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The technique for constructing conformally invariant theories within the coset space construction is
developed. It reproduces all consequences of the conformal invariance and Lagrangians of widely known
conformal field theories. The method of induced representations, which plays the key role in the
construction, allows us to reveal a special role of the Nambu-Goldstone fields for special conformal
transformations. Namely, their dependence on the coordinates turns out to be fixed by the symmetries. This
results in the appearance of the constraints on possible forms of Lagrangians, which ensure that discrete
symmetries are indeed symmetries of the theory.
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I. INTRODUCTION AND SUMMARY

The coset space technique (CST) is a very powerful
tool for obtaining Lagrangians with nonlinear1 realization
of symmetries. Its area of applicability covers the con-
struction of effective Lagrangians resulting from sponta-
neous symmetry breaking [1–3] and of theories with
unbroken yet nonlinearly realized symmetries, such as
Poincare or gauge invariance [4–7].
However, the question of how to apply this technique to

the construction of Lagrangians with unbroken conformal
invariance remains open. The problems in this route stem
from the fact that, in order to make the CST applicable, one
must take the corresponding coset space to be

gH ¼ eiPμxμeiKνyν ; ð1Þ
where Pμ and Kν are generators of translations and special
conformal transformations (SCT) accordingly. While the
first term in the coset above is standard, the second one is
not. Hence, to make sense of the theories obtained from
coset (1), one should assign yν a suitable interpretation.
Several ideas on this point were suggested in [8–10].
However, none of them can be claimed fully successful
since they include ad hoc prescriptions or use methods
beyond the CST.

The aim of this paper is to revisit the application of the
CST to the construction of conformally invariant theories.
By paying careful attention to the discrete elements of the
conformal group and to the method of induced representa-
tions [11], the correct usage of the CST in this case is
obtained. It allows us to reproduce all consequences of
conformal invariance in a technically natural way and
clarifies a special role of yν, the Nambu-Goldstone field
for SCT. More specifically, the suggested construction is
based on the fact that conformal field theories (CFT) are
defined on a (pseudo)sphere. As it is well known, its
minimal atlas consists of two coordinate charts—one at the
south and one at the north poles of the sphere, each
covering the whole sphere except for the opposite pole.
The coordinates in these patches, x̃μ and ỹν, respectively
must obey the proper gluing map in the overlapping region,

ỹν ¼ x̃ν

x̃2
; x̃ν ≠ 0; ð2Þ

and vice versa. This results in the fact that, for the
construction of CFT Lagrangians in the CST framework,
one should use coset space (1) in which xμ play the role of
the coordinates and yν is a field. Furthermore, the con-
structed Lagrangians must admit (2) as a solution of yν ’s
equations of motion, which imposes strong constraints on
the possible forms of Lagrangians and is a qualitatively new
requirement one must fulfil. The geometrical meaning of
this condition is that it turns 2d-dimensional coset space (1)
into a d-dimensional sphere, which is the space on which
the CFT are defined. In particular, it turns out that this
requirement ensures that the virial current of constructed
theories is a total derivative, which is awell-known property
of CFT’s.
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1More precisely, such representations are nonhomogeneous.
In what follows, those two types of realizations would not be
distinguished.
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The novelty of the developed technique comes in two
aspects. First, the suggested approach allows us to obtain
homogeneously transforming quantities and conformally
invariant Lagrangians directly, by the means of CST. This
can be considered as a step towards in obtaining CFTs since
this simplifies the analogous construction of [12]. Namely,
unlike the latter work, in the developed formalism there is no
need in introducing fields in an auxiliary space and then
projecting them to physical states. Second, the developed
formalism reveals the special role of the inversion, the
discrete element of the conformal group, in the coset space
formalism. Specifically, its proper consideration reveals the
underlying geometrical construction and the role of the
Nambu-Goldlstone fields for SCT. Having this understand-
ing is important since CST is widely used for obtaining
effective Lagrangians resulting from the spontaneous break-
down of the conformal invariance [13–15]. However, until
the correct application of the CST in the unbroken phase is
established, one can argue such constructions to be disput-
able. The extension of the developed formalism to a
spontaneously broken phase and connected topics will be
addressed in the proceeding paper.
The paper is organized as follows. In Sec. II, by discussing

the properties of the conformal group, the basis for the
subsequent construction is formed. In Sec. III, the technique
allowing us to obtain conformally invariant Lagrangians
within the CST is developed. Section IV summarizes the
results and concludes the paper. In Appendixes A and B, a
generalization of the presented technique to other spacetime
groups is given.
For clarity, in the paper the conformal group is taken to

be Euclidean, reformulation of the result to the Minkowski
spacetime is straightforward.

II. THE CONFORMAL GROUP

An arbitrary element of the conformal group can be
presented as a product of five basic elements,2

ConfðdÞ ¼ feiPμaμ ; eiLμνω
μν
; eiDσ; R; Ig ð3Þ

where Lμν and D are generators of the Lorentz trans-
formations and dilations accordingly, R is the reflection
of the coordinates, I is the inversion, and μ ¼ 1;…; d.
In particular, the conformal group has the involute group
automorphism generated by the inversion,

G → G∶ ∀ g ∈ G → IgI; ð4Þ
which allows us to reveal a special role of the inversion.
Namely, under automorphism (4) the basic elements are
mapped as

IeiPμaμI ≡ eiKμaμ ; IeiLμνω
μν
I ¼ eiLμνω

μν
;

IeiDσI ¼ e−iDσ; IRI ¼ R: ð5Þ

The first relation in the formula above, in fact, defines SCT.
This observation qualitatively differs the role of I from that
of R, since the latter invokes automorphism mapping group
elements to themselves (up to a sign) only. As this makes
the role of R trivial, further its presence will be ignored,
while keeping track of I will be of crucial importance.
A d-dimensional homogeneous space of the conformal

group is known to be a sphere Sd, which is equivalent to the
Euclidean space supplemented by a point at infinity. In
particular, since I exchanges the origin and the point at
infinity, the latter cannot be dropped. Note that the standard
atlas of Sd consists of two charts that include the south (S)
and north (N) poles of the sphere accordingly. In particular,
these charts can be naturally “created” by acting by
translations and SCT on S and N correspondingly. This
constitutes the second observation that will be important
for working out the proper application of the CST to the
conformal group.

