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We consider a real, massive scalar field both on the n-dimensional anti–de Sitter (AdSn) spacetime and
on its universal cover CAdSn. In the second scenario, we extend the recent analysis on PAdSn, the Poincaré
patch of AdSn, first determining all admissible boundary conditions of Robin type that can be applied on
the conformal boundary. Most notably, contrary to what happens on PAdSn, no bound state mode solution
occurs. Subsequently, we address the problem of constructing the two-point function for the ground state
satisfying the admissible boundary conditions. All these states are locally of Hadamard form being
obtained via a mode expansion which encompasses only the positive frequencies associated to the global
timelike Killing field on CAdSn. To conclude we investigate under which conditions any of the two-point
correlation functions constructed on the universal cover defines a counterpart on AdSn, still of Hadamard
form. Since this spacetime is periodic in time, it turns out that this is possible only for Dirichlet boundary
conditions, though for a countable set of masses of the underlying field, or for Neumann boundary
conditions, though only for even dimensions and for one given value of the mass.
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I. INTRODUCTION

Quantum field theory on curved backgrounds is a rapidly
developing branch of theoretical physics especially within
the algebraic approach [1,2]. In the past few years several
specific models have been thoroughly analyzed and impor-
tant structural aspects have been deeply understood, e.g.,
perturbative interactions, renormalization theory and local
gauge invariance.
Yet an implicit assumption in many works is that the

underlying background is globally hyperbolic. Such a
requirement has far reaching consequences both from
the geometric and from the analytic point of view. In the
first case it ensures that the causal structure of the spacetime
does not encompass pathologies, such as closed causal

curves. In the second case it entails that wavelike operators,
such as the Klein-Gordon, the Dirac or the Proca equation,
can be solved by assigning suitably regular initial data. As
an additional consequence, whenever one considers a free
field theory, one can follow a well-established quantization
scheme, yielding an algebra of observables which encodes
structural properties such as dynamics, locality and cau-
sality. The only freedom left is the choice of a quantum
state of Hadamard form, a widely accepted condition
which entails several relevant physical properties. On the
one hand, the quantum fluctuations of all observables
are finite, while, on the other hand, it guarantees the
existence of a covariant notion of Wick polynomials out of
which one can deal with interactions within a perturbation
scheme, see e.g., [3,4].
Nonetheless, although based on strong physical moti-

vations, the hypothesis that the underlying spacetime M is
globally hyperbolic does not allow to consider several
interesting phenomena and scenarios, the prime example
being field theoretic models built on anti–de Sitter space-
time. This is a maximally symmetric solution of vacuum
Einstein’s equations with negative cosmological constant
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which has been at the heart of the renown AdS=CFT
correspondence, see for example the recent monograph [5].
From the point of view of the quantization of free field

theories, dropping the assumption of M being globally
hyperbolic, entails that any wavelike partial differential
equation does not have necessary a well-posed initial value
problem. As a consequence one can guarantee neither the
existence nor the uniqueness of fundamental solutions for
the operators ruling the dynamics. In turn this entails that
one has no natural building block out of which imposing
the canonical commutation relations. The reasons for such
failure are manifold, but one can recognize two main
sources of the problem: the existence of a (conformal)
boundary and of closed causal curves.
Focusing on the first problem, one can observe that,

whenever one considers wavelike operators, solutions can
be constructed supplementing the initial data with suitable
boundary conditions. On the contrary, the presence of
closed causal curves leads to a more subtle issue since they
entail that initial data can be associated unambiguously to
solutions only if these are periodic along the pathological
curves.
In order to address if it is possible to find a way to

circumvent all these problems, the most natural testing
ground is the n-dimensional anti–de Sitter spacetime AdSn.
As a manifold this is not globally hyperbolic since it
possesses both a (conformal) boundary and a periodic time
direction.
Our goal is to consider a massive, real scalar field on

AdSn, proving under which conditions it is possible to
address the question of the existence of a coherent,
covariant quantization scheme. This is certainly not the
first paper on the topic, the first investigation on the issue
dating the late 1970s [6].
In order to disentangle the above two problems, our first

step consists of considering CAdSn, the universal cover of
anti–de Sitter spacetime, which is a manifold still possess-
ing a conformal boundary, but no closed timelike curve. In
this setting it is known that the Klein-Gordon equation
leads to a well-defined initial value problem, though most
of the literature assumes only Dirichlet boundary condi-
tions. For a rather exhaustive survey of the known results
and approaches as well as for a collection of references on
this topic, we refer to the following thesis [7].
In a recent paper by two of us [8], it has been shown that, if

one considers only the Poincaré patch of AdSn, it is possible
to use a mode decomposition together with techniques
proper of Sturm-Liouville problems, in order to prove that
one can consider a whole one-parameter family of boundary
conditions of Robin type, which include as a special case
both the Dirichlet and the Neumann ones. In this work it has
been shown that, for each of these boundary conditions, the
Klein-Gordon equation can be solved in terms of initial data
and unique fundamental solutions do exist. Hence, canoni-
cal commutation relations can be imposed coherently. Yet, it

