
 

Absorption of electromagnetic plane waves by rotating black holes
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We study the absorption of monochromatic electromagnetic plane waves impinging upon a Kerr black
hole, in the general case that the direction of incidence is not aligned with the black hole spin axis. We
present numerical results that are in accord with low- and high-frequency approximations. We find that
circularly polarized waves are distinguished by the black hole spin, with counter-rotating polarizations
being more absorbed than co-rotating polarizations. At low frequencies and moderate incidence angles,
there exists a narrow parameter window in which superradiant emission in the dipole mode can exceed
absorption in the non-superradiant modes, allowing a planar electromagnetic wave to stimulate net
emission from a black hole.
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I. INTRODUCTION

The recent announcements from the LIGO and Virgo
detectors have confirmed a key prediction of General
Relativity (GR): orbiting companions generate gravita-
tional waves which propagate at the speed of light. The
gravitational waves observed, so far, are outcomes of
catastrophic events apparently involving black holes
(BHs) and neutron stars [1–6]. Gravitational waves from
the BH “ringdown” phase probe the strong-field regime of
GR for the first time. BHs are fascinating objects which
play a central role in modern astrophysics and which
provide a crucible for new tests of physical theory.
As a BH possesses an event horizon, it can absorb matter,

energy and radiation in its vicinity. To understand this
process in detail, one may study an idealized scenario: the
absorption of a planar wave of a fixed angular frequency ω
and spin s impinging upon a BH of mass M and angular
momentum J. Absorption is characterized by a single
key quantity, the absorption cross section, σabs, expressed
in terms of dimensionless parameters such as s and
Mω≡ πrs=λ, where rs is the Schwarzschild radius of
the body, and λ is the wavelength.
The foundations of planar-wave scattering theory on

BH spacetimes were set out in Ref. [7]. That work
addressed the cases of monochromatic scalar (s ¼ 0),
neutrino (s ¼ 1=2), electromagnetic (s ¼ 1) and gravita-
tional waves (s ¼ 2) by Kerr BHs, with particular focus
on the low-frequency (Mω ≪ 1) and high-frequency

(Mω ≫ 1) regimes, which are amenable to asymptotic
methods [7].
The intermediate regime Mω ∼ 1 is typically studied via

numerical methods. The first comprehensive investigations,
combining analytical and numerical methods, were carried
out by Sanchez in the 1970s [8,9] for Schwarzschild BHs
(see also [10,11]), allowing the whole range of frequencies
and angular momentum to be covered to obtain the total
absorption cross section. Subsequently, various authors
have computed the scalar [12–17], fermionic [18–21],
electromagnetic [22–24], and gravitational [25] absorption
cross sections for static BH solutions.
There is strong evidence that astrophysical BHs are not

static but instead possess significant angular momentum.
To describe the absorption scenario on the axially sym-
metric Kerr spacetime one needs additional dimensionless
parameters: the BH spin ratio, 0 ≤ J=M2 < 1; the angle
between the incident direction and the symmetry axis,
0 ≤ γ < π; and the polarization state of the wave P
(see Fig. 1).
Here we seek to fill a gap in the literature by calculating

the absorption cross section for planar electromagnetic
waves incident on rotating (Kerr) BHs via numerical
methods. This work extends Ref. [26], which restricted
attention to the case of on-axis incidence (γ ¼ 0), and it
complements numerical investigations of the scalar [27,28],
fermionic [20], and gravitational [25] cases for Kerr BHs.
First, let us review the key results in the limiting regimes.

At long wavelengths (Mω ≪ 1), absorption occurs pri-
marily in the dipole modes of the electromagnetic field
(l ¼ 1). In the Schwarzschild case (J ¼ 0), the electro-
magnetic absorption cross section is simply σabs ≈
4
3
ASðMωÞ2 [22], where AS ¼ 4πð2MÞ2 is the area of the
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Schwarzschild event horizon. Thus, the BH does not
substantially absorb low-frequency modes of the electro-
magnetic field, that is, modes whose wavelength is sig-
nificantly longer than the black hole’s horizon radius. In
contrast, long-wavelength scalar fields are substantially
absorbed, as σs¼0

abs ≈A [29,30].
A rotating BH can actually amplify, rather than absorb,

low-frequency waves [31,32]. For a long-wavelength
circularly polarized wave incident along the black hole
rotation axis,

