
 

Mixed anomalies: Chiral vortical effect and the Sommerfeld expansion
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We discuss the connection between the integer moments of the Fermi distribution function that occur in
the Sommerfeld expansion and the coefficients that occur in anomalous conservation laws for chiral
fermions. For an illustration, we extract the chiral magnetothermal energy current from the mixed gauge-
gravity anomaly in the 3þ 1-dimensional energy-momentum conservation law. We then use a similar
method to confirm the conjecture that the T2=12 thermal contribution to the chiral vortical effect current
arises from the gravitational Pontryagin term in the 3þ 1-dimensional chiral anomaly.
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I. INTRODUCTION

A recent experiment [1] and its widespread coverage in
the media [2] have focused attention on the idea that the
physics of a system containing chiral fermions can be
influenced by effects of gravitational origin even in flat
space-time [3]. These effects occur because the coefficients
in certain constitutive relations for transport currents are
related to the coefficients in corresponding anomalous
conservation laws. As anomalies are not renormalized by
interactions, these anomaly-induced, nondissipative, con-
tributions to transport currents should take the same values
in both strongly coupled and free theories. In the free case,
the currents can be computed without reference to any
anomaly, and the free-theory computations reduce to the
evaluation of integer moments of the Fermi function that
turn out to be polynomials in the temperature and chemical
potential. One is left with a sense that these Sommerfeld-
expansion integrals somehow know about anomalies. This
impression was made concrete by Loganayagam and
Surówka [4], who observed that a generating function
for the integer moments of the Fermi function bears a close
resemblance to the product of the A-roof genus and the
total Chern character that occurs in the general-dimension
Dirac index theorem—and which, via the Bardeen-Zumino
descent equations [5], is the ultimate source of the
anomalies. Their observation led them to a “replacement
rule” that allowed them to compute anomaly-induced
contributions to transport and fluid dynamics in N
space-time dimensions directly from the anomaly poly-
nomial in N þ 2 dimensions [4,6–12].

In this paper, we illustrate some of the ideas by
computing two of these currents—the thermomagnetic
current that plays a central role in Ref. [1] and the
thermal contribution to the chiral vortical effect (CVE)
current that arises when a chiral fermion is in thermal
equilibrium in a rotating frame—both from the free
theory and from the corresponding anomaly. The first
example is merely a repackaging of the gravitational-
anomaly derivation of Hawking radiation [13–15], but it
serves to set the stage for an explicit confirmation of the
conjecture [3] that the thermal component of the CVE is
related to the gravitational anomaly. These two deriva-
tions also help explicate the geometric origin of the
replacement-rule mapping that takes the first Pontryagin
class of the Riemann curvature tensor to minus the square
of the temperature.
In Sec. II, we introduce the specific currents of which

the anomaly-driven origin we seek to illustrate. In Sec. III,
we will construct gedanken space-times in which the
currents are created ex nihilo by tidal forces in the vicinity
of black-hole event horizons. In Sec. IV, we use the
similarity of the their generating functions and the obser-
vation that often only one of the formal eigenvalues of the
curvature tensor will be nonzero to link the anomalies with
the Sommerfeld integrals. A final section, Sec. V, will put
these ideas into context.

II. ANOMALIES AND ANOMALY-INDUCED
CURRENTS

The “mixed axial-gravitational anomalies” that are
invoked in the condensed-matter context in Ref. [1] and
also Ref. [16] are the (3þ 1)-dimensional anomalous
conservation equation
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∇μTμν ¼ FνλJN;λ −
1

384π2
ϵρσαβffiffiffiffi−p

g
∇μ½FρσRνμ

αβ� ð1Þ

for the energy-momentum tensor Tμν of a unit-charge right-
handed Weyl fermion and the anomalous conservation
equation

∇μJ
μ
N ¼ −

1

32π2
ϵμνρσffiffiffiffi−p

g
FμνFρσ −

1

768π2
ϵμνρσffiffiffiffi−p

g
Rα

βμνRβ
αρσ

ð2Þ
for the particle-number current JμN . The right-hand side of
Eq. (1) shows that energy-momentum is delivered to the
fermion from two sources: the first is the expected Lorentz
force FνλJN;λ, and the second is the gravitational anomaly
that requires a cooperation between the gauge field Fμν and
the tidal forces encoded in the Riemann tensor Rνμ

αβ of the
background space-time geometry. The right-hand side of
the gauge-current conservation law (2) contains two
anomalous source terms: a gauge field Chern-character
density and a geometric Pontryagin-class density. The two
equations, (1) and (2), displaymixed anomalies because the
anomalous sources for both the geometry-related energy-
momentum tensor Tμν and the gauge field–related particle-
number current JμN contain expressions involving the
background field that couples to the other.
Anomaly-induced currents appear in solid-state systems

[1,16] and also in relativistic fluid dynamics [17] in which
(in the ½−;þ;þ;þ� metric convention) we have [18]

Tμν ¼ pgμν þ ðϵþ pÞuμuν þ ξTBðBμuν þ BνuμÞ
þ ξTωðωμuν þ ωνuμÞ; ð3Þ

JμN ¼ nuμ þ ξJBBμ þ ξJωω
μ; ð4Þ

JμS ¼ suμ þ ξSBBμ þ ξSωω
μ: ð5Þ

Here, Tμν and JμN are the energy-momentum tensor and
number current that we have already met, while JμS is the
entropy current. The first terms on the rhs of each of
these expressions are the usual expressions for a relativistic
fluid in which uμ denotes the 4-velocity of the fluid,
and ϵ, p, n, and s are, respectively, the energy density,
pressure, particle-number density, and entropy density. The
remaining anomaly-induced terms involve the angular-
velocity 4-vector defined by

