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91405 Orsay Cedex, France

(Received 19 March 2018; published 6 July 2018)

A natural star product for 4-d κ-Minkowski space is used to investigate various classes of κ-Poincaré
invariant scalar field theories with quartic interactions whose commutative limit coincides with the usual ϕ4

theory. κ-Poincaré invariance forces the integral involved in the actions to be a twisted trace, thus defining a
Kubo-Martin-Schwinger (KMS) weight for the noncommutative (C�-)algebra modeling the κ-Minkowski
space. In all the field theories, the twist generates different planar one-loop contributions to the 2-point
function which are at most UV linearly diverging. Some of these theories are free of UV/IR mixing. In the
others, UV/IR mixing shows up in non-planar contributions to the 2-point function at exceptional zero
external momenta while staying finite at nonzero external momenta. These results are discussed together
with the possibility for the KMS weight relative to the quantum space algebra to trigger the appearance of
KMS state on the algebra of observables.

DOI: 10.1103/PhysRevD.98.025002

I. INTRODUCTION

It is widely believed that the classical notion of space-
time is no longer adequate at the Planck scale to reconcile
gravity with quantum mechanics. One possible attempt to
reach this goal comprises to trade the continuous smooth
manifold describing the space-time by a noncommutative
(quantum) space [1]. In this spirit, the κ-Minkowski space-
time appears in the physics literature to be one of the most
studied noncommutative spaces with Lie algebra type
noncommutativity and is sometimes regarded as a good
candidate for a quantum space-time to be involved in a
description of quantum gravity at least in some limit.
Informally, it may be viewed as the enveloping algebra
of the Lie algebra ½x0;xi�¼ iκ−1xi, ½xi;xj�¼0, i;j¼1;…;d,
where the deformation parameter κ has dimension of a
mass. The κ-Minkowski space-time has been characterized
a long time ago in [2] by exhibiting the Hopf algebra
bicrossproduct structure of the κ-Poincaré quantum algebra
[3] which (co-)acts covariantly on it and may be viewed
as describing its quantum symmetries. A considerable
amount of literature has been devoted to the exploration
of algebraic aspects related to κ-Minkowski space and

κ-Poincaré algebra, in particular dealing with concepts
inherited from quantum groups [4] as well as (twists)
deformations. For a comprehensive recent review, on these
algebraic developments, see, e.g., [5] and the references
therein. Besides, the possibility to have testable/observable
consequences from related phenomenological models has
raised a growing interest and resulted in many works
dealing for instance with doubly special relativity
together with modified dispersion relations and relative
locality [6,7].
Once the noncommutative nature of the space-time is

assumed, noncommutative field theories (NCFT) arise
naturally. For reviews on early studies, see, e.g., [8] and
references therein. Compared to the ordinary field theories,
NCFT have their own salient features. In particular, many
efforts have been focused on the exploration of their
quantum behavior in order to obtain a good understanding
of their renormalization properties. The renormalization of
NCFT is known to be often a difficult task since most of
these theories are nonlocal, thus precluding the use of the
standard machinery controlling the ordinary local field
theories. The technical hard points may even be compli-
cated by the possible appearance of the UV/IR mixing, a
typical phenomenon of NCFT which spoils renormalis-
ability. For the popular Moyal spaces R4

θ and R2
θ as well as

for R3
λ, a deformation of R3 [9], it has been shown that this

phenomenon and all the technical difficulties can be over-
come from different ways within some NCFT as well as
some noncommutative gauge models leading to renorma-
lizable (or even finite in some instance) field theories on
these quantum spaces [10–17] and outlining the deep
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relationship between NCFT and matrix models [18–20].
Recall that the 4-d Moyal space can be viewed informally
as C½xμ�=R, the quotient of the free algebra generated by 4
hermitean coordinates ðxμÞμ¼1;…;4 by the relationR defined
by ½xμ; xν� ¼ iθμν where θμν is a skew symmetric constant
tensor. This deformation of R4 can be described as a
(suitable) algebra of functions on R4 equipped with the
popular Moyal product [21,22] obtained from the Wigner-
Weyl quantization scheme. For various presentations of the
Moyal product, see, e.g., [8]. The noncommutative R3

λ ,
another example of space with Lie algebra type non-
commutativity, as the κ-Minkowski space-time also is,
can be viewed informally as related to the universal
enveloping algebra of suð2Þ, Uðsuð2ÞÞ ≃ C½xi�=R0, where
the relation R0 is defined by ½xi; xj� ¼ iεijkxk. For various
derivations of star products related to R3

λ , see, e.g., [9,15]
and references therein. Note that these noncommutative
spaces share a common underlying structure, each one
being related to a group algebra. This latter corresponds, in
the Moyal case, to the algebra for the Heisenberg group,
which actually underlies the Weyl quantization, as it will be
recalled below. For the space R3

λ , it is the convolution
algebra of SUð2Þ, which has been shown to play an
essential role in originating the special properties of R3

λ
[14,16,17]. In the case of κ-Minkowski space-time, the
relevant group algebra is the convolution algebra of the
affine group as it will be shown below.
An important question to address is the fate of the

symmetries of a noncommutative space-time. This has
triggered a lot of works using various approaches which
basically depend if one insists on preserving (almost all) the
classical symmetries or if one considers deformed ones. For
instance in [1] the attention was focused on preserving the
classical (undeformed) Lorentz or Poincaré symmetries for
the Moyal space, as well as in [23] for κ-Minkowski space.
In this latter work, the authors ensures classical covariance
of κ-Minkowski space starting from a generalized version
of it introduced in [24], i.e., ½xμ; xν� ¼ iκ−1ðvμxν − vνxμÞ.
They show that, under some assumptions, deformed
(quantum) symmetries are not the only viable and con-
sistent solution for treating such models. Note however that
the original κ-Minkowski space (2.1) (which we consider in
this paper) does not fit in that description and breaks the
classical relativity principle. This leads us to the other
approach widely studied in the literature, namely the
extension of the usual notion of Lie algebra symmetries
to the one of (deformed) Hopf algebra symmetries aiming
to encode the new (canonical) symmetries for the quantum
space-times. This point of view is motivated by the fact
that, in the commutative case, the Minkowski space-time
can be regarded as the homogeneous space the Poincaré
symmetry group acts on transitively. Hence, a deformation
of the former should (in principle) implies a deformation of
the latter and vice versa. This idea underlies the original

derivation of κ-Minkowski as the homogeneous space
associated to κ-Poincaré [2]. Another interesting example
(to put in perspective with [1]) is given in [25], where it is
shown that the symmetries for the Moyal space can be
obtained through formal (Drinfeld) twist deformation of the
Lorentz sector of the Poincaré algebra while translation
remains undeformed. General discussions on the fate of the
Poincaré symmetries within the context of noncommutative
(or quantum) space-times can be found in [26] and
references therein.
NCFT on κ-Minkowski space have received a lot of

interest from a long time, see for instance [27–30], but
amazingly their quantum properties are not so widely
explored, compared to the present status of the above
mentioned NCFT. Nevertheless, the UV/IR mixing within
some scalar field theories on κ-Minkowski has been
examined a long time ago in [31] and found to possibly
occur. The corresponding analysis was based on a star
product for the κ-deformation derived in [32] from a
general relationship between the Kontsevich formula and
the Baker-Campbell-Hausdorff (BCH) formula that can be
conveniently used when the noncommutativity is of Lie
algebra type [33]. NCFT considered in [31] was κ-Poincaré
invariant, which is a physically reasonable requirement,
keeping in mind the important role played by the Poincaré
invariance in ordinary field theories together with the fact
that κ-Poincaré algebra can be viewed as describing the
quantum symmetries of the κ-Minkowski space-time.
It turns out that a very convenient star product for

κ-Minkowski space can be obtained from a mere adaptation
of the initial Wigner-Weyl quantization schemewhich gives
rise to the popular Moyal product. This can be illustrated
schematically as follows. Recall that one important feature
of this scheme is the notion of “twisted convolution” of two
functions,1 f and g on the phase space R2, that we denote
by f • g, whose explicit expression was first given by von
Neumann [34]. This product is defined by Wðf • gÞ ¼
WðfÞWðgÞ where WðfÞ is the Weyl operator given by
WðfÞ ¼ R

dξ1dξ2eiðξ1Pþξ2QÞfðξ1; ξ2Þ in which the unitary
operator in the integrand can be viewed as an element of the
unimodular Heisenberg group,2obtained by exponentiating
the Heisenberg algebra, says ½P;Q� ¼ iθ where θ is central.
From this follows directly the Moyal product defining the
deformation ofR2. It is defined by f ⋆ g ¼ F−1ðFf • FgÞ
where the Weyl quantization map is QðfÞ ¼ WðFfÞ and
Ff is the Fourier transform of f.
The natural extension of the above scheme to the

construction of a star product for κ-Minkowski can then
be achieved by simply replacing the Heisenberg group
by the nonunimodular affine group as explained below,
while WðfÞ will be replaced by a representation of the

1with f, g ∈ L1ðR2Þ.
2To see that, use e.g., the Glauber formula to reproduce the

usual composition law for elements of the Heisenberg group.
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convolution algebra of the affine group. Doing this, one can
take advantage of the machinery of the harmonic analysis
on Lie groups and, in particular, measures involved in
action functionals are provided by Haar measures. Note
that such a viewpoint has also been intensively used in
[16,17] for R3

λ, the relevant group being SUð2Þ reflecting
the suð2Þ noncommutativity of the quantum space and has
provided the relationship between R3

λ and the convolution
algebra of SUð2Þ, the determination of the natural measure
in the action functionals and by the way clarified the origin
of the matrix basis used in [14]. In the case of κ-Minkowski
space, we note that such a natural construction has already
been used in [35,36] to derive a star product for a
2-dimensional κ-Minkowski space and to characterize a
related multiplier algebra [35]. As far as we know, this
product was amazingly not further exploited in the study of
NCFT on κ-Minkowski space, despite its relatively simple
expression and the associated tools of group harmonic
analysis which make him well adapted to the study of
quantum field theories.
The construction of this natural star product defining the

κ-deformation of the 4-d Minkowski space, considered
with Euclidean signature in the present work, is presented
in Sec. II. We then study in the Sec. III different classes of
κ-Poincaré invariant (complex) scalar field theories on the
4-d κ-Minkowski space whose commutative limit coincides
with the usual ϕ4 theory. The kinetic operators are chosen
to be square of Dirac operators. Requiring κ-Poincaré
invariance forces the (Lebesgue) integral involved in the
actions to be a twisted trace with respect to the star product.
This therefore defines a Kubo-Martin-Schwinger (KMS)
weight on the non-commutative (C�-)algebra modeling the
κ-Minkowski space. The associated modular group and
Tomita modular operator are characterized. This is pre-
sented in the subsection III A where we also discuss the
possibility for the above KMS weight together with the
associated modular data related on the noncommutative
algebra modeling the κ-Minkowski space to generate the
appearance of KMS states on the algebra of observables
related to a global (observer-independent) time. The math-
ematical material as well as technical computations are
collected in the Appendix B.
The one-loop contributions to the 2-point functions of

each of these theories are computed and their UV and IR
behaviors are analyzed. The corresponding material is
given in the subsections III B and III C. We find that the
twist automorphism related to the twisted trace splits the
planar contributions to the 2-point function into different IR
finite contributions whose UV behavior is controlled by the
twist. These contributions are found to be at most UV
linearly diverging, some being UV finite. A part of scalar
theories considered in this work cannot give rise to non-
planar contributions to the 2-point function so that these
theories are expected to be free of UV/IR mixing.
Conversely, UV/IR mixing shows up in another class of

theories for which we find that the nonplanar contributions
to the 2-point function, while finite at non zero external
momenta, becomes singular at exceptional zero external
momenta with polynomial singularity. These results are
finally discussed in the Sec. IV.

