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Cohen and Glashow argued that very special conformal field theories of a particular kind [i.e., with
HOM(2) or SIM(2) invariance] cannot be constructed within the framework of local field theories. We,
however, show examples of local construction by using nonlinear realization. We further construct linear
realization from the topological twist at the cost of unitarity. To demonstrate the ubiquity of our idea, we
also present corresponding holographic models.
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I. INTRODUCTION

The assumption of locality plays an essential role in
relativistic quantum field theories. In particle physics, it is
usually argued that locality is necessary to guarantee the
causal structure that is compatible with the special rela-
tivity: “nothing can travel faster than the speed of light.”
This, however, implies that the motivation to impose
locality comes from the more sacred principle of causality
and may not be fundamental. Indeed, with extended objects
such as branes or strings, the interaction may take place in a
nonlocal way, but still is compatible with the relativistic
causality. In this sense, we may say that locality is tied up
with the notion of particles under the assumption of the
special relativity.
If we abandon the special relativity, the role of locality

becomes less obvious. However, Cohen and Glashow
argued that the locality may also play a significant role
in very special relativity [1,2], which is a certain subgroup
of Lorentz symmetry that preserves a particular null
direction. They claim that if they impose the locality in
field theories that obey a certain class of the very special
relativity, they must be fully Lorentz invariant. The claim
yields a direct connection between the violation of Lorentz
symmetry and the violation of locality, which makes the
very special relativity more predictive and interesting. In
addition, the speed of light is constant in every direction
even though we have a particular null direction, so such
theories are phenomenologically viable.
Their argument was based on the spurion analysis.

Suppose we begin with a relativistic field theory and
consider its local deformation to break the symmetry down

to particular subgroups of the Lorentz symmetry [techni-
cally known as SIM(2) or HOM(2) invariant very special
relativity to be defined below]. Cohen and Glashow found
that there are no such local operators available from the
representation theory of Lorentz algebra. Therefore, they
argue that there are no local field theories that realize
SIM(2) and HOM(2) invariant very special relativity with-
out symmetry enhancement to the full Lorentz symmetry.
Alternatively, they proposed a way to achieve this by
violating the assumption of locality at the same time [2].1

In this paper, we, however, point out that there is a
loophole in their argument. When the original theory
possesses a further global symmetry, one may construct
the deformation that preserves the very special relativity
without violating the locality. We show some examples
in the context of very special conformal field theories [4]
for definiteness, but a similar construction is possible
and obviously easier without imposing the conformal
symmetry.

II. VERY SPECIAL CONFORMAL SYMMETRY

To discuss very special relativity as well as very special
conformal field theories, it is convenient to introduce light-
cone coordinates xþ ¼ 1ffiffi

2
p ðx0 þ x1Þ, x− ¼ 1ffiffi

2
p ðx0 − x1Þ,

and xi (i ¼ 2, 3) [or xþ ¼ − 1ffiffi
2

p ðx0 − x1Þ, x− ¼ − 1ffiffi
2

p

ðx0 þ x1Þ, and xi ¼ xi]. The light-cone tensors are defined
in a similar manner.
The very special relativity is based on the algebra spanned

by Pþ, P−, Pi, and Jþi, where Pμ ¼ fPþ; P−; Pig are
spacetime translations and Jþi is a Lorentz transformation
that preserves a particular null direction. In [1], they proposed
four different algebras of very special relativity, but in this
paper, we focus either on the HOM(2) invariant case byPublished by the American Physical Society under the terms of
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1See, e.g., an explicit background-field origin of this non-
locality in QED [3].
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adding Jþ− ormainly on the SIM(2) invariant case by adding
Jþ− and Jij. If we abandon Jþ− in each case, we have E(2)
or T(2) invariant very special conformal field theories
respectively.2

The conformal extension of the algebra of very special
relativity was discussed in [4]. The gist is that we can only
add the dilatation D̃ and a particular special conformal
transformation Kþ (as a subgroup of the Poincaré
conformal algebra). The schematic form of the commu-
tation relation for the SIM(2) invariant very special
conformal algebra is summarized in Table I. For the
HOM(2) invariant case, one can just ignore the column
and row of Jij. The relevant fact that we will use later is
that Jþ− does not appear in Table I as a result of the
commutator.