III. COSET SPACE CONSTRUCTION FOR
THE CONFORMAL GROUP

A. Establishing the proper coset space

Before discussing the application of the CST to the
conformal group, let us remind the reader its standard rules.
Let G be some symmetry group and A its (chosen)
homogeneous space. Then, to construct G-invariant
Lagrangians for the fields defined on A, one should follow
the steps below [11]:

(i) Define the stability group H of some point of A.
(ii) Introduce V—a space of a representation of H.
(iii) Promote this representation to that ofG. This is done

by redefining the elements of V as functions with the
domain A and defining the action of G on them
according to the standard CST rules.

(iv) Calculate the Maurer-Cartan forms (MCF) for the
coset space G=H and use them for the construction
of G-invariant Lagrangians.

In this procedure, the first three steps constitute the method
of induced representations, which is an intrinsic part of
the CST.
However, an attempt to apply the recipe above to the

conformal group and its homogeneous space Sd fails.
Indeed, identifying the stability group of S and N yields,

S∶ Sd ¼ ConfðdÞ=ðSGðdÞ × PÞ;
N∶ Sd ¼ ConfðdÞ=ðSGðdÞ × KÞ; ð6Þ

where SGðdÞ ¼ SOðdÞ ×D, P ¼ feiPμyμg is the group of
translations, and K ¼ feiKνyνg. Further, to obtain MCF, one
should take a logarithmic derivative of one of the coset

2This follows from the isomorphism ConfðdÞ ¼ Oð1; dþ 1Þ.
In particular, as Oð1; dþ 1Þ can be considered as a symmetry
group of the hypersurface −y20 þ y21 þ � � � þ y2dþ1 ¼ 0 ⊂ R1;dþ1,
this allows us to give a strict definition of I as the element of
Oð1; dþ 1Þ changing the sign of y0.
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spaces above. However, since both of them include the
inversion, this step cannot be done, thus yielding the whole
procedure inapplicable. At the same time, the coset space
without the inversion is too small for building representa-
tions of the conformal group, since it does not cover one of
the poles of the sphere.
One may try to avoid this problem by considering

representations of the group obtained from ConfðdÞ by
excluding the inversion. In this case, the fields of a theory
are defined on the Euclidean space, and the corresponding
coset space reads

gH ¼ eiPμxμ : ð7Þ

However, such coset space is not homogeneously reduc-
tive,3 and thus cannot be used for the construction of
conformally invariant Lagrangians [3]. To fix this issue,
one can extend coset space (7) to (1) [8–10], but this results
in the emergence of two new problems. The first one is that
it is an ad hoc prescription, and, hence, leaves the
interpretation of yν unclear. On the one hand, it cannot
be interpreted as a field, since (unbroken) CFTs do not
necessarily posses such field. And on the other hand,
considering them as additional coordinates is unnatural,
since the fields of a theory are defined on a d-dimensional
manifold. Independently from the solution of this problem,
the second one unveils an inconsistency of this approach.
To reveal it, one should act by SCT on (1) and read out the
transformation law of the coordinates,4

x0μ ¼ xμ þ bμx2

1þ 2bμxμ þ b2x2
; ð8Þ

where bμ are the parameters of the applied SCT and x0μ are
the transformed coordinates. Then, the problem is that the
point for which the denominator in (8) is zero is mapped to
the infinity, while none of the points ofRd are mapped back
to it. The only way to solve this problem is to consider Sd as
the space the fields are defined on, and, consequently,
construct representations of the conformal group.5

To establish the way how the CST can be applied to the
construction of conformally invariant theories on Sd, note
that the problems encountered in the previous paragraphs
stem form the fact that an atlas of Sd must contain at least
two coordinate charts. Indeed, for a Lie group G, one can
introduce coordinates on G, as well as on its quotient
spaces G=H. Any homogeneous space of G is isomorphic
to G=H, where H is the stability group of some point of A.

Then, if A can be covered by one coordinate chart, the
coordinates on A suggested by this isomorphism are well-
defined on the wholeA. However, if it is not the cases, they
become ill-defined around some points of the manifolds.
For example, for the conformal group and its homogeneous
space Sd, the differentials of the coordinates introduced via
isomorphism (6) become singular around one of the poles
of the sphere.
To resolve this problem, one can employ the following

trick. Consider a coset space obtained by factorizing
ConfðdÞ over a subgroup leaving both poles of the sphere
invariant up to their exchange,

gH ¼ ConfðdÞ=ðSOðdÞ ×D × IÞ ¼ eiPμxμeiKνyν : ð9Þ
If one considers xμ and yν as independent coordinates, then
coset space (9), as a group manifold, is of dimension 2d.
However, if one requires xμ and yν to be connected via the
gluing map of the coordinate charts around the south and
north poles of the sphere,

yνðxÞ ¼ xν

x2
; x⃗ ≠ 0⃗; ð10Þ

and vice versa, (9) becomes isomorphic to a sphereSd, which
is exactly the space the fields of CFTs are defined on. This
prescription is nothing but the standard rule of gluing
together two spaces into a new one used in the surgery
theory of manifolds and, in particular, patchwork. Then, this
suggests that one can employ the following prescription for
the construction of conformally invariant Lagrangians:

(i) Start with coset space (9), which is homogeneously
reductive, and consider xμ as coordinates and yν as a
function thereof.