ωμ ¼ 1

2
ϵμνστuν∂σuτ: ð6Þ

With ϵ0123 ¼ þ1 and ϵ0123 ¼ −1, and in the uμ ¼
ð1; 0; 0; 0Þ rest frame, we have ωμ ¼ ð0;ΩÞ, where Ω ¼
1
2
∇ × u is the local 3-vector angular velocity. The extra

currents also involve the magnetic fieldB as it appears to an
observer moving at velocity uμ. We have

Eμ ¼ Fμνuν; Bμ ¼ 1

2
ϵμνστuνFστ; ð7Þ

where Fμν ¼ ∂μAν − ∂νAμ, Aμ ¼ ðϕ;AÞ. Again, in the
uμ ¼ ð1; 0; 0; 0Þ rest frame, we have Eμ ¼ ð0;EÞ, Bμ ¼
ð0;BÞ and

1

4π2
E · B ¼ 1

4π2
EμBμ ¼ −

1

32π2
ϵμνστFμνFστ: ð8Þ

In relativistic fluid dynamics, the notion of the “velocity of
the fluid” requires further specification. We will take uμ to
be the 4-velocity of the no-drag frame introduced in
Refs. [19,20]. This is the frame in which the ξ coefficients
take their simplest form and is usually the frame in which
the fluid is in local thermodynamic equilibrium.
Demanding that no entropy production be associated

with the anomaly-induced currents requires [20] that the six
coefficients ξTB, ξTω, ξJB, ξJω, ξSB, and ξSω depend at most
on three underlying parameters through

ξJB ¼ Cμ;

ξJω ¼ Cμ2 þ XBT2;

ξSB ¼ XBT;

ξSω ¼ 2μTXB þ XωT2;

ξTB ¼ 1

2
ðCμ2 þ XBT2Þ;

ξTω ¼ 2

3
ðCμ3 þ 3XBμT2 þ XωT3Þ: ð9Þ

Here, T is the temperature, and μ is the chemical potential
associated with the U(1) particle-number current JμN . For
the ideal Weyl gas, the three parameters C, XB, and Xω take
the values

C ¼ 1

4π2
; XB ¼ 1

12
; Xω ¼ 0: ð10Þ

It is clear from the derivation in Ref. [20] that C is the
coefficient of the term (8) in the chiral anomaly (2). It was
conjectured in Ref. [3] that the parameter XB is the
coefficient appearing before the Pontryagin density in
the same equation. This conjecture was originally moti-
vated by the simple observation that both XB and the
Pontryagin coefficient depend on the same physical data
(spin and chirality, but not charge), but it has gained support
from consideration of global anomalies [21,22] and from
calculations using AdS=CFT formalism [23]. It is not,
however, straightforward to confirm the conjecture by
extending the flat-space considerations in Ref. [20] to
curved space.
For an ideal gas of right-handed Weyl fermions at rest in

flat space [so, uμ ¼ ð1; 0; 0; 0Þ], the term with ξTB in (3)
leads to an anomaly-induced magnetothermal energy flux,
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Jϵ ¼ B

�
μ2

8π2
þ 1

24
T2

�
; ð11Þ

which plays a central role in Ref. [1].
A similar gas in thermal equilibrium in a frame rotating

at angular velocity Ω [so that uμ ¼ ð1; 0; 0; 0Þ on the
rotation axis] acquires from the ξJω term in (4) a CVE
number current that (again on the rotation axis) is given
by [24]

JN ¼ Ω
�
μ2

4π2
þ jΩj2
48π2

þ 1

12
T2

�
: ð12Þ

We do not need the gravitational anomaly to understand
the origin of the magnetothermal current in (11). It is well
known that solving the for the eigenvalues of the Weyl
Hamiltonian in the presence of a magnetic field B yields a
set of energy levels,

ϵlðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jBjlþ k2

q
; ð13Þ

where k is the component of momentum parallel to B. The
levels have degeneracy jBj=2π per unit area in a plane
transverse to B, and all levels are gapped except for l ¼ 0.
The l ¼ 0 level is special in that only one sign of the square
root is allowed, and we effectively have an array of gapless
one-dimensional chiral fermions with

ϵðkÞ ¼ þk: ð14Þ

Each one-dimensional chiral fermion contributes a
current of

Jϵ ¼
Z

∞

−∞

dϵ
2π

ϵ

�
1

1þ eβðϵ−μÞ
− θð−ϵÞ

�
¼ 2π

�
μ2

8π2
þ 1

24
T2

�
;

ð15Þ

where β ¼ 1=T and the −θð−ϵÞ counterterm affects a
normal-ordering vacuum subtraction of the contribution
of the Dirac/Fermi sea, ensuring that there is no current
when μ ¼ T ¼ 0. Combining (15) with the jBj=2π areal
degeneracy leads immediately to (11).
The free fermion computation of the CVE current is

rather lengthier [24], but it also reduces to a Sommerfeld
integral, in this case

JN ¼ 1

4π2

Z
∞

−∞
ϵ2dϵ

�
1

1þ eβðϵ−ðμþΩ=2ÞÞ −
1

1þ eβðϵ−ðμ−Ω=2ÞÞ

�
:

¼ μ2Ω
4π2

þ Ω3

48π2
þ 1

12
ΩT2:

Although we do not need the mixed anomalies to obtain
these currents, we can use them to do so and in doing so
gain insight into the physical origin of the anomalies. We

will devote the next section to the anomaly derivation of
(11) and (12). We will see that a number of deep ideas are
combined in these derivations.

III. CURRENTS FROM ANOMALIES

In this section, we will construct space-times in which
the thermal contributions to the anomaly-induced currents
arise from the gravitational source terms in the associated
anomalous conservations laws.

