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Relativistic quantum mechanics of a Proca (spin-1) particle in Riemannian spacetimes is constructed.
Covariant equations defining electromagnetic interactions of a Proca particle with the anomalous magnetic
moment and the electric dipole moment in Riemannian spacetimes are formulated. The relativistic Foldy-
Wouthuysen transformation with allowance for terms proportional to the zero power of the Planck constant
is performed. The Hamiltonian obtained agrees with the corresponding Foldy-Wouthuysen Hamiltonians
derived for scalar and Dirac particles and with their classical counterpart. The unification of relativistic
quantum mechanics in the Foldy-Wouthuysen representation is discussed.
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I. INTRODUCTION

Wepresent a general quantum-mechanical description of a
Proca (spin-1) particle in Riemannian spacetimes. Its electro-
magnetic interactions are analyzed. The anomalousmagnetic
moment (AMM) and the electric dipole moment (EDM) are
taken into account. The Foldy-Wouthuysen (FW) trans-
formation [1] is performed for a nonrelativisticDirac particle.
We obtain exact expressions for terms proportional to the
zero power of the Planck constant. For this purpose, we apply
the relativistic FW transformation method developed and
substantiated in Refs. [2–4]. The use of the relativistic FW
transformation allows one to express the relativistic quantum
mechanics (QM) in the Schrödinger form.
Various properties and applications of the FW trans-

formation have been considered in Refs. [5–7]. The FW
transformation is widely used in electrodynamics [2,8,9],
quantum field theory [10], optics [11–13], condensed matter
physics [14], nuclear physics [15,16], gravity [17–19], the
theory of the weak interaction [20], and also quantum
chemistry [21–25]. It is applicable not only for Dirac
fermions but also for particles with any spins [11,26–35].
Recently, the FW transformation has been successfully
employed [36] to clarify the origin of the hidden supersym-
metry and superconformal symmetry [37] in some purely
bosonic quantum systems.
In precedent studies of Proca quantum mechanics, a

detailed analysis of electromagnetic interactions of a spin-1
particle has been based on the approach developed in
Ref. [31]. The relativistic FW Hamiltonian of a spin-1
particle with the AMM has been derived in Ref. [33].

However, all precedent investigations using the FW trans-
formation [31,33,35,38,39] have been fulfilled in the
framework of special relativity. We can also mention an
analysis of QM of a Proca particle in the Minkowski
space made in Ref. [40]. Some studies of QM of a Proca
particle in curved spacetimes have been carried out in
Refs. [41–46]. In these works, the Cartan spacetime
torsion has also been considered. The nonmetricity in
Einstein-Proca solutions has been studied in Ref. [44].
In Refs. [41–43], Lagrangians of a Proca particle in
Riemann-Cartan spacetimes have been obtained. The
corresponding Proca equations excluding electromagnetic
interactions have been presented in Ref. [42]. The Proca
equations with an inclusion of electromagnetic interactions
have been obtained in Ref. [43]. However, the FW trans-
formation has not been used in Refs. [41–46]. TheWentzel-
Kramers-Brillouin approximation and the quasiclassical
trajectory-coherent approximation have been applied in
Refs. [41,42] and in Ref. [43], respectively. In the present
work, we demonstrate the possibility to obtain the classical
limit of Proca QM for a relativistic spin-1 particle in strong
electromagnetic and gravitational fields. For this purpose,
we perform the subsequent Sakata-Taketani [47] and FW
transformations. In the FW representation, the passage to
the classical limit usually reduces to a replacement of the
operators in quantum-mechanical Hamiltonians and equa-
tions of motion with the corresponding classical quantities
[48]. Previously, a detailed quantum-mechanical descrip-
tion of a scalar particle in Riemannian spacetimes has been
fulfilled in Ref. [34]. For a Dirac particle, the corresponding
problem has been solved in Refs. [17,18].
Our notations correspond to Refs. [34,49]. We denote
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α; μ; ν;… ¼ 0; 1; 2; 3; i; j; k;… ¼ 1; 2; 3, respectively.
Tetrad indices are denoted by latin letters from the begin-
ning of the alphabet, a; b; c;… ¼ 0, 1, 2, 3. Temporal and
spatial tetrad indices are distinguished by hats. The
signature is ðþ − −−Þ. Commas and semicolons before
indices denote partial and covariant derivatives, respec-
tively. Repeated greek indices and the latin indices from the
beginning of the alphabet are summed over the values
0,1,2,3. Repeated latin indices i; j; k;…; î; ĵ; k̂;… are
summed over the values 1,2,3. The tetrad indices are raised
and lowered with the flat Minkowski metric, ηab ¼
diagð1;−1;−1;−1Þ.
We use the system of units ℏ ¼ 1, c ¼ 1 but include ℏ

and c explicitly when this inclusion clarifies the problem.

II. COMPARISON OF QUANTUM MECHANICS
OF DIRAC AND PROCA PARTICLES

A comparison of basic quantum-mechanical equations
for Dirac and Proca particles is instructive for a consid-
eration of fundamentals of Proca QM.

