im5χγ5Þðwþ iw5γ5Þ�

½ðpþ qÞ2 −m2
ψ −m2

5ψ �ðq2 −m2
χ −m2

5χÞ
; ð4:28Þ

ζ2 curved ¼
Z

dnq
ð2πÞn ftr½Ψ0ðpþ qÞðw� þ iw�

5γ5Þχ1ðq; x0Þðwþ iw5γ5Þ� þ tr½Ψ1ðpþ q; x0Þðw� þ iw�
5γ5Þχ0ðqÞðwþ iw5γ5Þ�g:

ð4:29Þ

The pole parts are identified by expanding the integrands of (4.28) and (4.29) in powers of q keeping those terms that
behave like q−4 for large q. After some calculation, using (B1), it can be shown that

PPfζ2 flatg ¼ −
i

2π2ϵ
ðjwj2 þ jw5j2Þ

�
−
1

2
p2 þm2

ψ þm2
5ψ þm2

χ þm2
5χ

�
−

i
2π2ϵ

½ðwmχ þ w5m5χÞðw�mψ þ w�
5m5ψÞ

− ðwm5χ − w5mχÞðw�m5ψ − w�
5mψÞ�: ð4:30Þ

As with the Bose case we have

Z
dnp
ð2πÞn e

ip·yp2 ¼ −□yδðyÞ; ð4:31Þ

and (B17) is used to return from Riemann normal to general coordinates.
The pole part of (4.29) is simplified by noting that the q−4 term comes from the q−1 part of Ψ0 or χ0, and the q−3 part

of χ1 or Ψ1. This means that we may set p ¼ 0 in (4.29) and ignore all the mass terms resulting in a reasonably simple
calculation. The net result is

PPfζ2 curvedg ¼ i
24π2ϵ

ðjwj2 þ jw5j2ÞR: ð4:32Þ

Combining (4.30) and (4.32) in (4.27) results in

PPfΓfermion
2 g ¼ 1

4π2ϵ

Z
dvx

�
−
1

2
ðjwj2 þ jw5j2Þ∇μφ∇μφþ 1

12
ðjwj2 þ jw5j2ÞRφ2 þ ½ðjwj2 þ jw5j2Þðm2

ψ þm2
5ψ þm2

χ þm2
5χÞ

þ ðwmχ þw5m5χÞðw�mψ þw�
5m5ψÞ þ ðwm5χ −w5mχÞðw�

5mψ −w�m5ψ Þ�φ2

�
: ð4:33Þ

This gives all terms in the one-loop effective action that are quadratic in φ coming from the quantized fermions.
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D. Evaluation of PPfΓfermion
4 g

Power counting in (4.10) shows that the pole part will
come from just the flat spacetime terms in the local
momentum space expansion. Furthermore, the fermion
mass terms cannot contribute to the pole. After a bit of
calculation, it can be shown that

PPfΓfermion
4 g ¼ 1

16π2ϵ
½ðjwj2 þ jw5j2Þ2

− ðww�
5 − w�w5Þ2�

Z
dvxφ4ðxÞ: ð4:34Þ

We now have all terms arising from the fermion fields
that can give rise to the scalar field renormalization, as well
as the renormalization of the nonminimal coupling constant
ξ, the scalar field mass, and the scalar field quartic coupling
constant. The counterterms and renormalization group
functions will be evaluated in the next section.

V. COUNTERTERMS, RENORMALIZATION
GROUP FUNCTIONS, AND EFFECTIVE

POTENTIAL

A. Gravitational pole terms

We can obtain the gravitational counterterms from the
one-loop effective action by setting the background scalar
field φ ¼ 0 and performing the functional integration. The
gravitational part of the one-loop effective action is

Γð1Þ
grav ¼ i ln detð□þm2

s þ ξRÞ

þ i
2
ln det

�
δμν□þ Rμ

ν −
�
1 −

1

α

�
∇μ∇ν

�
− i ln detð□Þ − i ln detði=∇ −mψ − im5ψγ5Þ
− i ln detði=∇ −mχ − im5χγ5Þ: ð5:1Þ

Here the α → 0 limit is understood as we are using the
Landau-DeWitt gauge. The first term arises from the two
scalar degrees of freedom, the second one from the vector
field, the third term from the ghosts, and the last two terms
from the Dirac spinors. The basic heat kernel result (see
[20] for example) is that

