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We study the entanglement dynamics for two uniformly accelerated two-level atoms in interaction with a
bath of fluctuating electromagnetic fields in vacuum in the presence of a reflecting boundary. We consider
two different alignments of atoms, i.e., parallel and vertical alignments with respect to the boundary. In
particular, we focus on the effects of the boundary, and acceleration on the entanglement dynamics, which
are closely related to the orientations of polarization. For the parallel case, the initial entanglement of two
transversely polarizable atoms very close to the boundary can be preserved as if it were a closed system,
while for two vertically polarizable atoms, the concurrence evolves two times as fast as that in the free
space. In the presence of a boundary, entanglement revival is possible for two atoms initially in the
symmetric state depending on the orientations of the atomic polarizations, which is in sharp contrast to the
fact that the concurrence always decays monotonically in the free space. Interestingly, two initially
separable atoms, for which entanglement generation can never happen in the free space with any given
acceleration and separation, can get entangled in the presence of a boundary if they are aligned parallel to
the boundary. The birth time of entanglement can be noticeably advanced or postponed for the parallel two-
atom system placed close to the boundary, while the maximal concurrence during evolution can be
significantly enhanced when the atoms are vertically aligned. Moreover, two inertial atoms with different
polarizations remain separable all the time, while as the acceleration increases, the delayed birth of
entanglement happens, and the nonzero concurrence can be enhanced.

DOI: 10.1103/PhysRevD.98.025001

I. INTRODUCTION

Quantum entanglement is one of the central concepts in
quantum physics, and it plays an important role in many
novel technologies such as quantum communication [1],
quantum teleportation [2], and so on. Unfortunately,
quantum systems are inevitably influenced by the envi-
ronment they are coupled to, and the system-environment
interactions generally lead to decoherence [3]. Further
studies show that two initially entangled atoms may get
completely disentangled within a finite time, which is
known as entanglement sudden death [4,5], although the
decoherence of a single atom occurs asymptotically.
However, decoherence is not the only consequence that
environment entails. A common bath can also provide
indirect interactions between otherwise independent atoms,
which may lead to entanglement generation [6–17]. For
two atoms immersed in a common thermal bath, it has been
shown that entanglement generation only happens in

certain circumstances, while entanglement sudden death
is a general feature [17]. The destroyed entanglement
can also be recreated, which is known as entanglement
revival [18].
A uniformly accelerated observer perceives the

Minkowski vacuum as a thermal bath with a temperature
proportional to its proper acceleration, which is known
as the Unruh effect [19]. So it is of interest to investigate
the generation and evolution of entanglement for two
uniformly accelerated atoms, and compare the results with
those in a thermal bath at the corresponding Unruh
temperature. The entanglement generation for two uni-
formly accelerated atoms coupled with a bath of fluctuating
scalar fields in the Minkowski vacuum with a vanishing
separation has been studied, and the asymptotic entangle-
ment of the atoms is shown to be exactly the same as that in
a thermal bath at the Unruh temperature [20]. The time
evolution of entanglement for a two-qubit system coupled
with a bath of fluctuating scalar fields has been investigated
[21–23], and a comparison between the entanglement
dynamics of accelerated atoms and that of static ones in
a thermal bath shows that they are the same only in the limit
of small acceleration. The entanglement dynamics of a
quantum system composed of a stationary detector and a

*Corresponding author.
hwyu@hunnu.edu.cn

†Corresponding author.
jwhu@hunnu.edu.cn

PHYSICAL REVIEW D 98, 025001 (2018)

2470-0010=2018=98(2)=025001(19) 025001-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.025001&domain=pdf&date_stamp=2018-07-02
https://doi.org/10.1103/PhysRevD.98.025001
https://doi.org/10.1103/PhysRevD.98.025001
https://doi.org/10.1103/PhysRevD.98.025001
https://doi.org/10.1103/PhysRevD.98.025001


uniformly accelerating detector coupled to a common
quantum scalar field has been studied in Ref. [24], in
which it has been shown that the relation between the
disentanglement time and acceleration is different when
observed in the inertial and noninertial frame. Furthermore,
the entanglement creation process of two uniformly accel-
erated detectors coupled with a fluctuating massless
scalar field in the Minkowski vacuum moving in opposite
directions has been studied in Ref. [25], and the result
suggests that once quantum entanglement is created, it can
last for a lifetime much longer than the natural period of the
detectors in certain cases.
The studies above model the environment the atoms

coupled to as quantum scalar fields in vacuum, while a
more realistic the environment would be a bath of fluctuat-
ing vacuum electromagnetic fields as opposed to that of
scalar fields. In contrast to the scalar field case, it has been
demonstrated that the spontaneous emission rate [26–29]
and the Lamb shift [30,31] of an accelerated atom are not
equivalent to those in a thermal bath at the Unruh temper-
ature. In the case of two atoms coupled with a common bath
of electromagnetic vacuum fluctuations, it has been shown
that the entanglement dynamics, including entanglement
degradation, generation, revival and enhancement, is cru-
cially dependent on the polarization directions of the two
atoms [32], which are irrelevant in the scalar field case.
In the above studies, the behaviors of entanglement

dynamics are crucially dependent on the environment of
vacuum fluctuations of quantum fields the two-qubit
system are coupled to, which is characterized by the field
correlation functions. It is well-known that the vacuum field
modes are modified in the presence of a boundary. The
boundary effects on entanglement dynamics for a detector-
field system has been explored in Ref. [33]. Using linear
entropy as a measurement of entanglement, the authors
have discussed the early-time entanglement dynamics and
late-time stationary limit of entanglement, and found that
the late-time entanglement between the detector and fields
decreases as the detector gets closer to the mirror when the
system is in a stationary state. Recently, entanglement
generation for two atoms in interaction with fluctuating
vacuum scalar fields near a reflecting boundary has been
investigated, which shows that the presence of a boundary
may offer more freedom in controlling entanglement
generation [34,35].
Therefore it is interesting to study entanglement dynam-

ics for two uniformly accelerated atoms in interaction with
a bath of electromagnetic fields in the Minkowski vacuum
in the presence of a reflecting boundary. We expect new
features to arise because of the polarization of atoms as
compared with the scalar field case [23,34,35], and of the
presence of the boundary as compared with the free space
case [32]. In particular, two different alignments of atoms in
the presence of a boundary, i.e., parallel and vertical align-
ments with respect to the boundary, will be considered.

For simplicity, we have neglected the effects of several
factors in the present paper. First, we ignore the dipole-
dipole interaction between the atoms, which is important
when the two atoms are placed close to each other, so we do
not discuss the case of vanishing interatomic separation,
and assume that the separation of the two atoms is
comparable to the characteristic wavelength of the atoms.
For more details on the distance effects on entanglement
dynamics, see, e.g., Refs. [36,37]. In particular, the effects
of direct coupling between two detectors have been taken
into account in Ref. [37]. Second, we work in the Born-
Markov approximation and neglect the memory effects. In
fact, some of the results may change when the memory
effects are considered. For example, the investigation of the
non-Markovian dynamics of two static qubits in interaction
with a common electromagnetic field reveals that, entan-
glement sudden death and the subsequent revivals are
absent except when the qubits are sufficiently far apart
[38]. Third, we do not take into account the decoherence
(dynamics of the internal degrees of freedom) due to the
quantized center of mass motion (external degrees of
freedom), as investigated in Ref. [39]. We hope to turn
to these issues in a future work.