σabs ≈
4

3
Aωðω −ΩHÞM2; ð1Þ

where ΩH ¼ J=2M2rþ is the angular frequency of the
event horizon of radius rþ, and A ¼ 8πMrþ is the horizon
area [10]. The co- and counter-rotating polarizations
correspond to the frequencies þjωj and −jωj, respectively.
The absorption cross section is negative for modes in the
superradiant regime.
Superradiance may be anticipated from the laws of black

hole mechanics [33]. The second law states that the area of
the black hole is a nondecreasing function of time if the
weak energy condition holds. The first law may be written
in the form dA ¼ ð1 −ΩH

dJ
dMÞ8πκ−1dM, where κ > 0 is

the surface gravity of the horizon. Associating dJ=dM with
m=ω, the first law implies that dM ≤ 0 whenever ωω̃ < 0,
as dA ≥ 0 by the second law.
At short wavelengths (Mω ≫ 1), the geometrical-optics

approximation is valid, and one may employ ray-tracing
methods. The cross section σabs approaches the geodesic
capture cross section, σgeo, defined by the area on the initial
wavefront whose boundary is defined by the set of null

geodesics which are neither scattered nor absorbed by the
hole, but which instead orbit indefinitely [28,34]. The
geodesic capture cross section is shown in Fig. 1.
This paper is arranged as follows. In Sec. II we review

the Kerr solution in Boyer-Lindquist coordinates and the
basic equations for perturbing fields around in the Kerr
background. In Sec. III we show an expression for the
absorption cross section obtained via the partial-wave
method. In Sec. IV we detail the numerical methods used
to compute the absorption cross section. We present our
numerical results in Sec. V, and we conclude in Sec. VI
with some final remarks. In this paper we assume natural
units such that G ¼ c ¼ 1.

II. KERR SPACETIME AND TEUKOLSKY
EQUATIONS

It is well known that in GR, four-dimensional neutral
rotating BHs are described by the Kerr solution. Kerr BHs
are characterized by two parameters: mass M and angular
momentum J, with the latter commonly represented by
a ¼ J=M, the angular momentum per unit mass.
The Kerr solution in the Boyer-Lindquist coordinates

ft; r; θ;φg has the line element

ds2 ¼ −
Δ
Σ
ðdt − asin2θdφÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

½ðr2 þ a2Þdφ − adt�2; ð2Þ

with Σ≡ r2 þ a2cos2θ and Δ≡ r2 − 2Mrþ a2. When the
condition a2 ≤ M2 is satisfied, the Kerr solution corre-
sponds to a BH spacetime. We will restrict attention to the

FIG. 1. Left: Monochromatic wave of angular frequency ω impinges upon a Kerr black hole of massM and angular momentum J at an
angle of γ relative to the spin axis. Right: Geodesic capture cross section σgeo as a function of the angle of incidence γ for various spin
rates a≡ J=M.
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case a2 < M2, which corresponds to a rotating BH with
two distinct horizons: an internal (Cauchy) horizon located
at r− ¼ M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and an external (event) horizon

at rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Using the Newman-Penrose formalism, Teukolsky gath-
ered the description of perturbing fields, in the Kerr BH
spacetime, into a single master equation that, in the
vacuum, reads [35]

�ðr2 þ a2Þ2
Δ

− a2sin2θ

� ∂2ϒs

∂t2 þ 4Mar
Δ

∂2ϒs

∂t∂φ
þ
�
a2

Δ
−

1

sin2θ

� ∂2ϒs

∂φ2
− Δ−s ∂

∂r
�
Δsþ1

∂ϒs

∂r
�

−
1

sin θ
∂
∂θ

�
sin θ

∂ϒs

∂θ
�
þ ðs2cot2θ − sÞϒs

− 2s

�
aðr −MÞ

Δ
þ i cos θ

sin2θ

� ∂ϒs

∂φ
− 2s

�
Mðr2 − a2Þ

Δ
− r − ia cos θ

� ∂ϒs

∂t ¼ 0; ð3Þ

where s is the spin-weight of the field, and we have s ¼ 0,
�1=2, �1, �2, for scalar, neutrino, electromagnetic and
gravitational perturbations, respectively.
Our focus here is on electromagnetic waves; hence we

choose s ¼ −1, noting that ϒ−1 ≡ ϕ2ðr − ia cos θÞ2,
where ϕ2 ≡ Fμνm̄μnν is a Maxwell scalar, Fμν is the
Faraday tensor, and m̄μ and nμ are legs of Kinnersley’s
null tetrad [35].
Following Teukolsky’s route [35–38], one separates