PPfi ln detOg ¼ −
1

8π2ϵ

Z
dvxtrE2ðxÞ; ð5:2Þ

where O is a second-order differential operator like that in
the first three terms of (5.1), and E2ðxÞ is a coefficient in the
asymptotic expansion of the heat kernel for O. For reviews
see [20,32,42–45] for some of the literature. The most
general derivation of E2 was given by Gilkey [40,41] for
the case of minimal operators (those whose leading second
derivative terms involve only □). For nonminimal oper-
ators, like that for the vector field where ∇μ∇ν occurs, see
[38] or [39] and references therein. The Dirac spinor

contributions can be put into a second order from as
in [1] by defining a new covariant derivative. It can be
shown that

ln detði=∇ −m0 − im5γ5Þ ¼
1

2
ln detðD2 þQÞ; ð5:3Þ

where

Dμ ¼ ∇μ −m5γ5γμ; ð5:4aÞ

Q ¼
�
m2

0 þ 3m2
5 þ

1

4
R

�
I þ 2im0m5γ5: ð5:4bÞ

For any operator of the form O ¼ D2 þQ, the E2

coefficient is given by (3.48) where Wμν ¼ ½Dμ; Dν�. For
the Dirac spinors, using (5.4a), it follows that

Wμν ¼ −
1

4
Rμνλσγ

λγσ −m2
5½γμ; γν�: ð5:5Þ

This is sufficient information to evaluate the pole parts of
all terms in (5.1) apart from that for the vector field. Due to
the presence of the ∇μ∇ν term, the operator is not of the
form D2 þQ where the result of (3.48) can be applied.
Operators where the covariant derivatives do not appear just
in the formD2 have been termed nonminimal by Barvinsky
and Vilkovisky [38] and they have developed a technique
to deal with them. (See also [47,48].) The necessary E2

coefficient for the real vector field has also been calculated
using the local momentum expression in [46] and more
generally in [39]. It follows from these references that for
the vector field operator that appears in (5.1),

PP

�
ln det

�
δμν□þ Rμ

ν −
�
1 −

1

α

�
∇μ∇ν

��
¼ PPfln detðδμν□þ Rμ

νÞg; ð5:6Þ

provided that terms that are total derivatives are discounted.
(This is not true if Rμ

ν is replaced with something else, or if
the total derivatives are included in the E2 coefficient;
however, we only require the integrated E2 coefficient here.)

The pole terms in Γð1Þ
grav can now be shown to be

PPfΓð1Þ
gravg

¼−
1

16π2ϵ

Z
dvx

�
m4

s−2ðm2
ψ þm2

ψ5Þ2−2ðm2
χþm2

χ5Þ2

þ
�
2

�
ξ−

1

6

�
m2

s−
1

3
ðm2

ψ þm2
ψ5þm2

χþm2
χÞ
�
R

−
1

45
RμνλσRμνλσþ

47

90
RμνRμνþ

�
2

3
ξ2−

5

36

�
R2

�
: ð5:7Þ
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B. Counterterms

The bare classical action follows from (2.2) as (keeping
only the background scalar field Φ ¼ φ=

ffiffiffi
2

p
and gravita-

tional field nonzero) as

S ¼
Z

dvx

�
1

2
∇μφB∇μφB −

1

2
m2

sBφ
2
B −

1

2
ξBRφ2

B −
λB
4!

φ4
B

þΛB þ κBRþ α1BRμνλσRμνλσ þ α2BRμνRμν þ α3BR2

�
;

ð5:8Þ

with the subscript ‘B’ denoting a bare quantity. We
will define the renormalization counterterms, following
‘t Hooft [49], by

φB ¼ μϵ=2ð1þ δZφÞφ; ð5:9aÞ

m2
sB ¼ m2

s þ δm2
s ; ð5:9bÞ

ξB ¼ ξþ δξ; ð5:9cÞ

λB ¼ μ−ϵðλþ δλÞ; ð5:9dÞ

ΛB ¼ μϵðΛþ δΛÞ; ð5:9eÞ

κB ¼ μϵðκ þ δκÞ; ð5:9fÞ

αiB ¼ μϵðαi þ δαiÞ: i ¼ 1; 2; 3: ð5:9gÞ

The ‘t Hooft unit of mass μ gives the renormalized
quantities the dimensions for all n that they have in the
physical spacetime dimension n ¼ 4.
The counterterm part of the action that will be used to

absorb the one-loop pole terms coming from the full
effective action will be

Sct ¼
Z

dvx

�
δZφ∇μφ∇μφ −

�
1

2
δm2

s þm2
sδZφ

�
φ2

−
�
1

2
δξþ ξδZφ

�
Rφ2 −

�
δλ

4!
þ λ

6
δZφ

�
φ4 þ δΛ

þ δκRþ δα1RμνλσRμνλσ þ δα2RμνRμν þ δα3R2

�
:

ð5:10Þ

The counterterms in (5.10) are fixed by requiring that
Sct þ PPfΓð1Þg remain finite as ϵ → 0. If all the pole terms
calculated previously in (3.24), (3.35), (3.49), (4.33),
(4.34), and (5.7) are combined, it can be seen that