(ii) Extract homogeneously transforming quantities
from the Maurer-Cartan form for coset space (9).

(iii) Construct conformally invariant Lagrangians as
SGðdÞ-invariant products thereof that admit (10)
as a solution.

Importantly, this implies considering xμ as the only inde-
pendent coordinates, and, hence, all of the fields should be
introduces as a function of xμ only. Before implementing this
procedure in practice, the following four points should be
commented.
First of all, the discussion above lacks strict mathematical

evidence for the suggested construction. In Appendix A it is
shown that the usage of coset space (9) and condition (10)
follow from geometrical considerations—they allow us to
endow Sd with an atlas structure. This forms the most
fundamental and strict grounding of the suggested formal-
ism. In particular, coset (9) can be thought of as acting on
both poles of the sphere simultaneously with additional
requirements that (i)Pμ andKν act nontrivially only on S and
N respectively, and (ii) the points of these orbits that are
mapped to each other by the action of the inversion are
identified. This makes it natural to dub coset (9) “two-orbit”
coset space.

3By definition, a coset spaceG=H is homogeneously reductive
if ½Z; V� ⊂ Z and ½V; V� ⊂ V, where Vi are the generators of H
and Za supplement them to the full set of generators of G.

4This formula is proven in the CST framework in Sec. III C.
5Note that one cannot solve this problem by restricting the

theory to some vicinity of the origin, since this makes the action
of the translations on coset (1) ill defined.
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Second, in the suggested procedure, xμ and yν are
considered on different grounds: xμ are independent coor-
dinates, while yν are functions thereof. This prescription is
justified in the next section by the method of induced
representations. It should be mentioned, however, that their
roles can be exchanged, since both of them provide
coordinates on the whole Sd expect for one of the poles.
Further, it should be noted that condition (10) may not be

compatible with the symmetries, or that Lagrangians
satisfying this requirement do not exist. However, in the
next section it is shown that (10) is not only compatible
with the symmetries but is required by them. Moreover, in
Sec. III D it is shown that all known Lagrangians of
conformal field theories can be reproduced within the
suggested technique.
Finally, note that in the reasoning that led to the procedure

above it was not laid that coset space (9) will necessarily be
homogeneously reductive. However, it turned out to have
this property. The fundamental reason why this happened to
be the case and why, as it is shown below, coset space (9)
leads to the well-defined transformation properties of the
translational MCF, is explained in Appendix B.

B. Compatibility with the symmetries

To show that condition (10) is, in fact, required by the
conformal symmetry, consider first the following two ways
of inducing (in two stages) a representation of SGðdÞ to that
of ConfðdÞ,

SGðdÞ∶ ðψÞ →
�
SGðdÞ × K∶ðyν;ψðyÞÞ
SGðdÞ × P∶ðxμ;ψðxÞÞ →

→

�
ConfðdÞ∶ðxμ; yνðxÞ;ψðxÞÞ
ConfðdÞ∶ðyν; xμðyÞ;ψðyÞÞ ; ð11Þ

where arrows indicate an extension of a representation and
given in parentheses are the elements of the space of a
representation at the corresponding stage. At the final step
one should also introduce the action of I as the inversion of
the coordinates. Alternatively, one can induce the same
representation of SGðdÞ to that of the conformal group
directly. According to the theorem on induction in stages
[11,16], the resulting representations are equivalent. Then,
by transitivity, the two representations constructed in (11)
are equivalent as well. This can be the case if and only if yν

and xμ are connected via gluing map (10), which allows us
to switch between representations (11) by change of
coordinates (10). Thus, the explicit forms of yνðxÞ and
xμðyÞ in the upper and lower schemes of induction in (11)
accordingly are fixed to provide the gluing map of the
coordinate charts.
The induction scheme leading to coset space (9) is

SGðdÞ∶ðψÞ → SGðdÞ × I∶ðψÞ →
→ ConfðdÞ∶ðxμ; yν;ψðx; yÞÞ: ð12Þ

Indeed, obtained in this way, the fields of the theory are
defined on a space with a doubled set of coordinates.6

However, since the inversion is included in the intermediate
step, one should factorize xμ and yν not only over the action
of SGðdÞ [11], but under the action of I as well. To work in
this formalism explicitly, one should find the proper func-
tional measure. This is highly nontrivial mathematical task,
since, as (5) demonstrates, translations and SCT are related
to each other by the action of the inversion, over which
action the theory should be factorized. Instead of approach-
ing this problem directly, one can make use of the theorem
on induction in stages. Namely, it guarantees that the
resulting representations for schemes (11) and (12) are
equivalent. Then, it is possible to switch from representa-
tion suggested by (12) to the equivalent one. This allows us
to consider xμ as the only coordinates and yν as a function
of xμ whose EqM must admit (10) as a solution (or vice
versa). This also shows that fields can be introduced as
functions of xμ only.
Thus, the geometrical considerations that lead to

coset space (6) and condition (10), and the method of
induced representations on the other hand, are in full
agreement with each other. In fact, this is fully expected,
since these approaches employ the same underlying
construction [11,17].
Another evidence showing that (10) is required by the

symmetries can be obtained by studying the MCF for coset
space (9),

g−1H dgH ¼ iPμω
μ
P þ iKνω

ν
K þ iDωD þ iLμνω

μν
L : ð13Þ

Straightforward calculation yields

ωμ
P ¼ dxμ; ων

K ¼ dyν þ 2yρdxρyν − y2dxν;