II. THE BASIC FORMALISM

In this section, we study the dynamics of an open
quantum system composed of two decoupled, uniformly
accelerated two-level atoms, which are weakly coupled
with a bath of fluctuating quantum electromagnetic fields in
vacuum in the presence of a reflecting boundary. The
Hamiltonian of the whole system takes the following form

H ¼ HS þHF þHI: ð1Þ

Here HS denotes the Hamiltonian of the two-atom system,
which can be expressed as

HS ¼
ω

2
σð1Þ3 þ ω

2
σð2Þ3 ; ð2Þ

where σð1Þi ¼ σi ⊗ σ0, σ
ð2Þ
i ¼ σ0 ⊗ σi, with σiði ¼ 1; 2; 3Þ

being the Pauli matrices, σ0 the 2 × 2 unit matrix, and
ω is the energy level spacing of the atoms. HF is the
Hamiltonian of the external electromagnetic fields, the
details of which are not necessary. HI represents the dipole
interactions between the two atoms and the fluctuating
electromagnetic fields, which takes the form

HI ¼ −Dð1ÞðτÞ · E½xð1ÞðτÞ� −Dð2ÞðτÞ · E½xð2ÞðτÞ�; ð3Þ

where DðαÞðτÞ (α ¼ 1, 2) is the electric-dipole moment of
the αth atom, andE½xðαÞðτÞ� is the electric-field strength. To
obtain the master equation describing the evolution of the
reduced density matrix of the two-atom system, we define
two Lindblad operators as
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AðαÞðωÞ≡ AðαÞ ¼ dðαÞσ−; AðαÞð−ωÞ≡ AðαÞ† ¼ dðαÞ�σþ;

ð4Þ

where dðαÞ is the transition matrix element of the dipole
operator of the αth atom, written as dðαÞ ¼ h0jDðαÞj1i. Then
the dipole operator of the αth atom can be obtained in the
interaction picture and takes the following form

DðαÞðτÞ ¼ dðαÞσ−e−iωτ þ dðαÞ�σþeiωτ: ð5Þ
For simplicity, we assume that initially the two atoms are
separable and are decoupled from the quantum electro-
magnetic fields, i.e., ρtotð0Þ ¼ ρð0Þ ⊗ j0ih0j, where ρð0Þ
denotes the initial state of the two atoms, and j0i the
vacuum state of the electromagnetic fields. The density
matrix of the total system satisfies the Liouville equation

∂ρtotðτÞ
∂τ ¼ −i½H; ρtotðτÞ�: ð6Þ

Under the Born-Markov approximation, the reduced density
matrix of the two-atom system ρðτÞ ¼ TrF½ρtotðτÞ� satisfies
the Kossakowskl-Lindblad master equation [40,41],

∂ρðτÞ
∂τ ¼ −i½Heff ; ρðτÞ� þD½ρðτÞ�; ð7Þ

where

Heff ¼ HS −
i
2

X2
α;β¼1

X3
i;j¼1

HðαβÞ
ij σðαÞi σðβÞj ; ð8Þ

and

D½ρðτÞ� ¼ 1

2

X2
α;β¼1

X3
i;j¼1

CðαβÞ
ij

× ½2σðβÞj ρσðαÞi − σðαÞi σðβÞj ρ − ρσðαÞi σðβÞj �: ð9Þ

Introducing the Fourier transform of the electromagnetic
field correlation function hEmðxðτÞÞEnðxðτ0ÞÞi,

GðαβÞ
mn ðωÞ ¼

Z
∞

−∞
dΔτeiωΔτhEmðxðτÞÞEnðxðτ0ÞÞi; ð10Þ

where Δτ ¼ τ − τ0, the coefficient matrix CðαβÞ
ij can then be

expressed as

CðαβÞ
ij ¼ AðαβÞδij − iBðαβÞϵijkδ3k − AðαβÞδ3iδ3j; ð11Þ

where

AðαβÞ ¼ 1

16
½GðαβÞðωÞ þ GðαβÞð−ωÞ�;

BðαβÞ ¼ 1

16
½GðαβÞðωÞ − GðαβÞð−ωÞ�; ð12Þ

with

GðαβÞðωÞ ¼
X3
m;n¼1

dðαÞ�m dðβÞn GðαβÞ
mn ðωÞ: ð13Þ

Similarly, HðαÞ
ij ðωÞ in the above equations can be derived by

replacing GðαβÞ
mn ðωÞ with KðαβÞ

mn ðωÞ, which is defined as

KðαβÞ
mn ðωÞ ¼ P

πi

Z
∞

−∞
dλ

GðαβÞ
mn ðλÞ
λ − ω

; ð14Þ

with P representing the principal value.
To investigate the dynamics of the two-atom system, first

we shall solve the master equation in an appropriate basis.
For convenience, we work in the coupled basis fjGi ¼
j00i; jAi ¼ 1ffiffi

2
p ðj10i − j01iÞ; jSi ¼ 1ffiffi

2
p ðj10i þ j01iÞ; jEi ¼

j11ig. Reexpressing Eq. (11) as

Cð11Þ
ij ¼ A1δij − iB1ϵijkδ3k − A1δ3iδ3j;

Cð22Þ
ij ¼ A2δij − iB2ϵijkδ3k − A2δ3iδ3j;

Cð12Þ
ij ¼ Cð21Þ

ij ¼ A3δij − iB3ϵijkδ3k − A3δ3iδ3j; ð15Þ

then a set of equations describing the evolution of the two-
atom system, which are decoupled from other matrix
elements, can be expressed, in the coupled basis, as [42]

_ρGG ¼ −2ðA1 − B1 þ A2 − B2ÞρGG þ ðA1 þ B1 þ A2 þ B2 − 2A3 − 2B3ÞρAA
þ ðA1 þ B1 þ A2 þ B2 þ 2A3 þ 2B3ÞρSS þ ðA1 þ B1 − A2 − B2ÞðρAS þ ρSAÞ;

_ρEE ¼ −2ðA1 þ B1 þ A2 þ B2ÞρEE þ ðA1 − B1 þ A2 − B2 − 2A3 þ 2B3ÞρAA
þ ðA1 − B1 þ A2 − B2 þ 2A3 − 2B3ÞρSS þ ð−A1 þ B1 þ A2 − B2ÞðρAS þ ρSAÞ;

_ρAA ¼ −2ðA1 þ A2 − 2A3ÞρAA þ ðA1 − B1 þ A2 − B2 − 2A3 þ 2B3ÞρGG
þ ðA1 þ B1 þ A2 þ B2 − 2A3 − 2B3ÞρEE þ ð−B1 þ B2ÞðρAS þ ρSAÞ;
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_ρSS ¼ −2ðA1 þ A2 þ 2A3ÞρSS þ ðA1 − B1 þ A2 − B2 þ 2A3 − 2B3ÞρGG
þ ðA1 þ B1 þ A2 þ B2 þ 2A3 þ 2B3ÞρEE þ ð−B1 þ B2ÞðρAS þ ρSAÞ;

_ρAS ¼ −2ðA1 þ A2ÞρAS þ ðA1 − B1 − A2 þ B2ÞρGG þ ð−A1 − B1 þ A2 þ B2ÞρEE
þ ð−B1 þ B2ÞðρSS þ ρAAÞ;

_ρSA ¼ −2ðA1 þ A2ÞρSA þ ðA1 − B1 − A2 þ B2ÞρGG þ ð−A1 − B1 þ A2 þ B2ÞρEE
þ ð−B1 þ B2ÞðρSS þ ρAAÞ;

_ρGE ¼ −2ðA1 þ A2ÞρGE; _ρEG ¼ −2ðA1 þ A2ÞρEG; ð16Þ

where ρIJ ¼ hIjρjJi, I; J ∈ fG;E; A; Sg. Here if the initial density matrix is chosen as of the X form, i.e., the only nonzero
elements are those along the diagonal and antidiagonal of the density matrix in the decoupled basis fj00i; j01i; j10i; j11ig,
the X form will be maintained during the whole evolution.
We characterize the degree of entanglement by concurrence [43], which ranges from 0 for separable states, to 1 for

maximally entangled states. For the X states, the concurrence takes the form [14]