A. Magnetothermal current

To derive the thermal part of (11) from the anomaly, we
will take for granted the 4 → 2-dimensional reduction
provided by the magnetic field and consider the current
as that of our array of 1þ 1-dimensional right-going
fermions. We imagine a gedanken experiment in which
we heat each right-going Fermi field to temperature T by
terminating its space-time on the left by a 1þ 1-dimen-
sional black hole of which the Hawking temperature is T.
The T2 contribution to (11) is then the Fermi field’s
contribution to the outgoing Hawking radiation. To relate
this interpretation to the anomaly, we review how [13–15]
Hawking radiation arises from the 1þ 1-dimensional
version of the energy-momentum anomaly

∇μTμν ¼ −
c

96π

ϵνσffiffiffiffiffijgjp ∂σR; ð16Þ

to which (1) reduces in a uniform B field. Here, ϵ01 ¼ 1,
R ¼ Rαβ

αβ ¼ 2R01
01 ¼ 2Rtr

tr is the Ricci scalar, and c ¼
cR − cL is the difference between the conformal central
charges of the right-going and left-going massless fields.
As our magnetic field leaves us with only right-going
fields, we have c ¼ 1.
As the black hole is an externally imposed background

space-time, we do not need its metric to satisfy the Einstein
equations, and a suitable metric is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2; ð17Þ

where all that is required of fðrÞ is that it tends to unity at
large r and vanishes linearly as r approaches the event
horizon r ¼ rH. In this metric, the Ricci scalar is given by

R ¼ −f00: ð18Þ

A covariant energy-momentum conservation equation does
not, on its own, lead to conserved energy and momentum.
For that, we need a space-time symmetry, i.e., a Killing-
vector field ημ that obeys the isometry condition

∇μην þ∇νημ ¼ 0: ð19Þ
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Combining the isometry equation with (16) then gives us

∇μðTμνηνÞ ¼ −
c

96π

ϵνσηνffiffiffiffiffijgjp ∂σR; ð20Þ

in which ffiffiffiffiffi
jgj

p ∇μðTμνηνÞ ¼ ∂μð
ffiffiffiffiffi
jgj

p
TμνηνÞ ð21Þ

involves a conventional total divergence.
Our Schwarzschild metric possesses a Killing vector

η ¼ ∂t of which the covariant components are ðηt; ηrÞ ¼
ð−fðrÞ; 0Þ. From this, we find that

∇μTμνην ¼ ð∂r

ffiffiffiffiffi
jgj

p
Tr

tÞ=
ffiffiffiffiffiffi
−g

p
: ð22Þ

We then have

∂
∂r ð

ffiffiffiffiffi
jgj

p
Tr

tÞ ¼ −
c

96π
f∂rf00 ¼ −

c
96π

∂
∂r

�
ff00 −

1

2
ðf0Þ2

�
;

ð23Þ

and integrating from rH to r ¼ ∞ gives

ffiffiffiffiffi
jgj

p
Tr

tj∞rH ¼ −
c

96π

�
ff00 −

1

2
ðf0Þ2

�����∞
rH

: ð24Þ

According to Ref. [15], the appropriate boundary condition
is that Tr

t is zero at the horizon. The rhs of (24) by contrast
is zero at infinity and contributes ðc=96πÞðf0Þ2=2 at the
horizon. As

ffiffiffiffiffijgjp
→ 1 at large r, we see that an energy

current of magnitude

Trtðz → ∞Þ ¼ −Tr
tðz → ∞Þ ¼ cκ2

48π
; κ ¼ f0ðrHÞ=2;

ð25Þ

has been built up by the anomaly as we move away from
the horizon. The quantity κ is the surface gravity of the
black hole.
To complete the derivation of (11), we recall the argu-

ment [25,26] that the geometry of the Euclidean section of
our black-hole metric shows that the Hawking temperature
is given by TH ¼ κ=2π. We begin by setting t ¼ −iτ and
see that in imaginary time our Schwarzschild space metric
becomes

dσ2 ¼ fðrÞdτ2 þ 1

fðrÞ dr
2: ð26Þ

If we introduce a new radial coordinate,

ρ ¼
Z

r

rH

dr0ffiffiffiffiffiffiffiffiffiffi
fðr0Þp ≈

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrHÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rH

p
; ð27Þ

where the approximation holds for r just above rH. Then, in
this same region,

dσ2 ¼ fðrÞdτ2 þ 1

fðrÞ dr
2

¼ fðrÞdτ2 þ dρ2;

≈ f0ðrHÞðr − rHÞdτ2 þ dρ2

¼ κ2ρ2dτ2 þ dρ2: ð28Þ

Comparison with the metric of plane polar coordinates now
shows that if there is to be no conical singularity at rH we
must identify κτ with the polar angle θ. Thus, the smooth
Euclidean manifold described by (26) looks like the skin of
a salami sausage (see Fig. 1) in which the circumferential
coordinate θ is identified with θ þ 2π, or equivalently τ is
identified with τ þ β where β ¼ 2π=κ. Green functions
Gðr; tÞ in Minkowski signature space-time will be periodic
in imaginary time with period β and are therefore [25,26]
thermal Green functions with temperature TH ¼ β−1 ¼
κ=2π (or kBTH ¼ ℏκ=2πc if we include dimensionful
constants).
This derivation seems quite straightforward, but there are

two subtleties that need to be discussed. First, anomalies
are usually presented as being of two types: consistent and
covariant [5]. Following Ref. [15], we have exclusively
used the covariant form of the anomaly. Second, it is well
known that Hawking radiation is observer dependent.
These two issues are not unrelated. To illuminate this
point, we will repeat the Hawking radiation calculation
using the two-dimensional version of Kruskal-Szekeres
coordinates.
We begin by defining a tortoise coordinate r� by solving

dr�
dr

¼ 1

fðrÞ ð29Þ

and taking as a boundary condition that r� coincides with r
at large positive distance. In ðt; r�Þ coordinates, the metric
becomes

ds2 ¼ eϕð−dt2 þ dr2�Þ; ð30Þ

Horizon
τ

z
zH

ρ

FIG. 1. The Euclidean, imaginary time, section of the two-
dimensional black hole is asymptotically a cylinder of circum-
ference 2π=κ. The horizon is a single point at ρ ¼ 0, or
equivalently z ¼ zH.
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where