III. LOCAL FIELD THEORY EXAMPLES

Let us first recall the argument that very special
conformal field theories with SIM(2) or HOM(2) invari-
ance cannot be constructed from the spurion method.
Suppose we have a conformal field theory and try to
deform it by adding local operators that preserve SIM(2)
symmetry. In order to preserve the E(2) invariant very
special conformal symmetry, which is a subgroup of
SIM(2) invariant very special conformal symmetry, we try
to add a vector primary operator

S ¼ S0 þ
Z

d4xλμJμ; ð1Þ

where S0 is the action of a Poincaré conformal field theory,
and λμ has only nonzero components in λþ so that it
preserves Jþi and Jij.

3 In order to preserve the very special

conformal symmetry D̃ andKþ, we further assume that the
Poincaré scaling dimension of Jμ is five. This gives us a
local field theory construction of E(2) invariant very
special conformal field theory. The problem here is that
the spurion vector λμ is not invariant under Jþ−, and
therefore, we cannot preserve the SIM(2) invariant very
special conformal symmetry. This is essentially the rea-
soningmade in [1] to claim that there is no SIM(2) invariant
(not necessarily conformal) field theories from the spurion
method.4

Nevertheless we do find a way to avoid this no-go
argument by demanding that the spurion λμ transforms as a
vector under Jij and Jþi, but transforms as a “scalar” under
Jþ−. Since Jþ− does not appear in the right-hand side of
commutation relations of the very special conformal
algebra, this causes no inconsistency at the level of the
algebra. Of course, originally the spurion λμ was a vector
under the full Lorentz transformation Jμν, so we need a trick
to implement this idea.
The easiest way to do this is to use the concept of

“topological twist” [7,8]. Suppose the original theory
possesses an additional noncompact globalUð1Þ symmetry
Q. Suppose also that it has a vector operator Jþ which
transforms as e−iθQJþeiθQ ¼ eθJþ under the global sym-
metry Q. Then we see

R
dtd3xJþ is invariant under J̃þ− ¼

Jþ− þQ (while it was not invariant under Jþ−). Now, we
deform the action by the interaction

S ¼ S0 þ
Z

d4xλμJμ: ð2Þ

By construction, it is invariant under Jþi and Jij as well as
J̃þ− as discussed above. The commutation relations
among Jþi, Jij, and J̃þ− are the same as the ones in
the very special relativity, so we may well regard J̃þ− as
Jþ− in the very special conformal algebra. In addition, if
the Poincaré scaling dimension of Jμ is five, it preserves D̃
and Kþ. In this way, we have constructed a very special
conformal field theory with the SIM(2) invariance in a
local fashion.5

Let us show a couple of concrete examples to demon-
strate the construction. First, we consider a field theory
with two real fields A and B, which is defined by the
action

TABLE I. The commutation relation i½X; Y� of very special
conformal generators.

Pþ P− Pi Jij Jþi Jþ− Kþ D̃

Pþ 0 0 0 0 0 −Pþ 0 0
P− 0 0 0 0 Pi P− −D̃ 2P−
Pi 0 0 0 Pj Pþ 0 Jþi Pi

Jij 0 0 −Pj Jkl Jþi 0 0 0
Jþi 0 −Pi −Pþ −Jþi 0 −Jþi 0 −Jþi
Jþ− Pþ −P− 0 0 Jþi 0 Kþ 0
Kþ 0 D̃ −Jþi 0 0 −Kþ 0 −2Kþ
D̃ 0 −2P− −Pi 0 Jþi 0 2Kþ 0

2The total very special relativity algebra has various names in
the literature. The combination of E(2) and Pμ is sometimes
called the Bargmann algebra or massive Galilean algebra (see,
e.g., [5] and references therein). The combination of SIM(2) and
Pμ is called ISIM(2) algebra in [6].

3More generically, we could add the tensor operators with
only þ components, but the discussions below do not change.

4The argument does not rely on the conformal invariance,
but note that it is based on the assumption that one can turn off
the deformation such that the Lorentz invariance is recovered.
This argument alone did not exclude the isolated examples
if any.

5A similar idea to use the Poincaré dilatation rather than the
global symmetry to twist Jþ− was discussed in [9]. While the
Lorentz part of the symmetry algebra is SIM(2), the commutator
with the translation is different from the ones in Table I. We,
therefore, called D̃ rather than Jþ− in our discussions.
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S ¼
Z

d3xdtð∂þA∂−Bþ ∂þB∂−A − ∂iA∂iB

þ λA2ðA∂þB − B∂þAÞÞ: ð3Þ

Here the last term λA2ðA∂þB − B∂þAÞ plays the role of
λμJμ above. It is obviously invariant under Pþ, P−, and Pi