C½ρðτÞ� ¼ maxf0; K1ðτÞ; K2ðτÞg; ð17Þ
where

K1ðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ρAAðτÞ − ρSSðτÞ�2 − ½ρASðτÞ − ρSAðτÞ�2

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρGGðτÞρEEðτÞ

p
;

K2ðτÞ ¼ 2jρGEðτÞj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ρAAðτÞ þ ρSSðτÞ�2 − ½ρASðτÞ þ ρSAðτÞ�2

q
: ð18Þ

In the following, we explore the entanglement dynamics
of a uniformly accelerated two-atom system in the presence
of a reflecting boundary. We focus on the effects of the
boundary on the entanglement dynamics of the atoms.
In particular, two different configurations are considered,
i.e., both parallel and vertical alignments with respect to the
boundary.
We consider two atoms which are separated from each

other by a distance L and are moving with a constant proper
acceleration a along the x axis, the trajectories of which are

tðτÞ ¼ 1

a
sinh aτ; xðτÞ ¼ 1

a
coshaτ; ð19Þ

with τ being the proper time. A reflecting boundary is
located at y ¼ 0. We consider two configurations, see

Fig. 1. In one case, the two-atom system is aligned parallel
to the boundary at a distance y, and in the other case, the
two-atom system is placed vertically to the boundary, with
the distance between the boundary and the nearer atom
being y.
According to the discussions above, it is necessary to

obtain the coefficients Ai and Bi in Eqs. (16) in the two
situations respectively in order to study how entanglement
evolves, which are explicitly calculated in Appendix.

III. THE TIME EVOLUTION OF CONCURRENCE

Now we explore the entanglement dynamics of a
uniformly accelerated two-atom system in the presence
of a reflecting boundary. Two different configurations are
considered, i.e., both parallel and vertical alignments with
respect to the boundary. In particular, we study the cases
when the two-atom system is located at different distances
from the boundary, paying special attention to the effects of
the boundary, acceleration and polarization on the entan-
glement dynamics.

A. Two-atom system placed far from the boundary

When the two-atom system is placed infinitely far away
from the boundary, i.e., when y=L → ∞, the bounded parts

hðαβÞij in Eqs. (A7)–(A8) and sðαβÞij in Eqs. (A12) are all zero,
suggesting that the entanglement dynamics reduces to the
free space case studied in Ref. [32].

FIG. 1. Two atoms are separated from each other at a distance
of L, which are aligned parallel to (left) or vertically to (right) a
reflecting boundary.
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B. Two-atom system placed at a distance comparable to
the interatomic separation

When the distance between the two-atom system and the
boundary is comparable to the separation of the two atoms,
i.e., y ∼ L, we are particularly interested in the degradation
of entanglement for atoms initially prepared in a maximally
entangled state and the creation of entanglement for atoms
in a separable initial state.

1. Entanglement degradation

First, we discuss the entanglement degradation when the
two-atom system is initially prepared in the symmetric state
jSi, which is maximally entangled.

Boundary effects.—First, we concentrate on the effects
of the boundary on the entanglement dynamics, so we fix
the interatomic separation at ωL ¼ 1, the acceleration
a=ω ¼ 1=2, and assume that both the atoms are polarizable
along the direction of acceleration, which is parallel to the
boundary. In Fig. 2, we compare the entanglement dynam-
ics for two atoms polarizable along the direction of
acceleration and aligned parallel or vertically to the
boundary respectively, with the initial state of the two-
atom system being jSi. Here and after the time evolution of
concurrence is plotted as a function of the dimensionless
proper time Γ0τ, where Γ0 ¼ ω3jdj2=3π is the spontaneous
emission rate, see the Appendix for more details.
Apparently, the decay rate of concurrence decreases as
the two-atom system gets closer to the boundary, and the
lifetime of entanglement is prolonged for the parallel two-
atom system when the atoms are transversely polarizable
compared with the free space case, see Fig. 2 (left).
However, this is not the case for atoms polarizable
vertically, see discussions in the polarization effects
part for details. In addition, in the free space case, the

concurrence of the two-atom system initially prepared in
jSi always decays monotonically [32]. However, in the
presence of a boundary, when the atoms are vertically
aligned to the boundary, entanglement revival can be
achieved for the atoms with identical polarization, see
Fig. 2 (right). However, this does not happen in the case
when the atoms are aligned parallel to the boundary.

Acceleration effects.—In this part, we focus on the accel-
eration effects on the entanglement dynamics, i.e., the
effects due to acceleration. As before, we assume that both
the two atoms are polarizable along the direction of
acceleration, and we set ωL ¼ 1, y=L ¼ 1=2. Fig. 3 (left)
shows that when the parallel-aligned two-atom system is
located at a distance from the boundary comparable to the
separation of the atoms, the lifetime of entanglement is
shortened as the acceleration gets larger. When the atoms
are aligned vertically to the boundary, we observe from
Fig. 3 (right) that the entanglement revival for two inertial
atoms can be achieved, but it does not happen when the
acceleration is large enough. Here we note that entangle-
ment revival can not occur for two inertial atoms with
different orientations of polarization. For both alignments,
entanglement sudden death is universal for large acceler-
ation. As before, some of the results here are also
polarization dependent, more explicit discussions are
shown in the following.

Polarization effects.—As the entanglement dynamics is
expected to be crucially dependent on the polarization
directions of the atoms, in the following we consider the
cases with different polarizations.
In contrast to the case when the two atoms are polar-

izable parallel to the boundary (see Fig. 2), for vertically
polarizable atoms, the decay rate of concurrence increases
and the lifetime of entanglement becomes shorter as the

FIG. 2. Comparison between the dynamics of concurrence as a function of the dimensionless proper time Γ0τ for uniformly
accelerated atoms initially prepared in jSi aligned parallel to (left) or vertically to (right) a reflecting boundary. Both of the two atoms are
polarizable along the direction of acceleration (the x-axis). Here ωL ¼ 1, a=ω ¼ 1=2, Γ0 ¼ ω3jdj2=3π is the spontaneous emission rate,
the real red, green and blue lines correspond to y=L ¼ 1=10, 7=10, 6=5 respectively, and the dashed lines describe the corresponding
ones in the free space.
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parallel-aligned atoms gets closer to the boundary, see
Fig. 4 (left). That is, the lifetime of entanglement can be
either prolonged or shortened compared with that in the
free space case, which is a combined effect of the boundary
and the atomic polarizations.
In Fig. 5 we show the entanglement dynamics for atoms

with different polarizations, i.e., one of the atoms is
polarizable along the direction of acceleration (the x-axis),
while the other is polarizable vertically (the y-axis). When
a → 0, i.e., for inertial atoms, the concurrence decays
monotonically. While as the acceleration gets larger,
entanglement revival appears, which is in sharp contrast
to the case described in Fig. 3 (right). Therefore, accel-
eration can be either harmful [see Fig. 3 (right)] or
beneficial (see Fig. 5) to the entanglement revival depend-
ing on the atomic polarizations. However, entanglement
revival cannot happen as the acceleration gets large enough.
In addition, for parallel-aligned atoms, entanglement

revival can never happen when both atoms are polarizable

along the direction of acceleration [see Fig. 3 (left)] or
when the atoms are respectively polarizable along the
direction of acceleration and separation [see Fig. 6 (left)].
However, it can be achieved for atoms polarizable res-
pectively along the direction of acceleration and vertically
to the boundary [Fig. 6 (left)], or for atoms polarizable
respectively along the direction of separation and vertically
to the boundary [Fig. 6 (right)]. To conclude, we find
that when the two-atom system is aligned parallel to the
boundary, entanglement revival can occur only when
the atoms are polarizable differently, with one of them
polarizable vertically to the boundary.
According to Ref. [38], the behaviors of entanglement

derived from the Markovian and non-Markovian dynamics
are obvious only when the distance between the two atoms
L is much smaller than the transition wavelength 1=ω, i.e.,
ωL ≪ 1. Throughout the paper we assume ωL ∼ 1, so the
non-Markovian effects are expected to be negligible. In
paticular, our discussions show that it is possible to achieve

FIG. 3. Comparison between the dynamics of concurrence for uniformly accelerated atoms initially prepared in jSi aligned parallel to
(left) or vertically to (right) a reflecting boundary. Both of the two atoms are polarizable along the direction of acceleration (the x-axis).
Here ωL ¼ 1, y=L ¼ 1=2, the real red, green and blue lines correspond to a=ω ¼ 1=10, 1=2, 1 respectively and the dashed lines
describe the cases for inertial atoms.