A. Fundamentals of Dirac quantum mechanics

Dirac QM describes a single spin-1=2 particle in the
Minkowski spacetime. The action and the Lagrangian of
spinor field are given by

S ¼
Z

Ld4x; L ¼ Ψ̄ðiγμ∂μ −mÞΨ; ð1Þ

where Ψ̄ ¼ Ψ†γ0.
The Euler-Lagrange equation reads

∂μ
∂L

∂ð∂μΨ̄Þ
¼ ∂L

∂Ψ̄ ¼ 0: ð2Þ

Explicitly, we obtain the Dirac equation for a free particle:

ðiγμ∂μ −mÞΨ ¼ 0: ð3Þ
The 4 × 4 Dirac matrices satisfy the so-called Clifford

algebra,

fγμ; γνg ¼ 2ημν: ð4Þ
The fifth matrix γ5 can also be introduced:

γ5 ¼ iγ0γ1γ2γ3; ðγ5Þ2 ¼ 1; fγ5; γμg ¼ 0: ð5Þ
The Lagrangian of a Dirac particle in an electromagnetic

field should be invariant under the local gauge trans-
formation Ψ → Ψ0 ¼ exp ðieΛÞΨ. It is well known that
this condition results in a replacement of the partial
derivative with the covariant (lengthened) one,

Dμ ¼ ∂μ þ ieAμ; ð6Þ
where Aμ is the 4-potential of the electromagnetic field.
We use the denotations Aμ ¼ ðΦ;−AÞ, ∂μ ¼ ð∂0;∇Þ,

where ∇ is the nabla operator. The gauge transformations
of the electromagnetic field have the form

Aμ → A0
μ ¼ Aμ − ∂μΛ;

A → A0 ¼ Aþ∇Λ;

Φ → Φ0 ¼ Φ − ∂0Λ: ð7Þ

The Lagrangian and the Dirac equation in the electromag-
netic field are given by

L ¼ Ψ̄ðiγμDμ −mÞΨ; ð8Þ

ðiγμDμ −mÞΨ ¼ 0: ð9Þ

The Lagrangian of the electromagnetic field reads

LðemÞ ¼ −
1

4
FμνFμν; Fμν ¼ ∂μAν − ∂νAμ: ð10Þ

The Dirac equation in curved spacetimes can also be
obtained with the Lagrangian approach (see, e.g.,
Ref. [50]). The gauge invariance under local transforma-
tions can be restored by replacing the partial derivative ∂μ

with the gauge covariant derivative Dμ. One needs to apply
a flat tangent space defined by the tetrad of 4-vectors eμa
satisfying the relation ηabeμaeνb ¼ gμν. The covariant gen-
eralization of the integration, d4x →

ffiffiffiffiffiffi−gp
d4x, g ¼ det gμν,

should be used. The spinor fieldΨ locally defined in the flat
tangent space does not have curved Riemann indices, and
its total covariant derivative reduces to a Lorentz covariant
derivative (see Refs. [50,51])

∂μ → Dμ ¼ ∂μ þ
i
4
σabΓμab; σab ¼ i

2
ðγaγb − γbγaÞ;

Γμab ¼ −Γμba ¼ ecμΓcab;

Γcab ¼ eμbe
ν
ceaμ;ν ¼

1

2
ð−Ccab þ Cabc − CbcaÞ;

Cabc ¼ −Cbac ¼ eμaeνbðecν;μ − ecμ;νÞ: ð11Þ

The anholonomic components of the connection Γμab

are often called the Lorentz connection coefficients. In
Eq. (11), Cabc are the Ricci rotation coefficients, and σab

are the generators of the local Lorentz transformations of
the spinor field:

Ψ → Ψ0 ¼ exp

�
−
i
4
ωabσ

ab

�
Ψ:

As a result, the action is given by [50]

S ¼
Z

Ψ̄ðiγaDa −mÞΨ ffiffiffiffiffiffi
−g

p
d4x; Da ¼ eμaDμ; ð12Þ
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and the covariant Dirac equation reads

ðiγaDa −mÞΨ ¼ 0: ð13Þ

When the electromagnetic fields are taken into account, the
covariant derivative takes the form (see Ref. [18])

Dμ ¼ ∂μ þ ieAμ þ
i
4
σabΓμab: ð14Þ

The Dirac equation for the spin-1=2 particle can also be
obtained by quantization of the corresponding classical
system. The spin degrees of freedom are described with
the Grassmann variables [52,53]. In such a description, the
model possesses a local supersymmetry controlling the
introduction of particle interactions [53]. Namely, the odd
constraint generates (via the Poisson bracket) the even
constraint being a classical analog of the Klein-Gordon
equation. The simple supersymmetric structure of the
algebra with one even and one odd constraint allows one
to modify the odd constraint to introduce the interaction.
The modified even constraint is generated via the Poisson
bracket of the modified odd constraint with itself, and the
modified odd and even constraints will commute (relative
to the Poisson bracket) as in the free case. The mechanism
has been presented in Ref. [54].
We can mention the existence of bosonic symmetries of

the Dirac equation [55].