ωD ¼ 2yρdxρ; ωμν
L ¼ −2yμdxν: ð14Þ

Since coset space (9) is homogeneously reductive, the
action of all continuous group elements on the MCF above
is well-defined, and, importantly, none of them mixes the
MCF ωμ

P and ω
ν
K with each other. However, one should also

investigate the transformational properties of the MCF
under the action of the inversion. The action of the latter
on coset space (9) is equivalent to making group auto-
morphism (4), thus yielding

ωμ
P→ωμ

K; ων
K →ων

P; ωD→−ωD; ωμν
L →ωμν

L : ð15Þ

As one can see, this interchanges the one-forms for trans-
lations and SCT. Since the inversion is a symmetry, the
Lagrangians constructed within the CST must be invariant

6Note that ðx; yÞ is a set of 2d parameters, not a two different
points of the sphere.
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under such transformation. To understand the conse-
quences of this requirement, note that group automorphism
(4) also invokes the following isomorphism of Sd to itself,

Sd → Sd∶ ∀ s ∈ Sd → Îs: ð16Þ

This mapping exchanges the coordinate charts around the
south and north poles of the sphere, and, since xμ and yν are
defined as coordinates therein, leads to the exchange of
their roles. Then, the equivalent way to obtain the trans-
formed Lagrangian is to take the same exterior product of
the MCF but for the coset space

g̃H ¼ eiKνyνeiPμxμ ; ð17Þ

and with ωμ
P and ων

K exchanged. The transformed and initial
Lagrangiansmust coincide, which is possible only if the new
translational MCF, ων

K ¼ dyν, are the pullbacks of the old
ones,ωμ

P ¼ dxμ, after change of coordinates (16). This forces
yνðxÞ to obey gluing map (10), which reproduces the result
obtained by the method of induced representations.
The discussion above demonstrates that condition (10),

which was introduced as a way of reducing the dimension-
ality of coset (9), is, in fact, required by the symmetries.
Thus, the only allowed combinations of the MCF are those
that admit (10) as a solution of yν ’s EqM. This is a
qualitatively new requirement one encounters in the proc-
ess of applying the CST to the construction of theories on
the manifolds whose atlas must contain more than one
coordinate chart.

C. Reproducing representations of the conformal group

This is a convenient point to verify that the suggested
usage of the CST correctly reproduces representations of
the conformal group. As it follows from (12) and sub-
sequent discussion, fields ψ are introduced as functions of
xμ belonging to an (irreducible) representations of SGðdÞ
group. Hence, they are charaterized by spin s and scaling
dimension Δψ , which is in agreement with the common
lore. To define how they transform under the action of the
conformal group, one should pick arbitrary element of the
conformal group, g ∈ ConfðdÞ, and bring the product of g
and gH to the standard form [3],

ggH ¼ eiPx
0ðx;gÞeiKy0ðx;gÞeiDσðx;gÞeiLωðx;gÞ: ð18Þ

Note that because of the commutation relations of the
conformal algebra the parameters appearing on the rhs of
Eq. (18) are functions of xμ and g, but not of yν. Then, (18)
implies that under the action of g, ψ and xμ transform as

ψðxÞ → Repðe−iDσðx;g−1Þ; e−iLμνω
μνðx;g−1ÞÞψðxÞ; ð19Þ

xμ → x0μðx; g−1Þ; ð20Þ

where Repð·Þ is a representation of SGðdÞ appropriate for
ψ . It is straightforward to verify that, from these rules,
follow the expected transformation properties of xμ and ψ
under the action of a dilataon and Lorentz transformation—
appearing in (18), σ and ωμν do not depend on the
coordinates, xμ is a vector with scaling dimension −1,
and ψ is a spin-s filed with scaling dimension Δψ . To find
the action of the SCT, one should act by g ¼ eiKνbν, where
bν is a free parameter, on coset (9). This leads to the
following infinitesimal versions of σ, ωμν, and x0μ:

σ ¼ 2bμxμ; ωμν ¼ bμxν − bνxμ;

x0μ ¼ xμ þ 2bνxνxμ − x2bμ; ð21Þ

which coincide with the standard expressions. Then, the
group property guarantees that they will coincide at the
nonlinear level as well. By substituting them into (19) and
(20), one sees that the suggested usage of the CST correctly
reproduces representations of the conformal group. In
particular, note that fields ψ , introduced in this way, are
nothing but the so-called quasiprimary fields. Indeed,
(i) they belong to irreducible representations of the
SGðdÞ group (and, hence, are characterized by spin and
scaling dimension) and (ii) K̂μψð0Þ ¼ 0, as it follows from
(19) and (21). Thus, by definition, ψ are quasiprimary
fields.