II. κ-MINKOWSKI SPACE AS A GROUP ALGEBRA

A. Convolution algebras and κ-Minkowski spaces

A convenient presentation of the κ-Minkowski space can
be achieved by exploiting standard objects of the frame-
work of group algebras and (C�-)dynamical systems [37].
This approach, which has been used in [35,36] is the one
we mainly follow in this paper. This framework has also
been used in recent studies on R3

λ spaces [16,17] related to
the convolution algebra of the compact SUð2Þ Lie group.
Here, the relevant group is (related to) the affine group of
the real line in the 2-dimensional case, i.e., a semi direct
product of the two Abelian groups R, which extends in the
(dþ 1)-dimensional case to R ⋉ϕ Rd. We now collect the
suitable material for the ensuing analysis.
First, recall that the κ-deformation of the Minkowski

space can be informally viewed as related to the universal
enveloping algebra of the Lie algebra g defined by:

½x0; xi� ¼
i
κ
xi; ½xi; xj� ¼ 0; i; j ¼ 1;…; d: ð2:1Þ

Here, κ is a real number (κ > 0) and the coordinates x0, xi
are assumed to be self-adjoint operators acting on some
suitable Hilbert space. It turns out that g is solvable. This
can be easily deduced from the so-called derived Lie
algebra ½g; g� which is readily seen to be nilpotent. This
is equivalent to have solvable g. Hence the associated Lie
group, hereafter denoted by Gdþ1, is solvable (see e.g.,
Theorem 5.9 of [38]). We use this property below to
characterize the relevant algebra modeling the noncommu-
tative space.
Notice that any Lie group of the form A ⋉ϕ B,

ϕ∶ A → AutðBÞ, where A and B are Abelian connected
Lie groups, is solvable and connected (and is simply
connected whenever A and B are simply connected).
This is the case for Gdþ1 ¼ R ⋉ϕ Rd, relevant to describe
the (dþ 1)-dimensional κ-Minkowski spaces. This group is
not unimodular signaling the existence of distinct left and
right-invariant Haar measures, denoted respectively by dμ
and dν. They are related by the modular function of Gd, a
continuous group homomorphism ΔGdþ1

∶ Gdþ1 → Rþ
=0, by

dνðsÞ ¼ ΔGdþ1
ðsÞdμðsÞ for any s ∈ Gdþ1.

For the moment, we assume d ¼ 1, the extension to d ¼
3 is straightforward and will be exploited below. G2 is
known to be the orientation-preserving affine group of the
real line, i.e., the “(axþ b)-group”, a > 0, widely studied
in the mathematical literature. For basic mathematical
details, see, e.g., [37,39] and references therein. For our
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present purpose, this (non-Abelian simply connected) Lie
group can be conveniently characterized by defining

Wðp0; p1Þ ≔ eip
1x1eip

0x0 ; ð2:2Þ

where p0, p1 ∈ R can be interpreted as momenta. The
group elements (2.2) are related to the more traditional
exponential form of the Lie algebra (2.1) through a mere
redefinition of p1. Indeed, by using in (2.2) the simplified
BCH formula eXeY ¼eλðuÞXþY , valid whenever ½X;Y�¼uX,
see [40], where λðuÞ ¼ ueu

eu−1, one obtains Wðp0; p1Þ ¼
eiðp0x0þλðp0κ Þp1x1Þ. However, (2.2) is easier to manipulate
for the ensuing computations. Now, upon using eXeY ¼
eYee

uX which holds true when again ½X; Y� ¼ uX, one
obtains from (2.2) the group product on G2 given by

Wðp0; p1ÞWðq0; q1Þ ¼ Wðp0 þ q0; p1 þ e−p
0=κq1Þ: ð2:3Þ

The unit element and inverse are respectively given by

IG ¼ Wð0; 0Þ; W−1ðp0; p1Þ ¼ Wð−p0;−ep0=κp1Þ:
ð2:4Þ

At this point, some remarks are in order.
(i) First, observe that the usual composition law for the

(axþ b)-group can be obtained from (2.3) by
representing the group elements (2.2) as

Wðp0; bÞ ¼
�
e−p

0=κ b

0 1

�
ð2:5Þ

and setting a ≔ e−p
0=κ. That latter rewriting exhibits

clearly the semidirect product structure of G2 as

G2 ¼ Rþ
=0 ⋉ϕ̌ R; ð2:6Þ

with ϕ̌∶ Rþ
=0 → AutðRÞ being given by the adjoint

action of Rþ
=0 on R. Indeed, the identifications a ↦

ða; 0Þ and b ↦ ð1; bÞ yield respectively the factors
Rþ

=0 and R appearing in (2.6) while the action ϕ̌,

defined by ϕ̌ðaÞb ¼ ða; 0Þð1; bÞða−1; 0Þ, is reflected
at the level of (2.3) in

ϕ∶ R → AutðRÞ; ϕðp0Þq ¼ e−p
0=κq: ð2:7Þ

(ii) Next, note that the energy-momentum composition
law is essentially given by the BCH formula for the
Lie group underlying the noncommutative space-
times whose algebras of coordinates are of Lie
algebra type. This is the case for κ-Minkowski,
see Eq. (2.1), as well as for the Moyal plane (resp.
R3

λ) whose algebra of coordinate operators is given

by the Heisenberg algebra ½xμ; xν� ¼ iθ (resp. suð2Þ
algebra ½xμ; xν� ¼ iλερμνxρ). Here, the composition
law can be directly read from (2.3) and reflects the
nontrivial coproduct structure of the κ-Poincaré
algebra, see (A4).

Let πU∶ G2 → BðHÞ denote a (strongly continuous)
unitary representation of G2 where H is some suitable
Hilbert space and BðHÞ is the (C�-)algebra of bounded
operators on H. A star product defining the 2-dimensional
κ-Minkowski space can be obtained in a way similar to the
usual Weyl quantization leading to the construction of
Moyal product on the Moyal plane R2

θ, see [41], the
Heisenberg algebra and Heisenberg group being replaced
now by (2.1) and G2 (2.6) respectively. Accordingly, it is
convenient to start from L1ðG2Þ, the convolution algebra of
G2. Recall that it is a *-algebra made of the set of integrable
complex-valued functions on G2 with respect to some Haar
measure equipped with the related convolution product.3

From now on, it will be assumed to be the right-invariant
measure. Accordingly, the convolution product is defined
by ðf∘gÞðtÞ ¼ R

G2
dνðsÞfðts−1ÞgðsÞ for any t ∈ G2, f,

g ∈ L1ðG2Þ. The involutive structure of the algebra can
be ensured by any element of the one-parameter family of
involutions defined ∀ t ∈ G2 by f�ðtÞ ≔ f̄ðt−1ÞΔα

G2
ðtÞ,

α ∈ R. It turns out that the choice α ¼ 1, assumed from
now on, ensures that any representation of the convolution
algebra defined for any f ∈ L1ðG2Þ by

π∶ L1ðG2Þ → BðHÞ; πðfÞ ¼
Z
G2

dνðsÞfðsÞπUðsÞ;

ð2:8Þ
is a nondegenerate *-representation. Indeed, a simple
computation yields

hu; πðfÞ†vi ¼ hπðfÞu; vi ¼
Z
G2

dνðsÞf̄ðsÞhu; πUðs−1Þvi;

ð2:9Þ
where antilinearity of the Hilbert product h·; ·i and unitary
property of πU have been used. Note that in (2.9) the
symbol † denotes the adjoint operation acting on operators,
the nature of the various involutions should be obvious
from the context. On the other hand, one computes

hu; πðf�Þvi ¼
Z
G2

dνðsÞΔα
G2
ðsÞf̄ðs−1Þhu; πUðsÞvi; ð2:10Þ

which combined with the relation dνðs−1Þ ¼ ΔG2
ðs−1Þ×

dνðsÞ is equal to (2.9) provided α ¼ 1.

3Recall that L1ðG2Þ is isomorphic to the completion with
respect to the norm kfk1 ¼

R
G2
dνðsÞfðsÞ of the algebra of

compactly supported complex-valued functions on G2.
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To summarize:

πðfÞ† ¼ πðf�Þ; ð2:11Þ
and one can easily check that

πðf∘gÞ ¼ πðfÞπðgÞ; ð2:12Þ
for any f, g ∈ L1ðG2Þ.

B. Quantization map and star product.

Let Ffðp0; p1Þ ≔ R
R2 dx0dx1e−iðp

0x0þp1x1Þfðx0; x1Þ be
the Fourier transform of f ∈ L1ðR2Þ. In the following,
Sc denotes the space of Schwartz functions on R2 with
compact support in the first variable.
The quantization map is defined [35,36] upon identify-

ing functions on G2 with functions on R2 in view of
(2.2)–(2.4). Namely, for any f ∈ L1ðR2Þ ∩ F−1ðL1ðR2ÞÞ,
we define

QðfÞ ≔ πðFfÞ; ð2:13Þ
where π is the unitary representation given by (2.8). Notice
that in view of (2.2), functions involved in the convolution
product and involution map defined above are interpreted
as Fourier transforms of functions of space-time coordi-
nates. Hence, the occurrence of Ff in the RHS of (2.13).
Then, since Q must be a morphism of algebra, one writes

Qðf ⋆ gÞ ¼ QðfÞQðgÞ ¼ πðFfÞπðFgÞ ¼ πðFf∘FgÞ
ð2:14Þ

where (2.12) has been used to obtain the last equality in
(2.14), which compared with Qðf ⋆ gÞ ¼ πðF ðf ⋆ gÞÞ
stemming from (2.13) and using the nondegeneracy of
(2.8), yields

f ⋆ g ¼ F−1ðFf∘FgÞ; ð2:15Þ

where F−1 is the inverse Fourier transform on R2. In the
same way, the requirement forQ to be a *-morphism yields

f† ¼ F−1ðF ðfÞ�Þ: ð2:16Þ
Note that both the star product and the involution are
representation independent despite the fact that the quan-
tization map Q depends on π.
Finally, by using the fact that the right-invariant measure

on G2 is dνðp0; p1Þ ¼ dp0dp1, i.e., the Lebesgue measure,
with the modular function given by

ΔG2
ðp0; p1Þ ¼ ep

0=κ; ð2:17Þ
and combining the definition of the right-convolution
product given above with Eqs. (2.2)–(2.4), a simple
calculation yields, for any f, g ∈ F ðScÞ,

ðf ⋆ gÞðx0; x1Þ ¼
Z

dp0

2π
dy0e−iy0p

0

fðx0 þ y0; x1Þ

× gðx0; e−p0=κx1Þ; ð2:18Þ
with f ⋆ g ∈ F ðScÞ, and

f†ðx0; x1Þ ¼
Z

dp0

2π
dy0e−iy0p

0

f̄ðx0 þ y0; e−p
0=κx1Þ;

f† ∈ F ðScÞ; ð2:19Þ
which coincide with the star product and involution
of [35,36].
At this point, some comments are in order.
(i) First, it is instructive to get more insight on C�ðG2Þ,

the C�-algebra which models the κ-Minkowski
space. Indeed, the completion of L1ðG2Þwith respect
to the norm related to the left regular representation
on L2ðG2Þ yields the reduced group C�-algebra,
C�
redðG2Þ. Furthermore, since G2 is amenable as

any solvable (locally compact) group, one has
C�
redðG2Þ ≃ C�ðG2Þ, involving as dense *-subalgebra

the set of Schwartz functions with compact support
equipped with the above convolution product.