FIG. 4. Comparison between the dynamics of concurrence for uniformly accelerated atoms initially prepared in jSi aligned parallel to
(left) or vertically to (right) a reflecting boundary. Both of the two atoms are polarizable vertically to the boundary (the y-axis). Here
ωL ¼ 1, a=ω ¼ 1=2, the real red, green and blue lines correspond to y=L ¼ 1=10, 7=10, 6=5 respectively, and the dashed lines describe
the corresponding ones in the free space.
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entanglement sudden death but with no revival in the free
space (see Figs. 2 and 4), which is in agreement with the
result in Ref. [38]. In contrast, the revival of entanglement
can be achieved in the presence of a boundary.

2. Entanglement creation

When the initial state is a separable state jEi, we can see
from Eq. (17) that entanglement can be generated when the
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ρAAðτÞ − ρSSðτÞ�2 − ½ρASðτÞ − ρSAðτÞ�2

p
outweighs

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρGGðτÞρEEðτÞ

p
, which necessarily takes a finite time of

evolution via spontaneous emission, known as the delayed
sudden birth of entanglement [15].

Boundary effects.—In Fig. 7, we observe that, for the
parallel two-atom system, the time when entanglement is
generated can be apparently postponed for transversely

polarizable atoms when the two atoms are aligned parallel
to the boundary, while the maximal concurrence during the
whole evolution is barely influenced. In the vertical case,
when the atoms are transversely polarizable, the maximal
concurrence during evolution can be significantly enhanced
compared with that in the free space, and the closer the two-
atom system is to the boundary, the larger the maximal
concurrence is. However, the birth time of entanglement is
less sensitive to the distance between the two-atom system
and the boundary in the vertical case. As before, some of
the above results are polarization dependent, see the
following discussions for details.

Acceleration effects.—When both of the two atoms are
polarizable along the direction of acceleration, the delayed
sudden birth of entanglement occurs for two inertial atoms,
see Fig. 8. For parallel-aligned atoms, as the acceleration

FIG. 5. Comparison between the dynamics of concurrence for uniformly accelerated atoms initially prepared in jSi aligned parallel to
(left) or vertically to (right) a reflecting boundary. One of the atoms (the nearer one in the vertically aligned case) is polarizable along the
direction of acceleration (the x-axis) and the other vertically to the boundary (the y-axis). Here ωL ¼ 1, y=L ¼ 1=2, the real red, green
and blue lines correspond to a=ω ¼ 1=10, 1=2, 1 respectively, and the dashed lines describe the cases for inertial atoms.

FIG. 6. Comparison between the dynamics of concurrence for uniformly accelerated atoms polarizable differently with the alignment
parallel to a reflecting boundary. The system is initially prepared in jSi. One of the two atoms is polarizable along the direction of
separation (the z-axis) and the other along the direction of acceleration (the x-axis) (left) and vertically to the boundary (the y-axis)
(right). Here ωL ¼ 1, y=L ¼ 1=2, the real red, green and blue lines correspond to a=ω ¼ 1=10, 1=2, 1 respectively, and the dashed lines
describe the cases for inertial atoms.
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increases, the entanglement is produced earlier and pre-
served for a shorter time [Fig. 8 (left)]. For vertically-
aligned atoms, the maximal entanglement during evolution
is weakened with a larger acceleration, but the birth time of
entanglement is barely influenced [Fig. 8 (right)]. However,
this changes when the atoms are polarizable differently. For
both two alignments, the delayed entanglement cannot be
generated when the acceleration is large enough, regardless
of the polarizations.

Polarization effects.—From Fig. 9 (left), we observe that
when the atoms are aligned parallel to the boundary,
the birth time of entanglement can be advanced for
vertically polarizable atoms, and the entanglement is
maintained for a shorter time as the atoms gets closer to
the boundary, which is in sharp contrast to the case of the
atoms polarizable parallel to the boundary [see Fig. 7
(left)]. Compared with the cases when the polarizations of

the two atoms are the same (Figs. 7 and 9), the maximal
concurrence during evolution of atoms aligned parallel to
the boundary is more sensitive to the distance between the
atoms and the boundary when the atoms are polarizable
along the direction of acceleration and separation respec-
tively, see Fig. 10.
In Fig. 11, we assume that one of the atoms (which is the

nearer one in the vertically aligned case) is polarizable
along the direction of acceleration and the other vertically
to the boundary, and find that when a → 0, the concurrence
is zero all the time. That is, two inertial atoms remain
separable and no entanglement is generated. As the accel-
eration increases, the delayed birth of entanglement hap-
pens, and the nonzero concurrence can be enhanced. The
comparison between the cases in Figs. 8 and 11 reveals that
acceleration does not always play the role of destroying
entanglement, it may generate and enhance entanglement
as well.

FIG. 7. Comparison between the dynamics of concurrence for uniformly accelerated atoms initially prepared in jEi aligned parallel to
(left) or vertically to (right) a reflecting boundary. Both of the two atoms are polarizable along the direction of acceleration (the x-axis).
Here ωL ¼ 2=3, a=ω ¼ 1=2, the real red, green, and blue lines correspond to y=L ¼ 3=10, 7=10, 6=5 respectively, and the dashed lines
describe the corresponding ones in the free space.

FIG. 8. Comparison between the dynamics of concurrence for uniformly accelerated atoms polarizable along the direction of
acceleration (the x-axis) with the alignment parallel to (left) or vertical to (right) a reflecting boundary. The system is initially prepared in
jEi. Here ωL ¼ 1, y=L ¼ 1=2, the real red, green and blue lines correspond to a=ω ¼ 1=10, 1=2, 1 respectively, and the dashed lines
describe the cases for inertial atoms.
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FIG. 10. Comparison between the dynamics of concurrence for uniformly accelerated atoms initially prepared in jEi aligned parallel
to (left) or vertically to (right) a reflecting boundary. One of the atoms (the nearer one in the vertically aligned case) is polarizable along
the direction of acceleration (the x-axis) and the other along the direction of separation (the z-axis for the parallel case and the y-axis for
the vertical case). Here ωL ¼ 2=3, a=ω ¼ 1=2, the real red, green, and blue lines correspond to y=L ¼ 3=10, 7=10, 6=5 respectively,
and the dashed lines describe the corresponding ones in the free space.

FIG. 9. Comparison between the dynamics of concurrence for uniformly accelerated atoms initially prepared in jEi aligned parallel to
(left) or vertically to (right) a reflecting boundary. Both of the two atoms are polarizable vertically to the boundary (the y-axis). Here
ωL ¼ 2=3, a=ω ¼ 1=2, the real red, green and blue lines correspond to y=L ¼ 3=10, 7=10, 6=5 respectively, and the dashed lines
describe the corresponding ones in the free space.