ϕðr�Þ ¼ ln fðrðr�ÞÞ ð31Þ

and the event horizon lies at r� ¼ −∞. On setting z ¼
r� þ iτ and z̄ ¼ r� − iτ, the Euclidean version of this metric
takes the isothermal (conformal) form

dσ2 ¼ eϕdz̄dz: ð32Þ

In z̄, z, coordinates, the only nonvanishing Christoffel
symbols are

Γz
zz ¼ ∂zϕ; Γz̄

z̄ z̄ ¼ ∂ z̄ϕ; ð33Þ

and the Ricci scalar is

R ¼ −4e−ϕ∂2
zz̄ϕ: ð34Þ

In two-dimensional conformal field theory, we are used
to defining energy-momentum operators T̂ðzÞ and ˆ̄Tðz̄Þ,
where, for a free c ¼ 1 boson field φ̂ðz; z̄Þ ¼ φ̂ðzÞ þ φ̂ðz̄Þ,
for example, we have

T̂ðzÞ≕ ∂zφ̂ðzÞ∂zφ̂ðzÞ∶

¼ lim
δ→0

�
∂zφ̂ðzþ δ=2Þ∂zφ̂ðz − δ=2Þ þ 1

4πδ2

�
: ð35Þ

[Note that conformal field theory papers often define T̂ðzÞ
to be −2π times (35) so as to simplify the operator product
expansion.] The operator T̂ðzÞ has been constructed to be
explicitly holomorphic in z, but at a price of tying its
definition to the z, z̄ coordinate system—both in the
normal-ordered expression in the first line and by the
explicit counterterm in the second line. It is not surprising,
therefore, that under a change of coordinates the operator
T̂ðzÞ does not transform as a tensor but instead acquires an
inhomogeneous Schwarzian-derivative c-number part [27].
If we want a genuine energy-momentum tensor, we must
define

T̂zz ¼ T̂ðzÞ þ c
24π

�
∂2
zzϕ −

1

2
ð∂zϕÞ2

�
;

T̂ z̄ z̄ ¼ ˆ̄Tðz̄Þ þ c
24π

�
∂2
z̄ z̄ϕ −

1

2
ð∂ z̄ϕÞ2

�
;

T̂z̄z ¼ −
c

24π
∂2
zz̄ϕ; ð36Þ

in which the c-number Schwarzians in the operator trans-
formation are canceled by Schwarzians from the trans-
formation of the c-number additions.
A direct computation, using the holomorphicity and

antiholomorphicity of the operators T̂ðzÞ and ˆ̄Tðz̄Þ together
with the formulas for the Christoffel symbols, shows that

∇zT̂zz þ∇z̄T̂ z̄z ¼ 0: ð37Þ

If, however, we keep only the right-going field, the chiral
energy-momentum tensor becomes

T̂zz ¼ T̂ðzÞ þ c
24π

�
∂2
zzϕ −

1

2
ð∂zϕÞ2

�
;

T̂z̄ z̄ ¼ 0;

T̂z̄z ¼ −
c

48π
∂2
zz̄ϕ: ð38Þ

A similar computation shows that the chiral tensor obeys

∇zT̂zz þ∇z̄T̂ z̄z ¼ −
c

96π
∂zR;

∇zT̂zz̄ þ∇z̄T̂ z̄ z̄ ¼ þ c
96π

∂ z̄R; ð39Þ

where the second term on the left-hand side of the second
equation is identically zero. In our z, z̄ coordinates system,
we have

ffiffiffi
g

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gz̄zgzz̄
p ¼ −ieϕ=2 [perhaps more clearly,

we can express this as eϕdt ∧ dr� ¼ ðeϕ=2iÞdz ∧ dz̄],
and we can write these last two equations in a covariant
manner as

∇zT̂zz þ∇z̄T̂ z̄z ¼ i
c

96π

ffiffiffi
g

p
ϵzz̄∂ z̄R;

∇zT̂zz̄ þ∇z̄T̂ z̄ z̄ ¼ i
c

96π

ffiffiffi
g

p
ϵz̄z∂zR: ð40Þ

In general Euclidean coordinates, we therefore have [28]

∇μT̂μν ¼ i
c

96π

ffiffiffi
g

p
ϵνσ∂σR: ð41Þ

The factor i appears in (42) because it is only the imaginary
part of the Euclidean effective action that can be anomalous
[29,30]. It is absent when we write the equation in
Minkowksi signature space-time in which it becomes

∇μT̂
μν ¼ −

c
96π

1ffiffiffiffiffijgjp ϵνσ∂σR: ð42Þ

Because we have used a covariantly transforming energy
momentum tensor, we find the covariant form of the
anomaly. In this calculation, we also see that the anomaly
arises solely from the c-number terms.
Now, define Euclidean Kruskal coordinates U and V by

setting

Z ¼ U þ iV ¼ expfκðr� þ iτÞg ¼ expfκzg;
Z̄ ¼ U − iV ¼ expfκðr� − iτÞg ¼ expfκz̄g ð43Þ

so that
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jZj2 ¼ U2 þ V2 ¼ expf2κr�g: ð44Þ

In terms of these coordinates, we have

dσ2 ¼ fðrÞκ−2e−2κr� ðdU2 þ dV2Þ: ð45Þ

With κ being the surface gravity, this goes to the non-
singular metric

dσ2 ¼ constðdU2 þ dV2Þ ð46Þ

[where the constant is determined by the exact form of
fðrÞ] near the horizon point at U2 þ V2 ¼ 0) and to

dσ2 ¼ κ−2ðU2 þ V2Þ−1ðdU2 þ dV2Þ ð47Þ

at large distance. This last expression is the metric of a
cylinder of circumference 2π=κ, confirming the time
periodicity.
For a general conformal “salami sausage” metric, we

need ds2 ¼ eϕdZdZ̄ with ϕ ¼ 0 at jZj ¼ 0 and ϕ ≈
−2 ln κjZj at large jZj where the circumference of the
sausage becomes constant. The coefficient −2 is required
by the Gauss-Bonnet theorem as the end cap is topologi-
cally a hemisphere. At short distance, the sausage looks like
a spherical cap, and we have

eϕ ¼ 1 −
1

4
z̄zRþOðjzj4Þ; ϕ ¼ −

1

4
z̄zRþOðjzj4Þ;