(ii) Equations (2.18) and (2.19) can be extended [35] to
(a subalgebra of) the multiplier algebra4 of F ðScÞ
involving in particular x0 and x1 and the unit
function. From (2.18) and (2.19), one easily obtains

x0 ⋆ x1 ¼ x0x1 þ
i
κ
x1; x1 ⋆ x0 ¼ x0x1;

x†μ ¼ xμ; μ ¼ 1; 2; ð2:20Þ
consistent with the defining relation (2.1)
(for d ¼ 1).

The extensionof the aboveconstruction to the4-dimensional
case is straightforward. Indeed, the group law becomes
now Wðp0; p⃗ÞWðq0; q⃗Þ ¼ Wðp0 þ q0; p⃗þ e−p

0=κq⃗Þ with
Wðp0;p⃗Þ≔eip

ixieip
0x0 , p⃗¼ðpi;i¼1;2;3Þ andW−1ðp0;p⃗Þ¼

Wð−p0;−ep0=κp⃗Þ. This entails the semi-direct product
structure G4 ¼ R ⋉ϕ R3 where ϕ is still given by (2.7).
Then, the construction leading to (2.18) and (2.19) can be
thoroughly reproduced, replacing R2 by R4 and (2.17) by

ΔG4
ðp0; p⃗Þ ¼ e3p

0=κ: ð2:21Þ
Setting for short x ≔ ðx0; x⃗Þ, one obtains

ðf ⋆ gÞðxÞ ¼
Z

dp0

2π
dy0e−iy0p

0

fðx0 þ y0; x⃗Þgðx0; e−p0=κx⃗Þ;

ð2:22Þ

4It involves the smooth functions on R2 satisfying standard
polynomial bounds together with all the derivatives, with Fourier
transform having compact support in the first variable.
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f†ðxÞ ¼
Z

dp0

2π
dy0e−iy0p

0

f̄ðx0 þ y0; e−p
0=κx⃗Þ; ð2:23Þ

for any functions f, g ∈ F ðScÞ and one still has f ⋆ g ∈
F ðScÞ and f† ∈ F ðScÞ. Here, Sc is now the set of Schwartz
functions ofR4 with compact support in the p0 variable. Of
course, comments similar to the one given above forC�ðG2Þ
and (2.20) apply to the 4-dimensional case on which we
focus in the rest of this paper. Notice that the functions in
F ðScÞ are by construction analytic in the variable x0, being
Fourier transforms of functions with compact support in the
variable p0, thanks to the Paley-Wiener theorem.
For the ensuing discussion, it will be sufficient to

consider the algebra F ðScÞ unless otherwise stated, which
will be denoted hereafter by Mκ.

C. κ-Poincaré invariant actions

In this section, we discuss general properties shared by
κ-Poincaré invariant action functionals for complex-valued
scalar fields, denoted generically by SκðϕÞ.
Let Pκ denote the κ-Poincaré algebra. We will demand

that the action functional SκðϕÞ obeys the following two
conditions:
(1) SκðϕÞ is Pκ-invariant which is expressed as

h ⊳ SκðϕÞ ¼ ϵðhÞSκðϕÞ; ð2:24Þ

for any h in the Hopf algebra Pκ where ϵ is the co-
unit of Pκ (see Appendix A),

(2) SκðϕÞ reduces to the standard ϕ4 scalar field theory
in the commutative limit κ → ∞.

Recall that Pκ has a natural action onMκ which informally
may be viewed as the action of a quantum symmetry on
the corresponding quantum (noncommutative) space mod-
elled by Mκ, reflecting the fact that the algebra Mκ is a
left-module over the Hopf algebra Pκ. A convenient
presentation of Pκ can be obtained from the 11 elements
(Pi, Ni, Mi, E, E−1), i ¼ 1, 2, 3, which are respectively the
momenta, the boost and the rotations together with the
invertible element

E ≔ e−P0=κ; ð2:25Þ

to be discussed at length in a while. The relations between
these elements which characterize the Hopf algebra struc-
ture together with the duality between the Hopf subalgebra
describing the “deformed translation algebra” and the
κ-Minkowski space are presented in the Appendix A for
the sake of completeness.
Going back to the condition (a), it is known that the

invariance of SκðϕÞ under Pκ is automatically achieved by
considering action functionals of the form

SκðϕÞ ¼
Z

d4xLðϕÞ; ð2:26Þ

where ϕ ∈ F ðScÞ so that LðϕÞ ∈ F ðScÞ in view of (2.18).
Indeed, by using (A15)–(A17), one has plainly

Pμ ⊳ SκðϕÞ ≔
Z

d4xPμ ⊳ LðϕÞ ¼ 0;

Mi ⊳ SκðϕÞ ≔
Z

d4xMi ⊳ LðϕÞ ¼ 0; ð2:27Þ

while

E ⊳ SκðϕÞ ≔
Z

d4xE ⊳ LðϕÞ ¼ SκðϕÞ ð2:28Þ

where the last equality stems from the Cauchy theorem.
Next, one obtains from (A18)

N ⊳ SκðϕÞ

≔
Z

d4x

��
κ

2
LxiðE − E−1Þ þ Lx0PiE þ LxiP⃗

2E
��

⊳ LðϕÞ: ð2:29Þ

By using (A15), (A16), one easily checks that the last two
terms in the right hand side vanish as integrals of total
derivative of Schwartz functions while the 2 contributions
of the first term balance each other thanks to the Cauchy
theorem.
For further use, we quote useful formulas

Z
d4xðf ⋆ g†ÞðxÞ ¼

Z
d4xfðxÞḡðxÞ; ð2:30Þ

Z
d4xf†ðxÞ ¼

Z
d4xf̄ðxÞ; ð2:31Þ

stemming frommere changes of variables and the use of the
Cauchy theorem as it can be easily verified. We note that a
mere consequence of (2.30) is

Z
d4xf ⋆ f† ≥ 0;

Z
d4xf† ⋆ f ≥ 0; ð2:32Þ

thus defining two positive maps
R
d4x∶ Mκþ → Rþ where

Mκþ denotes the set of positive elements of Mκ.
It turns out that the Lebesgue integral does not define a

trace. Indeed, a simple computation yields

Z
d4xf ⋆ g ¼

Z
d4xðσ ⊳ gÞ ⋆ f; ð2:33Þ

where we define for further convenience
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σ ⊳ f ≔ E3 ⊳ f ¼ e−
3P0
κ ⊳ f; ð2:34Þ

in which E is given by (2.25). Hence, the Lebesgue integral
cannot define a trace since cyclicity is lost in view of (2.33).
Instead, it defines a twisted trace.
Recall that a twisted trace (on an algebra) is defined in

the mathematical literature as a linear positive map Tr
satisfying Trða ⋆ bÞ ¼ Trððσ ⊳ bÞ ⋆ aÞ, where σ is an
automorphism of the algebra called the twist. This is
verified by the Lebesgue integral in view of (2.32),
(2.33) where the corresponding twist is explicitly given
by (2.34), which will be discussed in the subsection III A.
This loss of cyclicity has often been considered as a
troublesome feature of κ-Poincaré invariant field theories,
this having probably discouraged the pursue of many
studies of their properties at the quantum level.
However, whenever there is a twisted trace, there is a

related KMS condition (up to additional technical require-
ments that will not be essential for the ensuing discussion),
a fact that is known in the mathematical literature. The
relevant technical material needed for the discussion is
presented in the Appendix B. In the subsection III A,
we discuss some possible consequences of this KMS
condition on field theories on κ-Minkowski space. In the
subsections III B and III C, we construct a family of scalar
field theories on 4-d κ-Minkowski space and study the UV
and IR behavior of the corresponding 2-point functions at
one-loop order.

III. SCALAR FIELD THEORIES
ON 4-D κ-MINKOWSKI SPACE

A. Trading cyclicity for KMS condition

To see that the Lebesgue integral actually defines a
twisted trace, one key observation is to notice that (2.33)
and (2.34) can be interpreted as a KMS weight on Mκ for
the group of *-automorphisms of Mκ defined by

σtðfÞ ≔ eit
3P0
κ ⊳ f ¼ e

3t
κ∂0 ⊳ f; ð3:1Þ

for any t ∈ R and f ∈ Mκ. This group of automorphisms is
called the modular group for the KMS weight.5 The
corresponding mathematical details, technical computations
and related references are collected in the Appendix B.
The modular group, whose (3.1) is an example, is at the

corner stone of the modular theory of Tomita-Takesaki, an
essential tool in the area of von Neumann algebras. For
details, see, e.g., [42] and references therein. It turns out
that one of the initial motivations of Tomita to construct the
modular theory was related to the harmonic analysis of
(locally compact) nonunimodular group, as the one under-
lying the present study. In particular for these groups, the

word “modular” refers to the modular function of the
group, here (2.21), while the Tomita modular operator is
simply the multiplication by the modular function (2.21).
Recall that modular theory, KMS condition, and twisted
trace are rigidly linked. Hence, it is not surprising that these
structures underlie the present framework since the require-
ment of κ-Poincaré invariance of the action functional fixes
the trace involved in it to be twisted.
To summarize the analysis of Appendix B, the KMS

weight φ is simply given by the map

φðfÞ ≔
Z

d4xfðxÞ; ð3:2Þ

for any f ∈ Mκ which verifies

φðσtfÞ ¼ φðfÞ;
φððei 32κ∂0 ⊳ fÞ ⋆ ðe−i 32κ∂0 ⊳ f†ÞÞ ¼ φðf† ⋆ fÞ: ð3:3Þ
These 2 properties are actually defining properties for a
KMS weight. Note that the κ-Poincaré invariance is crucial
to insure that (3.3) holds true. It follows obviously that any
action functional for a κ-Poincaré invariant theory is related
to a KMS weight. Hence, the requirement of κ-Poincaré
invariance trades the cyclicity of the trace for a KMS
condition.
Now, from a general theorem (Theorem [6.36] of 1st of

Ref. [43]), one concludes that φ must obey a KMS
condition. Indeed, one defines6

fa;bðtÞ ≔
Z

d4xσtðaÞ ⋆ b; ð3:4Þ

for any a, b ∈ Mκ. Then, by using the algebraic properties
of the twist and σt, one computes

fa;bðtÞ ¼
Z

d4xσtðaÞ ⋆ b ¼
Z

d4xσiðbÞ ⋆ σtðaÞ

¼
Z

d4xσiðb ⋆ σt−iðaÞÞ ¼
Z

d4xb ⋆ σt−iðaÞ

ð3:5Þ
in which we used (B9). From this follows that

fa;bðtþ iÞ ¼
Z

d4xb ⋆ σtðaÞ; ð3:6Þ

which verifies the above mentioned theorem (see
Appendix B).
As pointed out in the Appendix B, (3.4) and (3.6)

represent an abstract version of the KMS condition

5Roughly speaking, a weight differs only from a state by an
overall normalization.