FIG. 11. Comparison between the dynamics of concurrence for uniformly accelerated atoms initially prepared in jEi aligned parallel
to (left) or vertically to (right) a reflecting boundary. One of the atoms (the nearer one in the vertically aligned case) is polarizable along
the direction of acceleration (the x-axis) and the other vertically to the boundary (the y-axis). Here ωL ¼ 1, y=L ¼ 1=2, the real red,
green, and blue lines correspond to a=ω ¼ 1=10, 1=2, 1 respectively, and the dashed lines describe the cases for inertial atoms.
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C. Two-atom system placed close to the boundary

Finally, we turn to the case in which the two-atom system is placed close to the boundary.

1. Parallel alignment with respect to the boundary

When the two-atom system is placed extremely close to the boundary, i.e., when y=L → 0, for the case when the atoms
are aligned parallel to the boundary, the leading terms of the coefficients Eqs. (A11) when expanding in power series of
y=L are

A1ðpÞ ≈
Γ0 coth πω

a

2ω2
d̂ð1Þ2 d̂ð1Þ2 ða2 þ ω2Þ; A2ðpÞ ≈

Γ0 coth πω
a

2ω2
d̂ð2Þ2 d̂ð2Þ2 ða2 þ ω2Þ;

A3ðpÞ ≈
3Γ0 coth πω

a

2ω3L3ð4þ a2L2Þ3=2 d̂
ð1Þ
2 d̂ð2Þ2

�
ωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2L2

p
ð2þ a2L2Þ cos

�
2ω

a
sinh−1

aL
2

�

þ ½−4þ ω2L2ð4þ a2L2Þ� sin
�
2ω

a
sinh−1

aL
2

��
;

BiðpÞ ¼ AiðpÞ tanh
πω

a
ði ¼ 1; 2; 3Þ; ð20Þ

where the subscript p denotes parallel.

Acceleration effects.—When the boundary is extremely
close to the system, we assume that the polarizations
of the two atoms are vertical to the boundary, i.e., d̂ð1Þ ¼
d̂ð2Þ ¼ ð0; 1; 0Þ. As shown in Fig. 12, for parallel-aligned
atoms placed extremely close to the boundary (y=L → 0),
as the acceleration gets larger, the decay rate of entangle-
ment increases for initially entangled atoms, while for
initially separable atoms, entanglement is generated earlier
and maintained for a shorter time, meanwhile the maximal
entanglement during evolution is weakened. This is con-
sistent with the proceeding discussions when y ∼ L.

Polarization effects.—When both of the two atoms are
polarizable vertically with respect to the boundary, e.g.,

d̂ð1Þ ¼ d̂ð2Þ ¼ ð0; 1; 0Þ, the coefficients AiðpÞ, BiðpÞ in
Eqs. (20) are exactly two times those in the free space
case [32]. That is, for the two-atom system prepared in an
entangled state initially, the concurrence for the parallel
two-atom system decays two times as fast as that in the free
space. Similarly, for two atoms initially prepared in a
separable state, the birth time of entanglement is earlier but
maintains for a shorter time compared with that in the free
space case. When both of the atoms are polarizable parallel
to the boundary, e.g., d̂ð1Þ ¼ ð1; 0; 0Þ, d̂ð2Þ ¼ ð0; 0; 1Þ, all
the coefficients AiðpÞ, BiðpÞ vanish, so the initially entangled
state will be preserved as if it were a closed system.

2. Vertical alignment with respect to the boundary

As for the case of vertically-aligned atoms, by expanding
Eqs. (A15) in power series of y=L, we obtain

FIG. 12. The figures show the dynamics of concurrence for uniformly accelerated atoms to which the parallel-aligned boundary is very
close. The atoms are initially prepared in jSi (left) or jEi (right). Both of the two atoms are polarizable along the y-axis. Here ωL ¼ 1,
the real red, green and blue lines correspond to a=ω ¼ 1=2, 4=5, 6=5 respectively, and the dashed lines describe the case for two
inertial atoms.
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A1ðvÞ ≈
Γ0 coth

πω
a

2ω2
d̂ð1Þ2 d̂ð1Þ2 ða2 þ ω2Þ;

A2ðvÞ ≈
−3Γ0 coth

πω
a

64ω3L3ð1þ a2L2Þ5=2
�
2ωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2L2

p
½d̂ð2Þ1 d̂ð2Þ1 ð1þ 4a2L2Þ þ d̂ð2Þ3 d̂ð2Þ3 ð1þ 2a2L2Þ

× ð1þ a2L2Þ þ d̂ð2Þ2 d̂ð2Þ2 ð2þ a2L2 þ 2a4L4Þ − 2d̂ð2Þ1 d̂ð2Þ2 aLð2a2L2 − 1Þ� cos
�
2ω

a
sinh−1aL

�

− ½d̂ð2Þ1 d̂ð2Þ1 ð1þ 2a2L2 þ 4a4L4 − 4ω2L2 − 4ω2a2L4Þ þ d̂ð2Þ3 d̂ð2Þ3 ð1 − 4ω2L2 − 4ω2a2L4Þ
× ð1þ a2L2Þ þ d̂ð2Þ2 d̂ð2Þ2 ð2þ 5a2L2 − 4ω2a2L4 − 4ω2a4L6Þ þ 2aLd̂ð2Þ1 d̂ð2Þ2 ð1þ 4a2L2

þ 4ω2L2 þ 4ω2a2L4Þ� sin
�
2ω

a
sinh−1aL

��
þ Γ0 coth πω

a

4ω2
ða2 þ ω2Þ;

A3ðvÞ ≈
−3Γ0 coth

πω
a

2ω3L3ð4þ a2L2Þ5=2

×

�
ωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2L2

p
½d̂ð1Þ2 d̂ð2Þ2 ð16þ 2a2L2 þ a4L4Þ − 2aLd̂ð1Þ2 d̂ð2Þ1 ða2L2 − 2Þ� cos

�
2ω

a
sinh−1

aL
2

�

− ½2aLd̂ð1Þ2 d̂ð2Þ1 ð4þ 4ω2L2 þ 4a2L2 þ ω2a2L4Þ þ d̂ð1Þ2 d̂ð2Þ2 ð32þ 20a2L2 − 4ω2a2L4 − ω2a4L6Þ�

× sin

�
2ω

a
sinh−1

aL
2

��
;

BiðvÞ ¼ AiðvÞ tanh
πω

a
ði ¼ 1; 2; 3Þ; ð21Þ

where the subscript v denotes vertical.

Acceleration effects.—Figure 13 shows that when the
vertically-aligned two-atom system is extremely close to
the boundary, entanglement revival occurs for two inertial
atoms initially in jSi. When the acceleration is small, the
revived entanglement can be larger than that in the inertial
case, while as the acceleration gets large enough, entan-
glement revival never happens. For two inertial atoms
initially in jEi, the lifetime of entanglement is extremely

long. From Fig. 13 we also conclude that in certain cases
acceleration can enhance the entanglement revival and the
maximal entanglement during evolution.

Polarization effects.—The above calculations [see
Eqs. (21)] indicate that when a vertically-aligned two-atom
system is placed very close to the boundary, only the nearer
atom with its polarization parallel to the boundary is
protected from the influence of vacuum fluctuations.

FIG. 13. The figures show the dynamics of concurrence for uniformly accelerated atoms to which the vertical-aligned boundary is very
close. The atoms are initially prepared in jSi (left) or jEi (right). Both of the two atoms are polarizable along the y-axis. Here ωL ¼ 1,
the real red, green and blue lines correspond to a=ω ¼ 1=2, 4=5, 6=5 respectively, and the dashed lines describe the case for two
inertial atoms.
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Similar conclusions have been drawn in the context of
quantum Fisher information [44].

IV. THE MAXIMAL CONCURRENCE
DURING EVOLUTION

In the following, we study the effects of the boundary,
acceleration and polarization on the maximal entanglement
during evolution when the two-atom system is initially
prepared in jEi.