ð48Þ

where R is the Ricci scalar (twice the Gaussian curvature) at
the horizon.
As Kruskal Z and Z̄ coordinates are again isothermal, the

chiral energy-momentum tensor is of the form

T̂ZZ ¼ T̂ðZÞ þ c
24π

�
∂2
ZZϕ −

1

2
ð∂ZϕÞ2

�
; ð49Þ

where T̂ðZÞ is the normal-ordered operator part that
transforms inhomogeneously under conformal maps. The
second term is the c-number counterterm of which the
transformation cancels that of T̂ðZÞ so as to make T̂ZZ
transform as a tensor.
At short distance, the c-number part in T̂ZZ vanishes—in

fact, it vanishes identically on a sphere with conformal
coordinates. Consequently, as T̂ZZ is zero at the horizon,
the expectation value of T̂ðZÞ is zero there, and hence
everywhere. At large distance, however, we will have

ϕðZ; Z̄Þ ∼ − ln κZ − ln κZ̄; ð50Þ

and so the c-number part gives us

TZZ ∼
c

24π

�
1

Z2
−
1

2

1

Z2

�

¼ c
48π

1

Z2
: ð51Þ

Now, let us shift to the tortoise light-cone coordinates
z ¼ r� þ iτ, z̄ ¼ r� − iτ. Then,

T̂zz ¼
�∂Z
∂z

�
2

T̂ZZ

¼ κ2Z2T̂ZZ

→
cκ2

48π
; as r� → ∞: ð52Þ

In the asymptotic Minkowski space r� ¼ r, and with the
speed of light equal to 1 and� denoting r� t components,
we have

T̂þþ ¼ 1

4
ðT̂rr þ T̂tt − 2T̂rtÞ;

T̂−− ¼ 1

4
ðT̂rr þ T̂tt þ 2T̂rtÞ;

T̂þ− ¼ 1

4
ðT̂rr − T̂ttÞ; ð53Þ

with T̂þ− ¼ T̂−− ¼ 0. Consequently, T̂þþ ¼ T̂tt ¼ T̂rt,
and the Kruskal coordinate energy density and flux
coincide with those from the Schwarzschild coordinate
calculation. The breakup between the operator and c
number is different, however. The c-number part in T̂zz
vanishes at large r, so the large-distance contribution to the
Schwarzschild energy flux comes entirely from the expect-
ation value of the operator T̂ðzÞ. In other words, the
Schwarzschild observer sees the asymptotic energy being
carried by actual particles. In Kruskal coordinates, the T̂ZZ
operator part has a vanishing expectation value everywhere,
and the asymptotic energy flux comes entirely from the
c-number term. Thus, T̂ðZÞ and T̂ðzÞ record very different
particle content, and the Schwarzschild r, t coordinate
observer’s zero-particle state is not the same as the Kruskal
observer’s zero-particle state.
The physical interpretation should now be clear: both the

Schwarzschild time and the Kruskal time coordinate lines
correspond to the flows of timelike Killing vectors. In each
coordinate system, the field’s mode expansions have well-
defined yet different positive-frequency modes of which the
coefficients are annihilation operators. The operators T̂ZZ

and T̂zz are normal ordered so that the annihilators are all to
the right. It is the positive frequencies that can excite a
detector from its ground state, and the normal-ordered
operators keep track of what a detector at fixed spatial
coordinate would record in each coordinate system. Close
to the horizon, a detector at fixed Schwarzschild coordinate
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r sees a high-temperature thermal distribution of outgoing
particles. However, at the horizon, their contribution to the
expectation value of T̂z is exactly canceled by the c-number
term. As we move away from the horizon, this c-number
term decreases and allows the total covariantly defined
energy current to grow to its asymptotic value. On the other
hand, the Kruskal observer never sees any particles, and all
their energy flux comes from the c-number contribution
that grows from zero at the horizon to the same asymptotic
value as the Schwarzschild flux. Presumably, the source
term in the Einstein equations will be the expectation
value of a covariantly defined energy-momentum tensor.

Therefore, it is independent of the observer’s motion—but
as we are not investigating the backreaction of the emitted
radiation on the geometry, this is not our present concern.

B. Chiral vortical current

We now seek an analogous derivation of (12) from the
Pontryagin term in (2). To do this, we need to modify our
toy black hole to acquire a nonzero Pontryagin density. A
suggestion of how to proceed comes from the Kerr metric
of a rotating black hole. In Boyer-Lindquist coordinates
ðt; r;ϕ; θÞ, and with cos θ ¼ χ, this metric is

ds2 ¼ −
�
1 −

2mr
r2 þ a2χ2

�
dt2 þ

�
r2 þ a2χ2

r2 þ a2 − 2mr

�
dr2 −

4amrð1 − χ2Þ
r2 þ a2χ2

dtdϕ

× ð1 − χ2Þ
�
a2 þ r2 þ 2a2mrð1 − χ2Þ

r2 þ a2χ2

�
dϕ2 þ r2 þ a2χ2

1 − χ2
dχ2; ð54Þ

where m is the mass and J ¼ ma is the angular momentum
of the black hole.
This metric has two special horizon surfaces at the roots

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
ð55Þ

of r2 þ a2 − 2mr ¼ 0. The outer horizon r ¼ rþ is the
causal event horizon on which trapped photons are forced
to orbit at fixed r, θ and angular velocity

Ωþ¼def
dϕ
dt

¼ a
r2þ

: ð56Þ

Both Ωþ and the surface gravity

κþ ¼ 1

4m
−mΩ2þ ð57Þ

are constant over the horizon. As in the Schwarzschild case,
the absence of a conical singularity in the Euclidean section
requires τ ∼ τ þ βH, where [31]

βH ¼ 1

TH
¼ 2π

κþ
: ð58Þ

The Kerr black hole is therefore both rotating and hot.
What is important for us is that the numerical coefficient

1

4
ϵλμρσRa

bλμRb
aρσ ¼ −

48am2rχðr2 − 3a2χ2Þð3r2 − a2χ2Þ
ðr2 þ a2χ2Þ5

ð59Þ

of dt ∧ dr ∧ dϕ ∧ dχ in the Pontryagin-density 4-form
trfR2g is nonzero. For small a=m, the coefficient is largest
near the poles of rotation at χ ¼ �1.