δZφ ¼ 1

16π2ϵ
ð2jwj2 þ 2jw5j2 − 5e2Þ; ð5:11aÞ

δm2
s ¼

1

4π2ϵ

��
3

2
e2 −

λ

3
− jwj2 − jw5j2

�
m2

s

þ 2ðjwj2 þ jw5j2Þðm2
ψ þm2

5ψ þm2
χ þm2

5χÞ
þ 2ðjwj2 − jw5j2Þðmψmχ −m5ψm5χÞ

þ 2ðww�
5 þ w�w5Þðmψm5χ þm5ψmχÞ

�
; ð5:11bÞ

δξ¼ 1

24π2ϵ
ð9e2 − 2λ− 6jwj2 − 6jw5j2Þ

�
ξ−

1

6

�
; ð5:11cÞ

δλ¼ 1

24π2ϵ
½−5λ2 þ 18λe2 − 54e4 − 12λðjwj2 þ jw5j2Þ

þ 36ðjwj2 þ jw5j2Þ2 − 36ðww�
5 −w�w5Þ2�; ð5:11dÞ

δΛ ¼ −
1

16π2ϵ
½2ðm2

ψ þm2
5ψ Þ2 þ 2ðm2

χ þm2
5χÞ2 −m4

s �;
ð5:11eÞ

δκ ¼ −
1

48π2ϵ
½m2

ψ þm2
5ψ þm2

χ þm2
5χ − ð6ξ − 1Þm2

s �;
ð5:11fÞ

δα1 ¼ −
1

480π2ϵ
; ð5:11gÞ

δα2 ¼ −
1

30π2ϵ
; ð5:11hÞ

δα3 ¼
1

48π2ϵ

�
ξ2 −

1

4

�
: ð5:11iÞ

C. Renormalization group functions

It is now possible to apply ‘t Hooft’s method [49] to
calculate the renormalization group functions from the
counterterms. We follow the notation and conventions of
[20] with qi representing any of the terms entering the
theory, including the background field φ. The change in qi
under a change in the renormalization mass scale μ is
given by

μ
d
dμ

qi ¼ βqi : ð5:12Þ

The renormalization group functions are found from the
one-loop counterterms given in (5.11) to be
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βφ ¼ 1

16π2
ð5e2 − 2jwj2 − 2jw5j2Þφ; ð5:13aÞ

βm2
s
¼ 1

4π2

��
λ

3
þ jwj2 þ jw5j2 −

3

2
e2
�
m2

s

− 2ðjwj2 þ jw5j2Þðm2
ψ þm2

5ψ þm2
χ þm2

5χÞ
− 2ðjwj2 − jw5j2Þðmψmχ −m5ψm5χÞ

− 2ðww�
5 þ w�w5Þðmψm5χ þm5ψmχÞ

�
; ð5:13bÞ

βξ ¼
1

24π2
ð2λ − 9e2 þ 6jwj2 þ 6jw5j2Þ

�
ξ −

1

6

�
; ð5:13cÞ

βλ ¼
1

24π2
½5λ2 − 18λe2 þ 54e4 þ 12λðjwj2 þ jw5j2Þ

− 36ðjwj2 þ jw5j2Þ2 þ 36ðww�
5 − w�w5Þ2�; ð5:13dÞ

βΛ¼
1

16π2
½2ðm2

ψ þm2
5ψÞ2þ2ðm2

χþm2
5χÞ2−m4

s �; ð5:13eÞ

βκ¼
1

48π2
½m2

ψ þm2
5ψ þm2

χþm2
5χ−ð6ξ−1Þm2

s �; ð5:13fÞ

βα1 ¼ −
1

480π2
; ð5:13gÞ

βα2 ¼ −
1

30π2
; ð5:13hÞ

βα3 ¼
1

48π2

�
ξ2 −

1

4

�
: ð5:13iÞ

D. Effective action

In the case where there are no mass scales present in the
classical theory (apart from the fields), the method of
Coleman and Weinberg [18] can be used to evaluate the
terms in the effective action in terms of the renormalization
group functions. We will only be concerned with what is
obtained at one-loop order, rather than the exact results
given in [18], often referred to as renormalization group
improved. The method described in [1] can be used to show
that