turns out that, for a wide range of boundary conditions, the
underlying mode solutions do encompass bound states.
While, from a classical perspective, this is not a problem, it
has rather drastic consequences at a quantum level. As a
matter of fact, since the Poincaré patch possesses a global
timelikeKilling field, in [8], it has been studied the existence
for each boundary condition of Robin type of ground states
associated with the Klein-Gordon equation. It turned out
that, while they do not exist whenever bound state mode
solutions occur, in all other cases they can be constructed
explicitly in terms of their associated two-point correlation
function. In addition they enjoy several notable physical
properties, such as the Hadamard condition.
The techniques used in [8] are rather flexible; they have

been studied from a rigorous viewpoint in [9] and applied
also to the analysis of a Klein-Gordon field in BTZ
spacetime in [10]. In this paper, first we also apply them
to the study of a massive, real scalar field in the global chart
of CAdSn, in order to investigate if the results obtained in
the Poincaré patch do extend globally. The outcome of our
analysis is partly surprising. While, on the one hand, we
prove that Robin boundary conditions can be imposed, it
turns out that bound state mode solutions never occur. As a
consequence, since CAdSn is a static spacetime, we are
able to construct explicitly, for each Robin boundary
condition, the two-point function of the ground state. In
addition, since, in the underlying mode decomposition, we
consider only positive frequencies with respect to the
underlying global timelike Killing field, it turns out that
the Hadamard condition is automatically fulfilled.
At last we investigate whether any of the two-point

functions constructed defines a counterpart in AdSn. To
this endwe have to copewith the time coordinate, associated
to the global timelike Killing field, being periodic. In this
respect, already in [6], it was observed that such geometric
feature entails that, for consistency, also the underlying two-
point functionmust be periodic. This occurs only if themass
of the field assumes certain special values which form a
countable set. Our first goal is to test such a statement for
arbitrary boundary conditions and not just for the Dirichlet
ones as in [6]. As a result, we prove that, in addition to the
solutions found in [6] no periodic two-point function exists
except for one special value of the mass provided that we
consider Neumann boundary conditions and even spacetime
dimensions. As such, we conclude that, while the presence
of (conformal) boundaries does not hinder the existence of a
well-defined, full-fledged, covariant quantization scheme,
the occurrence of closed timelike curves leads to severe
restrictions on the parameters of the matter fields.
The paper is organized as follows: In Sec. II, first we

recollect some basic geometric aspects of the n-dimen-
sional anti–de Sitter spacetime AdSn and of its universal
cover CAdSn. Subsequently we consider the Klein-Gordon
equation on CAdSn and we use a mode decomposition to
construct an explicit basis of solutions. In Sec. III we revisit
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the dynamics within the framework of Sturm-Liouville
theory, studying the most general class of boundary
conditions of Robin type, which can be considered. In
Sec. IVwe show that, for each of these boundary conditions,
it is possible to associate explicitly the two-point function of
a ground state, which enjoys in addition the Hadamard
property. Subsequently we investigate under which con-
ditions any of such two-point functions yields awell-defined
counterpart on AdSn. Eventually we draw our conclusions.
In the Appendix we discuss some more technical aspects
concerning the construction of the two-point functions
and we show, in particular, that no bound state mode
solution occurs.

II. SCALAR FIELD IN ADS SPACETIME

In this section we recollect some basic geometric fact
about the n-dimensional anti–de Sitter spacetime and we
study the dynamics thereon of massive, real scalar field.

A. The geometry of AdSn

We consider AdSn, n ≥ 3, the maximally symmetric
solution of vacuum Einstein’s equations with negative
cosmological constant Λ [11]. Such spacetime can be
realized in Rnþ1, endowed with Cartesian coordinates Xi,
i ¼ 0;…; n and with the line element ds2 ¼ −dX2

0 − dX2
1þP

n
i¼2 dX

2
i , as the hyperboloid

−X2
0 − X2

1 þ
Xn
i¼2

X2
i ¼ −l2;

where l is related to Λ via Λ ¼ − nðnþ1Þ
l2 . Henceforth we set

l ¼ 1. For our purposes, it is mostly convenient to realize
AdSn in terms of a global chart which we report for
completeness:

X0 ¼ cosh ρ cos t

X1 ¼ cosh ρ sin t

Xi ¼ sinh ρeiðθ;φ1;…;φn−3Þ; ð2:1Þ

where i runs from 2 to n, t ∈ ð0; 2πÞ, ρ ∈ ð0;∞Þ,
θ ∈ ð0; 2πÞ, while φj ∈ ð0; πÞ for all j ¼ 1;…; n − 3.
Here ei ≡ eiðθ;φ1;…;φn−3Þ parametrizes a point on the
unit (d − 2)-sphere in terms of angular coordinates. In
this representation and adopting henceforth the symbol
θ to indicate collectively all angular coordinates, i.e.,
θ≡ ðθ;φ1;…;φn−3Þ, the line element of AdSn reads

ds2 ¼ −cosh2ρdt2 þ dρ2 þ sinh2ρdS2
n−2ðθÞ; ð2:2Þ

where dS2
n−2 stands for the standard line element of the unit

(n − 2)-sphere. Observe that, following (2.1), the time
direction is periodic and, for this reason, it is often
convenient to consider the universal covering of anti–de

Sitter spacetime, whichwe refer to as CAdSn andwhose line
element is nothing but (2.2), though with t ∈ R. As a last
remark, we recall that both AdSn and CAdSn possess a
conformal, timelike, boundary which, in the chosen chart,
can be heuristically built by considering ρ → ∞. More
precisely, starting from (2.2) and multiplying the metric by
the conformal factor Ω2 ¼ 1

cosh2 ρ, via the coordinate trans-

formation ρ → r≡ rðρÞ defined out of cosh ρ ¼ 1
cos r, the

conformally rescaled line element becomes

Ω2ds2 ¼ −dt2 þ dr2 þ sin2rdS2
n−2ðθÞ:

Since r ∈ ð0; π
2
Þ we have realized the universal covering

of anti–de Sitter spacetime as an open subset of the
n-dimensional Einstein static Universe and we can thus
attach a conformal boundary to CAdSn as r ¼ π

2
. The same

holds true for AdSn though keeping the time coordinate
t periodic.