variables in Eq. (3) using the following ansatz,

ϒ−1lmωðt; r; θ;φÞ ¼ R−1lmωðrÞS−1lmωðθÞe−iðωt−mφÞ; ð4Þ

to obtain the following angular and radial equations,
respectively,

1

sinθ
d
dθ

�
sinθ

dS−1lmωðθÞ
dθ

�
þA−1lmωðθÞS−1lmωðθÞ¼0; ð5Þ

Δ
d
dr

�
dR−1lmωðrÞ

dr

�
þ V−1lmωðrÞR−1lmωðrÞ ¼ 0; ð6Þ

in which

V−1lmωðrÞ≡ 1

Δ
½K2 þ 2iðr −MÞK� − λ−1lmω − 4iωr; ð7Þ

A−1lmωðθÞ≡ 2aωðmþ cos θÞ − ðm − cos θÞ2
sin2θ

þ λ−1lmω − 1 − a2ω2sin2θ; ð8Þ

where K ≡ ðr2 þ a2Þω − am [39]. Here λ−1lmω is the
angular separation constant.
We are interested in solutions of Eq. (6) that are purely

ingoing at the event horizon and that satisfy the following
boundary conditions:

R−1lmω ∼
�
T lmωe−{ω̃xΔ; r → rþ;

I lmω
e−{ωx
r þRlmωre{ωx; r → þ∞;

ð9Þ

where ω̃≡ ω − am=2Mrþ. The tortoise coordinate x in

Boyer-Lindquist coordinates is defined by x≡ R
dr ðr2þa2Þ

Δ ,
from which follows that x → þ∞ as r → þ∞ and
x → −∞ as r → rþ.

III. ABSORPTION CROSS SECTION

We use the partial-wave method to obtain the absorption
cross section. Reference [7] contains the basic steps to
obtain the absorption cross section via the partial-wave
analysis, and here we restrict ourselves to outline the main
formulas used in our computations.
The absorption cross section, σabs, for an asymptotic

electromagnetic plane wave traveling in the direction
n̂ ¼ sin γx̂þ cos γẑ is given by

σabsðωÞ ¼
4π2

ω2

Xþ∞

l¼1

Xþl

m¼−l
jS−1lmωðγÞj2Γlmω; ð10Þ

where S−1lmω are the spin-weighted spheroidal harmonics
for the electromagnetic case (s ¼ −1), and the transmission
factors Γlmω are given by

Γlmω ¼ 1 −
B2
lmω

16ω4

����Rlmω

I lmω

����2; ð11Þ

in which B2
lmω ≡ λ2−1lmω þ 4amω − 4a2ω2, and I lmω,Rlmω

are the coefficients appearing in the ingoing solutions
[see Eq. (9)].
Here ω can be either positive or negative. We divide the

incident waves according to the sign of the frequency, ω,
into two categories: circularly polarized waves co-rotating
(ω > 0) with the BH and circularly polarized waves
counter-rotating (ω < 0) with the BH. As we will see,
co- and counter-rotating incident waves are absorbed in a
different way.

IV. NUMERICAL METHOD

As can be seen in Eq. (10), the spin-weighted spheroidal
harmonics, S−1lmω, and the transmission factor, Γlmω, are
the main ingredients to determine the absorption cross
section. In this section, we detail the techniques used to
obtain both S−1lmω (Sec. IVA) and Γlmω (Sec. IV B).
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A. Spin-weighted spheroidal harmonics

We aim to solve the angular equation (5) in order to
obtain the spin-weighted spheroidal harmonics S−1lmω, as
well as the angular separation constant λ−1lmω. The angular
separation constant is needed in order to solve the radial
equation (6). There are a variety of methods available to
solve the angular equation (see Ref. [40] for a discussion).
In this paper, we employ the Cook and Zalutskiy spectral
decomposition approach [41,42], which is detailed in
Appendix.

B. Transmission factors and the Detweiler
transformation

The transmission factors Γlmω are expressed in Eq. (11)
in terms of the complex constants I lmω and Rlmω of the
radial solutions in the asymptotic regime [Eq. (9)] and the
angular eigenvalue λ−1lmω. In principle, the constants I lmω,
Rlmω can be obtained via numerical integration of the radial

equation (6). However, the different power-law fall-offs in
Eq. (9) for the incoming (r−1) and outgoing (r1) parts pose
a practical challenge for a numerical matching procedure.
One may avoid the intrinsic complications of the “peeling”
behavior by working instead with a short-range equation
that can be obtained via one of two different approaches:
one due to Detweiler [43] and another due to Sasaki and
Nakamura [44–47].
We adopt Detweiler’s approach. For a full derivation of