Γ¼
Z

dvx

�
1

2
ZðφÞ∂μφ∂μφ−V0ðφÞ−RV1ðφÞ

þα1ðφÞRμνλσRμνλσþα2ðφÞRμνRμνþα3ðφÞR2

�
; ð5:14Þ

where ZðφÞ; V0ðφÞ; V1ðφÞ; αiðφÞ are given to one-loop
order by

ZðφÞ ¼ 1þ A lnðφ2=μ2Þ; ð5:15aÞ

V0ðφÞ ¼
λ

4!
φ4 þ Bφ4

�
lnðφ2=μ2Þ − 25

6

�
; ð5:15bÞ

V1ðφÞ ¼
1

2
ξφ2 þ Cφ2

�
lnðφ2=μ2Þ − 3

�
; ð5:15cÞ

αiðφÞ ¼ αi þDi lnðφ2=μ2Þ; ð5:15dÞ

where

A ¼ βφ=φ ¼ 1

16π2
ð5e2 − 2jwj2 − 2jw5j2Þ; ð5:16aÞ

B ¼ 1

48
βλ þ

λ

12φ
βφ

¼ 1

192π2

�
5

6
λ2 þ 2λe2 þ 9e4 − 6ðjwj2 þ jw5j2Þ2

þ 6ðww�
5 − w�w5Þ2

�
; ð5:16bÞ

C ¼ 1

4
βξ þ

1

2φ
ξβ̃φ

¼ 1

192π2
½ð4λþ 12e2Þðξ − 1=6Þ

þ ð5e2 − 2jwj2 − 2jw5j2Þ�; ð5:16cÞ

and Di ¼ 1
2
βαi so that

α1ðφÞ ¼ α1 −
1

960π2
lnðφ2=μ2Þ; ð5:17aÞ

α2ðφÞ ¼ α2 −
1

60π2
lnðφ2=μ2Þ; ð5:17bÞ

α3ðφÞ ¼ α1 þ
1

96π2
ðξ2 − 1=4Þ lnðφ2=μ2Þ: ð5:17cÞ

This gives a complete evaluation of those terms in the
one-loop effective action that can be found from renorm-
alization group considerations. The results have been
established in a way that respects gauge invariance,
independence of the choice of gauge condition, and also
in a way that is independent of the choice made for the
scalar field parametrization.

VI. CONCLUSIONS AND DISCUSSION

We have considered the one-loop counterterms for a
charged scalar field interacting with a gauge field and
Dirac spinors through a Yukawa interaction. These counter-
terms were used to calculate the renormalization group
functions and the curved spacetime effective potential up to
and including order R2 along with the gradient terms in the
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scalar field in the massless case. The background scalar
field was not assumed to be constant so that the field
renormalization could be calculated. All calculations were
done in a way that respects gauge and field parametrization
invariance and, crucially, independence from the choice of
gauge condition. The local momentum space method was
used along with some heat kernel results. We did not
present a full analysis of all one-loop counterterms and
renormalization group functions as was done in the simpler
case [1], but the methods used there could be applied here
without any essential difficulties.
We included an unconventional pseudoscalar mass term

of the generic form m5ψ̄γ5ψ for each of the two Dirac
spinors in (2.2c). As noted in [1] this term can be trans-
formed away in flat spacetime by a chiral rotation of the
Dirac fields. However, in curved spacetime there is an
anomaly and the effective action is not invariant under the
necessary transformation. For the theory in the present
paper, a similar analysis to that presented in [1] shows that
the change in the effective action under the necessary
transformation is

ΔΓ ¼ −
1

768π2

�
tan−1

�
m5ψ

mψ

�
þ tan−1

�
m5χ

mχ

��

×
Z

dvxϵλσρτRμνλσRμν
ρτ: ð6:1Þ

An outline of the calculation is given in Appendix C.
The details of the calculation are essentially the same as
those that appear in the axial, or chiral, anomaly and are
most easily seen using the path integral method of Fujikawa
[50–52]. The only difference is in the overall coefficient
here that involves the two possible mass terms. The integral
is seen to involve the Pontryagin density just as in the axial
anomaly. This conclusion holds also if a background vector
field is included as seen in Appendix C. There is still some
current interest in such expressions. (See e.g., [53].)
This result in (6.1) is exact. The transformations necessary

to remove the pseudoscalar mass terms, given in (C1) and
(C2), also change the coefficients in the Yukawa interaction.
There is also the option of transforming away either the
scalar or else the pseudoscalar Yukawa interactions instead
of the pseudoscalar mass term. Again, an anomaly like that
in (6.1) will result with w and w5 appearing in place of the
masses. Because the anomaly term is finite and is indepen-
dent of the quantized fields it cannot affect the perturbative
evaluation of the counterterms.
It is possible to generalize the analysis that we have

presented here to the non-Abelian case. It is also possible to
work in a more general choice of gauge and see exactly
how the gauge condition parameters disappear from the
effective action if the Vilkovisky-DeWitt formalism is used
as was done in the pioneering calculation of Fradkin and
Tseytlin [37]. The details are somewhat more involved than
those presented here and will be given elsewhere.