B. Klein-Gordon equation

Although our ultimate goal is the construction of the two-
point function of the ground state of a massive, real scalar
field on AdSn, it is more convenient to work directly on
CAdSn, unless state otherwise. Hence, let us consider
Φ∶ CAdSn → Rwhich satisfies the Klein-Gordon equation

PΦ ¼ ð□g −m2
0 − ξRÞΦ ¼ 0; ð2:3aÞ

□g ¼ −
∂2
t

cosh2ρ
þ ∂2

ρ þ Fn−2ðρÞ∂ρ þ
ΔSn−2

sinh2ρ
; ð2:3bÞ

where □g is the D’Alembert wave operator built out
of (2.2), ΔSn−2

is the Laplacian on the unit (n − 2)-sphere,
Fn−2ðρÞ¼ ∂ρ lnðcoshρsinhn−2ρÞ. Furthermorem2

0 ≥ 0, R ¼
−nðn − 1Þ is the scalar curvature and ξ ∈ R. Equation (2.3b)
has been thoroughly studied by several authors starting from
the first investigation in a four-dimensional scenario in [6],
later extended in [12] and in [13,14]. To construct the
solutions of (2.3b), it is convenient to replace the coordinate
ρwith z ≐ 1 − 1

cosh2ρ ∈ ð0; 1Þ. In addition the field admits the

expansion

Φðt; z; θÞ ¼
X
L

Z
R
dωΦω;LðzÞYLðθÞe−iωt;

where YLðθÞ ¼ Yl1;…;ln−2ðθÞ are the real scalar
spherical harmonics on Sn−2, cf. [15], with ln−2 ≥
ln−3 ≥ � � � ≥ l2 ≥ jl1j and such that ΔSn−2

YLðθÞ ¼
ln−2ðln−2 þ n − 3ÞYLðθÞ. Consequently

P
L is a short cut

for
P∞

ln−2¼1

Pln−2
ln−3¼1 � � �

Pl2
l1¼−l2. In the special case n ¼ 3,

observe that we are left with the Fourier series with
respect to the sole angular coordinate θ and l≡ l1 ∈ Z.
Therefore (2.3a) reduces to the following ordinary differ-
ential equation:
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KΦωðzÞ ¼ 0;

K ¼ 4zð1 − zÞ d2

dz2
þQ1ðzÞ

d
dz

−Q2ðzÞ þ ω2; ð2:4Þ

where

Q1ðzÞ ¼ 2ðn − 1Þ − 4z; ð2:5aÞ

Q2ðzÞ ¼
M2

1 − z
þ ln−2ðln−2 þ n − 3Þ

z
; ð2:5bÞ

whereM2 ¼ m2
0 þ ξR. Observe that, for later convenience,

we will henceforth make explicit only the dependence on ω
of all functions. Using the Frobenius method to study the
asymptotic behavior of the solutions near the end points
z ¼ 0 and z ¼ 1 suggests to make the ansatz

ΦωðzÞ ¼ zαþð1 − zÞβþfωðzÞ;

where we consider the positive roots of 4α2 − 2αð3 − nÞ −
ln−2ðln−2 þ n − 3Þ ¼ 0 and 4β2 − 2ðn − 1Þβ −M2 ¼ 0,
that is

αþ ¼ ln−2
2

; ð2:6aÞ

βþ ¼ 1

4
ðn − 1þ 2νÞ; ð2:6bÞ

where, for later notational convenience, we introduced the
parameter

ν ≐
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þ2 þ 4M2

q
: ð2:7Þ

In the special case n ¼ 3, observe that, since l1 ∈ Z,
we set 2αþ ¼ jl1j. Observe that, for (2.6b) to be well
defined, we need to require that 4M2 þ ðn − 1Þ2 ≥ 0. The
lowest admissible value for M2 corresponds to the
Breitenlohner-Freedman bound [16]. The extremal case
4M2 ¼ −ðn − 1Þ2 has a special behavior and it should be
analyzed on its own. In this paper we will not consider
further this case. The remaining unknown fω;ln−2ðzÞ sat-
isfies the hypergeometric differential equation

zð1 − zÞf00ω þ ðc − ðaþ bþ 1ÞzÞf0ω − abfω ¼ 0;

where the prime symbol stands for the derivative with
respect to z, while

a ¼ αþ þ βþ −
ω

2
; ð2:8aÞ

b ¼ αþ þ βþ þ ω

2
; ð2:8bÞ

c ¼ ln−2 þ
n − 1

2
: ð2:8cÞ

Depending on the end point that one wishes to inves-
tigate, a different basis of solutions of (2.4) is convenient.
In the case of z ¼ 0 we consider