Detweiler’s transformation in the Kerr-Newman back-
ground, see Ref. [48]. The radial function R−1lmω is
transformed to a new radial function Xlmω, which satisfies
a short-range equation given by [43,48]

d2Xlmω

dx2
−UlmωðrÞXlmω ¼ 0; ð12Þ

with

UlmωðrÞ≡ −
�
ω −

am
a2 þ r2

�
2

þ λ−1lmωΔ
ða2 þ r2Þ2 −

ϖðr −MÞ2Δ½2ðζ2 þ r2Þ2 −ϖΔ�
ða2 þ r2Þ2½ðζ2 þ r2Þ2 þϖΔ�2

−
Δ½Δð2ζ2 þ 10r2Þ − ðζ2 þ r2Þðζ2 − 10Mrþ 11r2Þ�

ða2 þ r2Þ2½ðζ2 þ r2Þ2 þϖΔ� þ 12rΔðζ2 þ r2Þ2½rΔ − ðr −MÞðζ2 þ r2Þ�
ða2 þ r2Þ2½ðζ2 þ r2Þ2 þϖΔ�2

−
Δð4a2Mrþ r2ΔÞ

ða2 þ r2Þ4 ; ð13Þ

where ϑ≡ 2Blmω and

ϖ ≡ ϑ − 2λ−1lmω

4ω2
; ζ2 ≡ a

�
aω −m

ω

�
: ð14Þ

Similarly to the long-range equation (6), the short-range
equation (12) has a set of solutions that are purely ingoing
in the event horizon and satisfy the following boundary
conditions:

Xlmω ∼
�
T D

lmωe
−iω̃x; r → rþ;

e−iωx þRD
lmωe

iωx; r → þ∞;
ð15Þ

where the superscript D refers to Detweiler quantities. As
pointed out by Detweiler, the Wronskian of two linearly
independent solutions of Eq. (12) is constant, so that one
can show that the Detweiler coefficients satisfy the follow-
ing relation:

jRD
lmωj2 ¼ 1 −

ω̃

ω
jT D

lmωj2; ð16Þ

which represents the conservation of the energy flux of the
incident electromagnetic plane wave. From Eq. (16), we
note that jRD

lmωj2 > 1, when ω̃ω < 0, i.e., the wave is

scattered off by the Kerr BH with an amplitude larger than
that of the incident one. This phenomenon, known as
superradiance, can lead to negative absorption cross sec-
tions in the low-frequency regime.
The Detweiler coefficient RD

lmω is related to the coef-
ficients Rlmω and I lmω appearing in Eq. (9) via [49]

FIG. 2. Transmission factors for different angular modes. The
plot shows the transmission factors for the angular modes l ¼ 3
and −l ≤ m ≤ þl as functions of ωM, considering a Kerr BH
with a ¼ 0.9M.
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jRD
lmωj2 ¼

B2
lmω

16ω4

����Rlmω

I lmω

����2: ð17Þ

Thus the transmission factor of Eq. (11) is simply

Γlmω ¼ 1 − jRD
lmωj2: ð18Þ

An expression relating T lmω, I lmω, and T D
lmω can be found

[49], but for our current purposes the relation in Eq. (17) is
sufficient.
To compute the transmission factors (18), we start by

integrating the Detweiler equation (12) from a point near
the event horizon r ∼ rþ, using a series expansion of the
ingoing boundary condition given in Eq. (15), up to a point
in a region far from the BH (r ≫ rþ), where we compare
our numerical solutions with the analytical ones (15), in
order to obtain Detweiler coefficients.

V. NUMERICAL RESULTS

In this section we present numerical results for the
absorption cross section obtained using the scheme pre-
sented in Sec. IV. We consider electromagnetic plane waves
with a circular polarization impinging upon a rotating BH
at an incident angle γ (see Fig. 1).

A. Transmission factors

Figure 2 shows typical transmission factors, calculated
via Eq. (18), for the angular modes l ¼ 3 as functions of the
frequency Mω. The modes are split by azimuthal number
m. The counter-rotating modes (mMω < 0) exhibit a
degree of transmission greater than that of the co-rotating
modes (mMω > 0) at a given frequency. Results for modes
with Mω < 0 can be inferred from the symmetry
Γlmω ¼ Γlð−mÞð−ωÞ.