APPENDIX A: LOCAL MOMENTUM
SPACE EXPANSIONS

Consider the Green functionGi
jðx; x0Þ where i and j refer

to any type of indices (e.g., vector or tensor). For the case of
spacetime indices, it is advantageous to refer them to a local
orthonormal frame by using the vierbein formalism as noted
in [46]. Suppose that the Green’s function obeys

½ðAμνÞij∂μ∂ν þ ðBμÞij∂μ þ Ci
j�Gj

kðx; x0Þ ¼ δikδðx; x0Þ:
ðA1Þ

Here, Aμν; Bμ, andC are some functions of x that are specific
to the Green’s function being considered. They
will be specified for scalars in (A9) and for vectors in
(A10) below.
The basic idea behind the local momentum space method

[33] is to introduce Riemann normal coordinates at the
point in spacetime whose local coordinates are x0μ and to
expand about that point using

xμ ¼ x0μ þ yμ: ðA2Þ

Expressions for Aμν; Bμ, and C are developed as a power
series in yμ. We will take (suppressing the indices i and j
here)

AμνðxÞ ¼ Aμνðx0Þ þ Aμν
αβyαyβ þ � � � ; ðA3aÞ

BμðxÞ ¼ Bμ
αyα þ � � � ; ðA3bÞ

CðxÞ ¼ Cðx0Þ þ Cαyα þ � � � ; ðA3cÞ

The absence of a linear term in (A3a) and a zeroth-order
term in (A3b) will be seen to hold in our case but the
method does not rely on either of these assumptions. For
the Green’s function, we take

Gi
jðx; x0Þ ¼

Z
dnp
ð2πÞn e

ip·yGi
jðp; x0Þ; ðA4Þ

where Gi
jðp; x0Þ can depend on the origin of the Riemann

normal coordinates. We can expand Gi
jðp; x0Þ as an

asymptotic series in p whose coefficients depend on the
terms in the expansions given in (A3). If we write

Gi
jðp; x0Þ ¼ G0

i
jðp; x0Þ þG2

i
jðp; x0Þ þ � � � ; ðA5Þ

where the subscript 0; 2;… counts the dimension (in units
of mass or inverse length) of the coefficient of p, it can be
shown that [46]

−ðAμνðx0ÞÞijpμpνG0
j
k ¼ δik; ðA6Þ

and that
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G2
i
jðp; x0Þ ¼ G21

i
jðp; x0Þ þG22

i
jðp; x0Þ þG23

i
jðp; x0Þ;

ðA7Þ

where

G21
i
jðp; x0Þ ¼ −G0

i
kðp; x0ÞðAμν

αβÞkl
×

∂2

∂pα∂pβ
½pμpνG0

l
jðp; x0Þ�; ðA8aÞ

G22
i
jðp; x0Þ ¼ G0

i
kðp; x0ÞðBμ

αÞkl
×

∂
∂pα

½pμG0
l
jðp; x0Þ�; ðA8bÞ

G23
i
jðp; x0Þ ¼ −G0

i
kðp; x0ÞðCðx0ÞÞklG0

l
jðp; x0Þ: ðA8cÞ

Because it follows from (A6) that G0 ∼ p−2 for large p
from (A8), we can conclude that G2 ∼ p−4 for large p.
Higher-order terms in the expansion (A5) will fall off even
faster than p−4. This means that we will not need any of the
higher-order terms in our calculation.
The scalar field Green’s function obeys (3.15b). By

comparison with (A1), we can identify (leaving off the
spacetime coordinates)

Aμν ¼ −gμν; ðA9aÞ

Bμ ¼ gλσΓμ
λσ; ðA9bÞ

C ¼ −m2
s − ξR: ðA9cÞ

For the vector field, from (3.15a), we have

ðAμνÞab ¼ δabg
μν −

�
1 −

1

α

�
ðeaμebν þ eaνebμÞ; ðA10aÞ

ðBμÞab ¼ 2gμνων
a
b − δabg

λσΓμ
λσ þ

�
1 −

1

α

�
eaλebσΓ

μ
λσ

−
�
1 −

1

α

�
ðeaμecν þ eaνecμÞων

c
b; ðA10bÞ

ðCÞab ¼ gμν∂μων
a
b − gλσΓμ

λσωμ
a
b þ gμνωμ

a
cων

c
b þRa

b

−
�
1−

1

α

�
eaμecν∂μων

c
b þ

�
1−

1

α

�
eaμecνΓλ

μνωλ
c
b

−
�
1−

1

α

�
eaμecνωμ

c
dων

d
b: ðA10cÞ

Here we use a, b, c, d to denote orthonormal frame indices
with the vierbein eaμ defined as usual by

gμν ¼ eaμebνηab: ðA11Þ

ωμ
a
b is the spin connection for the vector field which is

given by [[20], page 223]

ωμ
a
b ¼ −ebνð∂μeaν − Γλ

μνeaλÞ: ðA12Þ

Spacetime indices are raised and lowered with the space-
time metric gμν and orthonormal frame indices are raised
and lowered with ηab. The expansions of the metric,
vierbein, and connections in Riemann normal coordinates
that we require are

gμνðxÞ ¼ ημν þ
1

3
Rμανβyαyβ þ � � � ; ðA13aÞ

gμνðxÞ ¼ ημν −
1

3
Rμ

α
ν
βyαyβ þ � � � ; ðA13bÞ

Γλ
μνðxÞ ¼

1

3
ðRλ

μνα þ Rλ
νμαÞyα þ � � � ; ðA13cÞ

eaμðxÞ ¼ eaλðx0Þ
�
δλμ þ

1

6
Rλ

αμβyαyβ þ � � �
�
; ðA13dÞ

eaμðxÞ ¼ eaλðx0Þ
�
δμλ −

1

6
Rμ

αλβyαyβ þ � � �
�
; ðA13eÞ

ωμ
a
bðxÞ ¼

1

2
Ra

bμαyα þ � � � : ðA13fÞ

All curvature terms on the right-hand side of (A13) are
evaluated at the origin of Riemann normal coordinates x0.
Note that Ra

bμα ¼ eaλðx0Þebσðx0ÞRλ
σμαðx0Þ in (A13f).