B. Fundamentals of Proca quantum mechanics

Proca QM describes a single spin-1 particle, and a
massive Proca particle has three independent components
of the spin. The Proca Lagrangian takes the form

L ¼ −
1

2
U†

μνUμν þm2U†
μUμ; ð15Þ

where Uμν ¼ −Uνμ is defined by

Uμν ¼ ∂μUν − ∂νUμ: ð16Þ

The complex functions Uμ are used. The additional con-
ditions

∂μUμ ¼ 0; ∂μðU†Þμ ¼ 0 ð17Þ

should be satisfied. These conditions exclude a spin-0
particle.
Equation (16) is the first Proca equation [56]. The second

Proca equation can be derived from the Lagrangian (15)
and takes the form [56]

∂νUμν −m2Uμ ¼ 0: ð18Þ

The Proca functions, Uμν and Uμ, have ten independent
components.

Equations (15)–(18) describe a vector particle in
vacuum.
In the case of the free Maxwell field Aμ, both the

Lagrangian density (10) and the Maxwell equations are
invariant under the local gauge transformation (7). This is
not the case for the free Proca field, where both the
Lagrangian density and the Proca equations are not
invariant under the local gauge transformation

Ψ → Ψ0 ¼ exp ðieΛÞΨ; Uμ → U0
μ ¼ Uμ − ∂μΛ: ð19Þ

The gauge invariance is broken by the mass term. This
result is quite natural. It would be more natural to assume
that the Proca Lagrangian can be gauge invariant under the
local gauge transformation (7). However, it is not gauge
invariant due to the mass term. This circumstance results
from the fact that the Abelian Proca model has second-class
constraints. The first-class constraints are defined as the
constraints which commute (i.e., have vanishing Poisson
brackets) with all other constraints. This situation brings to
light the presence of some gauge degrees of freedom in the
Dirac formalism. On the other hand, the second-class
constraints have at least one nonvanishing bracket with
some other constraints. Models with the second-class
constraints can be converted into gauge theories with
first-class constraints. The quantization of a second-class
constrained system can be achieved by the reformulation of
the original theory as a first-class one and then quantizing
the resulting first-class theory. Such a procedure has been
performed for the Proca field [57–63]. In Refs. [57,58], the
Becchi-Rouet-Stora-Tyutin (BRST) quantization method
has been used. It is equivalent to the Batalin-Fradkin-
Vilkovisky (BFV) method [64] for the considered problem
(see Refs. [57,58]). Another possibility of gauge trans-
formations for the Proca field is an application of the
method of gauge unfixing [59–63]. These two methods
advocate both the gauge transformation (19) and length-
ening the derivatives (6) for the Proca particle in electro-
magnetic fields. The same conclusion also follows from the
results obtained in Refs. [65–67]. A unified quantization of
both the electromagnetic and Proca fields has been per-
formed in Ref. [65]. In Ref. [66], an elimination of the
Lorenz condition has been applied. In Ref. [67], a non-
commutative spacetime has been used.
Besides lengthening the derivatives, the Proca

Lagrangian in electromagnetic fields is usually supple-
mented by the Corben-Schwinger term [68],

LAMM ¼ ieκ
2

ðU†
μUν − U†

νUμÞFμν; ð20Þ

where Fμν is the electromagnetic field tensor. The Corben-
Schwinger term is proportional to κ ¼ g − 1, where
g ¼ 2mμ=ðeℏsÞ. For spin-1 particles, g ¼ 2mμ=ðeℏÞ.
Since the initial Proca equations correspond to g ¼ 1, this
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term describes not only the AMM but also a part of the
normal (g ¼ 2) magnetic moment μ0 ¼ eℏ=m.
The corresponding initial Proca-Corben-Schwinger

equations (generalized Proca equations) describing the
electromagnetic interactions of the spin-1 particle in the
Minkowski spacetime have the form (see Refs. [31,39,68])

Uμν ¼ DμUν −DνUμ; ð21Þ

DνUμν −m2Uμ − ieκUνFμν ¼ 0; Fμν ¼ ∂μAν − ∂νAμ;

ð22Þ

where the covariant derivative Dμ has the form (6). We
should mention that properties of the 4-potential Aμ ¼
ðΦ;−AÞ in special relativity and general relativity substan-
tially differ. In particular, covariant and contravariant
components of the 4-potential have even different dimen-
sions when the metric tensor is not dimensionless.
Since the Proca Lagrangian is not gauge invariant, its

extension on curved spacetimes cannot be as straightfor-
ward as for a Dirac particle. Therefore, the Proca
Lagrangian in curved spacetimes has been constructed in
Refs. [41–43] by a replacement of the partial derivative by
the standard covariant derivative of general relativity. The
same replacement is fulfilled for a scalar boson [69,70].
The standard covariant derivatives of the scalar ϕ and the
covariant vector Jν are given by

Dμϕ≡ ϕ;μ ¼ ∂μϕ; DμJν ≡ Jν;μ ¼ ∂μJν −
�

ρ

νμ

�
Jρ;

where

�
ρ

νμ

�
¼ 1

2
gρλðgλν;μ þ gλμ;ν − gνμ;λÞ ð23Þ

are the Christoffel symbols. The covariant derivative which
includes the electromagnetic interactions has the form

Dμ ¼ Dμ þ ieAμ: ð24Þ

We underline a substantial difference between the defini-
tions of covariant derivatives for the Dirac and Proca
particles.
In Ref. [43], the presented Proca Lagrangian includes the

Corben-Schwinger term. The corresponding Proca-Corben-
Schwinger (PCS) equations are given by Eqs. (21) and (22)
where the covariant derivatives are defined by Eq. (24).