B. Absorption cross sections: on-axis incidence

We begin by considering the special case of waves
impinging along the black hole rotation axis (γ ¼ 0). The
identity S−1lmωð0Þ ¼ δm1S−1l1ωð0Þ implies that only partial
waves with m ¼ 1 will contribute to the absorption cross
section. This results in σabsðMωÞ displaying a regular
oscillatory pattern due to the contributions from successive
partial waves in l.
Figure 3 shows the absorption cross sections for circu-

larly polarized waves which are co-rotating (left panel,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
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35

FIG. 3. Absorption cross sections σabs as a function ofMω for circularly polarized electromagnetic waves incident parallel to the black
hole rotation axis, showing the co-rotating (left) and counter-rotating (right) helicities. The five series correspond to rotation parameters
a ¼ 0 (Schwarzschild BH), 0.4M, 0.8M, 0.9M, and 0.99M.

FIG. 4. Electromagnetic absorption at low frequencies. The plot
shows the absorption cross section σabs divided by 4

3
AΩHM,

where A and ΩH are the area and angular frequency of the event
horizon, respectively [cf. Eq. (1)]. The thick dashed lines are for
the co-rotating polarization, for BH spin ratios of a ¼ 0.4M,
a ¼ 0.8M, a ¼ 0.9M and a ¼ 0.99M. The thick solid lines,
which overlie each other, are for the counter-rotating polarization
for the same values of a. The thin dotted lines show the
approximations −ωð1 − ω=ΩHÞ.
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FIG. 5. Absorption cross sections for co-rotating (left) and counter-rotating (right) circular polarizations, for angles of incidence
γ ¼ 10°, 45°, 80° and 90°. The cross section becomes more irregular as the angle of incidence increases. In the case of equatorial
incidence (γ ¼ 90°) there is no difference between the cross sections of the two circular polarizations (co- and counter-rotating).
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ω > 0) and counter-rotating (right panel, ω < 0) with the
BH. Due to the coupling between the wave polarization and
the BH rotation, co-rotating and counter-rotating incident
waves are not absorbed in the same way.
For the co-rotating polarization (left panel of Fig. 3), we

see that superradiance [σabsðωÞ < 0] occurs at low frequen-
cies, ω < ΩH. On the other hand, when considering
counter-rotating polarizations (right panel of Fig. 3) super-
radiance is absent, and σabs is strictly positive across the
whole frequency range. The absorption cross section tends
to zero in all cases asMω → 0, as anticipated from Eq. (1).
In the co-rotating case, superradiance delays the onset of

absorption until ω ≈ΩH, withΩH → 1=2M as a → M. The
left panel of Fig. 3 shows that increasing a=M diminishes
the absorption cross section for the co-rotating polarization,
essentially monotonically. By contrast, the counter-rotating
polarization [right panel of Fig. 3, σabsðω < 0Þ] displays a
switch in behavior as Mω increases: for Mω≲ 0.3, the
cross section is largest for rapidly spinning BHs, whereas at
high frequencies, the cross section is largest for non-
spinning (Schwarzschild) BHs.
In the short-wavelength limit Mω → 0, the absorption

cross section σabs tends towards the geodesic capture cross
section σgeo (see Fig. 1). However, the approach to this limit
depends on the helicity of the incident wave. In Ref. [26] it
was shown that there is a secular term in σabs − σgeo that
scales with −asðMωÞ−1 in the short-wavelength regime.
This term has the opposite sign to ω, as more of the
counter-rotating polarization is absorbed than the co-rotat-
ing polarization. This is an example of a spin-helicity effect
[26], associated with a coupling between wave helicity and
the frame dragging of spacetime.
Figure 4 shows the electromagnetic absorption cross

sections at low frequencies in the on-axis case. The plot
confirms that the long-wavelength approximation of Eq. (1)
successfully describes the leading-order scaling at low
frequencies, σabs ∼ − 4

3
AΩHωM2. Equation (1) also cor-

rectly anticipates the change of sign in σabs at the super-
radiant frequency ω ¼ ΩH. However, in the intermediate
regime 0 < ω < ΩH, Fig. 4 shows that Eq. (1) somewhat
underestimates the magnitude of superradiant emission.

C. Absorption cross sections: off-axis incidence

Now we turn to the general case in which the incident
wave’s propagation direction is not alignedwith the BH spin
axis. In this sectionwewill consider the following choices of
the rotation parameter: a=M ¼ 0.4, 0.8, 0.9, and 0.99. The
cross section becomes more irregular as the angle of
incidence increases, due to competition between transmis-
sion factors of the same l but differing m. Whereas in the
Schwarzschild case m-modes with the same l are degener-
ate, in the Kerr case the m-modes are split by rotation (see
Fig. 2). For γ ≠ 0°, all themmodes (not justm ¼ 1, as in the
γ ¼ 0 case) contribute to the mode sum in Eq. (10).