Φ1;ωðzÞ ¼ z
ln−2
2 ð1 − zÞβþF1

2ða; b; c; zÞ ð2:9Þ

Φ2;ωðzÞ¼ z
3−n−ln−2

2 ð1−zÞβþF1
2ða−cþ1;b−cþ1;2−c;zÞ;

ð2:10Þ

where Φ2;ω is linearly independent from Φ1;ω provided that
c ∉ N which occurs only for even spacetime dimensions. If
n is odd, then (2.10) must be replaced with a different
function, whose form depends whether a is a positive
integer or not. As we will discuss in the next section, these
solutions will play no role in our investigation. Hence, we
shall not write them explicitly, although an interested reader
can find them in Sec. 15.10 of [17]. Observe that, if n ¼ 3
then, l1 should be replaced with jl1j.
On the contrary if z ¼ 1, we consider the following basis

of solutions of (2.4):

Φ3;ωðzÞ¼ zαþð1−zÞβþF1
2ða;b;aþbþ1−c;1−zÞ; ð2:11Þ

Φ4;ωðzÞ¼ zαþð1− zÞ−βþþn−1
2

×F1
2ðc−a;c−b;c−a−bþ1;1− zÞ; ð2:12Þ

which is admissible provided that aþ bþ c − 1 is not an
integer. In this case Φ4ðzÞ must be replaced with another
linearly independent solution whose explicit form is listed
in Sec. 15.10 of [17]. As in the previous case, these
exceptions will play no role in the following discussion and
hence we avoid reporting them explicitly.

III. BOUNDARY CONDITIONS

Having established a basis of the solutions of (2.4) both
at z ¼ 0 and at z ¼ 1, we can ask ourselves if and which
boundary conditions should be imposed at both ends. To
answer this question we follow the same procedure as in
[8–10] which relies on Sturm-Liouville theory for ordinary
differential equations. A reader interested in more details
can consult [18] on which we base our analysis. The first
step calls for rewriting (2.4) in an equivalent Sturm-
Liouville form, namely

SΦω ¼ 0

S ¼ d
dz

�
PðzÞ d

dz

�
þ Q̃ðzÞ − ω2J ðzÞ; ð3:1Þ

where PðzÞ ¼ −Q1ðzÞJ ðzÞ, Q̃ðzÞ ¼ Q2ðzÞJ ðzÞ and
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J ðzÞ ≐ z
n−3
2

2ð1 − zÞnþ1
2

: ð3:2Þ

The second step consists of establishing under which
constraints (2.9) and (2.10) lie in L2ðð0; z0Þ; dμðzÞÞ while
(2.11) and (2.12) lie in L2ððz00; 1Þ; dμðzÞÞ, z0, z00 being two
arbitrary points in (0,1) while dμðzÞ ¼ J ðzÞdz.
Starting from z ¼ 0 a direct inspection of (2.9) and

(2.10) unveils that their asymptotic behavior is respectively

dominated by zαþ and z
3−n−ln−2

2 . Taking into account (3.2), it
descends that

Φ1;ωðzÞ ∈ L2ðð0; z0Þ; dμðzÞÞ⟺ln−2 þ
n − 3

2
> −1;

which is always true. On the contrary

Φ2;ωðzÞ ∈ L2ðð0; z0Þ; dμðzÞÞ⟺ − ln−2 −
n − 3

2
> −1;

which is never valid unless n ¼ 3, 4 and ln−2 ¼ 0. Hence,
since we do not want to admit different boundary con-
ditions for different values of ln−2, at z ¼ 0 only (2.9) is
admissible. Observe that this statement justifies our claim
in the previous section that there is no need to study in
detail the alternative expressions of (2.10) which occur
when c as in (2.8c) is integer valued.
Let us now focus on z ¼ 1. In this case a direct

inspection of (2.11) and (2.12) shows that the asymptotic
behavior of the solutions is dominated respectively by
ð1 − zÞβþ and by ð1 − zÞβþþn−1

2 . Taking also into account
both (3.2) and (2.6b), it holds that

Φ3;ωðzÞ ∈ L2ððz00; 1Þ; dμðzÞÞ⟺ν > −1;

where ν is defined in (2.7). The inequality is always
fulfilled due to the Breitenlohner-Freedman bound.
Hence (2.11) is always admissible and, following the
nomenclature proper of Sturm-Liouville theory, we shall
call it principal solution, since it tends to 0 as z → 1 faster
than any other solution of (2.4) which is not a scalar
multiple of Φ3;ωðzÞ. At the same time, still taking into
account both (3.2) and (2.6b),

Φ4;ωðzÞ ∈ L2ððz00; 1Þ; dμðzÞÞ⟺ν < 1:

We observe that whenever 0 < ν < 1 the quantity
c − a − bþ 1 cannot be integer valued. This justifies our
claim in the previous section that there is no need to
consider the alternative forms of (2.12). In view of our
results and using still the nomenclature proper of Sturm-
Liouville theory, we call z ¼ 0 limit point and no boundary
condition should be assigned there being only (2.9)
admissible. On the contrary

(1) if ν ≥ 1 only the principal solution (2.11) is admis-
sible at z ¼ 1. Hence no boundary condition is
necessary and also z ¼ 1 is limit point.