By substituting (A13) into (A9) and (A10), we can find
the expressions required to evaluate the Green’s function
expansion terms in (A6). After some calculation, it can be
shown that

Δ0ðpÞ ¼
1

p2
; ðA14aÞ

Δ2ðp; x0Þ ¼
�
ξ −

1

3

�
Rp−4 þm2

sp−4 þ 2

3
Rμνpμpνp−6;

ðA14bÞ

G0
a
bðpÞ ¼ −δabp−2 þ ð1 − αÞpapbp−4; ðA14cÞ

G2
a
bðp; x0Þ ¼

1

3
δabRp

−4 þ 2

3
ðα − 1ÞRpapbp−6

þ 1

6
ðα − 7ÞRa

bp−4 −
2

3
δabR

μνpμpνp−6

þ 2ð1 − αÞRμνpμpνpapbp−8

þ 2

3
ð1 − αÞRaμ

b
νpμpνp−6: ðA14dÞ
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These give the terms in the Green’s function expansion that
we will need. They agree with those in [46], where the
higher-order terms in the expansion for the vector field
Green’s function can be found.

APPENDIX B: POLE PARTS OF PRODUCTS
OF GREEN FUNCTIONS

In this appendix, we will describe how the results found
for the Green’s functions in Appendix A can be used to
evaluate the pole terms in the products of Green functions
needed in our evaluation of the pole part of the one-loop
effective action. Because we are using dimensional regu-
larization it suffices to evaluate momentum space integrals
whose integrands behave like p−4 for large p. This avoids
the necessity of combining denominators using Feynman or
Schwinger parameters. The basic integrals needed are

PP

�Z
dnp
ð2πÞn

1

p4

�
¼ −

i
8π2ϵ

; ðB1aÞ

PP

�Z
dnp
ð2πÞn

pμpν

p6

�
¼ −

i
32π2ϵ

ημν; ðB1bÞ

PP

�Z
dnp
ð2πÞn

pμpνpλpσ

p8

�

¼ −
i

192π2ϵ
ðημνηλσ þ ημληνσ þ ημσηλνÞ: ðB1cÞ

From (A14b), it can be seen that

PPfΔðx; xÞg ¼ −
i

8π2ϵ

�
m2

s þ
�
ξ −

1

6

�
R

�
: ðB2Þ

This result can also be obtained from the known coef-
ficients in the heat kernel expansion as described originally
in [54] and provides a check on the local momentum space
expansion.
From (A14d), it can be shown that

PPfGμ
μðx; xÞg ¼ −

i
8π2ϵ

�
α

6
−
1

2

�
R: ðB3Þ

This result can also be obtained from the known heat
kernel coefficient for nonminimal operators as found in
[46] or [39].
Turning next to Δðx; x0ÞGa

bðx; x0Þ, we have upon using
the local momentum space expansions (A4) for each Green
function,

Δðx; x0ÞGa
bðx; x0Þ ¼

Z
dnp
ð2πÞn e

ip·yFa
bðp; x0Þ; ðB4Þ

where

Fa
bðp; x0Þ ¼

Z
dnq
ð2πÞnΔðp − q; x0ÞGa

bðq; x0Þ: ðB5Þ

Only terms in the integrand of (B5) that behave like q−4 for
large q will result in a pole, so it is clear that the flat
spacetime expressions (A14a) and (A14c) can be used here.
The result is

PPfFa
bðp; x0Þg ¼ i

32π2ϵ
ðαþ 3Þδab; ðB6Þ

giving

PPfΔðx; x0ÞGa
bðx; x0Þg ¼ i

32π2ϵ
ðαþ 3ÞδabδðyÞ: ðB7Þ

The presence of the Dirac δ on the right-hand side of (B7)
allows us to deduce that

PPfΔðx;x0ÞGμνðx;x0Þg¼ i
32π2ϵ

ðαþ3ÞgμνðxÞδðx;x0Þ ðB8Þ

upon the return to general coordinates.
We also need PPfGμνðx; x0Þ∇μΔðx; x0Þg. We can use the

local momentum space expansions for the Green functions
to write

∇μΔðx;x0ÞGa
bðx;x0Þ

¼
Z

dnp
ð2πÞn e

ip·y

Z
dnq
ð2πÞn iðpμ−qμÞΔðp−q;x0ÞGa

bðq;x0Þ:

ðB9Þ

Power counting again shows that the pole term coming
from the integrand in (B9) that behaves like q−4 can be
found using the flat spacetime terms (A14a) and (A14c).
After some calculation, and returning to general coordi-
nates, it follows that

PPfGμνðx; x0Þ∇μΔðx; x0Þg ¼ −
i

32π2ϵ
ðα − 3Þ∇νδðx; x0Þ:

ðB10Þ

The last term needed for the evaluation of hS21i in (3.19)
is PPfGμνðx; x0Þ∇μ∇0

νΔðx; x0Þg. The calculation of this
expression is a bit more involved than the previous ones.
We can write

Fðx; x0Þ ¼ Gμνðx; x0Þ∇μ∇0
νΔðx; x0Þ ¼ Fa

bðx; x0ÞGa
bðx; x0Þ;
ðB11Þ

with

Fa
bðx; x0Þ ¼ eaμðxÞebνðx0Þ∇μ∇0

νΔðx; x0Þ: ðB12Þ
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By using the expansion (A13e) and that for the scalar field
Green function (A4) along with (A14a) and (A14b), it
follows that

Fa
bðx; x0Þ ¼

Z
dnp
ð2πÞn e

ip·y

�
papbΔ1ðp; x0Þ þ papbp−2

−
1

6
Ra

bp−2 −
1

3
Raμν

bpμpνp−4 þ � � �
�
;

ðB13Þ

where the higher-order terms not shown fall off faster than
p−2. Because the vector field Green function behaves at
least like p−2, these higher-order terms cannot contribute to
the pole part of Gμνðx; x0Þ∇μ∇0

νΔðx; x0Þ. We then find that

Fðx;x0Þ¼eaμðx0Þebνðx0Þ
Z

dnp
ð2πÞne

ip·yFa
bμνðp;x0Þ; ðB14Þ

where

Fa
bμνðp; x0Þ ¼

Z
dnp
ð2πÞn G

a
bðq; x0Þ

�ðpμ − qμÞðpν − qνÞ
ðp − qÞ2

−
1

6
Rμνðp − qÞ−2

−
1

3
Rμ

λσ
νðpλ − qλÞðpσ − qσÞðp − qÞ−4

þ ðpμ − qμÞðpν − qνÞΔ1ðp − q; x0Þ þ � � �
�
:

ðB15Þ

The integrand of (B15) can now be expanded in powers
of q keeping terms that behave like q−4. Both (A14c) and
(A14d) must be used here. After some calculation, it
follows that

PPfFðx; x0Þg ¼ −
i

8π2ϵ

�
3

4
ð1 − αÞ□y − αm2

s

þ
�
5

12
α −

1

4
− αξ

�
R

�
δðyÞ: ðB16Þ

To return from Riemann normal to general coordinates, we
must use [1]

�
□x þ

1

3
R

�
δðx; x0Þ ¼ □yδðyÞ: ðB17Þ

This leads to the result that

PPfGμνðx; x0Þ∇μ∇0
νΔðx; x0Þg

¼ −
i

8π2ϵ

�
3

4
ð1− αÞ□x − α

�
m2

s þ
�
ξ−

1

6

�
R

��
δðx; x0Þ:

ðB18Þ

In Sec. III, we need PPfΔ2ðx; x0Þg. This is easily
evaluated using the flat spacetime part of the local
momentum space expansion given in (A14a). The curva-
ture term in (A14b) cannot contribute to the pole part. It is
easily shown that

PPfΔ2ðx; x0Þg

¼ PP

�Z
dnp
ð2πÞn e

ip·y

Z
dnq
ð2πÞn Δ0ðp − qÞΔ0ðqÞ

�

¼ −
i

8π2ϵ
δðx; x0Þ: ðB19Þ

In a similar way, by using (A14c), it can be shown that

PPfGμνðx; x0ÞGμνðx; x0Þg

¼ PP
�Z

dnp
ð2πÞn e

ip·y

Z
dnq
ð2πÞn G

μν
0 ðp − qÞG0μνðqÞ

�

¼ −
i

8π2ϵ
ð3þ α2Þδðx; x0Þ: ðB20Þ

In (3.31a), we require PPfGμνðx; x0Þ∇μΔðx; x00Þ
∇0

νΔðx0; x00Þg. Power counting shows that the curvature
corrections to the Green’s functions cannot contribute to
the pole coming from the product of Green’s functions. The
calculation is, therefore, identical to the flat spacetime
result, and it is easy to show that