D. Constructing conformally invariant Lagrangians

Now everything is prepared for the construction of
conformally invariant Lagrangians in the coset space frame-
work. The consideration will be restricted to the case when
fields enter the Lagrangian quadratically and with no more
than one derivative per field,7 which is enough for the
purposes of the paper. Let ψ be a field belonging to some
representation of the SGðdÞ. The one-form associated withψ
reads [3]

Dψ ¼ ∂μψdxμ þ 2yνðημνΔþ iL̂μνÞψdxμ; ð22Þ

whereΔ and L̂μν are representations ofD andLμν appropriate
for ψ. Conformally invariant Lagrangians are then obtained
as SGðdÞ-invariant wedge products8 of Dψ ;ψ ;ωμ

P, and ων
K

admitting (10) as the solution of yν ’s equation of motion.
The construction of conformally invariant theories will

proceed from the simplest case to the most general one in
three steps. Also, it will be assumed that d ≥ 2.

7The inclusion of higher derivative terms into consideration is
nontrivial and will be carried out in a separate paper.

8Practically, a more convenient way of obtaining conformally
invariant Lagrangians is to read out the effective metric and the
covariant derivatives of fields from (14) and (22). For the details
of this procedure, see, for example, [3,5].
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First, consider the case when there are no matter fields.
Then, the corresponding Lagrangians describe yν’s “kinetic
term,”

Ly ¼ Lkinðωμ
P;ω

ν
KÞ; ð23Þ

where Lkinðωμ
P;ω

ν
KÞ is an arbitrary function constructed as

a SGðdÞ-invariant wedge product of ων
K and ωμ

P. Then,
since the scaling dimension of ων

K equals one, in d > 2
the variation of (23) with respect to yν would always
be proportional to ων

K . Hence, such theories admit the
following solutions,

ων
K ¼ 0 ⇒ yν ¼ 0 ∪ yν ¼ xν

x2
: ð24Þ

For d ¼ 2, the only possible SGðdÞ-invariant combination
of the MCF is a full derivative,

εμνω
μ
P ∧ ων

K ¼ ∂μyμdx1 ∧ dx2; ð25Þ

where εμν is the Levi-Civita symbol, and, hence, does not
constrain yν’s dynamics. Thus, the requirement for yν to
obey the gluing map is fulfilled in this simplest case. Since
yν’s “kinetic term” always admits (10) as a solution, in the
rest of the paper it will be omitted.
In particular, the fact that the gluing map (10) is a

solution of the system of differential equations ων
K ¼ 0 can

be proved on symmetry grounds. Namely, these equations
are conformally invariant, and gluing map (10) and yν ¼ 0
are the only functions of xμ having the same properties.
Hence, the solutions of these equations cannot but be given
by (24).
As the second step, consider the case when fields ψa

mix with yν only via their covariant derivatives. Let Lψ

be a Lagrangian governing the dynamics of the fields.
Then, varying the action with respect to yρ, after trivial
transformations, yields

2
δL

δDμψa
ðΔημρ þ iŜμρÞψa ≡ Vρ ¼ 0; ð26Þ

where Vρ is the “extended” virial current. It includes the

usual one, Vð0Þ
ρ , and the term proportional to yν,

Vρ ≡ Vð0Þ
ρ þ Vð1Þ

ρν yν: ð27Þ

Note that matter fields, which have nontrivial dynamics,
enter Eq. (26), while there are no yν derivatives. Hence,
(26) imposes constraints on the structure of the theory,
rather than on yν’s dynamics. Namely, (26) shows that the
extended virial current of the theory must vanish. Note that

if Vð0Þ
ρ is zero, then so is full Vρ. Indeed, if V

ð0Þ
ρ ¼ 0, then

the tensor structure of the first multiplier in (26) is such
that the whole expression vanishes independently from the

explicit form of the former. Then, because of the latter
property, the whole Vρ vanishes as well. Thus, the
suggested technique reproduces the well-known property
of CFT that their virial current is identically zero.
Example. A vector field theory in d ¼ 4 provides an

instructive illustration of the developed technique.
According to (22), in conformal field theories the covariant
derivative of a vector field reads

DμAν ¼ ∂μAν þ 2yρðδμρδλν þ iðŜð1Þμρ ÞλνÞAλ; ð28Þ

where Ŝð1Þμρ is spin-1 representation of the Lorentz group.
Then, the most general quadratic SGðdÞ-invariant
Lagrangian one can write is

L ¼ 1

2
CμνλρDμAνDλAρ; ð29Þ

where Cμνλρ is a constant tensor constructed from various
combinations of δμν and is symmetric in ðμνÞ ↔ ðλρÞ.
Further, the requirement for the virial current to vanish
yields

CμνλρDλAρðδμσAν − δμνAσ þ δσνAμÞ ¼ 0; ð30Þ

following from (27). It can be fulfilled if and only if Cμνλρ is
antisymmetric in its first two indices. Thus, as it was
expected, the conformal invariance requires Lagrangian
(29) to coincide with Maxwell’s one. Remarkably, it also
turned out to be gauge invariant.
As it can be verified, the developed technique also allows

us to reproduce free massless spin-0 and spin-1
2
field

theories in 2 and in an arbitrary number of dimensions
accordingly. Note that in case d ≠ 2 the virial current of
spin-0 theory is not vanishing but is the divergence of some
other tensor. How one can reproduce such theories,
including the so-called elastic vector field theory [18], is
explained below.
Finally, the most general class of conformally invariant

Lagrangians is obtained by allowing matter fields to mix
with ων

K directly. In this case, unless the interaction terms
sum up to a total derivative, the solution of yν ’s equation of
motion cannot be fixed to (10). Consequently, one must
study the question of when the interaction terms do sum up
to a total derivative. This is possible only if the virial current
is a divergence of some other tensor, since otherwise the
linear in yν term cannot be completed to a total derivative.
As a straightforward but lengthy calculation in Appendix C
demonstrates, this is also a sufficient condition. That is, if
the virial current is a total derivative,