6Note that fa;bðtÞ is continuous and bounded owing to the
properties of the star product (2.22). As already mentioned at the
end of Sec. II B, analyticity of fa;b stems from the Paley-Wiener
theorem.
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introduced a long time ago as a tool to characterize
equilibrium temperature states of quantum systems in field
theory and statistical physics. To see that, set formally
fa;bðtÞ ¼ hσtðaÞ ⋆ bi; then, (3.5) implies hσtðaÞ ⋆ bi ¼
hb ⋆ σt−iðaÞi which bears some formal similarity with the
usual form of the KMS condition for the quantum systems.
Notice that σt actually represents a “time-translation
operator” related to the Tomita operator ΔT ¼ e3P0=κ via
σt ¼ ðΔTÞit, as shown at the end of the Appendix B.
However, in the case of quantum systems or quantum

field theory, fA;BðtÞ corresponds to a correlation function
hΣtðAÞBiΩ computed for some (thermal) vacuum Ω where
A and B are now function(al)s (operators) of the fields and
Σt is the (Heisenberg) evolution operator, hence elements
pertaining to the algebra of observables of the theory. But
whenever a KMS condition holds true on the algebra of
observables of a quantum system or a quantum field theory,
the flow generated by the modular group, i.e., the Tomita
flow, may be used to define a global (observer-indepen-
dent) time which can be interpreted as the “physical time.”
This reflects the deep correspondence between KMS
condition and dynamics. This observation underlies the
interesting proposal about the thermal origin of time
introduced in [44].
While it would be tempting to interpret σt (3.1) as

defining (or generating) a “physical time” for the present
system, akin to the thermal time mentioned above, no
conclusion can yet be drawn. In fact, Eq. (B11) linked to
the modular group and its associated KMS condition (3.5),
(3.6) only holds at the level of Mκ, the algebra modeling
the κ-Minkowski space. To show that a natural global time
can be defined requires to determine if (3.5), (3.6) force a
KMS condition to hold true at the level of the algebra of
observables. This could be achieved by actually showing
the existence of some KMS state(s) on this latter algebra
built from the path integral machinery. In view of the
possibility to associate to κ-Poincaré invariant non-com-
mutative field theories a natural global time, a physically
appealing property, the implications of the KMS condition

(3.5), (3.6) shared by all these theories obviously deserves
further study. The full analysis is beyond the scope of the
present paper.
We now pass to the construction of reasonable κ-

Poincaré invariant action functionals and the study of the
UV and IR property of their one-loop 2-point functions,
adopting the standard viewpoint of the noncommutative
field theories, namely representing the noncommutative
action functional as an action functional describing non-
local commutative field theories. It turns out that the use of
the star product introduced in the Sec. II simplifies the
computations of the correlation functions. This will be
exemplified by explicit computations of 2-point functions
in the subsection III C. We first introduce the main elements
of our framework and analyse carefully the corresponding
properties.

B. Construction of real action functionals

1. Preliminary considerations

It is convenient to begin by introducing the following
Hilbert product on Mκ

hf; gi ≔
Z

d4xðf† ⋆ gÞðxÞ

¼
Z

d4xf̄ðxÞðσ ⊳ gÞðxÞ; ∀ f; g ∈ Mκ: ð3:7Þ

To check that (3.7) defines actually a Hilbert product,
one observes that positivity is apparent from (2.32) while
hf; gi ¼ hg; fi stems from (2.31) applied to f† ⋆ g ¼
ðg† ⋆ fÞ†. Furthermore, the corresponding Hilbert space
H can be shown to be (unitarily) isomorphic to L2ðR4Þ, i.e.,
H ≃ L2ðR4Þ. The proof is given in the Appendix C.
One can verify that Pi, i ¼ 1, 2, 3, and E are self-adjoint

with respect to the Hilbert product (3.7). Indeed, one
computes

hf; P†
i ⊳ gi ¼ hPi ⊳ f; gi ¼ −

Z
d4xðE−1Pi ⊳ ðf†ÞÞ ⋆ g ¼ −

Z
d4xðPi ⊳ ðf†ÞÞ ⋆ ðE ⊳ gÞ

¼
Z

d4xðE ⊳ ðf†ÞÞ ⋆ ðPiE ⊳ gÞ ¼
Z

d4xf† ⋆ ðPi ⊳ gÞ

¼ hf; Pi ⊳ gi; ð3:8Þ

where we have successively used (A11), the κ-Poincaré
invariance (2.24), (A12) and (A14). Hence Pi is self-adjoint.
Self-adjointness of P0 and E can be shown similarly.
In order to construct real action functionals, notice

that (3.7) is R-valued for any f, g ∈ F ðScÞ satisfying
hf; gi ¼ hg; fi. Hence, reality condition for kinetic term of

the form hf; Kκfi is automatically verified provided
that the kinetic operator Kκ (assumed in the following to
have dense domain in H) is self-adjoint since this
implies hf; Kκfi ¼ hKκf; fi.
We further assume the kinetic operator Kκ to be a

pseudodifferential operator, i.e.,
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ðKκfÞðxÞ ¼
Z

d4p
ð2πÞ4 d

4yKκðpÞfðyÞeipðx−yÞ; ð3:9Þ

for any f in the domain of Kκ, where KκðpÞ is some
rational fraction of (p0, p⃗). Note that self-adjointness forKκ

requires

Kκðp0; p⃗Þ ¼ Kκðp0; p⃗Þ; ð3:10Þ

a condition that will be fulfilled in the situations we will
consider below. Indeed, a simple computation yields

hf; Kκfi ¼
Z

d4xd4y
d4p
ð2πÞ4 f̄ðxÞfðyÞe

ipðx−yÞ

× e−3p
0=κKκðp0; p⃗Þ; ð3:11Þ

while

hKκf; fi ¼
Z

d4xd4y
d4p
ð2πÞ4 f̄ðxÞfðyÞe

ipðx−yÞ

× e−3p
0=κKκðp0; p⃗Þ; ð3:12Þ

proving the above statement.
We are now in position to construct κ-Poincaré invariant

action functionals Sκðϕ†;ϕÞ such that

lim
κ→∞

Sκðϕ†;ϕÞ ¼
Z

d4xðϕ̄ð−∂μ∂μ þm2Þϕþ λϕ̄ϕϕ̄ϕÞðxÞ;

λ ∈ R; ð3:13Þ

i.e., fulfilling the condition (b) introduced in the Sec. II C.
We assume the following usual generic form for the action
functionals

Sκðϕ†;ϕÞ ¼ Skinκ ðϕ†;ϕÞ þ Sintκ ðϕ†;ϕÞ; ð3:14Þ

where Sintκ ðϕ†;ϕÞ is a quartic polynomial in the fields and
Skinκ ðϕ†;ϕÞ is the kinetic term. For the theories under con-
sideration, the mass dimension for the fields and parameters
are respectively ½ϕ� ¼ ½ϕ†� ¼ 1, ½λ� ¼ 0 and ½m� ¼ 1.

2. Derivation of the kinetic term

Let us first discuss the kinetic term Skinκ ðϕ†;ϕÞ.
According to the above discussion, admissible real

kinetic terms are of the form

hϕ; Kκϕi; hϕ†; Kκϕ
†i; ð3:15Þ

where Kκ is self-adjoint. Its explicit expression will be
given in a while. We also incorporate all possible “mass
terms” of similar forms, namely m2hϕ;ϕi and m2hϕ†;ϕ†i.
A first natural choice for the kinetic operator is provided

by the first Casimir of the κ-Poincaré algebra Pκ. This latter
is given in the Majid-Ruegg basis by

CκðPμÞ ¼ 4κ2sinh2
�
P0

2κ

�
þ eP0=κP⃗2; ð3:16Þ

or equivalently

CκðPμÞ ¼ eP0=κðκ2ð1 − e−P0=κÞ2 þ P⃗2Þ: ð3:17Þ
The Casimir operator (3.16) can be put into the form

CκðPμÞ ¼ D2
0 þDiDi; ð3:18Þ

with

D0 ≔ κE−1=2ð1 − EÞ; Di ≔ E−1=2Pi; i ¼ 1; 2; 3;

ð3:19Þ
where D0 and Di define self-adjoint operators. To see that,
first observe that one has

R
d4xDμf ¼ 0 for any f ∈ Mκ

and use (A10), (2.24), and (A12) to compute for instance

hDif; gi ¼
Z

d4xðDifÞ† ⋆ g ¼ −
Z

d4xðE−1=2Pi ⊳ f†Þ ⋆ g

¼ −
Z

d4xðPi ⊳ f†Þ ⋆ ðE1=2 ⊳ gÞ ¼
Z

d4xf† ⋆ ðE−1=2Pi ⊳ gÞ

¼ hf;Digi; ð3:20Þ

for any f, g∈Mκ. The computation forD0 is similar. Note by
theway thatD0 andDi are not derivations of the algebraMκ.
A second possible natural choice is given by the square

of the equivariant Dirac operator involved in the construc-
tion of an equivariant spectral triple for the κ-Minkowski
space [45]. It is given by

Keq
κ ðPμÞ ≔ CκðPμÞ þ

1

4κ2
CκðPμÞ2: ð3:21Þ

For latter convenience, we quote here a useful factorization
of the kinetic operator (3.21) supplemented by a mass term,
assuming 0 ≤ m ≤ κ,
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Keq
κ ðPμÞ þm2 ¼ e2P0=κ

4κ2
ðP⃗2 þ κ2μ2þÞðP⃗2 þ κ2μ2−Þ; ð3:22Þ

where the two positive functions μ2þ and μ2− are given by

μ2�ðm;P0Þ ≔ 1� 2e−P0=κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
m
κ

�
2

s
þ e−2P0=κ:

ð3:23Þ

Again, one can write

Keq
κ ðPμÞ ¼ Deq

0 D
eq
0 þ

X
i

Deq
i D

eq
i ; ð3:24Þ

where

Deq
0 ≔

E−1

2

�
κð1 − E2Þ − 1

κ
P⃗2

�
; Deq

i ≔ E−1Pi; ð3:25Þ

which can be easily verified to be self-adjoint using
successively Eq. (A10), the κ-Poincaré invariance (2.24),
and the twisted Leibnitz rules for the Pμ (A12), (A13).
Now, recall that one has for any of the operators (3.19),

(3.25), the following useful formula

hDμf; gi ¼ hf;Dμgi; ð3:26Þ

for any f, g ∈ Mκ, in which Dμ denotes any of the opera-
tors (3.19), (3.25), stemming from the self-adjointness of
these operators. From (3.15), (3.18), (3.24), and (3.26), a
suitable form for the kinetic term is then given by

Skinκ ðϕ†;ϕÞ ¼ hϕ; ðKκ þm2Þϕi þ hϕ†; ðKκ þm2Þϕ†i

¼
Z

d4xϕ† ⋆ ðKκ þm2Þϕ

þ
Z

d4xϕ ⋆ ðKκ þm2Þϕ†

¼
Z

d4xϕ† ⋆ ð1þ σ−1ÞðKκ þm2Þϕ; ð3:27Þ

where Kκ ¼ DμDμ is any of the 2nd order operators
(3.16), (3.21). Note by the way that, ignoring the mass
terms, one has

hϕ; Kκϕi ¼ hDμϕ;Dμϕi; ð3:28Þ

and similarly for ϕ → ϕ†.
It is important to realize that the analysis of the quantum

behavior of the NCFT under consideration can be conven-
iently carried out within the present framework by express-
ing the noncommutative action functional Sκðϕ†;ϕÞ
(involving star products) as a nonlocal ordinary quantum
field theory Sκðϕ̄;ϕÞ (involving pointwise products). This

can be achieved by making use of the integral forms for the
star product (2.22) and the involution (2.23) in the expres-
sion for the action functional (3.14), (3.27), (3.36),
and (3.37).
Applying this procedure to Skinκ leads to a great sim-

plification in the computation of the propagator, despite
the fact that the star product (2.22) is not closed with
respect to the Lebesgue integral, i.e.,