PPfGμνðx; x0Þ∇μΔðx; x00Þ∇0
νΔðx0; x00Þg

¼ iα
8π2ϵ

δðx; x00Þδðx0; x00Þ: ðB21Þ

In a similar way, the expression needed in (3.31b) can be
shown to be

PPfGμλðx; x00ÞGν
λðx0; x00Þ∇μ∇0

νΔðx; x0Þg

¼ −
iα2

8π2ϵ
δðx; x0Þδðx0; x00Þ: ðB22Þ

To evaluate the product of the Green’s functions in
(3.33), it can again be shown that the pole terms come only
from the flat spacetime expansions in the local momentum
space expressions. It can be shown that

PPfGμνðx; x0ÞGλσðx00; x000Þ∇μ∇00
λΔðx; x00Þ∇0

ν∇000
σ Δðx0; x000Þg

¼ −
iα2

8π2ϵ
δðx; x00Þδðx00; x000Þδðx0; x000Þ: ðB23Þ
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APPENDIX C: THE ANOMALY

We outline the main steps in the derivation that leads up
to (6.1) in this appendix. The path integral approach of
Fujikawa [50–52] is used here and we follow our earlier
paper [1]. We also make use of [[20], Sec. 5.9] for some of
the intermediate details.
The spinor fields χ andΨ in (2.2c) can be transformed as

χðxÞ ¼ e−iϑγ5χ0ðxÞ; ðC1Þ

ΨðxÞ ¼ e−iωγ5Ψ0ðxÞ; ðC2Þ

where the angles ϑ and ω are chosen to eliminate the
pseudoscalar mass terms. Specifically, we choose

sinð2ϑÞ ¼ mχ5

ðm2
χ þm2

χ5Þ1=2
; ðC3aÞ

cosð2ϑÞ ¼ mχ

ðm2
χ þm2

χ5Þ1=2
; ðC3bÞ

sinð2ωÞ ¼ mψ5

ðm2
ψ þm2

ψ5Þ1=2
; ðC3cÞ

cosð2ωÞ ¼ mψ

ðm2
ψ þm2

ψ5Þ1=2
: ðC3dÞ

The Yukawa terms in (2.2c) will also transform, but we do
not require the explicit form of this here. The classical
theories based on the original and transformed fields will
be identical. However, there will be an anomaly in the
quantum theory [1] due to the parity violating pseudoscalar
mass terms.
To calculate this anomaly, it is expedient to adopt

Fujikawa’s [50–52] method and analyze the change in
the measure of the functional integral for the fermion part
of the theory. If we let χN be a complete orthonormal set of
solutions to the Dirac equation from (2.2c),

ðiγμ∇μ −mχ − imχ5γ5ÞχNðxÞ ¼ λNχNðxÞ; ðC4Þ

and similarly let ψN be a complete orthonormal set of
solutions to

ðiγμDμ −mψ − imψ5γ5ÞψNðxÞ ¼ fλNψNðxÞ; ðC5Þ

then the effective action for the transformed fields χ0 and
Ψ0, that we will call Γ0, is related to the original effective
action Γ for the original fields χ and Ψ by

Γ0 ¼ Γþ 2i ln detCNN0 þ 2i ln det C̃NN0 : ðC6Þ

The expressions CNN0 and C̃NN0 come from the Jacobians in
the functional measure under (C1) and (C2). The explicit
expressions are

CNN0 ¼ cos ϑδNN0 þ iμ sin ϑ
Z

dvxχ̄NðxÞγ5χN0 ðxÞ: ðC7Þ

C̃NN0 ¼ cosωδNN0 þ iμ sinω
Z

dvxψ̄NðxÞγ5ψN0 ðxÞ: ðC8Þ

We will allow there to be a background vector field present
in the covariant derivative in (C5) for generality although
this is not central to the calculation.
By making use of the orthonormality and completeness

of the modes χN and ψN , it can be shown as described in [1]
that

ln detCNN0 ¼ −
ϑ

16π2

Z
dvxtr½γ5E2ðxÞ�; ðC9Þ

ln det C̃NN0 ¼ −
ω

16π2

Z
dvxtr½γ5Ẽ2ðxÞ�; ðC10Þ

where E2 and Ẽ2 are the heat kernel coefficients for the
Dirac operators in (C4) and (C5). Making use of (3.48)
shows that

ln detCNN0 ¼ iϑ
768π2

Z
dvxϵλσρτRμνλσRμν

ρτ; ðC11Þ

ln det C̃NN0 ¼ iω
768π2

Z
dvxϵλσρτRμνλσRμν

ρτ

−
ie2ω
32π2

Z
dvxϵμνλσFμνFλσ: ðC12Þ

(More details of the derivation can be found in
[[20], Sec. 5.9].)
Substitution of (C11) and (C12) back into (C6) shows

that

Γ0 ¼ Γ −
ðϑþ ωÞ
384π2

Z
dvxϵλσρτRμνλσRμν

ρτ

þ e2ω
16π2

Z
dvxϵμνλσFμνFλσ: ðC13Þ

ϑ and ω can be eliminated in terms of the masses using
(C4). This leads directly to (6.1) if the background vector
field is dropped.
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