(2) if 0 < ν < 1 then both (2.11) and (2.12) are admis-
sible. In this case z ¼ 1 is called limit circle and it is
necessary to impose a boundary condition. More
precisely we say that Φγ;ω, solution of (2.4), satisfies
a Robin boundary condition, if there exists γ ∈ ½0; πÞ
such that

lim
z→1

ðcosγWz½Φγ;ω;Φ3;ω�þ sinγWz½Φγ;ω;Φ4;ω�Þ ¼ 0;

ð3:3Þ

where Wz½Φγ;ω;Φi;ω�≐dΦγ;ω

dz Φi;ω−Φγ;ω
dΦi;ω

dz , i¼ 3, 4,
is the Wronskian between Φγ;ω and Φi;ω. Hence,
up to a multiplicative and irrelevant constant we can
set up

Φγ;ωðzÞ ¼ cos γΦ3;ωðzÞ þ sin γΦ4;ωðzÞ; ð3:4Þ
where Φ3;ω and Φ4;ω are taken as in (2.11) and
(2.12), respectively.

Recalling that (2.11) is the principal solution, this justifies
that we refer to the case γ ¼ 0 as Dirichlet boundary
condition, while to that for which γ ¼ π

2
as Neumann

boundary condition. Observe that, while the former relies
on the unambiguous choice of the principal solution, the
latter is based on selecting any other solution of (2.4) which
is both square integrable and linearly independent from
(2.11). For this reason the Neumann boundary condition is
not a universal concept contrary to the Dirichlet counterpart.

IV. GROUND STATE

A. Two-point function in CAdSn

In this section we discuss the existence of a ground state
for a massive, real scalar field obeying (2.3a) on CAdSn for
each admissible boundary condition of Robin type classified
in the previous section. To start with we will only consider
the universal cover of the n-dimensional anti–de Sitter
spacetime, in order to avoid any issue with the time
coordinate being periodic. The construction of a ground
state has been already discussed in the literature by several
research groups, though only the Dirichlet boundary con-
dition has been considered. Different construction methods
have been outlined in [19–21], though we shall be employ-
ing a mode expansion, which has been first considered in
[22] with Dirichlet boundary conditions. The following
discussion complements that in [8] where the ground state
for a massive real scalar field with arbitrary boundary
conditions of Robin type has been constructed in the
Poincaré patch of ann-dimensional anti–deSitter spacetime.
In the following, by two-point function (or Wightman

function) we refer to a bidistribution λ2 ∈ D0ðCAdSn ×
CAdSnÞ such that
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ðP ⊗ IÞλ2 ¼ ðI ⊗ PÞλ2 ¼ 0; ð4:1Þ

where P is defined in (2.3a) and

λ2ðf; fÞ ≥ 0; ∀ f ∈ C∞
0 ðCAdSnÞ: ð4:2Þ

In addition, the antisymmetric part of λ2 is constrained to
coincide with the commutator distribution, in order to
account for the canonical commutation relations (CCRs)
of the underlying quantum field theory.
In order to make this last requirement explicit, let us

consider the coordinate system ðt; z; θÞ introduced in
(2.2) with ρ replaced by z. Working at the level of the integral
kernel for λ2, imposing the CCRs is tantamount to requiring
that the antisymmetric part iGðx; x0Þ, x; x0 ∈ CAdSn, where

iGðx; x0Þ ¼ λ2ðx; x0Þ − λ2ðx0; xÞ

satisfies (4.1) together with the initial conditions

Gðx; x0Þjt¼t0 ¼ 0; ð4:3aÞ

∂tGðx; x0Þjt¼t0 ¼ −∂t0Gðx; x0Þjt¼t0 ¼
δðz − z0Þδðθ − θ0Þ

J ðzÞ ;

ð4:3bÞ

withJ ðzÞ as in (3.2). Here δðθ − θ0Þ is a compressed form for
δðθ − θ0ÞQn−3

i¼1 δðφi − φ0
iÞ. In order to build explicitly (4.2), it

suffices to focus on the case ν ∈ ð0; 1Þ, ν being defined in
(2.7). In this case, (3.3) entails that we can consider a one-
parameter family of boundary conditions ruled by γ ∈ ½0; πÞ,
to each of which it corresponds a different two-point corre-
lation function. Most notably, if we set γ ¼ 0, our analysis

applies to all values of ν, including the regime ν ≥ 1, which,
therefore, we do not need to discuss in detail.
In view of the invariance of the metric under rotations

and time translations, we can make the following ansatz for
the integral kernel of λ2:

λ2ðx; x0Þ

¼ lim
ϵ→0þ

X
L

Z
∞

0

dωe−iωðt−t0−iϵÞYLðθÞYLðθ0Þλ̂2;L;ωðz; z0Þ;

ð4:4Þ
where iϵ is a suitable regularization and the limit has to be
taken in the weak sense. Recall that YLðθÞ are the real scalar
spherical harmonics on the (n − 2)-sphere. In (4.4) we have
considered only positive frequencies since we aim at
constructing the two-point function of a ground state. A
direct comparison between (4.4) and both (4.3a) and (4.3b)
unveils that the initial conditions for the antisymmetric part
of λ2 are automatically satisfied ifZ