Figure 5 shows the off-axis cross sections for the co-
rotating polarization (left) and counter-rotating polarization
(right). In general, σabs=M2 is smaller for the former than for
the latter, and it decreases in both cases as a=M increases.
For small γ (i.e., γ ¼ 10°), the cross section profile resembles
the on-axis case. However, as the incidence angle increases
from γ ¼ 0° to γ ¼ 90°, the absorption cross section
becomes less regular. Contributions are from a multitude
of partial-wave overlap, and thus the oscillations are less
distinct. This irregular behavior presented by the absorption
cross sections for off-axis incidences is a consequence of the
coupling between the BH rotation and the wave azimuthal
number m [27,28]. A similar behavior was found in the
scalar-field case (see Fig. 3 in Ref. [28]).

D. Superradiance

We now examine superradiance in the off-axis case.
Superradiance (Γ < 0) occurs in all multipole modes
satisfying the condition ω̃ω < 0, which is only satisfied
for co-rotating incident waves. For on-axis (γ ¼ 0) co-
rotating (ω > 0) planar waves, net superradiance occurs
whenever a ≠ 0 (left panel in Fig. 3). For off-axis waves the
situation is more delicate.
By far the largest superradiant contribution comes from

the co-rotating dipole mode l ¼ 1, m ¼ 1 mode, and
superradiance is exponentially suppressed in the higher
multipoles. Figure 6 shows the partial absorption cross
section for the l ¼ m ¼ 1 mode, for the cases γ ¼ 0°, 10°,
45°, 80°, and 90° for a ¼ 0.99M. As previously empha-
sized, superradiance for a wave impinging for a direction
parallel to the rotation axis is larger than that for a wave
from a direction in the equatorial plane.
For off-axis incidences, superradiance weakens as one

deviates the incidence angle away from the BH rotation
axis. At the equatorial plane (γ ¼ 90°, bottom right panel of
Fig. 5) the total absorption cross section is non-negative
even at low frequencies ω. This is a consequence of the fact

FIG. 6. Partial absorption cross sections (l ¼ m ¼ 1) for differ-
ent incidence angles (γ ¼ 0°, 10°, 45°, 80°, and 90°) and
a ¼ 0.99M. Superradiance is larger for on-axis incidence.
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that the off-axis cross section is a sum of all the multipoles
(l,m), so that we need to take into account the contributions
of both superradiant (m ≥ 1) and non-superradiant (m < 1)
modes. As γ approaches π=2, the competition between
superradiant and non-superradiant modes is won by the
latter, so that, close/along the equatorial plane, the emission
in the superradiant mode is less than the absorption in the

non-superradiant modes, leading to an overall net absorp-
tion [50].

E. Linearly polarized waves

We now turn our attention to the absorption of linearly
polarized incident waves, which are constructed from a

FIG. 7. Absorption cross sections for linearly polarized electromagnetic waves. Absorption is larger the smaller the value of the BH
rotation parameter. As well as in the case of circularly polarized waves, the absorption cross sections present a less regular behavior for
off-axis incidences.

FIG. 8. Comparison of the results for linearly, co-rotating, and counter-rotating polarized incident electromagnetic waves.
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linear combination of two circularly polarized waves. The
cross section in the linearly polarized case is simply the
average of the cross section for þjωj and −jωj.
Figure 7 shows the absorption cross sections for linearly

polarized incident waves, considering different values for
the incidence angle (γ ¼ 0°, 10°, 45°, and 80°) and for the
BH rotation parameter (a=M ¼ 0.4, 0.8, 0.9, and 0.99). In
general, the dimensionless quantity σabs=M2 decreases as
the BH spin a=M increases. Moreover, the absorption cross
sections exhibit a regular oscillatory behavior (with Mω)
for on-axis incidence but a far less regular structure as the
incidence angle increases. For the case of equatorial
incidence (γ ¼ 90°), the linearly polarized cross section
is exactly equal to the circularly polarized cross sections, as
the spin of the black hole does not distinguish between
right- and left-handed polarizations.
Figure 8 compares the results for linearly and circularly

polarized incident waves. We choose two values for the
incidence angle, namely, γ ¼ 0° and 45°, and we consider a
rapidly rotating BH with a ¼ 0.99M. Linearly polarized
waves are less absorbed than circularly counter-rotating
waves and more absorbed than co-rotating ones. The cross
section σabs remains positive in the linear case, and there is
no net superradiance.