III. GENERALIZED PROCA EQUATIONS
IN THE MINKOWSKI SPACETIME

Previous developments of the ProcaQM including the FW
transformation have been performed in Refs. [31,33,35,39].
A possibility of dual transformations, B → E, E → −B,

μ0 → d, allows one to supply the Proca Lagrangian by the
term characterizing the EDM [33],

LEDM ¼ −
ieη
2

ðU†
μUν − U†

νUμÞGμν; ð25Þ

where the tensor Gμν ¼ ðB;−EÞ is dual to the electromag-
netic field one, Fμν ¼ ðE;BÞ. Here, η ¼ 2mcd=ðeℏsÞ ¼
2mcd=ðeℏÞ, and d is the EDM. The second PCS equation
takes the form [33]

DνUμν −m2Uμ − ieκUνFμν þ ieηUνGμν ¼ 0: ð26Þ
The PCS equations can be presented in a Hamiltonian

form. Since the spin of a Proca particle has three components,
six components of thewave function are independent. Spatial
components of Eq. (21) and a time component of Eqs. (22)
and (26) can be expressed in terms of the others. As a result,
the equations for the ten-component wave function can be
reduced to the equation for the six-component one (Sakata-
Taketani transformation [47]). The distinctive feature of this
transformation is that one obtains expressions for U0 and
Uijði; j ¼ 1; 2; 3Þ, which do not contain the time derivative,
and then substitutes them into equations for the remaining
components. From Eq. (22), we have

U0 ¼
1

m2
ðDiU0i − ieκUiF0iÞ:

Next, we introduce two vector functions, ϕ and U, the
components of which are given by iUi0=m and Ui:

ϕ≡ i
m
ðUi0Þ; U ≡ ðUiÞ ¼ −ðUiÞ:

We assume that the components of the vector D are equal to
Di. With these denotations,

U0 ¼ −
i
m
D · ϕ −

ieκ
m2

E · U; D × ðD × UÞ ¼ ðDjUijÞ:

It should be underlined that there is not any difference
between upper and lower components of vectors.
To perform the general Sakata-Taketani (ST) transfor-

mation of Eqs. (21) and (22), it is convenient to define the
spin-1 matrices as follows [31]:

Sð1Þ ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; Sð2Þ ¼

0
B@

0 0 i

0 0 0

−i 0 0

1
CA;

Sð3Þ ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA: ð27Þ

This definition is not unique. One can use any other spin
matrices satisfying the properties
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½SðiÞ; SðjÞ� ¼ ieijkSðkÞ;

SðiÞSðjÞSðkÞ þ SðkÞSðjÞSðiÞ ¼ δijSðkÞ þ δjkSðiÞ;

S2 ¼ 2I ; ð28Þ

where I is the unit 3 × 3 matrix.
An exclusion of the components U0 and Uij results in

iD0ϕ ¼ mU þ 1

m
D × ðD × UÞ − ieκ

m
B × U

þ eκ
m2

EðD · ϕÞ þ e2κ2

m3
EðE · UÞ;

iD0U ¼ mϕ −
1

m
DðD · ϕÞ − eκ

m2
DðE · UÞ: ð29Þ

The following properties are valid for any operators V
and W proportional to the unit matrix I :

V × ϕ ¼ −iðS · VÞϕ;
VðW · ϕÞ ¼ ½V ·W − SðiÞSðjÞVðjÞWðiÞ�ϕ;

VðjÞWðiÞϕðjÞ ¼ ½V ·W − ðS · VÞðS ·WÞ�ϕðiÞ: ð30Þ

In particular,

D × ðD × UÞ ¼ −ðS · DÞ2U: ð31Þ

Since ½Di;Dj� ¼ −ieeijkBðkÞ, Eq. (29) takes the form

iD0ϕ ¼ mU −
1

m
ðS · DÞ2U −

eκ
m

ðS · BÞU

−
eκ
m2

½SðiÞSðjÞEðjÞDðiÞ − E · D�ϕ

−
e2κ2

m3
½ðS · EÞ2 − E2�;

iD0U ¼ mϕþ 1

m
½ðS · DÞ2 − D2�ϕ −

e
m
ðS · BÞϕ

þ eκ
m2

½SðiÞSðjÞDðjÞEðiÞ − D · E�U: ð32Þ

The wave functions ϕ and χ form the six-component ST
wave function

Ψ ¼ 1ffiffiffi
2

p
�
ϕþ U

ϕ − U

�
:

The final equation in the ST representation has the
Hamiltonian form:

i
∂Ψ
∂t ¼ HΨ: ð33Þ

The general ST Hamiltonian obtained by Young and
Bludman [31] is given by

H¼ eΦþρ3mþ iρ2
1

m
ðS ·DÞ2

− ðρ3þ iρ2Þ
1

2m
ðD2þeS ·BÞ− ðρ3− iρ2Þ

eκ
2m

ðS ·BÞ

−
eκ
2m2

ð1þρ1Þ½ðS ·EÞðS ·DÞ− iS · ½E×D�−E ·D�

þ eκ
2m2

ð1−ρ1Þ½ðS ·DÞðS ·EÞ− iS · ½D×E�−D ·E�

−
e2κ2

2m3
ðρ3− iρ2Þ½ðS ·EÞ2−E2�; ð34Þ

where ρiði ¼ 1; 2; 3Þ are the 2 × 2 Pauli matrices. We do
not consider a nonintrinsic quadrupole moment included
in Ref. [31].
Equations (33) and (34) define the general Hamiltonian

form of the initial PCS equations (21) and (22). For spin-1
particles, the polarization operator is equal toΠ ¼ ρ3S. It is
analogous to the corresponding Dirac operator, which can
be written in a similar form: Π ¼ ρ3σ.
This approach has been applied for a description of

electromagnetic interactions of a Proca particle with the
EDM [33]. In particular, the equation of spin motion
containing terms with electric and magnetic dipole moments
perfectly agreeswith the corresponding equations inQMof a
spin-1=2 particle [9,71] and in classical physics (seeRef. [72]
and references therein). The general description of spin
motion of a Proca particle includes spin-tensor interactions
proportional to terms bilinear in spin [39,73–75].

IV. COVARIANT PROCA EQUATIONS IN
RIEMANNIAN SPACETIMES

The general covariant Proca equations in Riemannian
spacetimes are also given by the formulas (21) and (26).
However, the covariant derivatives are defined by Eq. (24).
Next derivations can be fulfilled similarly to the case
considered in the previous section. We should remind
the reader of the substantial difference between the covar-
iant derivatives for the Dirac and Proca particles. The
covariant derivative contains the spin-dependent term for
the Dirac particle [see Eqs. (11) and (14)] but cannot
contain such a term for the Proca particle. The spin
matrices for Proca particles naturally appear as a result
of a transition from the ten-component wave function to the
six-component one [31,39]. Therefore, they cannot act on
the Proca fields Uμν and Uμ.
It is necessary to specify that the spin is defined in the

particle rest frame which belongs to local Lorentz (tetrad)
frames. Therefore, the spin matrices for the Dirac and Proca
particles have the standard form only in local Lorentz frames
(LLFs). As a result, the spin matrix S should be coupled
with vectors defined in such frames. It is convenient to pass
to vector denotations and to introduce the two vector
functions, ϕ and U, and the vector operator D [31,33,39].
In Riemannian spacetimes, they should be defined by
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ϕ≡ i
m
ðUî 0̂Þ; U ≡ ðUîÞ; D̂≡ ðDîÞ;

where Da ¼ eμaDμ. It is convenient to introduce the 3 × 3

spin matrices [31,33,39]. For example,

D̂ × ðD̂ × UÞ ¼ −ðS · D̂Þ2U: ð35Þ

It is also convenient to pass to tetrad components in
Eqs. (21) and (26). Equation (21) takes the form

Uab ¼ eμaeνbðDμedνUd −DνecμUcÞ ¼ eμaDμUb − eνbDνUa

þ ðΓacb − ΓbcaÞUb ¼ eμaDμUb − eνbDνUa þCabcUc;

ð36Þ

where the coefficients Γabc andCabc are defined by Eq. (11).
A transformation of Eq. (26) is similar and results in

ebμDμUab − ΓbcaUbc þ ηbcηdfCcdfUab −m2Ua

− ieκUbFab þ ieηUbGab ¼ 0; ð37Þ

where Fab ¼ eaμebνFμν, Gab ¼ eaμebνGμν.
The general equations (36) and (37) are the covariant

equations describing electromagnetic interactions of a
Proca particle with the AMM and EDM in Riemannian
spacetimes. The presence of the Lorentz connection coef-
ficients in Eqs. (36) and (37) leaves room for effects caused
by the Cartan torsion.
In Refs. [18,49,76], a similarity between ðe=mÞFμν and

Γcebuc has been stated. In this connection, it apparently
seems that the definition of the Proca fields Uab, Ua in
LLFs allows one to include the additional term
−imυUbΓcebucðυ ¼ constÞ into Eq. (37). However, the
tensorlike quantity eeμebνΓcebuc ¼ eeμeeν;ρuρ (unlike Fμν)
is anholonomic. Therefore, it is not a true tensor, and
the additional term −imυUνeeμebνΓcebuc cannot enter
Eq. (26), which is fully covariant.
For an example, we derive the FW Hamiltonian, taking

into account only terms proportional to the zero power of ℏ.
These terms define the particle motion. A derivation of
smaller terms describing the spin motion needs rather
cumbersome calculations.