Vð0Þ
ρ ¼ ∂μL

μ
ρ; ð31Þ

the following Lagrangian contains the interaction terms
only via full derivative,

I. KHARUK PHYS. REV. D 98, 025006 (2018)

025006-6



L ¼ 1

2
Dψ ∧ ⋆Dψ þ εμ0…μdL

μ0
ν ων

K ∧ ωμ1
P ∧ … ∧ ωμd

P ;

ð32Þ
where ⋆ is the Hodge dual operator. Thus, a class of scale-
invariant theories, which are, in fact, conformally-invariant
after an improvement of the energy-momentum tensor [19],
correspond to the Lagrangians of type (32).
Since the interaction terms sum up to a total derivative,

Lagrangian (32) can be split in two parts,

L ¼ 1

2
dψ ∧ ⋆dψ þ dL̃ðy;ψÞ: ð33Þ

The second term in the expression above is a total
derivative and, consequently, can be dropped without
affecting the dynamics of the theory. Then, the first term
alone can be considered as a special type of the Wess-
Zumino term that can arise on the manifolds whose atlas
must contain more than one coordinate chart. In particular,
the standard Lagrangians for the massless spin-0 and elastic
vector field theories [18] represent examples of such terms.
Namely, they are obtained by dropping the corresponding
total derivative part from their complete Lagrangians,
which are of the form (32).
Example. It is convenient to illustrate this class of

theories on the process of reconstructing the φ4 theory
in d ¼ 4. Instead of working with the differential forms, it
will be convenient to switch to the covariant derivatives of
φ and yν, which can be read out from (22) and (14) to be

Dμφ ¼ ∂μϕþ 2yμφ; Dμyν ¼ ∂μyν þ 2yμyν − y2δνμ:

ð34Þ
Then, as the starting point, consider the Lagrangian

L ¼ 1

2
DμφDμφþ λ

4
φ4; ð35Þ

which is SGðdÞ-invariant and reproduces φ’s kinetic and
potential terms. However, since (35) explicitly depends
on yν, it does not admit (10) as a solution and, hence, is not
a valid Lagrangian. To understand whether it can be
improved to include yν only via full derivative, one should
find the virial current of the theory, which reads

Vð0Þ
ρ ¼ ∂μδ

μ
ρφ2: ð36Þ

Since it is a total derivative, one can complete Lagrangian
(35) to be of the form (32). For the case under consid-
eration, this leads to the Lagrangian

L ¼ 1

2
DμφDμφþ φ2Dμyμ þ

λ

4
φ4

¼ 1

2
ð∂μφÞ2 þ

λ

4
φ4 þ ∂μðyμφ2Þ; ð37Þ

where the second line was rewritten in the form similar to
(33). In particular, the first two terms in (37) reproduce the
standard φ4’s theory.
Summing up, the developed technique reproduces all

consequences of conformal invariance and Lagrangians
of the widely known CFTs. Also, it clarifies the special
role of the Nambu-Goldstone field for SCT, which is the
following. The standard CST prescriptions ensure the
invariance of the constructed Lagrangian under the action
of the conformal algebra, while it is the condition for yν

to obey the gluing map that guarantees that the inversion is a
symmetry of the theory as well. In particular, if the latter
requirement is fulfilled, the covariant derivatives of the
matter fields simplify to the usual ones on the Lagrangian
level (up to a total derivative term), which explains why scale
and conformally-invariant Lagrangians look the same.

IV. CONCLUSION

Initially, the problems with applying the CST to the
conformal group were stemming from the fact that the
coset space ConfðdÞ=eiPμxμ is not homogeneously reductive.
However, as it was demonstrated, a careful treatment of
discrete symmetries allows us to establish the correct way of
obtaining conformally invariant Lagrangians within the CST.
In Appendix B, this result is generalized to other spacetime
groups. Namely, it is shown that the CST is applicable to
groups whose homogeneous space is homogeneously reduc-
tive after the exclusion of all discrete and composite
symmetries, like I and SCT in the conformal group.
To summarize the results, in the paper the method of

applying the CST to the construction of conformally-
invariant Lagrangians was developed. A careful handling
of discrete symmetries and of the geometrical meaning
of the method of induced representations were found to be
the keys to establishing the correct application of the CST
in this case. In particular, the suggested approach repro-
duces the results of [12]—conformally invariant theories
are dilaton invariant and their virial current vanishes (or is
a total derivative [19]). In [12], this was established by
studying the divergence of the conformal currents, while
in the present paper it was shown how these restrictions
arise from the CST perspective. Finally, the developed
formalism provides a tool for the systematical construc-
tion of conformally invariant theories purely within the
CST, which simplifies the standard procedure, as well as
will be of use for the construction of Lagrangians with
complicated symmetries, such as of the conformal-affine
gravity [20].
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APPENDIX A: INTRODUCING ATLAS
STRUCTURE ON HOMOGENEOUS