The Kerr metric can be conveniently written [31] in
terms of the functions

Δ ¼ r2 þ a2 − 2mr; ð60Þ
ρ2 ¼ r2 þ a2 cos2 θ; ð61Þ

and two mutually orthogonal 1-forms

ω ¼ r2 þ a2

ρ2
ðdt − a sin2 θdϕÞ; ð62Þ

ω̃ ¼ r2 þ a2

ρ2

�
dϕ −

a
r2 þ a2

dt

�
; ð63Þ

as

ds2 ¼ −
Δρ2

ðr2 þ a2Þ2 ω
2 þ ρ2

Δ
dr2 þ ρ2dθ2 þ ρ2 sin2 θω̃2:

ð64Þ
Motivated by this rewriting, we consider a 3þ 1 space with
metric

ds2 ¼ −fðzÞ ðdt −Ωr2dϕÞ2
ð1 −Ω2r2Þ þ 1

fðzÞ dz
2 þ dr2

þ r2ðdϕ − ΩdtÞ2
ð1 − Ω2r2Þ : ð65Þ

The metric (65) has been constructed so that at large z,
where fðzÞ ¼ 1, it reduces to

ds2 → −dt2 þ dz2 þ dr2 þ r2dϕ2; ð66Þ
where r, z, and ϕ are the cylindrical-coordinate radial,
axial, and azimuthal coordinates of an asymptotically flat
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space-time. Thus, in contrast to previous usage, z is a real
coordinate that provides a measure of the distance from the
horizon at fðzHÞ ¼ 0, and r is a measure of distance from
the rotation axis. Replacing the complicated Kerr-metric
coefficients by the function fðzÞ allows us to ensure that the
space-time curvature is concentrated near the horizon,
which now appears to be planar and rotating at angular
velocity Ω. We anticipate that outgoing Fermi fields in this
space will be in asymptotic thermal equilibrium at temper-
ature TH ¼ f0ðzHÞ=4π in a frame rotating about the z axis
with the horizon angular velocity Ω. They should therefore
acquire a CVE current as they move though the curved and
twisted near-horizon geometry.
The numerical coefficient of the Pontryagin density in

this space-time is

1

4
ϵμνρσRα

βμνRβ
αρσ

¼ 2rΩf0ðzÞð8Ω2ð1 − fðzÞÞ þ ð1 − Ω2r2Þ2f00ðzÞÞ
ð1 − Ω2r2Þ3

∼ 2rΩf0ðzÞf00ðzÞ

¼ ∂
∂z ðΩr½f

0ðzÞ�2Þ: ð67Þ

In the last two lines, we have kept only the leading term in
Ω. The error is O½Ω3�.
When we divide by

ffiffiffiffiffijgjp ¼ r to get the Pontryagin-
density scalar, we see that we have created in the region
abutting the horizon an r-independent source term for the
axial current of our anomalous relativistic fluid. We assume
that this planar source drives a current only in the z
direction. In that case, we find that to leading order in Ω
the anomalous conservation law (2) becomes

∂
∂z ð

ffiffiffiffiffi
jgj

p
JzNÞ ¼ −

Ω
192π2

∂
∂z ð

ffiffiffiffiffi
jgj

p
½f0ðzÞ�2Þ: ð68Þ

With boundary condition JzðzHÞ ¼ 0, we can again inte-
grate up with respect to z to find

JzNðz → ∞Þ ¼ 1

12
ΩT2

H: ð69Þ

This is the expected thermal contribution to the CVE
current (12).

If we retain terms of orderΩ3, we do get a contribution to
the on-axis current similar to that in (12), but with
coefficient 1=24π2 rather than 1=48π2. Trying slightly
modified metrics indicates that this correction to the current
is sensitive to how the metric varies away from the axis of
rotation. For example, omitting the ð1 −Ω2r2Þ factors in
the denominators in (65) does not alter the on-axis
asymptotic metric and does not affect the coefficient of
the T2 term in the current. It does, however, lead to the
coefficient of Ω3 becoming zero. Perhaps we should not be
surprised by this as the notion of a rigidly rotating
coordinate system such as that used by Ref. [24] is bound
to be problematic away from the rotation axis.
Note that our CVE current (69) is not, as suggested in

Ref. [32], simply proportional to the Chern-Simons current
associated with the Pontryagin class. The latter current

JλCS ¼
1

2

ϵλμρσffiffiffiffiffijgjp �
Γα

βμ∂ρΓβ
ασ þ

2

3
Γα

βμΓβ
γρΓγ

ασ

�
ð70Þ

has (to leading order in Ω) two nonzero components:

JzCS ¼ Ω½f0ðzÞ�2; JrCS ¼ 2Ωf0ðzÞ=r: ð71Þ

It does satisfy

∂λ

ffiffiffiffiffi
jgj

p
JλCS ¼

1

4
ϵλμρσRα

βλμRβ
αρσ ð72Þ

but obeys different boundary conditions in that JμCSðzÞ
vanishes at z ¼ ∞ rather than at the horizon. Our derivation
in this section was, however, motivated by the discussion
in Ref. [32].