VI. FINAL REMARKS

We have computed the electromagnetic absorption cross
section of Kerr BHs using numerical techniques. We have
considered polarized electromagnetic plane waves imping-
ing at different incidence angles upon Kerr BHs, showing
that the absorption spectrum presents a rich structure which
is directly related to the wave (polarization, incidence
angle, frequency, and angular momentum) and BH (rota-
tion) characteristics.
We have computed the spin-weighted spheroidal harmon-

ics and the angular separation constant using the spectral
method proposed in Ref. [41]. The transmission factors have
been obtained with the aid of Detweiler’s formalism, as
detailed in Sec. IVA.We have tested the eigenvaluesΛ−1lmω

against the low-aω formula given in Ref. [40], obtaining
great agreement. Moreover, we have checked our numerical
values for the Detweiler coefficients RD

lmω against the ones
shown in Ref. [48], obtaining concordance.
For on-axis incident waves, we have seen that the cross

sections present a regular oscillatory behavior similar to the
ones presented for static BHs [22,23]. For off-axis inci-
dences, we have shown that the absorption cross sections
present a less regular pattern than that presented in the on-
axis case (see Sec. V C). The irregular behavior is a
consequence of the coupling between the BH angular
momentum and the wave angular momentum. Many of
the features presented by the electromagnetic absorption
cross section are shared with the gravitational absorption
cross section [25].

For Kerr BHs, counter-rotating polarizations are more
absorbed than co-rotating polarizations, due to the coupling
between the wave helicity and the BH spin. This implies
that a net polarization will be generated in the scattered
flux, even if the incident wave is unpolarized.
At low frequencies ω < ΩH, the electromagnetic absorp-

tion cross section for circularly polarized planar waves can
become negative, due to superradiance. For this to occur,
the wave helicity and the BH must share the same handed-
ness. This implies that, in principle, an incoming wave can
lead to stimulated emission by the BH. One interesting
possibility, investigated in Ref. [32], is that net super-
radiance could be excited by a pulsar orbiting a rotating
black hole.
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APPENDIX: SPIN-WEIGHTED SPHEROIDAL
HARMONICS: SPECTRAL DECOMPOSITION

The differential equation obeyed by the spin-weighted
spheroidal function Sslmω can be rewritten as

½ð1−u2ÞðSslmωðuÞÞ;u�;uþΛslmωSslmω

þ
�
ðcuÞ2−2scuþs−

ðmþsuÞ2
1−u2

�
SslmωðuÞ¼0; ðA1Þ

where Λslmω ≡ λslmω − a2ω2 þ 2amω, u≡ cos θ, and
c≡ aω.
In the spectral decomposition approach, the spin-

weighted spheroidal harmonics are expanded in terms
of the spin-weighted spherical harmonics in the following
way [41]:

SslmωðuÞ ¼
X
j¼lmin

bðlÞjmωYsjmðuÞ; ðA2Þ

where lmin ≡max ðjmj; jsjÞ, bðlÞjmω are the expansion coef-
ficients, and Ysjm represents the spin-weighted spherical

harmonics. The coefficients bðlÞjmω can be calculated via a
recursive formula that is obtained as follows.
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Inserting Eq. (A2) into Eq. (A1),

X
j¼lmin

bðlÞjmω

�
½ð1 − u2ÞYslm;u

�
;u
þ ΛslmωYsjm

þ
�
ðcuÞ2 − 2scuþ s −

ðmþ suÞ2
1 − u2

�
Ysjm

	
¼ 0; ðA3Þ

and using the fact that Λslm0 ¼ lðlþ 1Þ − sðsþ 1Þ, we
arrive at X

j¼lmin

bðlÞjmω½−ðcuÞ2 þ 2scu − Λslmω

þjðjþ 1Þ − sðsþ 1Þ�Ysjm ¼ 0: ðA4Þ
As the angular dependence is carried by Ysjm [see
Eq. (A2)], we need to eliminate the u dependence in
Eq. (A4). To do so, we use the following recurrence relation
for the spin-weighted spherical harmonics [51]:

uYsjm ¼ YsjmYsðjþ1Þm þ ZsjmYsðj−1Þm þQsjmYsjm; ðA5Þ

where we can identify

Ysjm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þ2 −m2

ð2jþ 1Þð2jþ 3Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þ2 − s2

ðjþ 1Þ2

s
; ðA6Þ

Zsjm ¼
( ffiffiffiffiffiffiffiffiffi

j2−s2
j2

q ffiffiffiffiffiffiffiffiffiffi
j2−m2

4j2−1

q
; for j ≠ 0;

0; for j ¼ 0;
ðA7Þ

Qsjm ¼
�− ms

jðjþ1Þ ; for j ≠ 0 and s ≠ 0;