V. FOLDY-WOUTHUYSEN TRANSFORMATION
FOR A PROCA PARTICLE IN RIEMANNIAN

SPACETIMES

Since we disregard terms of the first and higher orders
in ℏ, we can neglect the terms describing the AMM and
EDM and all terms originating from commutators with the
operator Dμ. In this approximation, Eqs. (36) and (37)
reduce to

Uab ¼ eμaDμUb − eνbDνUa;

ebμDμUab −m2Ua ¼ 0: ð38Þ

In further derivations, commutators of the operatorDμ with
other operators entering Eq. (38) can also be neglected.
The previous analysis shows that the best choice is the

Schwinger gauge (see Refs. [18,49]) satisfying the relations
e0̂i ¼ 0, e0

î
¼ 0. In this case, the operator Dî ¼ ej

î
Dj does

not contain D0. Of course, other gauges can also be used,
but these are much less convenient. For the Schwinger
gauge,

g00 ¼ e0
0̂
e0̂0 ¼ ðe0

0̂
Þ2; g0i ¼ e0̂0ei

0̂
¼ e0

0̂
ei
0̂
: ð39Þ

Another important property of this gauge is valid for any
covariant operator:

Bi ¼ eĵiBĵ; Bî ¼ ej
î
Bj: ð40Þ

Equations (39) and (40) are valid for any Schwinger gauge.
We follow the same approach as that applied in

Refs. [33,39]. To eliminate the components U0̂ and Uî ĵ,
we obtain expressions for them and substitute these
expressions into equations for the remaining components.
For the introduced vectors,

D̂ ·ϕ≡−
i
m
ηî ĵDîUî 0̂; D̂ ·U≡DîU

î; D̂2≡−ηî ĵDîDĵ:

ð41Þ

The eliminated components are given by

Uî ĵ ¼ DîUĵ −DĵUî; U0̂ ¼ −
i
m
D̂ · ϕ: ð42Þ

Next derivations are similar to those fulfilled in
Refs. [33,39]. In the approximation used, we obtain the
following equations for the wave functions ϕ and U:

iD0̂ϕ ¼ mU þ 1

m
D̂ × ðD̂ × UÞ;

iD0̂U ¼ mϕ −
1

m
D̂ðD̂ · ϕÞ: ð43Þ

An introduction of the spin matrices brings Eq. (43) to
the form

iD0̂ϕ ¼ mU −
1

m
ðS · D̂Þ2U;

iD0̂U ¼ mϕþ 1

m
½ðS · D̂Þ2 − D̂2�ϕ: ð44Þ

Similarly to Refs. [33,39], the wave functions ϕ and U
form the six-component Sakata-Taketani wave function
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Ψ ¼ 1ffiffiffi
2

p
�
ϕþ U

ϕ − U

�
:

The resulting equation in the Sakata-Taketani representa-
tion has the form

iD0̂Ψ¼
�
ρ3mþ iρ2

1

m
ðS · D̂Þ2−ðρ3þ iρ2Þ

1

2m
D̂2

�
Ψ; ð45Þ

where ρi are the 2 × 2 Pauli matrices.
We need to bring this equation to the Hamiltonian form

and then perform the FW transformation. Since

D0̂ ¼ e0
0̂
D0 þ ei

0̂
Di;

the use of Eq. (39) allows us to determine the operator D0:

D0 ¼
1ffiffiffiffiffiffi
g00

p D0̂ −
g0i

g00
Di: ð46Þ

The wave functions ϕ, U, and Ψ have tetrad components
but not world ones. Therefore, their first covariant deriv-
atives are similar to covariant derivatives of a scalar wave
function and DμΨ ¼ ð∂μ þ ieAμÞΨ, DaΨ ¼ eμaDμΨ.
As a result, the Hamiltonian form of Eq. (45) is given by

i
∂Ψ
∂t ¼ iD0Ψ ¼ HΨ;

H ¼ 1ffiffiffiffiffiffi
g00

p
�
ρ3mþ iρ2

1

m
ðS · D̂Þ2 − ðρ3 þ iρ2Þ

1

2m
D̂2

�

−
g0i

g00
iDi þ eA0: ð47Þ

We can now perform the FW transformation by the
method described in Ref. [3]. Any initial Hamiltonan can
be presented in the form

H ¼ βMþ E þO; βM ¼ Mβ;

βE ¼ Eβ; βO ¼ −Oβ; ð48Þ

where the operatorsM and E are even and the operatorO is
odd. The matrix β is the direct product of the Pauli matrix
ρ3 and the 3 × 3 unit matrix I . Even and odd operators are
diagonal and off-diagonal in two spinorlike parts of the
bispinorlike wave function Ψ and commute and anticom-
mute with the operator β, respectively. Explicitly,

M ¼ 1ffiffiffiffiffiffi
g00

p
�
m −

1

2m
D̂2

�
; E ¼ −

g0i

g00
iDi þ eA0;

O ¼ iρ2ffiffiffiffiffiffi
g00

p
m

�
ðS · D̂Þ2 − 1

2
D̂2

�
:ð49Þ

The noncommutativity of the operatorDμ with the metric
tensor and with the tetrad leads to the appearance of terms
proportional to ℏ. Since we neglect such terms, we can
ignore the above-mentioned noncommutativity, and the
transformed Hamiltonian takes the form