IV. SOMMERFELD INTEGRALS
AND ANOMALIES

In the Introduction, we made the claim that the Fermi-
distribution moment integrals that appear in the higher-
order terms of the Sommerfeld expansion somehow know
about anomalies. In this section, we try to explain how this
knowledge comes about by combining the ideas in Ref. [4]
with the geometry behind our gedanken trick of using the
Hawking effect as our heat source.
The first few such moment integrals are

Z
∞

−∞

dϵ
2π

�
1

1þ eβðϵ−μÞ
− θð−ϵÞ

�
¼

�
μ

2π

�
;

Z
∞

−∞

dϵ
2π

�
ϵ

2π

��
1

1þ eβðϵ−μÞ
− θð−ϵÞ

�
¼ 1

2!

�
μ

2π

�
2

þ T2

4!
;

Z
∞

−∞

dϵ
2π

1

2!

�
ϵ

2π

�
2
�

1

1þ eβðϵ−μÞ
− θð−ϵÞ

�
¼ 1

3!

�
μ

2π

�
3

þ
�
μ

2π

�
T2

4!
;
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Z
∞

−∞

dϵ
2π

1

3!

�
ϵ

2π

�
3
�

1

1þ eβðϵ−μÞ
− θð−ϵÞ

�
¼ 1

4!

�
μ

2π

�
4

þ 1

2!

�
μ

2π

�
2 T2

4!
þ 7

8

T4

6!
;

Z
∞

−∞

dϵ
2π

1

4!

�
ϵ

2π

�
4
�

1

1þ eβðϵ−μÞ
− θð−ϵÞ

�
¼ 1

5!

�
μ

2π

�
5

þ 1

3!

�
μ

2π

�
3 T2

4!
þ
�
μ

2π

�
7

8

T4

6!
;

Z
∞

−∞

dϵ
2π

1

5!

�
ϵ

2π

�
5
�

1

1þ eβðϵ−μÞ
− θð−ϵÞ

�
¼ 1

6!

�
μ

2π

�
6

þ 1

4!

�
μ

2π

�
4 T2

4!
þ 1

2!

�
μ

2π

�
2 7

8

T4

6!
þ 31

24

T6

8!
: ð73Þ

These are all polynomials in the temperature and the
chemical potential. It is essential for the simplicity of these
results that the ϵ integral runs from −∞ to þ∞. If we had
kept only the positive energy part of the integrals, we would
have instead

Z
∞

0

dϵ
2π

1

k!

�
ϵ

2π

�
k 1

1þ eβðϵ−μÞ
¼ −

1

ð2πβÞkþ1
Likþ1ð−eβμÞ;

ð74Þ

where the polylogarithm function LikðxÞ is defined by
analytic continuation from the series

LikðxÞ ¼
X∞
n¼1

xn

nk
; jzj < 1: ð75Þ

The polynomial form of the full-range integral arises from
the identity

Likð−eβμÞ þ ð−1ÞkLikð−e−βμÞ ¼ −
ð2πiÞk
k!

Bk

�
1

2
þ βμ

2πi

�
;

ð76Þ

which holds for integer k and where BkðxÞ are the Bernoulli
polynomials defined by

tetx

et − 1
¼

X∞
n¼0

tn

n!
BnðxÞ: ð77Þ

The identity (76) is a special case of a general identity for
the polylogarithm due to Hurwitz. A compact generating
function

Z
∞

−∞

dϵ
2π

eτϵ=2π
�

1

1þ eβðϵ−μÞ
− θð−ϵÞ

�

¼ 1

τ

� ðτT
2
Þ

sinðτT
2
Þ e

τμ=2π − 1

�
; 0 < τT=2π < 1; ð78Þ

for the Fermi-distribution moments encapsulates these
facts. Expanding both sides of (78) in powers of τ and

comparing coefficients reveals the equalities in (73) and
also explains the reason for the inclusion of the factors of
1=n!ð2πÞn in the left-hand side integrals of (73). The
generating function identity (78) is easily established by
substituting x ¼ expfβðϵ − μÞg and then using the standard
integral

Z
∞

0

dx
xα−1

1þ x
¼ π

sin πα
; 0 < α < 1: ð79Þ

The authors of Ref. [4] point out that the generating
function (78) is strongly reminiscent of the general formula

Index½=D� ¼
Z
M

Â½R�ch½F� ð80Þ

for the index of the Dirac operator on a euclidean manifold
M. Here,

ch½τF� ¼ expfτF=2πig

¼ 1þ τfF=2πig þ τ2

2
fF=2πig2 þ… ð81Þ

is the total Chern character involving the gauge-field
curvature F ¼ 1

2
Fμνdxμdxν, and

Â½τR� ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
τR=4πi

sinh τR=4πi

�s

¼ 1þ τ2

ð4πÞ2 2trfR
2g

þ τ4

ð4πÞ4
�

1

288
ðtrfR2gÞ2 þ 1

360
trfR4g

	
þ � � �

¼ 1 −
τ2

24
p1 þ

τ4

5760
ð7p21 − 4p2Þ þ…: ð82Þ

is the A-roof genus involving the Riemann curvature
matrix-valued 2-form

Rij ¼
1

2
Rijμνdxμdxν: ð83Þ
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In the last line of (82), the 4N-forms pnðRÞ are the
Pontryagin classes normalized as is customary in the
mathematics literature. It is tacitly understood that in
the product of ch½F� and ÂðRÞ in (80) we only retain those
terms of which the total form degree matches that of the
manifold M.
To derive the equalities in (82) and see the connection

with (78), we make use of the algebraic trick that underlies
the splitting principle from the general theory of character-
istic classes. We regard the curvature 2-form of the
N-dimensional manifold M as an n-by-n skew-symmetric
matrix that can be reduced to the canonical form

1

2π
Rij ≡ 1

4π
Rijμνdxμdxν

¼

2
666666664

0 −x1
x1 0

. .
.