0; for j ¼ 0 or s ¼ 0:
ðA8Þ

From Eq. (A5), we can also obtain

u2Ysjm ¼ YsjmðQsðjþ1Þm þQsjmÞYsðjþ1Þm þ ZsjmðQsðj−1Þm þQsjmÞYsðj−1Þm þ ðYsjmYsðjþ1ÞmÞYsðjþ2Þm
þ ðZsjmZsðj−1ÞmÞYsðj−2Þm þ ðYsjmZsðjþ1Þm þ ZsjmYsðj−1Þm þQ2

sjmÞYsjm: ðA9Þ

Using Eqs. (A5) and (A9) together with Eq. (A4), we are left with

X
j¼lmin

bðlÞjmωf½2csQsjm − Λslmω þ jðjþ 1Þ − sðsþ 1Þ −c2ðYsjmZsðjþ1Þm þ ZsjmYsðj−1Þm þQ2
sjmÞ�Ysjm

þ ½2scYsjm − c2YsjmðQsðjþ1Þm þQsjmÞ�Ysðjþ1Þm þ ½2scZsjm − c2ZsjmðQsðj−1Þm þQsjmÞ�Ysðj−1Þm

− c2ðYsjmYsðjþ1ÞmÞYsðjþ2Þm−c2ZsjmZsðj−1ÞmYsðj−2Þmg ¼ 0: ðA10Þ

After some algebraic manipulations and noting that Ysðlmin−1Þm ¼ Ysðlmin−1Þm ¼ Ysðlmin−2Þm ¼ 0, we can obtain a five-term

recurrence relation for bðlÞjmω:

bðlÞjmω½2csQsjm þ jðjþ 1Þ − sðsþ 1Þ−c2ðYsjmZsðjþ1Þm þ ZsjmYsðj−1Þm þQ2
sjmÞ�

þ bðlÞðj−1Þmω½2scYsðj−1Þm − c2Ysðj−1ÞmðQsjm þQsðj−1ÞmÞ� þ bðlÞðjþ1Þmω½2scZsðjþ1Þm − c2Zsðjþ1ÞmðQsjm þQsðjþ1ÞmÞ�
− c2bðlÞðj−2ÞmωðYsðj−2ÞmYsðj−1ÞmÞ − c2bðlÞðjþ2ÞmωðZsðjþ2ÞmZsðjþ1ÞmÞ ¼ Λslmωb

ðlÞ
jmω: ðA11Þ

We can rewrite Eq. (A11) as an eigenvalue equation, namely,

X · bjmω ¼ Λslmωbjmω; ðA12Þ

where the coefficients bðlÞjmω are the elements of the eigenvectors matrix bjmω, and Λslmω are the elements of the eigenvalue
matrix. The nonzero elements of the matrix X are given by
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Xkðk−2Þ ¼ −c2Ysðk−2ÞmYsðk−1Þm
Xkðk−1Þ ¼ 2scYsðk−1Þm − c2Ysðk−1ÞmðQskm þQsðk−1ÞmÞ

Xkk ¼ ½2csQskm þ kðkþ 1Þ − sðsþ 1Þ−c2ðYskmZsðkþ1Þm þ ZskmYsðk−1Þm þQ2
skmÞ�

Xkðkþ1Þ ¼ 2scZsðkþ1Þm − c2Zsðkþ1ÞmðQskm þQsðkþ1ÞmÞ
Xkðkþ2Þ ¼ −c2Zsðkþ2ÞmZsðkþ1Þm: ðA13Þ

Therefore, if one solves Eq. (A12), both the angular separation constant Λslmω and the expansion coefficients bðlÞjmω are
determined.

Once that coefficients bðlÞjmω are known, we can compute the spin-weighted spheroidal harmonics via Eq. (A2), noting that
the spin-weighted spherical harmonics can be obtained through [52]:

YsjmðχÞ ¼
�ð2jþ 1Þ

4π

ðjþmÞ!ðj −mÞ!
ðj − sÞ!ðjþ sÞ!

�
1=2

�
sin

�
χ

2

��
2j Xpmax

p¼pmin

ð−1Þj−s−p ðjþ sÞ!
p!ðjþ s − pÞ!

ðjþ sÞ!
ðp −mþ sÞ!ðj − pþmÞ!

×

�
cot

�
χ

2

��
2p−mþs

; ðA14Þ

where pmin ¼ maxð0; m − sÞ and pmax ¼ minðj − s; jþmÞ. An alternative way to compute the spin-weighted spherical
harmonics can be found in Refs. [25,42].
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