R
d4xðf ⋆ gÞðxÞ ≠R

d4xfðxÞgðxÞ. Indeed, further using (3.9), we obtain

Skinκ ðϕ̄;ϕÞ ¼
Z

d4x1d4x2ϕ̄ðx1Þϕðx2ÞKκðx1 − x2Þ; ð3:29Þ

with Kκðx1 − x2Þ ¼
Z

d4p
ð2πÞ4 ð1þ e−3p

0=κÞ

× ðKκðpÞ þm2Þeip·ðx1−x2Þ: ð3:30Þ
The corresponding propagator can be derived by solvingR
d4yd4zKκðx − yÞPκðy − zÞfðzÞ ¼ R

d4zδðx − zÞfðzÞ for
any suitable test function fðzÞ, which amounts to
invert Kκðx − yÞ.
Finally, assuming Kκ ¼ Keq

κ , Eq. (3.21), one obtains

Pκðx1 − x2Þ ¼
Z

d4p
ð2πÞ4

eip·ðx1−x2Þ

ð1þ e−3p
0=κÞðKeq

κ ðpÞ þm2Þ ;

ð3:31Þ
which, combining (3.31) with (3.22), yields

Pκðx1 − x2Þ

¼
Z

d4p
ð2πÞ4

e−2p
0=κ

1þ e−3p
0=κ

ð2κÞ2eip·ðx1−x2Þ
ðp⃗2 þ κ2μ2þÞðp⃗2 þ κ2μ2−Þ

:

ð3:32Þ
While assuming Kκ ¼ Cκ, Eq. (3.16), leads in a similar
manner to

Pκðx1 − x2Þ ¼
Z

d4p
ð2πÞ4

e−p
0=κ

1þ e−3p
0=κ

eip·ðx1−x2Þ

p⃗2 þ κ2μ2
; ð3:33Þ

μ2ðm;p0Þ ¼ ðm=κÞ2e−p0=κ þ ð1 − e−p
0=κÞ2: ð3:34Þ

3. Derivation of the interaction term

Let us now discuss the interaction part Sintκ ðϕ†;ϕÞ.
In view of (3.7), the requirement for the action functional

to be real forces to use the natural involution (2.23) in the
construction of Sκ.

7 Recall that this involution is rigidly
linked to the construction of the C�-algebra modeling the

7Notice that Sκ describes a priori the dynamics of a complex-
valued field [obvious from (2.23)] unless one imposes the
additional constraint ϕ̄ ¼ ϕ, which therefore would give rise
to a NCFT for a real-valued field.
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κ-Minkowski space (see Sec. II A). Hence, according to the
discussion given Sec. III B 1 and Eq. (2.32), admissible
(positive) real quartic (star) polynomial interactions are of
the form hf; fi, with f ∈ Mκ a polynomial in the fields ϕ
and ϕ†. They are given by

hϕ† ⋆ ϕ;ϕ† ⋆ ϕi; hϕ† ⋆ ϕ†;ϕ† ⋆ ϕ†i;
hϕ ⋆ ϕ†;ϕ ⋆ ϕ†i; hϕ ⋆ ϕ;ϕ ⋆ ϕi; ð3:35Þ

leading respectively to the following real interactions
terms, λ ∈ R,

Sint1;κ ¼ λ

Z
d4xðϕ† ⋆ ϕ ⋆ ϕ† ⋆ ϕÞðxÞ; Sint2;κ ¼ λ

Z
d4xðϕ ⋆ ϕ ⋆ ϕ† ⋆ ϕ†ÞðxÞ; ð3:36Þ

Sint3;κ ¼ λ

Z
d4xðϕ ⋆ ϕ† ⋆ ϕ ⋆ ϕ†ÞðxÞ; Sint4;κ ¼ λ

Z
d4xðϕ† ⋆ ϕ† ⋆ ϕ ⋆ ϕÞðxÞ: ð3:37Þ

The existence of these four different families of interactions
reflects the noncommutativity of the star product, as well as
the noncyclicity of the integral, involved in Sκ, although
they all admit the same commutative limit λjϕj4, Eq. (3.13).
In fact, the second set of interactions (3.37) differs from the
first one (3.36) by some power of the twist factor σ,
Eqs. (2.33), (2.34), as it can be easily realized upon using
(2.33) in (3.37).8 The actual nonequivalence of the four
interactions becomes more apparent after using the integral
expressions for the star product (2.22) and involution (2.23)
in (3.36) and (3.37), leading to the expressions for the
corresponding vertex-functions, Eqs. (3.41)–(3.44). Antici-
pating the results of the Sec. III C, it will be shown that each
of these theories leads to different quantum (one-loop)
corrections to the 2-point functions.
Notice that Sint1;κ and Sint3;κ (resp. Sint2;κ and Sint4;κ) may be

viewed as so-called orientable (resp. nonorientable) inter-
action, according to the standard liturgy of NCFT, each type
leading to its own quantum behavior for the corresponding

NCFT. For more technical details on the diagrammatic, see,
e.g., [12,13] for NCFT on Moyal space and [15] for the R3

θ
case and references therein.
Notice also that these four interactions obviously reduce

to a single one whenever ϕ satisfies ϕ† ¼ ϕ. The resulting
interaction actually coincides with the quartic interaction
considered in [46] only when the field ϕ satisfies the
additional constraint ϕ̄ ¼ ϕ, i.e., ϕ is real-valued. This
can be explicitly verified by standard computation from
Eqs. (3.41)–(3.44) given below. Recall that in [46], a nice use
is made of path integral quantization methods to investigate
some properties of real-valued scalar NCFT with quartic
interaction on κ-Minkowski space, in particular the nonlinear
conservation law characterizing the interaction.
As we did for the kinetic term, it is convenient to express

SintI;κ, I ¼ 1, 2, 3, 4, as (commutative) nonlocal interaction
terms involving ϕ and ϕ̄. This is achieved by successively
using (2.30) and (2.22), (2.23) in (3.36) and (3.37).
Standard computations yield

SintI;κ ¼ ð2πÞ4λ
Z �Y4

i¼1

d4xi

�
ϕ̄ðx1Þϕðx2Þϕ̄ðx3Þϕðx4ÞVI;κðx1; x2; x3; x4Þ; ð3:39Þ

where the vertex function takes the form

VI;κðx1; x2; x3; x4Þ ¼
Z �Y4

i¼1

d4pi

ð2πÞ4
�
ṼI;κðp1; p2; p3; p4Þeiðp1·x1−p2·x2þp3·x3−p4·x4Þ: ð3:40Þ

The explicit expressions for the vertex functions characterizing the above interactions, (3.36) and (3.37), are given by

Ṽ1;κðfpigÞ ¼ δðp0
2 − p0

1 þ p0
4 − p0

3Þδð3Þððp⃗2 − p⃗1Þep0
1
=κ þ ðp⃗4 − p⃗3Þep0

4
=κÞ; ð3:41Þ

Ṽ2;κðfpigÞ ¼ δðp0
2 − p0

1 þ p0
4 − p0

3Þδð3Þðp⃗2 − p⃗1 þ p⃗4e−p
0
2
=κ − p⃗3e−p

0
1
=κÞ; ð3:42Þ

8Straightforward application of the twisted trace property of the integral (2.33) in (3.37) yields

Sint3;κ ¼ λ

Z
d4xððσ ⊳ ϕ†Þ ⋆ ϕ ⋆ ϕ† ⋆ ϕÞðxÞ; Sint4;κ ¼ λ

Z
d4xððσ ⊳ ðϕ ⋆ ϕÞÞ ⋆ ϕ† ⋆ ϕ†ÞðxÞ: ð3:38Þ
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Ṽ3;κðfpigÞ ¼ δðp0
2 − p0

1 þ p0
4 − p0

3Þδð3Þðp⃗2 − p⃗3 þ p⃗4eðp
0
4
−p0

3
Þ=κ − p⃗1eðp

0
1
−p0

2
Þ=κÞ; ð3:43Þ

Ṽ4;κðfpigÞ ¼ δðp0
2 − p0

1 þ p0
4 − p0

3Þδð3Þððp⃗2 þ p⃗4e−p
0
4
=κÞe−p0

2
=κ − ðp⃗1 þ p⃗3e

−p0
3
=κÞe−p0

1
=κÞ: ð3:44Þ

Equations (3.41)–(3.44) exhibit the energy-momentum
conservation laws for each of those theories. As expected,
the conservation law for the energy (time-like momenta)
sector is the standard one while the 3-momentum con-
servation law becomes non linear. This stems from the
semi-direct product structure underlying the noncommuta-
tive C�-algebra modeling κ-Minkowski and reflects the
(Hopf algebraic) structure of the κ-Poincaré algebra under-
lying its (quantum) symmetries. Note this is sometimes
geometrically interpreted (for instance in the context of
relative locality, see, e.g., [7]) as reflecting the existence of
a curvature of the energy-momentum space at very high
(i.e., of order κ) energy.
Finally, in view of the above discussions and the explicit

expressions for the ṼI;κ’s characterising the various models,
one easily convinces ourself that it is not possible to reduce
the four (tree level) vertex functions (3.41)–(3.44) into one
unique vertex (involving a unique delta function). This is
obvious when considering two theories of different nature
(i.e., either orientable or non-orientable). On the other
hand, S1;κ and S3;κ (resp. S2;κ and S4;κ) differ from each
other by some power of the twist factor (see, e.g., foot-
note 8). Hence, there is a priori no reason for the different
interactions to describe equivalent theories. Computations
of first order corrections to the 2-point functions (reported
Sec. III C) will show that the different models studied have
indeed very different quantum behaviors, the twist playing
an important role in their actual UV behavior. In particular,
UV/IR mixing shows up for nonorientable theories albeit
absent in the orientable models.

C. One-loop 2-point functions

In this section, we present the computation of the one-
loop 2-point functions for each of the two field theories
characterized respectively by the interaction terms Sint1;κ and
Sint2;κ, (3.36), both with kinetic term corresponding to (3.21).
We have verified that the field theories corresponding to
interaction terms Sint3;κ or Sint4;κ, (3.37), exhibit a similar

behavior regarding the structure of the contributions
received by the 2-point functions and their respective
UV and IR behaviors. Their analysis can be obtained from
straightforward adaptations of the material presented
below. Anticipating the results, we find that the 2-point
function for each of the theories (3.36) receives 4 types of
contributions, hereafter denoted by Type-I, Type-II, Type-
III and Type-IV. Type-I contributions can be interpreted as
standard planar contributions while Type-II and Type-III
contributions can be viewed as planar contributions stem-
ming from the fact that the Lebesgue integral involved in
the action is a twisted trace. The Type-IV contributions can
be viewed as nonplanar contributions which exhibit UV/IR
mixing. Changing the kinetic term (3.21) to (3.16) does not
modify noticeably the conclusions on the UV and IR
behavior of the field theories. This will be discussed
in Sec. IV.