0 −xN=2

xN=2 0

3
777777775
ij

: ð84Þ

Here, the xi are formal objects (Chern roots) that become
real numbers when we evaluate the curvature 2-form at a
point on some chosen vectors and only then perform the
canonical-form reduction. In terms of the xi, the A-roof
genus and the total Pontryagin class are given by

Â½τR� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
τR=4πi

sinh τR=4πi

�s
¼

Yn=2
i¼1

τxi=2
sinh τxi=2

; ð85Þ

pðτRÞ ¼ detð1 − τR=2πÞ ¼
Y
i

ð1þ τ2x2i Þ; ð86Þ

and

pðτRÞ ¼ 1þ τ2p1ðRÞ þ τ4p2ðRÞ þ…: ð87Þ

For the Pontryagin classes, the expressions

p1ðRÞ ¼
X
i

x21 ¼ −
1

ð2πÞ2
�
1

2
trfR2g

	
;

p2ðRÞ ¼
X
i<j

x2i x
2
j ¼

1

ð2πÞ4
�
1

8
ðtrfR2gÞ2 − 1

4
trfR4g

	
ð88Þ

account for the equality of the last two lines in (82). A
similar expansion of (85) leads to the equality of the first
two lines.
The discussion in Ref. [4] combines a general solution

[33] to the constraints imposed by demanding the absence
of entropy creation by the anomaly-induced currents with
the generating function (78) to obtain an effective action for

the ideal Weyl gas from the anomaly polynomial

P½R;F�¼def Â½R�ch½F�. A key ingredient is the replacement
rule [4,6–10,12]

F → μ

p1ðRÞ ¼ −
1

8π2
trðR2Þ → −T2

pnðRÞ ¼ 0; n > 1: ð89Þ

The replacement-rule result is very striking, but one is
left wondering whether the similarity of the Sommerfeld-
integral generating function’s factor

τT=2
sinðτT=2Þ ð90Þ

to the anomaly polynomial’s factor

Yn=2
i¼1

τxi=2
sinhðτxi=2Þ

ð91Þ

is anything more than a mere coincidence. The question of
how the T2 contributions to the currents are linked to the
gravitational anomaly is also raised in Ref. [4] but was left
unanswered because they work only in flat space. We
believe that the illustrative examples in our Sec. III go some
of the way toward explaining that the similarity is not a
coincidence. The essential idea is that when we generate
our temperature from the 1þ 1-dimensional Schwarzschild
sausage we need only to curve together the radial and time
dimensions. As a consequence, only one xi is nonzero, so
only one nontrivial factor appears in the A-roof generating
function. This also means that when expressed in terms of
the Pontryagin classes only one of the pn can be nonzero.
This will be p1ðRÞ ¼ x21 ¼ −T2, where the minus sign
accounts for the difference between sinh τx=2 and sin τT=2.

V. DISCUSSION

In 1967, Sutherland [34] and Veltman [35] argued
that partially conserved axial current (PCAC) and
current algebra require the decay π0 → γγ to be strongly
suppressed—a result contrary both to the experimental fact
that this is the principal decay mode of the neutral pion and
to the fact that the observed decay rate had been accurately
calculated by Steinberger in 1949 [36] from a Pauli-Villars
regulated Axial-Axial-Vector (AVV) triangle diagram. Two
years later, the contradiction was resolved by Adler [37]
and by Bell and Jackiw [38], who showed that the
Sutherland-Veltman argument fails because it requires an
illegitimate shift of the integration variable in the triangle
diagram, which is only conditionally convergent. As a
consequence, they found that, even for massless fermions,
the axial current is not conserved.
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The early understanding of such an anomalous failure of
conservation laws was mostly of a formal mathematical
character. The subtle issue of conditionally convergent
Feynman integrals was followed by Kiskis, Nielsen and
Schroer, and others making a connection with the math-
ematically deep Atiyah-Singer index theorem [39,40].
Fujikawa [41] then showed that the index theorem man-
dated the difference between the number of left- and right-
handed Dirac eigenmodes led to the path-integral measure
failing to be invariant under chiral transformations. It was
only around 1982 that Peskin [42] and others realized that
in the massless case the physical source of the E ·B=4π2

chiral anomaly is that the jBj=2π density of gapless modes
in the B field allows a steady _N ¼ _kk=2π ¼ Ek=2π flow of
eigenstates out of the infinitely deep Dirac sea, which is
acting as a Hilbert hotel. At about the same time, Nielsen
and Ninomiya [43] showed that in crystals, where there are
necessarily equal numbers of left- and right-handed Weyl
nodes, the Hilbert-hotel picture is not needed because the
Dirac seas of left- and right-handed fermions pass eigen-
states to one another at their common seabed. This
ambichiral traffic is the basis for our present understanding
of Weyl semimetals. Later, Callan and Harvey [44] showed
that, in the case of an uncanceled net anomaly, charge is
supplied to the bottom of the Dirac sea via inflow from
higher dimensions. Their bulk-edge and bulk-surface con-
nections are central to the physics of the quantum Hall
effect and topological insulators. In the latter, the picture is
particularly clear because the top and bottom of the
branches of gapless boundary modes merge with, and

emerge from, the lower and upper edges of the higher-
dimensional bulk states’ energy gap. It is now also under-
stood [45,46] that the spectral flow of eigenstates can be
computed by including a Berry phase–induced anomalous
velocity in semiclassical dynamics.
Today, we have a good mathematical understanding of

gravitational anomalies [29,30], but a comparable physical
explanation, analogous to the E · B spectral flow mecha-
nism, does not seem to exist. In Ref. [47], an attempt was
made to generalize the semiclassical Berry-phase picture to
motion in curved space, but the generalization was frus-
trated by the unusual Lorentz transformation properties of
massless particles with spin [48–51]. While the main result
of the present work is the explicit derivation of the T2

contribution to the CVE from the anomaly, we hope the
simple gedanken space-time that we have constructed to do
this will be useful for developing a physical understanding
in the gravitational case also.
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