SPACES

In this appendix, it is discussed which coset space should
be used within the CST applied to an arbitrary Lie group G
and its d-dimensional homogeneous space A. By studying
the geometry of such spaces, it is shown that if A’s atlas
must contain more than one coordinate chart, this requires
nonstandard CST prescriptions. In particular, for the
conformal group this leads to coset (9) used in Sec. III.
Let H0 be the stability group of a point z0 ∈ A. Then,

there is the isomorphism

A ¼ G=H0: ðA1Þ

Within this isomorphism, an element gH0
∈ G=H0 is

identified with the point of A obtained by the action of
the former on z0. In general case, G=H0 consists of
continuous and discrete elements, which will be denoted

as eiP
ð0Þ
μ xμ and Tm, m ¼ 1;…n, accordingly (further it is

assumed that there is at least one Tm). Then, discrete
elements are identified with a finite set of points fzmg,
while eiP

ð0Þ
μ xμ is isomorphic to Anfzmg. In particular, this

makes it natural to refer to Pð0Þ
μ as generators of translations

and to xμ as coordinates onA. Further, for an arbitrary point
a ∈ A; a ∉ fzmg, one has

a ¼ eiP
ð0Þ
μ cμz0; ðA2Þ

where the exponential of translations is considered as an
operator. In particular, on can take the differential of both
sides of this formula, which demonstrates that the coor-
dinates onAnfzmg are well-defined. On the other hand, the
analogy of (A2) for zm reads

zm ¼ T̂mzo: ðA3Þ

Unlike the previous case, one cannot consider an infini-
tesimal displacement of this point, since the differential
of a discrete element is not defined. This demonstrates
that G=H0 cannot be covered by one set of well-defined
coordinates.
The stability group Hm of a point zm is

Hm ¼ T̂mH0T̂
−1
m : ðA4Þ

Then, A can also be considered as a quotient space G=Hm.
By repeating the reasoning of the previous paragraph, one
sees that in this case the coordinates are ill defined at all zk,
k ¼ 0;…n, except for zm, which is the origin of the
coordinate chart. Since zm can be chosen arbitrary, this
shows that it is possible to introduce coordinates around
each of zk, but they cannot be successfully extended to the
whole A.

The above describes a manifold whose atlas must contain
at least nþ 1 coordinate charts. Remember that such
manifolds can be obtained by considering nþ 1 indepen-
dent coordinate charts and then gluing them together by
introducing ðnþ 1Þ! equivalence relations, which corre-
spond to the gluing map of these coordinate charts. This
suggest that the coset space characterizing A as a mani-
fold can be introduced as follows. All of the coset spaces
gHk

¼ G=Hk, with excluded discrete symmetries, give rise
to the coordinates around zk. Then, one can introduce nþ 1
independent coordinate charts by considering the action of
the product of all gHk

on fzkg with an additional require-

ment that each translational generator PðkÞ
μ acts nontrivially

only on the point zk. If H̃ is the stability group of all zk up to
their exchange, and assuming that Tm mixes zk only
between each other, this is equivalent to considering the
coset space G=H̃,

gH̃ ¼ eiP
ð0Þ
μ xμð0ÞeiP

ð1Þ
μ xμð1Þ…eiP

ðnÞ
μ xμðnÞ ; ðA5Þ

where eiP
ðmÞ
μ xμðmÞ ¼ T̂me

iPð0Þ
μ xμð0Þ T̂−1

m , which acts on fzkg as
defined above. Obtained in this way, coset (A5) describes a
manifold of dimension d × ðnþ 1Þ. Further, by introduc-
ing the equivalence relations

xμðmÞ ¼ T̂mx
μ
ð0Þ for all m; ðA6Þ

one glues these nþ 1 areas together, thus defining the atlas
structure on G=H̃ and making it equivalent to A, which is
of dimension d. Because T̂m form a representation of G,
(A6) defines all ðnþ 1Þ! gluing maps between the coor-
dinates charts. Moreover, because of the same property,
(A6) is not only automatically in agreement with the action
of T̂m on coset space (A5), but is also required by it.
In particular, this is the reason why in Sec. III B the study of
the MCF led to requirement (10).
Summing up the construction above, it can be said that

the defining property of the coset space to be used within
the CST is that it must endow the manifold under consid-
eration with an atlas. Coset space (A5) can be thought of as
acting on all points zm simultaneously, but the points of
zm’s orbits must be factorized by equivalence relations
(A6). In particular, for the conformal group this leads to
coset space (9) and requirement (10).

APPENDIX B: REDUCIBILITY OF THE COSET

Taking the general set-up introduced in Appendix A,
denote by Gc a subset of G obtained by excluding all
discrete and composite elements from the latter. For
example, such procedure corresponds to excluding the
inversion and SCT from the conformal group. Further,
assume that: 1) Gc forms a group, 2) Pμ ∈ Gc, and 3)
the algebra of Gc, AGc, is homogeneously reductive with
respect to the decomposition
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AGc ¼ Pμ ⊕ Ha; ðB1Þ

where Ha supplement Pμ to the full set of generators of
Gc. As it will become clear shortly, such requirements are
rather general. Then, the aim of this appendix is to show
that the CST is applicable for the construction of
G-invariant Lagrangians for the fields ψðxÞ defined on A.
For this purpose, two technical statements need to be

proved. The first one is that the action of H ¼ feiHabag
leaves not only 0⃗ invariant, but all zm as well. Indeed,
suppose otherwise—at least for one k the action of H on zk
is nontrivial. Then, as H is a continuous group, it is
legitimate to consider an infinitesimal transformation,
eiHaba . Taking ba small enough, it can be assured that
under the action of eiHabazk is mapped to some point
a⃗ ∈ Anfzmg. Since the latter can be obtained by acting by
eiPμcμ on 0⃗ for some cμ, one has