as well as Jij and Jiþ. It is invariant under the dilatation D̃,

i½D̃; Að0Þ� ¼ Að0Þ;
i½D̃; Bð0Þ� ¼ Bð0Þ; ð4Þ

as well as under the “twisted" Lorentz boost Jþ−,

i½Jþ−; Að0Þ� ¼
1

2
Að0Þ;

i½Jþ−; Bð0Þ� ¼ −
1

2
Bð0Þ; ð5Þ

where we omit the orbital part by setting xμ ¼ 0 because
the invariance is trivial. Since the deformation is given by
a vector primary operator, it is invariant under a particular
special conformal transformation Kþ,

i½Kþ; AðxÞ� ¼ ð2x− þ 2ðx−Þ2∂− þ 2x−xi∂i þ x2i ∂þÞAðxÞ;
i½Kþ; BðxÞ� ¼ ð2x− þ 2ðx−Þ2∂− þ 2x−xi∂i þ x2i ∂þÞBðxÞ:

ð6Þ
Therefore, this model is a concrete example of very
special conformal field theories with the SIM(2)
invariance.
Let us, however, mention one caveat of this model. The

theory is nonunitary because of the wrong sign in the
kinetic term. The underlying reason we needed the non-
unitarity is that we have to introduce the global noncompact
Uð1Þ symmetry under which real fields change their
absolute values rather than the phases. This typically
requires the kinetic term with the negative signature. In
other words, it must be SOð1; 1Þ rather than SOð2Þ.
On the other hand, at the level of effective field theories,

one may also construct a unitary field theory with the
SIM(2) invariant very special conformal symmetry realized
in a nonlinear way. As an example, let us consider a
field theory with a complex scalar ϕ and a real scalar φwith
the action

S ¼
Z

d3xdtð∂þϕ�∂−ϕþ ∂þϕ∂−ϕ
� − ∂iϕ

�∂iϕ

þ jϕj2
�
∂þφ∂−φ −

1

2
∂iφ∂iφ

�

þ iλeφðϕ�∂þϕ − ϕ∂þϕ�ÞÞ: ð7Þ
To see how Jþ− symmetry is realized, we make φ transform
nonlinearly under the dilatation D̃ and the Lorentz trans-
formation Jþ−:

i½D̃;ϕ� ¼ ϕ;

i½D̃;φ� ¼ 2;

i½Jþ−;ϕ� ¼ 0;

i½Jþ−;φ� ¼ 1; ð8Þ

so that the interaction
R
dtd3xeφðϕ�∂þϕ − ϕ∂þϕ�Þ is

invariant under Jþ− (as well as D̃). Note that the kinetic
term is also invariant under the shift of φ. While the action
is invariant, this model breaks the dilatation and special
conformal transformation spontaneously by choosing the
vacuum expectation values of ϕ ≠ 0 to avoid the singular
kinetic term for φ.
The similar construction is possible for the HOM(2)

invariant case. Consider the action

S ¼
Z

d3xdtð∂þϕ�∂−ϕþ ∂þϕ∂−ϕ
� − ∂iϕ

�∂iϕ

þ jϕj2
�
∂þφ∂−φ −

1

2
∂iφ∂iφ

�

þ iλμνeφð∂μϕ
�∂νϕ − ∂νϕ

�∂μϕÞÞ; ð9Þ

where λμν ¼ −λνμ has only a nonzero component in
λþ2 ¼ −λ2þ. We immediately see that the action is invariant
under Pμ and Jþi (but not under Jij). Invariance under Jþ−
is again guaranteed by the shift transformation of the φ field
as i½Jþ−;φ� ¼ 1 so that the interaction term

R
dtd3xiλμνeφ

ð∂μϕ
�∂νϕ − ∂νϕ

�∂μϕÞ becomes invariant. The theory is
unitary, but it breaks the very special conformal symmetry
spontaneously. The linear construction at the cost of
unitarity is also possible with the action similar to (3).
In [4], a holographic model for the E(2) invariant very

special conformal field theory was discussed. Here, we, for
the first time to our knowledge, present a holographic
model for SIM(2) invariant very special conformal field
theories. Let us consider the five-dimensional Einstein
gravity coupled with two real vector fields AM and BM
with the action

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2
R − Λ −

1

2
FMNGMN −m2AMBM

�
;