HFW ¼ ρ3ffiffiffiffiffiffi
g00

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − D̂2

p
−
g0i

g00
iDi þ eA0: ð50Þ

The use of Eqs. (39) and (40) allows one to express the
operator D̂2 in terms of covariant derivatives. For any tetrad
belonging to the Schwinger gauge, the following relation is
valid:

gij ¼ ei
0̂
e0̂j þ ei

k̂
ek̂j ¼ g0ig0j

g00
þ ei

k̂
ek̂j: ð51Þ

Equations (40) and (51) show that in the approximation
used

GijDiDj≡
�
gij−

g0ig0j

g00

�
DiDj¼ ei

k̂
ek̂jDiDj ¼Dk̂D

k̂≡ D̂2

ð52Þ

and

HFW ¼ ρ3ffiffiffiffiffiffi
g00

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −GijDiDj

q
−
g0i

g00
iDi þ eA0: ð53Þ

Since covariant derivatives of the metric tensor are equal
to zero, Gij commutes with Dμ.
Evidently, the Hamiltonian (53) agrees with the corre-

sponding classical Hamiltonian, which has the form
(Eq. (2.5) in Ref. [77])

H ¼
�
m2 −Gijpipj

g00

�
1=2

−
g0ipi

g00
;

Gij ¼ gij −
g0ig0j

g00
: ð54Þ

The Hamiltonian (53) covers the electromagnetic and
gravitational interactions. It also describes the inertial
interactions taking place in flat noninertial frames. We
should remind the reader that the Hamiltonian (53) acts on
the six-component wave function and the unit matrices are
omitted. The agreement of this Hamiltonian with the
contemporary QM is shown in the next section.
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VI. COMPARISON OF FOLDY-WOUTHUYSEN
HAMILTONIANS IN MINKOWSKI
AND RIEMANN SPACETIMES

It is instructive to compare the result obtained in the
present work with the contemporary Proca QM in the
Minkowski spacetime. The comparison is nontrivial when
curvilinear coordinates are used. The momentum operator is
proportional to the nabla one, p≡ −ðpiÞ ¼ −iℏð∇iÞ≡
−iℏ∇. For particles with any spin, the terms in the FW
Hamiltonians proportional to the zero power of the Planck
constant are given by [9,32,33]

HFW ¼ ρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ π2

p
þ eA0; π ¼ p − eA: ð55Þ

These terms are independent of the spin.
The 4-potentials Aμ and Aμ defining the same electro-

magnetic field in the flat Riemannian spacetimes (when
curvilinear coordinates are used) and in the Minkowski
spacetime, respectively, substantially differ. For any diago-
nal metric tensor, the appropriate choice of the Schwinger
tetrad is eμa ¼ δaν

ffiffiffiffiffiffiffiffiffijgμνjp
. In this case, Â ¼ A, but A ≠ A.

It is well known that the nabla operator possesses
nontrivial properties even in the Minkowski spacetime. It
is defined by

∇ ¼ ∂
∂ρ eρ þ

1

ρ

∂
∂ϕ eϕ þ

∂
∂z ez ð56Þ

and

∇ ¼ ∂
∂r er þ

1

r
∂
∂θ eθ þ

1

r sin θ
∂
∂ϕ eϕ ð57Þ

for the cylindrical ðρ;ϕ; zÞ and spherical ðr; θ;ϕÞ coordi-
nates, respectively. Its action on a scalar is trivial, but its
convolution with a vector (divergence of the vector) in these
coordinates is nontrivial and has the form

∇ ·T ¼ 1

ρ

∂ðρTρÞ
∂ρ þ 1

ρ

∂Tϕ

∂ϕ þ ∂Tz

∂z ;

∇ ·T ¼ 1

r2
∂ðr2TrÞ

∂r þ 1

r sin θ
∂ðsin θTθÞ

∂θ
þ 1

r sin θ

∂Tϕ

∂ϕ : ð58Þ

In this equation,T is a three-component vector, and there is
not any difference between its covariant and contravariant
components.
The operator p2 ¼ −ℏ2Δ is proportional to the Laplace

operator Δ≡∇ ·∇. It acts on the scalar wave function.
This operator is defined by

Δ ¼ 1

ρ

∂
∂ρ

�
ρ
∂
∂ρ

�
þ 1

ρ2
∂2

∂ϕ2
þ ∂2

∂z2 ð59Þ

and

Δ¼ 1

r2
∂
∂r

�
r2

∂
∂r

�
þ 1

r2 sinθ
∂
∂θ

�
sinθ

∂
∂θ

�
þ 1

r2sin2θ
∂2

∂ϕ2

ð60Þ

in the cylindrical and spherical coordinates, respectively.
We can mention that

T;μ
μ ¼ 1ffiffiffiffiffiffi−gp ∂μ

ffiffiffiffiffiffi
−g

p
gμνTν:

For any curvilinear coordinates, g00 ¼ 1, and the metric is
static (g0i ¼ 0). In this case,

T;i
i ¼ 1ffiffiffiffiffiffi−gp ∂ið

ffiffiffiffiffiffi
−g

p
gijTjÞ:

For the cylindrical and spherical coordinate systems, the
metric tensor is defined by gμν ¼ diagð1;−1;−ρ2;−1Þ and
gμν ¼ diagð1;−1;−r2;−r2 sin2 θÞ, respectively. It can be
shown that the operators GijDiDj and −ð∇ − ieAÞ·
ð∇ − ieAÞ are equivalent in the both cases. In these cases,
Gij ¼ gij. First, it can be easily checked that the operators
GijDiDj and −Δ≡ −∇ · ∇ are equivalent. Second, it is
necessary to consider the divergence GijAj;i ¼ A;i

i . For the
cylindrical coordinates [A ¼ −ðAiÞ],

−A;i
i ¼ 1

ρ
∂ρðρAρÞ þ

1

ρ2
∂ϕAϕ þ ∂zAz

¼ 1

ρ
∂ρðρAρ̂Þ þ

1

ρ
∂ϕAϕ̂ þ ∂zAẑ ¼ −∇ · Â ¼ −∇ ·A:

The same result can beobtained for the spherical coordinates.
Since GijAiAj ¼ AaAa ¼ −Â2 ¼ −A2, the equivalence

of the operators GijDiDj and −ð∇ − ieAÞ · ð∇ − ieAÞ is
proven.
Thus, the result obtained in the present study fully agrees

with the contemporary QM in the Minkowski space.

VII. UNIFICATION AND CLASSICAL LIMIT
OF RELATIVISTIC QUANTUM MECHANICS

IN THE FOLDY-WOUTHUYSEN
REPRESENTATION

The Hamiltonian (53) also fully agrees with the corre-
sponding FW Hamiltonians for a scalar particle [34] and
for a Dirac one [18]. In the latter Hamiltonians, we can
disregard terms of the first and higher orders in the Planck
constant. The Hamiltonians differ only in the dimensions
of contained matrices defined by the dimensions of the
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corresponding wave functions. For states with a positive
total energy, lower spinors (or lower parts of spinorlike
wave functions) are equal to zero for any particles. Their
nullification unifies a normalization of the wave functions.
For any spin, the FWwave functions are normalized to unit,
and their probabilistic interpretation is restored. It should be
underlined that the quantum-mechanical Hamiltonians
become rather similar for bosons and fermions. A differ-
ence between the Hermiticity of the initial Hamiltonians for
fermions [18] and the β pseudo-Hermiticity of the corre-
sponding Hamiltonians for bosons [34] disappears after the
FW transformation. These properties indicate the unifica-
tion of relativistic QM for particles with different spins in
the FW representation.
In this paper, we do not analyze terms of the first order in

the Planck constant. Such terms define spin interactions.
However, it has been shown in Ref. [33] that the spin-
dependent terms in the FW Hamiltonians for spin-1=2 and
spin-1 particles with the AMMs and EDMs interacting with
arbitrary electromagnetic fields in Minkowski spacetimes
perfectly agree. These terms define equations of spin
motion, which coincide with each other in the classical
limit. These equations also coincide with the corresponding
classical equations (see Ref. [72] and references therein).
Of course, the FW Hamiltonian for spin-1 particles addi-
tionally contains bilinear in spin terms which also influence
spin dynamics [39,73–75].
It can be concluded that the use of the FW representation

allows one to unify the main equations of relativistic QM
for particles with different spins and to demonstrate that
their classical limit agrees with the corresponding classical
equations. This conclusion fully agrees with the results
obtained in Ref. [76] in which the specific quantum-
mechanical approach has been used.

VIII. SUMMARY

A comparison of fundamentals of Dirac and Proca QM
shows that the problem of quantization with an introduction
of interactions can be solved more easy for a Dirac particle
than for a Proca (spin-1) one. However, the solution of this
problem for the Proca particle is possible [57–63,65–67],
while it meets some difficulties. A consideration of the

results obtained for the Proca particle in electromagnetic
fields [31,33,39] demonstrates an importance of the ST and
FW transformations which result in the Schrödinger form
of the PCS equations. After this, the classical limit of Proca
QM in electromagnetic fields can be easily determined.
Therefore, a development of Proca QM needs not only a
formulation of general covariant Proca equations in electro-
magnetic and gravitational fields but also a determination
of the Hamiltonian form and of the classical limit of these
equations with the use of the ST and FW transformations.
These results in turn allow one to establish a connection of
QM of the Proca particle with QM of particles with
other spins.
The present work proposes the extension of relativistic

QM of a Proca particle on Riemannian spacetimes. The
formulated covariant Proca equations take into account the
AMM and the EDM of a spin-1 particle and are based on
the PCS equations in special relativity and precedent
studies of the Proca particle in curved spacetimes. It is
important to mention that the covariant derivatives in the
Dirac and Proca equations substantially differ. As an
example, the relativistic FW transformation with allowance
for terms proportional to the zero power of the Planck
constant has been performed. The Hamiltonian obtained
agrees with the corresponding Hamiltonians derived for
scalar and Dirac particles and with their classical counter-
part. This conclusion is in agreement with the results
obtained in Ref. [76]. The consideration presented dem-
onstrate the unification of relativistic QM in the FW
representation.
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