R
dωωbλ2;L;ωðz; z0Þ ¼ δðz − z0Þ

J ðzÞ ; ð4:5Þ

where J ðzÞ is defined in (3.2). In addition (4.1) entails that
ðS ⊗ IÞλ̂2;L;ω ¼ ðI ⊗ SÞλ̂2;L;ω ¼ 0;

where S is the Sturm-Liouville form (3.1) of (2.4). Using
this last equation and (4.5), we can employ the spectral
calculus for S in order to derive an explicit form for λ̂2;L;ω in
terms of the solutions of (2.4). Since this is a lengthy and
technical calculation we postpone it to the Appendix, so not
to disrupt the flow of this section. Hence, using (A9), it
holds that, whenever ν ∈ ð0; 1Þ

λ2;γðx; x0Þ ¼ lim
ϵ→0þ

X∞
k¼0

X
L

e−iωk;γ;þðt−t0−iϵÞðcos γCðωk;γ;þÞ þ sin γDðωk;γ;þÞÞ

×Φ1;ωk;γ;þðzÞΦ1;ωk;γ;þðz0ÞYLðθÞYLðθ0Þ; ð4:6Þ
where γ ∈ ð0; πÞ, γ ≠ π

2
, in the second line all quantities which are implicitly dependent on the frequency are evaluated for

ω ¼ ωk;γ;þ. To conclude we need to write also the integral kernel of the two-point function in the case of Dirichlet and
Nuemann boundary conditions. Using (A12) and (A14) respectively one obtains

λ2;0ðx; x0Þ ¼ lim
ϵ→0þ

X∞
k¼0

X
L

e−iωk;0;þðt−t0−iϵÞC0ðωk;0;þÞΦ1;ωk;0;þðzÞΦ1;ωk;0;þðz0ÞYLðθÞYLðθ0Þ; ð4:7Þ

λ2;π
2
ðx; x0Þ ¼ lim

ϵ→0þ

X∞
k¼0

X
L

e−iωk;π
2
;þðt−t0−iϵÞDπ

2
ðωk;π

2
;þÞΦ1;ωk;π

2
;þðzÞΦ1;ωk;π

2
;þðz0ÞYLðθÞYLðθ0Þ; ð4:8Þ

whereωk;0;þ are listed in (A6) whileωk;π
2
;þ in (A7). Observe

that, if we consider the regime ν ≥ 1, then no boundary
condition is necessary and the only ensuing two-point
function has the form of (4.7). In addition we remark two

notable properties of λ2;γ with γ ∈ ½0; πÞ. On the one hand,
since all these two-point correlation functions are built out
of positive frequencies with respect to a global timelike
Killing field, they are ground states, hence of Hadamard
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form as proven in full generality in [23]. For this reason
each λ2;γ is a legitimate starting point to construct Wick
ordered observables, such as in particular the regularized
stress-energy tensor. On the other hand, in comparison to
their counterpart on the Poincaré patch built in [8], it turns
out that no bound state mode solution occurs. Most notably,
it turns out that, restricting the attention to the Poincaré
patch of an n-dimensional anti–de Sitter spacetime, the
same problem considered in this paper leads to discovering
that, for half of the boundary conditions of Robin type,
bound state mode solutions occur, corresponding to
purely imaginary frequencies in the resolution of the Dirac
delta distribution. Hence, no ground state exists for these
particular scenarios. In the context considered in this paper,
since all admissible frequencies which occur are real, such
a pathological feature apparently does not exist.

B. Two-point function in AdSn: Mass constraints

In the previous section we have constructed the integral
kernel of the two-point function of the ground state for a
massive real scalar field in CAdSn with arbitrary boundary
conditions of Robin type. We can now investigate if any of
these correlation functions defines a counterpart on AdSn.
In this case we have to account for the time coordinate t
being periodic of period 2π, see (2.2).
In order for (4.4) to be compatible with this geometric

constraint, it is necessary to start from (4.4), constructing a
counterpart periodic in the variable t. Yet this procedure has
the net disadvantage that, being all admissible two-point
correlation functions singular, making them periodic would
create in general a bidistribution with additional singular-
ities, not compatible with the Hadamard condition. The
only possible exception to this pathological scenario occurs
if the frequencies in the mode expansion of (4.4) are integer
valued. A direct investigation of the two-point functions for
all γ ∈ ½0; πÞ unveils the following constraints on the
admissible values for the masses of the Klein-Gordon field:
(1) Imposing the Dirichlet boundary condition, (A6)

entails two different scenarios depending on the
spacetime dimension. If n is odd,

ωk;0;þ ∈ Z ⇒ M2 ¼ p2 −
ðn − 1Þ2

4
; ð4:9Þ

where p is any integer. If n is instead even,

ωk;0;þ∈Z⇒M2¼1

4
ðð2pþ1Þ2þðn−1Þ2Þ; ð4:10Þ

where p is still integer valued. Observe that, for
n ¼ 4 we reproduce the result in [6].

(2) Imposing the Neumann boundary condition, (A7)
entails two different scenarios depending on the
spacetime dimension. Taking into account the con-
straint 0 < ν < 1where ν is defined in (2.7), then, if n
is odd there exists noadmissiblemass.On the contrary,
if n is even, there is only one admissible possibility:

ν ¼ 1

2
⇒ M2 ¼ −

n2 − 2n
4

: ð4:11Þ

(3) Imposing an arbitrary Robin boundary condition,
that is choosing γ ∈ ð0; πÞ with γ ≠ π

2
, one can

realize from (A8) that, if γ ≠ 0; π
2
, there exists no

value of ν ∈ ð0; 1Þ for which the function is periodic
for integer values of 2πω, regardless of the dimen-
sion n. This can be realized by assuming that, for a
given boundary condition, the solutions are periodic
with integer period and exploiting that the Euler
Gamma functions enjoy the recursion relation
Γðzþ 1Þ ¼ zΓðzÞ. Hence λ2;γ does not induce in
these cases an admissible counterpart in AdSn.