ð10Þ

where FMN ¼ ∂MAN − ∂NAM and GMN ¼ ∂MBN − ∂NBm.
We set Λ ¼ −6 and m2 ¼ 8. Then we find a particular
solution of the equations of motion with the metric given by

ds2 ¼ gMNdMdxN ¼ −2dxþdx− þ dxidxi þ dz2

z2
ð11Þ

and the vector fields
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A ¼ AMdxM ¼ −
dx−

z2
; B ¼ 0: ð12Þ

Invariance under Pμ, Jþi, Jij, D̃, and Kþ can be checked
along the same line of discussions in [4], where the
holographic models for E(2) invariant very special con-
formal field theories are studied. Note, however, that in
contrast with the model in [4], the energy-momentum
tensor from the vector fields here is zero, so the geometry
is not that of the Schrödinger holography [10,11] but it is
just the anti–de Sitter spacetime.
Our claim is that this is a holographic dual description of

a SIM(2) invariant very special conformal field theory.
Naively, the vector condensation (12) is not invariant under
the isometry of Jþ− while the metric is. Nevertheless, the
crucial point is that the theory has a noncompact Uð1Þ
global symmetry

δλA ¼ eλA; δλB ¼ e−λB; ð13Þ

and the condensation becomes invariant under the new
“Jþ−” if we define it by a combined transformation of the
coordinate transformation dx− → e−λdx− and the noncom-
pact global Uð1Þ symmetry δλA ¼ eλA. This mechanism is
essentially the holographic counterpart of what we used in
the field theory construction of conserved Jþ− from the
idea of the “topological twist”.6 Here the condensation of
AM is equivalent to adding Jμ to the action. Similarly, the
holographic theory is not unitary because of the wrong
signs in the kinetic terms for the vector fields AM and BM
much as the field theory construction discussed at the
beginning of this section.

IV. DISCUSSIONS

In this paper, we have constructed a local field theory
example of SIM(2) or HOM(2) invariant very special
conformal field theories, which was believed to be impos-
sible within local quantum field theories. Our construction
is either a nonunitary or a nonlinear realization. We may
regard these examples as counterexamples of the no-go
argument in [1] with a little bit of a caveat. Now we are
going to discuss what the caveat would imply.
The very special relativity was originally introduced

from the motivations in elementary particle physics, but the
existence of a particular null direction may have its origin
from the other spacetime physics. For example, let us
imagine quantum field theories near a black hole (or black
brane) horizon. There, the existence of a horizon may be
associated with a particular null direction in spacetime, and
one may locally approximate the symmetry of the space-
time by the very special relativity.

More precisely, if one takes the near horizon limit of a
nonextremal black hole, e.g., the Schwartzshild black hole,
then it is described by the Rindler space

ds2 ¼ −2
e−r

r
ð−dxþdx−Þ þ r2dΩ2 → −2dxþdx−

þ dy2 þ dz2; ð14Þ
which is locally the same as the Minkowski space.
However, a crucial difference here is that the null direction
x− ¼ 0 is special because it represents the location of the
event horizon. On the other hand, the other null directions
including xþ ¼ 0 are less sacred and can be broken by the
boundary condition imposed by the black hole background
(rather than the white hole background with horizon located
at xþ ¼ 0). Thus, the symmetry that is compatible with the
black hole system near the horizon region is given by one of
the very special symmetry.
We may even speculate that the difficulty of constructing

SIM(2) or HOM(2) invariant field theories has its origin in
black hole physics. On the one hand, we have to abandon
locality to construct unitary theories. On the other hand, we
have to abandon unitarity to construct local field theories.
The locality vs unitarity in the black hole information
puzzle has been a hot debate these days, and our dis-
cussions may be related to these studies in a deep manner.
We have also shown the local field theory construction of

HOM(2) and SIM(2) very special conformal field theories
with its nonlinear realization by the spontaneous breaking.
How does such nonlinear realization appear in physics? We
imagine that the very special relativity itself may originate
from the spontaneous symmetry breaking of the full
Lorentz symmetry. In the black hole case above, this is
what is precisely happening: the gravitational physics
spontaneously breaks the Lorentz symmetry. Then we
expect that the similar nonlinear realization of the very
special conformal symmetry may occur naturally.
Finally, beyond the spurion analysis in [1], there is no

strict argument that very special conformal field theories
with HOM(2) or SIM(2) invariance are impossible without
violation of unitarity, violation of locality, or spontaneous
breaking of the symmetry. It would be very important to
prove or disprove this point. Such a no-go theorem (i.e.,
unitary Poincaré invariant field theories with D̃ and Kþ
must be fully conformal invariant) does exist in d ¼ 2
dimensions [14], and the analysis there suggests that we
should understand the properties of correlation functions, in
particular those of the energy-momentum tensor.7
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