1. Preliminary considerations

To deal with the perturbative expansion, we follow the
usual route used in (most of) the studies of NCFT, which
we briefly recall now. Namely, first by making use of (2.22)
and (2.23), the action functional Sκðϕ†;ϕÞ involving star
products is represented as an ordinary, albeit non local,
action functional Sκðϕ̄;ϕÞ depending on ϕ, ϕ̄ and the
ordinary (commutative) product among functions, hence
describing the dynamics of a complex scalar field.
Accordingly, the perturbative expansion related to the
NCFT is nothing but a usual perturbative expansion for
an ordinary (complex scalar) field theory, stemming from
the generating functional of the connected correlation
functions

WI½J̄; J� ≔ ln ðZI½J̄; J�Þ ð3:45Þ

with

ZI½J̄; J� ≔
Z

dϕ̄dϕe−S
kin
κ ðϕ̄;ϕÞ−SintI;κðϕ̄;ϕÞþ

R
d4xJ̄ðxÞϕðxÞþ

R
d4xJðxÞϕ̄ðxÞ; I ¼ 1; 2; ð3:46Þ

in which the functional measure is merely the ordinary
functional measure for a scalar field theory Sκðϕ̄;ϕÞ
implementing formally the integration over the field con-
figurations ϕ and ϕ̄. Accordingly, correlation functions
built from ϕ and ϕ̄ are then generated by the repeated action

of standard functional derivatives with respect to J and J̄
satisfying the usual functional rule

δJðpÞ
δJðqÞ ¼ δð4Þðp − qÞ: ð3:47Þ
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Note that there is no need to introduce a notion of
noncommutative (star) functional derivative in the present
approach.
Let us recall, for the sake of completeness, the main

steps of the derivation of the contributions to the one-loop
2-point functions. This can be achieved by first rewriting
the interaction term SintI;κ replacing the fields ϕ and ϕ̄ by the
functional derivatives with respect to their corresponding
sources J̄ and J respectively, then computing the Gaussian
integral for the free field theory. This leads to

W0½J̄; J� ≔
Z

d4p
ð2πÞ4FJðpÞPκðpÞFJðpÞ; ð3:48Þ

WI½J̄; J� ¼ lnN þW0½J̄; J�
þ ln ð1þ e−W0ðe−SintI;κ ½ δ

δFJ;
δ

δFJ
� − 1ÞeW0Þ; ð3:49Þ

with N some normalization constant, PκðpÞ the Fourier
transform of (3.32) and where we have switched from
position to momentum representation for computational
convenience. Now expanding the last logarithm in (3.49)
up to the first order in the coupling constant λ and defining
the effective action Γ as the Legendre transform of WI ,

Γ½ϕ̄;ϕ� ≔
Z

d4p
ð2πÞ4 ðFJðpÞFϕðpÞ þ FJðpÞFϕðpÞÞ

−WI½J̄; J�; ð3:50Þ

one finds, after standard computation, the following
expression for the one-loop quadratic part of Γ

Γð2Þ
1 ½ϕ̄;ϕ� ≔

Z
d4p3

ð2πÞ4
d4p4

ð2πÞ4 Fϕðp3ÞFϕðp4ÞΓð2Þ
1 ðp3; p4Þ;

ð3:51Þ

with

Γð2Þ
1 ðp3;p4Þ≔ λ

Z
d4p1

ð2πÞ4
d4p2

ð2πÞ4Pκðp1Þδð4Þðp2 −p1Þ

× ½ṼI;κðp1;p2;p3;p4Þþ ṼI;κðp3;p4;p1;p2Þ
þ ṼI;κðp3;p2;p1;p4Þþ ṼI;κðp1;p4;p3;p2Þ�;

ð3:52Þ

The various contributions mentioned at the beginning of
this section are then obtained by replacing ṼI;κ by the
different expressions for the vertex function (3.41)–(3.44)
in (3.52).

2. Scalar theory with ϕ† ⋆ ϕ ⋆ ϕ† ⋆ ϕ interaction

The relevant classical action functional is Skinκ þ Sint1;κ, see
(3.29), (3.30), (3.36). By a simple inspection of (3.52), one

easily realizes that the one-loop 2-point function receives
two types of contribution, hereafter called Type-I and
Type-II contributions.
The contributions of Type-I are nothing but the usual

planar contributions, according to the usual denomination
prevailing in the noncommutative field theories. The Type-
II contributions, while similar to the planar contributions in
that they do not depend on the external momenta, are a new
type of contributions generated by the twist which arises in
the vertex functions, thus altering some diagrams with
“planar topology.” No nonplanar contributions (namely,
depending on the external momenta) can be obtained
within the present model so that no IR singularity related
to the UV/IR mixing can occur in the 2-point function. Let
us now study the UV behavior of these contributions.
Typical Type-I contribution to the one-loop effective

action can be written as

Γð2Þ
1;ðIÞðp3; p4Þ ¼ e−3p

0
3
=κδð4Þðp4 − p3ÞΣðIÞ; ð3:53Þ

in which

ΣðIÞ ≔ λ

Z
d4p
ð2πÞ4

e−2p
0=κ

1þ e−3p
0=κ

4κ2

ðp⃗2 þ κ2μ2þÞðp⃗2 þ κ2μ2−Þ
:

ð3:54Þ

Because of the strong decay of the propagator at large
momentum p⃗ (, ∼1=p⃗4), the spatial integral is finite and the
integration over the 3-momentum d3p⃗ can be performed by
making use of the two following relations

1

AaBb ¼
Γðaþ bÞ
ΓðaÞΓðbÞ

Z
1

0

du
ua−1ð1 − uÞb−1

ðuAþ ð1 − uÞBÞaþb ; a; b > 0;

ð3:55Þ
Z

dnp
ð2πÞn

1

ðp2 þM2Þm ¼ Mn−2m Γðm − n=2Þ
ð4πÞn=2ΓðmÞ ;

m > n=2 > 0; ð3:56Þ

where ΓðzÞ is the Euler gamma function. This leads to

ΣðIÞ ¼
2κ2λ

ð2πÞ2
Z
R
dp0

e−2p
0=κ

ð1þ e−3p
0=κÞ

ffiffiffiffiffiffi
μ2þ

p
−

ffiffiffiffiffiffi
μ2−

p
μ2þ − μ2−

; ð3:57Þ

with μ2þ − μ2− ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmκ Þ2

q
e−p

0=κ. By finally performing

the change of variables,

y ¼ e−p
0=κ; ð3:58Þ

ΣðIÞ reduces to
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ΣðIÞ ¼ C
Z

∞

0

dy

2
6664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmκ Þ2

q
yþ y2

r
1þ y3

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmκ Þ2

q
yþ y2

r
1þ y3

3
7775; ð3:59Þ

with C ≔
λ

ð2πÞ2
κ3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −m2

p ; ð3:60Þ

whose UV behavior can easily be inferred by use of the
d’Alembert criterion as shown below. Before proceeding to
that analysis, some comments are in order:

(i) First, notice that, due to the change of variables
(3.58), both the lower (0) and upper (∞) bounds of
integration in (3.59) correspond to the UV (large
jp0j) regime.

(ii) Next, some of the integrals with respect to the y
variable appearing in the computation of the one-
loop order corrections to the 2-point function, have
to be understood as regularized integrals. One way
of regularizing them amounts to introduce a cutoff
for y. Motivated by the Hopf algebraic structure of
the κ-Poincaré algebra (in particular the deformed
translation algebra), which is generated by Pi and
E ¼ e−P0=κ (for more details see Appendix A), it is
natural to interpret y ¼ e−p

0=κ as related to the
“physical” quantity replacing p0 in the NCFT. More
precisely, having in mind the expression for the 1st
Casimir operator of the κ-Poincaré algebra, (3.17),
one can interpret the quantity

P0ðκÞ ≔ κð1 − yÞ ð3:61Þ

as the relevant quantity for the κ-Poincaré covariant
quantum field theories, which reduces to p0 when
taking the formal commutative limit (κ → ∞). As-
suming jP0j ≤ Λ0, it follows that one can derive an
appropriate cutoff for y. This is achieved by noticing
that the introduction of Λ0 induces a cutoff for p0,
say MκðΛ0Þ, which is easily shown to be related to
Λ0 by

MκðΛ0Þ ¼ κ ln

�
1þ Λ0

κ

�
; ð3:62Þ

with the limit MκðΛ0Þ → Λ0 when κ → ∞. Thus,

κ

κ þ Λ0

≤ y ≤
κ þ Λ0

κ
: ð3:63Þ

Having in mind these two comments, we can now study the
UV behavior of the scalar field theories under consideration.
When y → ∞, one can check that

ffiffiffiffiffiffi
μ2þ

q
−

ffiffiffiffiffiffi
μ2−

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
m
κ

�
2

s
þO

�
1

y2

�
; ð3:64Þ

so that the integrand in Eq. (3.59) behaves like ∼y−3.
Meanwhile, when y → 0, one verifies that the integrand
behaves like ∼y. Hence, the integral is convergent, showing
that typical Type-I contribution given by ΣðIÞ is (UV) finite.
By performing a similar computation, one finds that

typical contribution of Type-II have the same structure than
those of Type-I (3.53), still independent of external
momenta, but receiving an extra contribution proportional
to some power of e−3p

0=κ stemming from the twist σ, as
indicated above. Indeed, the one-loop effective action can
be cast into the form

Γð2Þ
1;ðIIÞðp3; p4Þ ¼ δð4Þðp4 − p3ÞΣðIIÞ; ð3:65Þ

where

ΣðIIÞ ¼ λ

Z
d4p
ð2πÞ4

e−5p
0=κ

1þ e−3p
0=κ

4κ2

ðp⃗2 þ κ2μ2þÞðp⃗2 þ κ2μ2−Þ
:

ð3:66Þ
Observe from (3.66) and (3.54) that one has formally

ΣðIÞ ¼
Z

d4p
ð2πÞ4 IðpÞ; ð3:67Þ

where the integrand I can be read off from (3.54), while

ΣðIIÞ ¼
Z

d4p
ð2πÞ4 e

−3p0=κIðpÞ; ð3:68Þ

in which the extra factor e−3p
0=κ is generated by a twist

factor.
Now, performing the change of variable (3.58) in (3.66)

and characterizing the UV (large jp0j) regime as done
above for the Type-I contributions, one easily finds that the
integral in (3.66) reduces to
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ΣðIIÞ ¼ C
Z

∞

0

dyy3

2
6664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmκ Þ2

q
yþ y2

r
1þ y3

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmκ Þ2

q
yþ y2

r
1þ y3

3
7775; ð3:69Þ

where the constant C is given by (3.60). The integral is still
convergent for y → 0 since the twist contributes by a factor
y3 at the numerator while the integrand behaves now like
(3.64) when y → ∞, instead of the convergent behavior of
the Type-I contribution. Hence,

ΣðIIÞ ∼
λκ

ð2πÞ2 Λ0 þ ffinite termsg; ð3:70Þ

which exhibits a linear UV divergence essentially produced
by the twist in view of (3.67) and (3.68).
To summarize the results, we have found that within the

field theory described by the action functional Skinκ þ Sint1;κ,
the twist splits the planar contributions to the 2-point
function into two different planarlike contributions which
are IR finite and whose UV behavior is affected by the
twist. Note that all the contributions to the 2-point functions
are independent of the external momenta so that no IR
singularities at exceptional (zero) momenta, related to UV/
IR mixing, can occur (there is no nonplanar contributions).