A. Boundary effects

When discussing the boundary effects, to be specific, we
assume that the atoms are placed close to the boundary
(y=L ¼ 1=100), and compare the results with those in the
free space.

1. Atoms with identical orientation of polarization

First we assume that the polarizations of the two atoms
are the same. From Figs. 14–15, we see that the maximal

entanglement during evolution can be either enhanced or
weakened by the presence of boundary, depending on the
polarizations of the atoms, the acceleration, the atomic
separation. Especially, we observe that the green dashed
line coincides with the solid line in Fig. 14 (left), i.e., when
the parallel two-atom system is placed extremely close to
the boundary, the maximal entanglement during evolution
is not altered in the presence of the boundary if both of
the atoms are polarizable vertically to the boundary (the
y-axis). Compared with the results in the free space case,
the range of atomic separation within which entanglement
generation happens can be effectively broadened in the
presence of a boundary if the atoms are vertically aligned,
while entanglement generation does not happen for the
parallel case, as shown in Fig. 15.

2. Atoms with different orientations of polarization

To illustrate the case when the polarizations of the two
atoms are different, we assume that one of the atoms is
polarizable along the direction of acceleration (the x-axis),

FIG. 14. Comparison between the maximal concurrence during evolution in the free space (dashed lines) and that in the presence of a
boundary (solid lines). The two-atom system initially prepared in jEi is aligned parallel to (left) or vertically to (right) the boundary.
Both of the two atoms are polarizable along the direction of acceleration (the x-axis) (red lines) or vertically to the boundary (the y-axis)
(green lines). The green dashed and solid lines in the left figure coincide with each other. Here ωL ¼ 1, and y=L ¼ 1=100.

FIG. 15. Comparison between the maximal concurrence during evolution for uniformly accelerated atoms initially prepared in jEi
aligned parallel to (left) or vertically to (right) a reflecting boundary. Here a=ω ¼ 2=3, y=L ¼ 1=100, the solid and dashed lines describe
the cases with and without the presence of the boundary respectively.
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while the other is polarizable vertically to the direction of
acceleration (the yoz plane). In free space, two accelerated
atoms can never get entangled for any given acceleration a
and separation L when one of the atoms is polarizable
along the direction of acceleration (the x-axis) and the other
vertically to the plane determined by the direction of
acceleration and the atomic separation (the y-axis) [32].
However, they can get entangled in the presence of a
boundary when they are aligned parallel to the boundary, as
is indicated by Figs. 16–17 (left). When the atoms are
vertically aligned, the concurrence which is nonzero in
circumstances in the free space can be enhanced by the
presence of a boundary, see Figs. 16–17 (right).

B. Acceleration effects

Now we discuss how the maximal concurrence during
evolution is affected by the acceleration of the atoms.

1. Atoms with identical orientation of polarization

In Figs. 18–19, we assume that both the atoms are
polarizable along the direction of acceleration. When the
atoms are aligned parallel to the boundary, the maximal
entanglement during evolution can be either enhanced or
weakened by the acceleration, depending on the atomic
separation and the distance between the boundary and the
system, as shown in Figs. 18–19 (left). However, in the
vertically-aligned case, as acceleration increases, the maxi-
mal entanglement is weakened, see Fig. 18 (right). As
acceleration gets larger, the range of atomic separation
within which entanglement generation happens with a
boundary is apparently narrowed for both alignments.
Figure 19 shows that, once entanglement can be created
in the free space, the maximal concurrence during evolution
can be significantly enhanced in the presence of a boundary
if they are vertically aligned.

FIG. 16. Comparison between the maximal concurrence during evolution in the free space (dashed lines) and that in the presence of a
boundary (solid lines). The two-atom system initially prepared in jEi is aligned parallel to (left) or vertically to (right) the boundary. One
atom is polarizable along the direction of acceleration (the x-axis), while the other is polarizable vertically to (the y-axis) (red lines) or
parallel to (the z-axis) (green lines) the boundary. The green dashed and solid lines in the right figure coincide with each other. Here
ωL ¼ 1=2, and y=L ¼ 1=100.

FIG. 17. Comparison between the maximal concurrence during evolution for uniformly accelerated atoms initially prepared in jEi
aligned parallel to (left) or vertically to (right) a reflecting boundary. One of the atoms is polarizable along the direction of acceleration
(the x-axis), while the other is polarizable vertically to the boundary (the y-axis). Here a=ω ¼ 2=3, y=L ¼ 1=100, the solid and dashed
lines describe the cases with and without the presence of the boundary respectively.
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2. Atoms with different orientations of polarization

As for the case of the two atoms with different orienta-
tions of polarization, we assume that one of the atoms (the
nearer one in the vertically aligned case) is polarizable

along the direction of acceleration (the x-axis), and the
other is polarizable vertically to the boundary (the y-axis).
Figures 20–21 show that for the given polarizations,
entanglement generation between two inertial atoms can

FIG. 18. Comparison between the maximal concurrence during evolution for uniformly accelerated atoms initially prepared in jEi
aligned parallel to (left) or vertically to (right) a reflecting boundary. Both atoms are polarizable along the direction of acceleration (the
x-axis). Here y=L ¼ 1=2, the red, green and blue lines correspond to a=ω ¼ 0, 1=2, 1 respectively.

FIG. 19. Comparison between the maximal concurrence during evolution for uniformly accelerated atoms initially prepared in jEi
aligned parallel to (left) or vertically to (right) a reflecting boundary. Both atoms are polarizable along the direction of acceleration (the
x-axis). Here ωL ¼ 1, the red, green and blue lines correspond to a=ω ¼ 0, 1=2, 1 respectively.

FIG. 20. Comparison between the maximal concurrence during evolution for uniformly accelerated atoms initially prepared in jEi
aligned parallel to (left) or vertically to (right) a reflecting boundary. One of the atoms (the nearer one in the vertically aligned case) is
polarizable along the direction of acceleration (the x-axis) and the other vertically to the boundary (the y-axis). Here y=L ¼ 1=2, the red,
green and blue lines correspond to a=ω ¼ 0, 1=2, 1 respectively.
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never happen, irrespective of the separation L, distance y
and the alignment of the boundary. However, the two
atoms can get entangled with an appropriate acceleration.
Furthermore, for certain accelerations, there exists an
interval of separation or distance within which entangle-
ment cannot be generated when the atoms are vertically
aligned, see Figs. 20–21 (right).

C. Polarization effects

In the presence of a boundary, the maximal entanglement
during evolution can be either enhanced or weakened,
depending on the polarizations of the atoms, the accel-
eration, and the atomic separation, see Figs. 14–17. When
the two atoms are polarizable differently, entanglement
generation can never happen in the free space with any
given acceleration and separation, but it does happen
when the two atoms are aligned parallel to the boundary.
Meanwhile, the maximal entanglement during evolution
can be greatly enhanced for vertically-aligned atoms,
compared with the case for atoms with the same polar-
izations. In particular, in Fig. 17 (right), we show that a
much larger concurrence can be reached when the nearer
atom is polarizable vertically to the boundary (the y-axis)
and the farther one along the direction of acceleration (the
x-axis).

V. SUMMARY

In this paper, we have investigated, in the framework of
open quantum systems, the entanglement dynamics for two
uniformly accelerated two-level atoms in weak interaction
with a bath of fluctuating electromagnetic fields in vacuum
in the presence of a reflecting boundary. In particular, two
different alignments of atoms are considered, i.e., parallel
and vertical alignments with respect to the boundary. We
focus on the effects of the boundary, and acceleration on the
entanglement dynamics, which are closely related to the
atomic polarization.