ðe−iHabaeiPμcμeiHabaÞe−iHaba 0⃗ ¼ eiPμc̃μ 0⃗ ¼ zk; ðB2Þ

where it was used that AGc is homogeneously reductive
and thatH is a stability group of 0⃗. Thus, zk can be obtained
by the action of eiPμc̃μ ∈ Gc on 0⃗, which contradicts the
condition that zk is identified with Tk within isomorphism
(A1). This finishes the proof. Similarly, it can be proved
that Tm mixes fzmg and 0⃗ only between each other.
The second statement is that the group automorphisms

Wm∶ G → G; ∀ g ∈ G → TmgT−1
m ; ðB3Þ

map H to itself. Indeed, for a given m, automorphism (B3)
can be considered as the following isomorphism of A to
itself,

A → A∶ ∀ a⃗ ∈ A → T̂ma⃗; ðB4Þ

where T̂m is the representation of Tm acting on A. As it
follows from the previous paragraph, (B4) mixes fzmg and
z0 only between each other. Then, since H is the stability
group of fz0zmg, isomorphism (B3) maps it to itself, QED.
An immediate corollary of these results is that the full set

of generators of G is

Pμ; KðmÞ
μ ≡ TmPμT−1

m ; Ha: ðB5Þ
Moreover, as AGc is homogeneously reductive with respect
to decomposition (B1), one also has

½KðmÞ
μ ; H� ¼ Tm½Pμ; H�T−1

m ⊂ KðmÞ
μ : ðB6Þ

Thus, the presence of automorphisms (B3) strongly fixes
the algebra of such groups. In particular, (B5) and (B6)
correctly reproduce the structure and commutation relations
of the conformal algebra.

As it was explained in Appendix A, for the construction
of G-invariant Lagrangians one should employ coset space
(A5). Then, as it follows from (B6), this coset space is
homogeneously reductive and, moreover, the MCF ωμ

P and
ωμ
KðmÞ do not mix with each other under the action of H.

Hence, one can apply the CST to “(nþ 1)-orbit” coset
space (A5).
In particular, note that from (B6) it follows that KðmÞ

μ

cannot be included into the Cartan algebra of G. Hence, in
such theories the fields are introduced as representations of
H̃, which is in agreement with the CST rules. The action of

eK
ðmÞ
μ bμ on the coordinates and fields is then given by the

analogue of formulas (19) and (20) for the left action ofG on
G=H̃. Importantly, the resulting transformations will depend
on xμ and bμ, but not on yμðmÞ, as guaranteed by (B6).

Note also that, because of the commutation relations
(B6), there exist ðmþ 1Þ! ways of inducing (in m stages) a
representation of H̃ to that of G. Then, in the same way as
for the conformal group, it can be shown that xμðmÞs should
be considered as functions of xμ, whose explicit form must
be given by (A6).
Thus, the CST can indeed be applied to coset space (A5),

provided that the assumptions made in the beginning of
this appendix hold. The peculiarity of using CST in such
cases is that the constructed Lagrangians must not only be
H̃-invariant combinations of the MCF for coset space (A5),
but admit (A6) as a solution of xμðmÞ ’s equation of motion as

well. This requirement complements the standard CST
rules and ensures that the discrete symmetries are indeed
symmetries of the theory.

APPENDIX C: PROOF THAT THE
INTERACTION TERMS SUM UP

TO A TOTAL DERIVATIVE

To prove that Lagrangian (32) contains the interaction
terms only via full derivative, one can take ψ to be a vector
field. This does not result in the loss of generality since the
integer higher-order spins are formed as tensor products of
spin-1 representations, while half-integer spins, except for
1=2, are not of physical interest. Then, assuming quadratic
kinetic term, in general case it reads

1

2
CμaνbðDμψaÞðDνψbÞ

≡ 1

2
Cμaνbð∂μψa∂νψb þ 2∂μψayσðN̂σνψbÞ

þ yσyρðN̂σνψbÞðN̂ρμψaÞÞ; ðC1Þ

where Cμaνb is a constant tensor constructed from various
combinations of δμν and is symmetric in ðμaÞ ↔ ðνbÞ,
and, for typographical convenience, the vector index of ψ
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is denoted by the Latin letter. Since the virial current is
assumed to be a total derivative,

Cμaνb∂μψaN̂ρνψb ¼ ∂μL
μ
ρ; ðC2Þ

it follows that

δLμ
ρ

δψa
¼ CμaνbN̂ρνψb: ðC3Þ

To proceed further, an explicit form of Lμ
σ should be used.

For a spin-1 field, in general case, it reads

Lμ
σ ¼ αψ2δμσ þ βψμψσ; ðC4Þ

where α and β are some constants. Then, by using (C3) and
(C4), one can rewrite the third term in (C1) as

1

2
CμaνbyρyσðN̂ρμψaÞðN̂σνψbÞ

¼ Δαy2ψ2 þ β

2
ðy2ψ2 þ ð2Δ − dÞðyμψμÞ2Þ: ðC5Þ

Also, substituting (C4) into the last term in (32) yields

εμ0…μdL
μ0
ν ων

K ∧ωμ1
P ∧…∧ωμd

P

¼ dyρ ∧ L̃ρþð2Lμ
ρyρyμ−y2Lμ

μÞdx1 ∧…∧ dxd; ðC6Þ

where L̃ρ is a differential form such that ∂μL
μ
ρ ¼ dL̃ρ.

Full Lagrangian (32) is a sum of (C1) and (C6), which, as
it can be explicitly verified, contains yνðxÞ only via full
derivative, dðyρL̃ρÞ.
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