3. Scalar theory with ϕ ⋆ ϕ ⋆ ϕ† ⋆ ϕ† interaction

The relevant classical action functional is now
Skinκ þ Sint2;κ, see (3.29), (3.30), (3.36). From the perturbative
expansion of the corresponding partition function, one
finds that the one-loop 2-point function receives three

types of contribution, hereafter called Type-I, Type-III,
and Type-IV contributions.
The Type-I and Type-III are planar type, i.e., indepen-

dent of the external momenta but differing from each other
by its own contribution coming from the twist σ. This
results in different powers of the factor e−3p

0=κ in the
integrands of the various contributions, hence the denomi-
nation “Type-III” since this factor is different from the one
for Type-II contributions exhibited in the subsection III C 2.
As for the field theory examined in subsection III C 2,
Type-I contributions are found to be UV finite. The Type-
IV contributions can be actually interpreted as nonplanar
contributions. This signals that the corresponding field
theory has UV/IR mixing since Type-IV contributions
evaluated at exceptional zero external momentum are
divergent.
Let us start by considering planar contributions. Typical

Type-III contribution to the one-loop effective action can be
written as

Γð2Þ
1;ðIIIÞðp3; p4Þ ¼ δð4Þðp4 − p3ÞΣðIIIÞ; ð3:71Þ

in which ΣðIIIÞ ¼
R
d4pe3p

0=κIðpÞ, with IðpÞ defined in
(3.67). After performing the integration over d3p⃗ and the
change of variable (3.58), one obtains

ΣðIIIÞ ¼ C
Z

∞

0

dy
y3

2
6664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmκ Þ2

q
yþ y2

r
1þ y3

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmκ Þ2

q
yþ y2

r
1þ y3

3
7775: ð3:72Þ

Using (3.64), one easily finds that the integrand in (3.72) behaves like ∼y−6 when y → ∞ while it behaves like ∼y−2 for
y → 0, such that

ΣðIIIÞ ∼
λκ

ð2πÞ2 Λ0 þ ffinite termsg; ð3:73Þ

indicating that (3.72) has a UV linear divergence (as for Type-II contribution of the field theory considered in the previous
subsection).
Finally, let us consider the non-planar Type-IV contributions. That latter can be written as

Γð2Þ
1;ðIVÞðp3; p4Þ ¼ δðp0

4 − p0
3ÞΣðIVÞðp3; p4Þ; ð3:74Þ

where
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ΣðIVÞðp3; p4Þ ¼ ð2κÞ2λ
Z

d4p
ð2πÞ4

e−2p
0=κ

1þ e−3p
0=κ

δð3Þðð1 − e−p
0
3
=κÞp⃗þ p⃗4e−p

0=κ − p⃗3Þ
ðp⃗2 þ κ2μ2þÞðp⃗2 þ κ2μ2−Þ

: ð3:75Þ

Note that ΣðIVÞðp3; p4Þ depends on two (external) momenta which however are not independent, due to the (non-linear)
momentum conservation ensured by the delta functions. This dependence by the way signals that the effective action
functional (3.74) is nonlocal.
Let us first examine the infrared sector. Setting ðp0

3; p⃗3Þ → ð0; 0⃗Þ in (3.75) leads to

ΣðIVÞð0; p4Þ ¼ ð2κÞ2λ
Z

d4p
ð2πÞ4

e−2p
0=κ

1þ e−3p
0=κ

e3p
0=κ

ðp⃗2 þ κ2μ2þÞðp⃗2 þ κ2μ2−Þ
δð3Þðp⃗4Þ; ð3:76Þ

such that

ΣðIVÞð0; p4Þ ¼ δð3Þðp⃗4ÞΣðIIIÞ; ð3:77Þ

indicating that the conservation law is preserved, namely
p4 → 0 when p3 → 0, and that the nonplanar contributions
tends toward (Type-III) planar contributions in the limit of
vanishing external momenta.
To study the UV behavior of (3.75), we perform the

integration over d3p⃗ together with the change of variables
(3.58). Standard computation yield

ΣðIVÞðp3; p4Þ ¼
κ2λ

4π4
j1 − e−p

0
3
=κj

×
Z

∞

0

dy
y

ð1þ y3ÞΩþðyÞΩ−ðyÞ
; ð3:78Þ

with

Ω�ðyÞ ¼ ðyp⃗4 − p⃗3Þ2 þ κ2ð1 − e−p
0
3
=κÞ2μ2�ðyÞ: ð3:79Þ

Now, one can easily check that the integrand in (3.78)
behaves like ∼y when y → 0, while it behaves like ∼y−6
when y → ∞.
Therefore, one concludes that Type-IV contributions are

finite for any (nonzero) external 4-momenta while
limp3→0ΣðIVÞðp3; p4Þ ∼ −λκΛ0, namely diverges (UV) lin-
early. This last phenomenon reflects the existence of
perturbative UV/IR mixing when considering interactions
of the form of Sint2;κ. The same result occurs for interactions
given by Sint4;κ.

IV. DISCUSSION AND CONCLUSION

The Weyl quantization scheme provides a natural frame-
work to describe κ-deformations of the Minkowski space-
time. Awell-controlled star product for κ-Minkowski space
is easily obtained from the representations of the convo-
lution algebra of the affine group which here replaces the
Heisenberg group underlying the popular quantization of a
phase space. Owing to the fact that the κ-Minkowski space
supports a natural action of a deformation of the Poincaré

Lie algebra, the κ-Poincaré algebra playing the role of the
algebra of symmetry of the quantum space, it is physically
relevant to require κ-Poincaré invariance of any physically
reasonable action functional. Doing this necessarily implies
that the trace building the action functional is twisted,
stemming simply from the peculiar behavior of the star
product with respect to the Lebesgue integral involved in
the action.
We have examined various classes of (complex) scalar

field theories on 4-d κ-Minkowski space, considering all
possible types of quartic interaction allowed by reality
condition of the action functional, and whose commutative
limit coincides with the standard (commutative) complex
ϕ4 theory. The kinetic operators were chosen to be square
of different Dirac operators. The use of algebraic properties
of the twisted trace leads to an easy computation of the
corresponding propagators, despite the fact that the star
product is not closed with respect to the integral.
Focusing first on a kinetic operator (3.21) related to the

Dirac operator of an equivariant spectral triple considered
in [45], we have analyzed the one-loop UVand IR behavior
of the 2-point functions for each of these theories, present-
ing in details the technical analysis for representative
classes of theories (3.36) in the subsection III C. We find
that the twist splits the planar contributions to the 2-point
function into different IR finite contributions whose UV
behavior depends on the power of the twist factor arising,
technically speaking, from the respective positions of the
contracted fields in the interaction combined with the non-
cyclicity of the trace. The UV behavior of these contribu-
tions ranges from UV finitude to at most UV linear
divergence, which is slightly milder than in the commu-
tative scalar theory. The interaction term of the scalar
theory considered in the subsection III C 2 cannot produce
non-planar contributions, since the interaction is orientable
(in the terminology of non-commutative field theories).
Hence, no UV/IR mixing is expected to occur in this field
theory which therefore should be perturbatively renorma-
lizable to all orders.
It turns out that the computation of the 1-loop contri-

butions to the 4-point function for this NCFT shows that
this latter is UV finite. The full derivation is cumbersome
and will be reported elsewhere [47] together with the
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analysis of 2- and 4-point functions for the other NCFT
considered in this paper. The UV finiteness is partly due to
the large spatial momentum behavior of the propagator
which decays as 1=p⃗4. This yields finite spatial integrals for
all the contributions while each of the remaining integrals
over y is found to be finite by a mere use of d’Alembert
criterion. This additional observation together with the
strong decay of the propagator at large (spatial) momenta
makes very likely the perturbative renormalizability of this
NCFT to all orders.
UV/IR mixing is expected to occur in the scalar theory of

subsection III C 3 (the interaction is no longer orientable).
Indeed, we find that the so-called Type-IV contribution,
which depends on the external momenta, is finite for non
zero external moment while it becomes singular at excep-
tional zero external momenta, see for instance (3.77). It
would be interesting to examine if this UV/IR mixing could
be removed by using procedures similar to the one used to
deal with the mixing within noncommutative field theories
on Moyal spaces [10]. The above conclusions apply to the
2-point functions of the field theories (3.37), whose
analysis can be obtained from straightforward adaptations
of subsection III C. In the same way, changing the kinetic
term (3.21) to (3.16) does not modify significantly the
conclusions on the UV and IR behavior of these field
theories. For instance, for the theory considered Sec. III C
2, the Type-I contribution remains finite whereas the Type-
II contribution diverges quadratically. Note that our con-
clusions qualitatively agree with those obtained a long time
ago in [31] where a scalar field theory built from another
(albeit presumably equivalent) star product and a different
kinetic operator has been considered. Again, linear UV
divergences for planar-type contributions together with
UV/IR mixing in nonplanar contributions was shown to
occur in that model. The precise comparison between both
work is however drastically complicated by the technical
approach used in [31] leading to very involved formulas.
An immediate natural extension of this analysis is the

computation of the one-loop corrections to the vertex
functions and beta functions in the above field theories.
The corresponding work will be reported elsewhere [47].
The extension of the present work to the case of gauge

theories defined on κ-Minkowski spaces is an interesting
issue [48]. In view of the natural action of the κ-Poincaré
algebra, the framework of bicovariant differential calculus
[49] seems to be better suited here than the standard
derivation-based differential calculus with which most of
the noncommutative gauge models on R4

θ or R
3
λ have been

built [50]. A suitable framework should presumably take
into account algebras of twisted derivations as well as
twisted gauge transformations.
To conclude, we mention that the star product considered

in this paper could be used in the construction of other
(even non κ-Poincaré invariant) NCFT or gauge versions of
them and should prove convenient to compute related
quantum corrections. We note that the NCFT with orient-
able interaction (3.41) provides an explicit example (as far
as we know the first one) of a UV/IR mixing free NCFT on
the 4-d κ-Minkowski space which is very likely renorma-
lizable to all orders. It would be very interesting to show if
some KMS condition stemming from the twisted trace rules
the correlation functions of this NCFT which would signal
the appearance of an observer-independent time within this
theory and would then give to the NCFT on κ-Minkowski
space a new impulse toward potential applications to
fundamental physics.
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APPENDIX A: BASICS ON κ-POINCARÉ
ALGEBRA AND DEFORMED TRANSLATIONS

Let Pκ denote the κ-Poincaré algebra. Let
Δ∶ Pκ ⊗ Pκ → Pκ, ϵ∶ Pκ → C and S∶ Pκ → Pκ be
respectively the coproduct, counit, and antipode, thus
endowing Pκ with a Hopf algebra structure. A convenient
presentation of Pκ is obtained from the 11 elements (Pi, Ni,
Mi, E, E−1), i ¼ 1, 2, 3, respectively the momenta, the
boost, the rotations, and E ≔ e−P0=κ satisfying the Lie
algebra relations9

½Mi;Mj� ¼ iϵkijMk; ½Mi;Nj� ¼ iϵkijNk; ½Ni; Nj� ¼ −iϵkijMk; ðA1Þ

½Mi; Pj� ¼ iϵkijPk; ½Pi; E� ¼ ½Mi; E� ¼ 0; ½Ni; E� ¼ −
i
κ
PiE; ðA2Þ

½Ni; Pj� ¼ −
i
2
δij

�
κð1 − E2Þ þ 1

κ
P⃗2

�
þ i
κ
PiPj; ðA3Þ

9In the following, Greek (resp. Latin) indices label as usual space-time (resp. purely spatial) coordinates.