V. CONCLUSIONS

In this paper we have discussed the class of boundary
conditions which can be assigned to a massive, real scalar
field on the global patch of anti–de Sitter spacetime.
Working with the universal cover CAdSn, we have shown
that one can consider the full family of Robin boundary
conditions and, to each of them, one can assign an explicit
two-point correlation function which enjoys the Hadamard
property. In addition we have proven that, unless one
considers the Dirichlet case (or in one instance also the
Neumann one), none of these two-point functions admits a
well-behaved counterpart on AdSn.
This work supports the relevance of studying under full

generality the possible class of boundary conditions which
can be associated to a field theory when dealing with
manifolds with a boundary. In this respect it would be
interesting to consider on CAdSn more general scenarios,
such as dynamical boundary conditions which have been
recently studied in the Poincaré patch in [24] and in [25]
from a rigorous viewpoint.
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APPENDIX: EIGENFUNCTION
REPRESENTATION OF THE DELTA

DISTRIBUTION

The goal of this Appendix is to construct λ̂2;L;ω starting
from (4.5) and from S the operator (3.1) which represents
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the Sturm-Liouville form of (2.3a). A convenient and
equivalent way of addressing this question consists of
recasting (3.1) as S0Φω ¼ ω2J ðzÞΦω, where

S0 ¼
d
dz

�
PðzÞ d

dz

�
þ eQðzÞ:

This can be read as an eigenvalue problem for the symmetric
operator S0 on the Hilbert space L2ðð0; 1Þ; dμðzÞÞ, where
dμðzÞ ¼ J ðzÞdz and where ω2 plays the role of the spectral
parameter. Hence, in this setting our original problem boils
down to finding a resolution of the identity operator in terms
of eigenfunctions of S0. Most notably, as first discussed in
[26] and then applied in [8], there exists one such resolution
for each self-adjoint extension of the operator S0.
Recollecting the results of [26], it turns out that S0 is
essentially self-adjoint if ν ≥ 1, ν being defined in (2.7).
In this case there exists only one self-adjoint extension and
an associated unique resolution of the identity. In the
language of differential equations this amounts to saying
that no boundary condition should be imposedwhen solving
(2.4). On the contrary, if 0 < ν < 1, there exists a one-
parameter family of self-adjoint extensions of S0 which can
be parametrized in terms of a boundary condition at z ¼ 1 of
the form (3.3). Hence, for each γ ∈ ½0; πÞ, there exists a
different resolution of the identity.
The translation of the above reasoning into an explicit

construction is well understood, Chapter 7 of [27]. The first
step consists of constructing the Green’s operator associ-
ated to (3.1). Hence, focusing on the case ν ∈ ð0; 1Þ, for
each γ ∈ ½0; πÞ, we look for a bidistribution GS0;ω;γ , γ ∈
½0; πÞ whose integral kernel obeys

ððS0 − ω2IÞ ⊗ IÞGS0;ω;γðz; z0Þ

¼ ðI ⊗ ðS0 − ω2IÞÞGS0;ω;γðz; z0Þ ¼
δðz − z0Þ
J ðzÞ : ðA1Þ

Since S is an ordinary differential operator, standard
techniques yield

GS0;ω;γðz; z0Þ ¼ N ωðΘðz − z0ÞΦ1;ωðzÞΦγ;ωðz0Þ
þ Θðz0 − zÞΦγ;ωðzÞΦ1;ωðz0ÞÞ; ðA2Þ

where Φ1;ω is the solution (2.9), Φγ;ω that in (3.4), while Θ
is the Heaviside distribution. The remaining normalization
constant can be computed directly from (A1) using the
connection formulas for Kummer’s solutions 15.10.17 and
15.10.18 of [17] being

N −1
ω ¼ PðzÞWz½Φ1ðzÞ;ΦγðzÞ�

¼ −2ðcos γAðωÞ þ sin γBðωÞÞ; ðA3Þ

where PðzÞ ¼ −Q1ðzÞJ ðzÞ, cf. (3.1), while

AðωÞ ¼ ΓðcÞΓðaþ b − cþ 1Þ
ΓðaÞΓðbÞ ðA4aÞ

BðωÞ ¼ ΓðcÞΓðc − a − bþ 1Þ
Γðc − aÞΓðc − bÞ ; ðA4bÞ

where a, b, c are defined in (2.8), (2.8b) and (2.8c),
respectively. In these formulas we decided for later con-
venience to make explicit the dependence of A and B on ω
through the coefficients a and b. Starting from (A2), the
following identity holds true:

δðz − z0Þ
J ðzÞ ¼ i

2π

I
Cω2

dðω2ÞGS;ω;γðz; z0Þ; ðA5Þ

where
H
C
ω2

indicates that we are considering a contour

integral in the complex plane with respect to the spectral
parameter ω2, cf. [8,27]. A direct inspection of (A2) and of
(A3) unveils that this integral can be solved using the
Cauchy residue theorem. For all admissible values of γ, the
integrand contains a countable number of simple poles,
obtained as the zeros of (A3) in terms of ω. It is convenient
to distinguish three subcases:
(1) If γ ¼ 0, then N −1