The presence of a boundary greatly enriches dynamics of
entanglement. When the atoms are placed far away from
the boundary, the results reduce to those in the free space
case as expected. When the atoms are placed extremely
close to the boundary, for the parallel case, the initial
entanglement of two transversely polarizable atoms can be
preserved as if it were a closed system, while the con-
currence of two vertically polarizable atoms evolves two
times as fast as that in the free space, with its maximum
during evolution remains the same. In the presence of a
parallel-aligned boundary, the revival of entanglement
between two accelerated atoms initially in the symmetric
state can occur only if the atoms are polarizable differently,
with one of them polarizable vertically to the boundary.
However, the entanglement revival can happen for the
vertical two-atom system when the atomic polarizations are
the same. This is in sharp contrast to the fact that the
concurrence of the two-atom system initially prepared in
the symmetric state always decays monotonically in
absence of a boundary. Remarkably, two separable atoms
both of which are initially in the excited state, for which
entanglement generation can never happen in the free space
with any given acceleration and separation, can get
entangled in the presence of a boundary if they are aligned
parallel to the boundary. Moreover, the birth time of
entanglement can be noticeably advanced or postponed
for the parallel two-atom system placed close to the
boundary, while the maximal concurrence during evolution
can be significantly enhanced when the atoms are vertically
aligned.
For the effect of acceleration, we find that it does not

always play the role of destroying entanglement, but can
generate and enhance entanglement as well. When the two
atoms are polarizable differently, e.g., one of them is
polarizable along the direction of acceleration and the
other vertically to the boundary, entanglement revival
appears with an appropriate acceleration, which cannot
happen for inertial atoms. Similar situations occur when the

FIG. 21. Comparison between the maximal concurrence during evolution for uniformly accelerated atoms initially prepared in jEi
aligned parallel to (left) or vertically to (right) a reflecting boundary. One of the atoms (the nearer one in the vertically aligned case) is
polarizable along the direction of acceleration (the x-axis) and the other vertically to the boundary (the y-axis). Here ωL ¼ 1, the red,
green and blue lines correspond to a=ω ¼ 0, 1=2, 1 respectively.
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system is initially in a separable state. That is, two inertial
atoms with different polarizations remain separable all the
time, while as the acceleration increases, the delayed birth
of entanglement happens, and the nonzero concurrence can
be enhanced, in contrast to the fact that the delayed birth of
entanglement can only be achieved for two inertial atoms
with identical polarizations. However, entanglement gen-
eration and revival cannot happen as the acceleration gets
large enough.
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APPENDIX: CALCULATIONS OF THE
COEFFICIENTS AI AND BI

The Appendix is devoted to the calculations of the
coefficients Ai and Bi in Eqs. (16) for two different
alignments of the two-atom system.
We assume that a conducting boundary is placed at

y ¼ 0. The two point function of the vector potential AμðxÞ
can be obtained with the help of the method of images as

Dμνðx; x0Þ ¼ h0jAμðxÞAνðx0Þj0i
¼ Dμν

freeðx − x0Þ þDμν
bndðx; x0Þ; ðA1Þ

where

Dμν
freeðx − x0Þ ¼ ημν

4π2½−ðx − x0Þ2 − ðy − y0Þ2 − ðz − z0Þ2 þ ðt − t0 − iεÞ2� ; ðA2Þ

and

Dμν
bndðx; x0Þ ¼ −

ημν þ 2nμnν

4π2½−ðx − x0Þ2 − ðyþ y0Þ2 − ðz − z0Þ2 þ ðt − t0 − iεÞ2� ; ðA3Þ

with ε → þ0, ημν ¼ diagð1;−1;−1;−1Þ and the unit normal vector nμ ¼ ð0; 0; 1; 0Þ. Here Dμν
freeðx − x0Þ and Dμν

bndðx; x0Þ are
the two point function in the free space and the correction due to the reflecting boundary respectively. The two point
function of the electric-field strength then takes the following form

h0jEmðxðτÞÞEnðxðτ0ÞÞj0i ¼ h0jEmðxðτÞÞEnðxðτ0ÞÞj0ifree þ h0jEmðxðτÞÞEnðxðτ0ÞÞj0ibnd; ðA4Þ

where

h0jEmðxðτÞÞEnðxðτ0ÞÞj0ifree
¼ 1

4π2
½δmn∂0∂ 0

0 − ∂m∂ 0
n�

×
1

ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2 − ðt − t0 − iεÞ2 ;

ðA5Þ

and

h0jEmðxðτÞÞEnðxðτ0ÞÞj0ibnd
¼ 1

4π2
½ðδmn − 2nmnnÞ∂0∂ 0

0 − ∂m∂ 0
n�

×
−1

ðx − x0Þ2 þ ðyþ y0Þ2 þ ðz − z0Þ2 − ðt − t0 − iεÞ2 :

ðA6Þ

1. The parallel case

First, we consider a parallel two-atom system with a
separation L, whose distance to the boundary is y, as shown

in Fig. 1. Through a Lorentz transformation from the
laboratory frame to the proper frame of the atoms, and
the Fourier transforms of the two point functions Eq. (A4),
we have, for α ¼ β,

Gð11Þ
mn ðωÞ ¼ Gð22Þ

mn ðωÞ

¼ ω3

3πð1 − e−2πω=aÞ ½f
ð11Þ
mn ðω; aÞ − hð11Þmn ðω; a; yÞ�;

ðA7Þ

and for α ≠ β,

GðαβÞ
mn ðωÞ ¼ ω3

3πð1 − e−2πω=aÞ
× ½fðαβÞmn ðω; a; LÞ − hðαβÞmn ðω; a; y; LÞ�; ðA8Þ

where fð11Þmn ðω; aÞ and fðαβÞmn ðω; a; LÞ correspond to the
results of the free space case, see Eqs. (19)–(25) in

Ref. [32], while hð11Þmn ðω; a; yÞ and hðαβÞmn ðω; a; y; LÞ are
the modifications due to the presence of the boundary.

Some straightforward calculations show that hð11Þmn ðω; a; yÞ
can be expressed as
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hð11Þ11 ðω; a; yÞ ¼ fð12Þ11

�
ω; a;

L
2

�
; hð11Þ12 ðω; a; yÞ ¼ hð11Þ21 ðω; a; yÞ ¼ −fð12Þ13

�
ω; a;

L
2

�
;

hð11Þ22 ðω; a; yÞ ¼ −fð12Þ33

�
ω; a;

L
2

�
; hð11Þ13 ðω; a; yÞ ¼ hð11Þ31 ðω; a; yÞ ¼ 0;

hð11Þ33 ðω; a; yÞ ¼ fð12Þ22

�
ω; a;

L
2

�
; hð11Þ23 ðω; a; yÞ ¼ hð11Þ32 ðω; a; yÞ ¼ 0; ðA9Þ

and all the nonzero components of hðαβÞmn ðω; a; y; LÞ (α ≠ β) are

hð12Þ11 ðω; a; y; LÞ ¼ 12

ω3R3ð4þ a2R2Þ5=2

×
�
2ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2R2

p
ð1þ a2R2Þ cos

�
2ω

a
sinh−1

aR
2

�

þ ½−4 − R2ð2a2 þ a4R2 − 4ω2 − ω2a2R2Þ� sin
�
2ω

a
sinh−1

aR
2

��
;

hð12Þ22 ðω; a; y; LÞ ¼ 3

ω3R5ð4þ a2R2Þ5=2

×

�
−ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2R2

p
½ð2þ a2R2Þð4L2 þ a2L4 − 16a2y4Þ − 64y2� cos

�
2ω

a
sinh−1

aR
2

�

− ½64ð2þ a2L2Þy2 þ 320a2y4 − 4L2ð4þ a2L2Þ

þ ω2R2ð4þ a2R2Þð4L2 þ a2L4 − 16a2y4Þ� sin
�
2ω

a
sinh−1

aR
2

��
;