κ-POINCARÉ INVARIANT QUANTUM FIELD … PHYS. REV. D 98, 025002 (2018)

025002-17



with the Hopf algebra structure defined by

ΔP0 ¼ P0 ⊗ I þ I ⊗ P0; ΔPi ¼ Pi ⊗ I þ E ⊗ Pi; ðA4Þ

ΔE ¼ E ⊗ E; ΔMi ¼ Mi ⊗ I þ I ⊗ Mi; ðA5Þ

ΔNi ¼ Ni ⊗ I þ E ⊗ Ni −
1

κ
ϵjki Pj ⊗ Mk; ðA6Þ

and

ϵðP0Þ ¼ ϵðPiÞ ¼ ϵðMiÞ ¼ ϵðNiÞ ¼ 0; ϵðEÞ ¼ 1; ðA7Þ

SðP0Þ ¼ −P0; SðEÞ ¼ E−1; SðPiÞ ¼ −E−1Pi; ðA8Þ

SðMiÞ ¼ −Mi; SðNiÞ ¼ −E−1
�
Ni −

1

κ
ϵjki PjMk

�
: ðA9Þ

Recall that the κ-Minkowski space can be viewed as the dual of the Hopf subalgebra generated by Pμ, E, sometimes called
the “deformed translation algebra.” This latter becomes a *-Hopf algebra through: P†

μ ¼ Pμ, E† ¼ E. Then, by promoting
the above duality to a duality between *-algebras insuring compatibility among the involutions, one obtains

ðt ⊳ fÞ† ¼ SðtÞ† ⊳ f; ðA10Þ

which holds true for any t in the deformed translation algebra and for any f ∈ Mκ. This, combined with (A8) implies

ðP0 ⊳ fÞ† ¼ −P0 ⊳ ðf†Þ; ðPi ⊳ fÞ† ¼ −E−1Pi ⊳ ðf†Þ; ðE ⊳ fÞ† ¼ E−1 ⊳ ðf†Þ: ðA11Þ

It must be stressed that the Pi’s act as twisted derivations onMκ while P0 remains untwisted as it can be readily seen from
(A4). One has for any f, g ∈ Mκ

Pi ⊳ ðf ⋆ gÞ ¼ ðPi ⊳ fÞ ⋆ gþ ðE ⊳ fÞ ⋆ ðPi ⊳ gÞ; ðA12Þ

P0 ⊳ ðf ⋆ gÞ ¼ ðP0 ⊳ fÞ ⋆ gþ f ⋆ ðP0 ⊳ gÞ: ðA13Þ

Note that E is not a derivation of Mκ since one has

E ⊳ ðf ⋆ gÞ ¼ ðE ⊳ fÞ ⋆ ðE ⊳ gÞ: ðA14Þ

The structure of Mκ as left-module over the Hopf algebra Pκ can be expressed, for any f ∈ F ðScÞ, in terms of the
bicrossproduct basis (Mi, Ni, Pμ), [2], by

ðE ⊳ fÞðxÞ ¼ f

�
x0 þ

i
κ
; x⃗

�
; ðA15Þ

ðPμ ⊳ fÞðxÞ ¼ −ið∂μfÞðxÞ; ðA16Þ

ðMi ⊳ fÞðxÞ ¼ ðϵijkLxjPk ⊳ fÞðxÞ; ðA17Þ

ðNi ⊳ fÞðxÞ ¼
��

1

2
Lxi

�
κð1 − E2Þ þ 1

κ
P⃗2

�
þ Lx0Pi −

i
κ
LxkPkPi

�
⊳ f

�
ðxÞ; ðA18Þ

where La denotes the left (standard) multiplication operator, i.e., Laf ≔ af.
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APPENDIX B: KMS WEIGHT AND
TWISTED TRACE

A KMS weight on a (C�-)algebra A for a modular group
of *-automorphisms fσtgt∈R is defined [43] as a (densely
defined) linear map φ∶ Aþ → Rþ (Aþ is the set of positive
elements of A) such that fσtgt∈R admits an analytic
extension, still a one-parameter group, fσzgz∈C acting on
A satisfying the following two conditions10:

ðiÞ φ∘σz ¼ φ; ðiiÞ φða† ⋆ aÞ ¼ φðσ i
2
ðaÞ ⋆ ðσ i

2
ðaÞÞ†Þ;

ðB1Þ
for any a in the domain of σ i

2
. The notion of weight on a C�-

algebra extends the usual notion of state, since a state can
be viewed (up to technical subtleties) as a weight with unit
norm. In the present situation, the characterization of the
relevant C�-algebra has been discussed in Sec. II. For our
purpose, it will be sufficient to keep in mind that it involves
Mκ as a dense *-subalgebra. For more mathematical details
on KMS weights, see, e.g., [43]. Note that the notion of
KMS weight related to the present twisted trace has been
already used in [36] to construct a modular spectral triple
for κ-Minkowski space.
To verify that the twisted trace (2.33), (2.34) is actually a

KMS weight, we first characterize the properties of σt (3.1).
From (3.1), (2.22), and (2.23), one obtains

σt1σt2 ¼ σt1þt2 ; σ
−1
t ¼ σ−t; ∀ t; t1; t2 ∈ R; ðB2Þ

and

σtðf ⋆ gÞ ¼ σtðfÞ ⋆ σtðgÞ; σtðf†Þ ¼ ðσtðfÞÞ†; ∀ t ∈ R;

ðB3Þ
for any f, g ∈ Mκ. Hence σt (3.1) defines a group of
*-automorphisms of Mκ. Next, set φðfÞ ≔ R

d4xfðxÞ.
Then, φ verifies the property (i) of (B1) as a mere
consequence of (2.24), i.e., the κ-Poincaré invariance of
the action functional. Namely

φðσtfÞ ¼ σt ⊳
Z

d4xfðxÞ ¼ ðEÞ−i3t ⊳
Z

d4xfðxÞ

¼ ϵðEÞ−i3t
Z

d4xfðxÞ ¼ φðfÞ; ðB4Þ

for any f ∈ Mκ where the action of E has been extended to
the one of σt by using the functional calculus.
Before we verify the property (ii) of (B1), one remark is

in order. Extend σt (B3) to

σzðfÞ ≔ eiz
3P0
κ ⊳ f ¼ e

3z
κ ∂0 ⊳ f; ∀ z ∈ C; ðB5Þ

for any f ∈ Mκ. Then, one can easily verify that (B2) and
(B3) extend respectively to

σz1σz2 ¼ σz1þz2 ; σ
−1
z ¼ σ−z; ∀ z; z1; z2 ∈ C; ðB6Þ

and

σzðf ⋆ gÞ ¼ σzðfÞ ⋆ σzðgÞ; ðB7Þ

while σz is no longer an automorphism of *-algebra.
Namely, one has

σzðf†Þ ¼ ðσz̄ðfÞÞ†; ∀ z ∈ C: ðB8Þ

In particular, the twist σ (2.34) is recovered for z ¼ i, i.e.,

σ ¼ σz¼i ðB9Þ

and one has σðf†Þ ¼ ðσ−1ðfÞÞ†. This type of automorphim
is known as a regular automorphim in the mathematical
literature and occurs in the framework of twisted spectral
triples. It has been introduced in [51] in conjunction with
the assumption of the existence of a distinguished group of
(*-)automorphisms of the algebra indexed by one real
parameter, says t, i.e., the modular group, such that the
analytic extension σt¼i coincides precisely with the regular
automorphism. Here, the modular group linked with the
twisted trace is defined by ðσtÞt∈R while the twist σ ¼ σt¼i
defines the related regular automorphism.
To verify the 2nd property of (B1), we use (B7), (B8),

and (2.33) to compute the RHS of (ii) (B1). One has

φðσ i
2
ðfÞ ⋆ ðσ i

2
ðfÞÞ†Þ ¼

Z
d4xσ i

2
ðfÞ ⋆ σ−i

2
ðf†Þ ¼

Z
d4xσ i

2
ðf ⋆ σ−iðf†ÞÞ

¼
Z

d4xf ⋆ σ−iðf†Þ ¼
Z

d4xσðσ−iðf†ÞÞ ⋆ f ¼ φðf† ⋆ fÞ: ðB10Þ

10Some alternative equivalent definitions exist, which however are less convenient for the present discussion. The above definition [43]
also require that φ is lower semicontinuous and that fσzg is norm-continuous, two conditions which are fortunately fulfilled in this paper.
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Hence φðfÞ ¼ R
d4xfðxÞ for any f ∈ Mκ defines a KMS

weight.
Now, the Theorem [6.36] of the 1st of Ref. [43]

guarantees, for each pair ða; bÞ ∈ A, the existence
of a bounded continuous function f∶Σ → C, where Σ
is the strip defined by fz ∈ C; 0 ≤ ImðzÞ ≤ 1g, such that
one has

fðtÞ ¼ φðσtðaÞ ⋆ bÞ; fðtþ iÞ ¼ φðb ⋆ σtðaÞÞ; ðB11Þ

where it is easy to realize that Eq. (B11) is an abstract
version of the KMS condition.
Note that σt (3.1) defines “time translations” since one

has σtðϕÞðx0; x⃗Þ ¼ ϕðx0 þ 3t
κ ; x⃗Þ. Now we introduce the

GNS representation ofMκ, πGNS∶F ðScÞ → BðHÞ, defined
as usual by πGNSðϕÞ · v ¼ ϕ ⋆ v for any v ∈ H whereH is
the Hilbert space unitary equivalent to L2ðR4Þ discussed in
the subsection III B. Then, we compute

πGNSðσtϕÞ · ω ¼ ðσtϕÞ ⋆ ω ¼ σtðϕ ⋆ ðσ−1t ωÞÞ
¼ ðσt ⊙ πGNSðϕÞ ⊙ σ−1t Þ · ðωÞ
¼ ððΔTÞit ⊙ πGNSðϕÞ ⊙ ðΔTÞ−itÞ · ω;

ðB12Þ

for any ω∈H and any ϕ∈Mκ, where⊙ stands for the com-
position law of maps (not to be confused with the con-
volution product) and ΔT is the Tomita operator given by

ΔT ¼ e
3P0
κ ; ðB13Þ

which coincides with (2.21) and such that σt ¼ ðΔTÞit.
Equation (B12) indicates that the modular group defined by
fσtgt∈R generates a “temporal” evolution for the operators
stemming from the Weyl quantization map Q.

APPENDIX C: CHARACTERIZATION
OF THE HILBERT SPACE

The Hilbert space H related to the Hilbert product (3.7)
can be obtained canonically from the GNS construction by
completing the linear space F ðScÞ with respect to the
natural norm

kfk2 ¼ hf; fi ¼
Z

d4xðf† ⋆ fÞðxÞ ¼
Z

d4xjf†ðxÞj2:

ðC1Þ

Unitary equivalence between H and L2ðR4Þ can be easily
shown by considering the (invertible) intertwiner map
Aκ∶ F ðScÞ → L2ðR4Þ which is defined for any f ∈
F ðScÞ by

ðAκfÞðxÞ ¼
Z

dp0

2π
dy0eiy0p

0

fðx0 þ y0; e−p
0=κx⃗Þ; ðC2Þ

with

ðAκfÞðxÞ ¼ f†ðxÞ: ðC3Þ

It follows immediately that kAκfk22 ¼
R
d4xðAκfÞðxÞ×

ðAκfÞðxÞ ¼
R
d4xjf†ðxÞj2 ¼ kfk2. Therefore Aκ defines an

isometrywhich,owing to thedensityofF ðScÞ inH, extends to
H → L2ðR4Þ while surjectivity of Aκ stems directly from the
existence of A−1

κ together with density of F ðScÞ in L2ðR4Þ.
This proves that Aκ is unitary together with the unitary
equivalence mentioned above. Note that one verifies that
A−1
κ is simply given by

ðA−1
κ fÞðxÞ ¼

Z
dp0

2π
dy0e−ip

0y0fðx0 þ y0; e−p
0=κx⃗Þ; ðC4Þ

for any f ∈ F ðScÞ so that (C3) takes the convenient
form f†ðxÞ ¼ ðA−1

κ f̄ÞðxÞ.
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