ω ¼ 0 if and only if either 1
ΓðaÞ or

1
ΓðbÞ vanishes. This occurs for a countable set of

frequencies, that is (k ∈ N ∪ f0g)

ωk;0;� ¼ �
�
n − 1

2
þ 2kþ ln−2 þ ν

�
: ðA6Þ

(2) If γ ¼ π
2
then N −1

ω ¼ 0 if and only if either 1
Γðc−aÞ or

1
Γðc−bÞ vanishes. This occurs for a countable set of

frequencies, that is (k ∈ N ∪ f0g)

ωk;π
2
;� ¼ �

�
n − 1

2
þ 2kþ ln−2 − ν

�
: ðA7Þ

(3) If 0 < γ < π and γ ≠ π
2
, then one has to solve in

terms of ω the equation

cotγ¼−
BðωÞ
AðωÞ

¼−
Γðc−a−bþ1ÞΓðaÞΓðbÞ

Γðaþb−cþ1ÞΓðc−aÞΓðc−bÞ : ðA8Þ

Only a numerical evaluation is possible, but one can
nonetheless infer that there exists a countable set of
such solutions. As a matter of fact, the right-hand
side of (A8), seen as a function of ω, is continuous, it
vanishes whenever ω ¼ ωk;0;� while it diverges if
ω ¼ ωk;π

2
;�. A direct inspection of (A6) and of (A7)

unveils in addition that, for all k ∈ N ∪ f0g,
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lim
ω→ωþ

k;π
2
;�

AðωÞ
BðωÞ ¼ − lim

ω→ω−
k;π
2
;�

AðωÞ
BðωÞ :

Combining such data together it turns out that (A8)
admits a countable number of solutions. In addition,
observing that (A4a) and (A4b) are invariant under
the map ω ↦ −ω, we can enumerate these solutions
asωk;γ;� with k ∈ N ∪ f0gwhere� divides between
the positive and the negative ones. An exemplifica-
tion of the behavior of − AðωÞ

BðωÞ is given in Fig. 1.

Recalling that, whenever the Wronskian between two
solutions of an ordinary differential equation vanishes,
these are linearly dependent, a direct application of
Cauchy residue theorem entails that (A5) becomes

δðz − z0Þ
J ðzÞ ¼

X∞
k¼0

2ðcos γCðωk;γ;þÞ þ sin γDðωk;γ;þÞÞ

× ωk;γ;þΦ1;ωk;γ;þðzÞΦ1;ωk;γ;þðz0Þ; ðA9Þ

where, recalling that a, b, c are defined in (2.8a), (2.8b) and
(2.8c) respectively, it holds 15.10.17 and 15.10.18 of [17],

CðωÞ ¼ ΓðcÞΓðaþ b − cþ 1Þ
Γða − cþ 1ÞΓðb − cþ 1Þ ðA10aÞ

DðωÞ ¼ ΓðcÞΓðc − a − bþ 1Þ
Γð1 − aÞΓð1 − bÞ : ðA10bÞ

Observe that, in the special case of Dirichlet boundary
conditions and forn odd,c;−a∈N∪f0g,while, forNeumann
boundary conditions both c; a ∈ N ∪ f0g. In the first case
(A10a) vanishes, while, in the second (A10b) vanishes. To
avoid this pathological situation,when γ ¼ 0 andwhen γ ¼ π

2
,

we use instead 15.10.21 and 15.10.22 of [17] setting

C0ðωÞ ¼
Γðc − aÞΓðc − bÞ
ΓðcÞΓðc − a − bÞ ðA11aÞ

Dπ
2
ðωÞ ¼ ΓðaÞΓðbÞ

ΓðcÞΓðaþ b − cÞ : ðA11bÞ

It is instructive, thus, to write explicitly the resolution of
the Dirac delta in the two special cases, namely the
Dirichlet boundary condition γ ¼ 0,

δðz − z0Þ
J ðzÞ ¼

X∞
k¼0

2C0ðωk;0;þÞωk;0;þΦ1;ωk;0;þðzÞΦ1;ωk;0;þðz0Þ;

ðA12Þ

where ωk;0;þ are the frequencies in (A6) and the Neumann
boundary condition,

δðz − z0Þ
J ðzÞ ¼ ðA13Þ

X∞
k¼0

2Dπ
2
ðωk;π

2
;þÞωk;π

2
;þΦ1;ωk;π

2
;þðzÞΦ1;ωk;π

2
;þðz0Þ; ðA14Þ

FIG. 1. Plot of (A8) for n ¼ 3, ν ¼ 1
2
(left figure) and n ¼ 3, ν ¼ 1

4
(right figure). In both cases we consider l3 ¼ l4 ¼ 0, 1 and only

positive frequencies since (A8) enjoys the symmetry ω → −ω.
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where ωk;π
2
;þ are the frequencies in (A7). Observe that, in

these two cases, we used the symmetry of the hyper-
geometric function under exchange of its two first argu-
ments. As a last comment we observe that, if we consider a

range of masses such that ν ≥ 1, ν being defined in (2.7)
then the same procedure employed above would yield only
one possible resolution of the Dirac delta distribution,
namely (A12).
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