hð12Þ33 ðω; a; y; LÞ ¼ 3

ω3R5ð4þ a2R2Þ5=2 ×
�
½20a2L4 þ 32L2ð1þ 2a2y2Þ − 64y2ð1þ a2y2Þ

þ ð4þ a2R2Þð16y2 − a2L4 þ 16a2y4Þω2R2� sin
�
2ω

a
sinh−1

aR
2

�

þ ωR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2R2

p
½−a4L6 − 2L4ða2 þ 2a4y2Þ þ 16L2ða2y2 þ a4y4 − 1Þ

þ 32ðy2 þ 3a2y4 þ 2a4y6Þ� cos
�
2ω

a
sinh−1

aR
2

��
;

hð12Þ12 ðω; a; y; LÞ ¼ −12ay
ω3R3ð4þ a2R2Þ5=2

×

�
ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2R2

p
ða2R2 − 2Þ cos

�
2ω

a
sinh−1

aR
2

�

þ ½4þ R2ð4ω2 þ 4a2 þ ω2a2R2Þ� sin
�
2ω

a
sinh−1

aR
2

��
;

hð12Þ13 ðω; a; y; LÞ ¼ −6aL
ω3R3ð4þ a2R2Þ5=2 ×

�
ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2R2

p
ð−2þ a2R2Þ cos

�
2ω

a
sinh−1

aR
2

�

þ ½4þ R2ð4ω2 þ 4a2 þ ω2a2R2Þ� sin
�
2ω

a
sinh−1

aR
2

��
;

hð12Þ23 ðω; a; y; LÞ ¼ 12Ly

ω3R5ð4þ a2R2Þ5=2 ×
�
ð2þ a2R2Þ½ω2R2ð4þ a2R2Þ − 12� sin

�
2ω

a
sinh−1

aR
2

�

þ ωR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2R2

p
ð12þ 4a2R2 þ a4R4Þ cos

�
2ω

a
sinh−1

aR
2

��
;
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hð12Þ11 ðω; a; y; LÞ ¼ hð21Þ11 ðω; a; y; LÞ; hð12Þ22 ðω; a; y; LÞ ¼ hð21Þ22 ðω; a; y; LÞ; hð12Þ33 ðω; a; y; LÞ ¼ hð21Þ33 ðω; a; y; LÞ;
hð12Þ12 ðω; a; y; LÞ ¼ hð21Þ12 ðω; a; y; LÞ ¼ hð12Þ21 ðω; a; y; LÞ ¼ hð21Þ21 ðω; a; y; LÞ;
hð12Þ13 ðω; a; y; LÞ ¼ −hð21Þ13 ðω; a; y; LÞ ¼ −hð12Þ31 ðω; a; y; LÞ ¼ hð21Þ31 ðω; a; y; LÞ;
hð12Þ23 ðω; a; y; LÞ ¼ −hð21Þ23 ðω; a; y; LÞ ¼ −hð12Þ32 ðω; a; y; LÞ ¼ hð21Þ32 ðω; a; y; LÞ; ðA10Þ

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4y2

p
. Then the coefficients of the master equations are

A1ðpÞ ¼
Γ0 coth πω

a

4

X3
i;j¼1

ðfð11Þij − hð11Þij Þd̂ð1Þi d̂ð1Þj ; B1ðpÞ ¼
Γ0

4

X3
i;j¼1

ðfð11Þij − hð11Þij Þd̂ð1Þi d̂ð1Þj ;

A2ðpÞ ¼
Γ0 coth

πω
a

4

X3
i;j¼1

ðfð22Þij − hð22Þij Þd̂ð2Þi d̂ð2Þj ; B2ðpÞ ¼
Γ0

4

X3
i;j¼1

ðfð22Þij − hð22Þij Þd̂ð2Þi d̂ð2Þj ;

A3ðpÞ ¼
Γ0 coth

πω
a

4

X3
i;j¼1

ðfð12Þij − hð12Þij Þd̂ð1Þi d̂ð2Þj ; B3ðpÞ ¼
Γ0

4

X3
i;j¼1

ðfð12Þij − hð12Þij Þd̂ð1Þi d̂ð2Þj ; ðA11Þ

where the subscript p denotes the case of the atoms aligned parallel to the boundary, Γ0 ¼ ω3jdj2=3π is the spontaneous

emission rate, and d̂ðαÞi is a unit vector defined as d̂ðαÞi ¼ dðαÞi =jdj. Here we have assumed that the magnitudes of the electric
dipoles of the atoms are assumed to be the same, i.e., jdð1Þj ¼ jdð2Þj ¼ jdj.

2. The vertical case

Next, we consider the situation in which the two atoms are aligned vertically to the boundary. The distance between
the boundary and the nearer atom is y, see Fig. 1. Similarly, the Fourier transforms of the two point functions can be
expressed as

Gð11Þ
mn ðωÞ ¼ ω3

3πð1 − e−2πω=aÞ ½g
ð11Þ
mn ðω; aÞ − sð11Þmn ðω; a; yÞ�;

Gð22Þ
mn ðωÞ ¼ ω3

3πð1 − e−2πω=aÞ ½g
ð22Þ
mn ðω; aÞ − sð22Þmn ðω; a; y; LÞ�;

Gð12Þ
mn ðωÞ ¼ ω3

3πð1 − e−2πω=aÞ ½g
ð12Þ
mn ðω; a; LÞ − sð12Þmn ðω; a; y; LÞ�: ðA12Þ

The unbounded parts gðαβÞmn can be related to fðαβÞmn as

gð11Þmn ðω; aÞ ¼ fð11Þmn ðω; aÞ; gð22Þmn ðω; aÞ ¼ fð11Þmn ðω; aÞ;
gð12Þ11 ðω; a; LÞ ¼ fð12Þ11 ðω; a; LÞ; gð12Þ22 ðω; a; LÞ ¼ fð12Þ33 ðω; a; LÞ;
gð12Þ33 ðω; a; LÞ ¼ fð12Þ22 ðω; a; LÞ; gð12Þ12 ðω; a; LÞ ¼ fð12Þ13 ðω; a; LÞ; ðA13Þ

and for the bounded parts sðαβÞmn , we find the following relations

sð11Þmn ðω; a; yÞ ¼ hð11Þmn ðω; a; yÞ;
sð22Þmn ðω; a; y; LÞ ¼ hð11Þmn ðω; a; yþ LÞ;

sð12Þmn ðω; a; y; LÞ ¼ hð11Þmn

�
ω; a; yþ L

2

�
: ðA14Þ
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With Eqs. (12)–(13), the corresponding coefficients can be calculated as

A1ðvÞ ¼
Γ0 coth πω

a

4

X3
i;j¼1

ðgð11Þij − sð11Þij Þd̂ð1Þi d̂ð1Þj ; B1ðvÞ ¼
Γ0

4

X3
i;j¼1

ðgð11Þij − sð11Þij Þd̂ð1Þi d̂ð1Þj ;

A2ðvÞ ¼
Γ0 coth πω

a

4

X3
i;j¼1

ðgð22Þij − sð22Þij Þd̂ð2Þi d̂ð2Þj ; B2ðvÞ ¼
Γ0

4

X3
i;j¼1

ðgð22Þij − sð22Þij Þd̂ð2Þi d̂ð2Þj ;

A3ðvÞ ¼
Γ0 coth

πω
a

4

X3
i;j¼1

ðgð12Þij − sð12Þij Þd̂ð1Þi d̂ð2Þj ; B3ðvÞ ¼
Γ0

4

X3
i;j¼1

ðgð12Þij − sð12Þij Þd̂ð1Þi d̂ð2Þj ; ðA15Þ

where the subscript v denotes the case of the atoms aligned vertically to the boundary.
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