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We study the superradiance effect in a class of scalar-tensor Horndeski theory. We first study the dynamics
of a massive charged scalar wave scattered off the horizon of a Reissner-Nordström black hole which, in
addition to its canonical coupling to gravity, is also coupled kinetically to curvature. We find that a trapping
potential is formed outside the horizon of a Reissner-Nordström black hole, due to this coupling, and as the
strength of the new coupling is increased, the scattered wave is superradiantly amplified, resulting in the
instability of the Reissner-Nordström spacetime. We then consider the backreacting effect of the scalar field
coupled to curvature interacting with the background metric, and we study the superradiant effect and find the
superradiance conditions of a massive charged wave scattered off the horizon of a Horndeski black hole.
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I. INTRODUCTION

It was shown by Penrose [1] that if a particle accretes into
a Kerr black hole, this process may result in the extraction
of energy from the black hole. This process suggests that
energy is extracted from the black hole. The same process
can be realized if you scatter waves off the black hole. It
was found by Misner [2] that this happens if the relation

ω < mΩ ð1:1Þ

is satisfied, where ω is the frequency of the incitant wave
and Ω is the rotational frequency of the black hole. Later, it
was shown by Teukolsky [3] that this amplification
mechanism also works in the case of electromagnetic
and gravitational waves if the condition (1.1) is satisfied.
Further, Bekenstein showed [4] that the Misner process can
also be realized by extracting charge and electrical energy
from a charged black hole. He showed that this is a
consequence of Hawking’s theorem that the surface area
of a black hole cannot decrease.
Introducing a reflecting mirror, it was suggested by Press

and Teukolsky [5] that the wave will be amplified as a result
of the bounce back and forth between the black hole and the
mirror. In the case of a rotating black hole, the role of the
reflecting mirror can be played by the mass of the scalar
field because the gravitational force binds the massive field
and keeps it from escaping to infinity once the condition
(1.1) is satisfied. As a consequence, the rotational energy
extracted from the black hole by the incident field grows

exponentially over time. A detailed investigation of the
superradiant amplification of a wave scattered off a Kerr
black hole surrounded by a mirror, was carried out in [6]. In
the case of extracting charge and electric energy from a
Reissner-Nordström black hole, the Misner condition (1.1)
is modified [4] to

ω < qΦ; ð1:2Þ

where q is the charge coupling constant of the field andΦ is
the electric potential of the charged black hole. The
superradiant scattering of charged scalar waves in the
regime (1.2) may lead to an instability of the Reissner-
Nordström spacetime. Recently there is a study of the
superradiance effect of a black hole immersed in an
expanding Universe [7]. Sufficient evidence was found
that there is extraction of energy from the neutral McVittie
black hole because of the shrinking of its apparent horizon
as the Universe expands.
The stability of Reissner-Nordström black holes under

neutral gravitational and electromagnetic perturbations was
established by Moncrief [8,9]. Evidence was provided in
[10–13] for the stability of charged Reissner-Nordström
black holes under charged scalar perturbations. The sta-
bility of extremal braneworld charged holes was studied in
[14], where it was shown that if the spacetime dimension is
higher than four, the superradiant amplification can occur.
In addition, the Einstein-Maxwell-Klein-Gordon equations
for a spherically symmetric scalar field scattering off a
Reissner-Nordström black hole in asymptotically flat
spacetime were considered in [15] and a superradiant
instability was found. The superradiance instability of
charged black holes placed in a cavity was studied in
[16–19] (for a recent review on superradiance, see [20]).
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The recent developments in AdS=CFT correspondence
[21] introduce an AdS spacetime as a natural reflecting
boundary on which the reflecting wave keeps amplifying,
making the system unstable. This results in the formation of
hairy black holes with a charged scalar field trapped outside
the black hole in which the electric repulsion balances the
scalar condensate against gravitational collapse. Hairy
black holes were constructed in global AdS5 spacetime
in [22–25]. The superradiant amplification of a wave packet
may result in the destabilization of the AdS spacetime itself
[26–29]. If we perturb the AdS spacetime with a scalar
field, the system evolves towards the formation of a black
hole [30–33]. The stability of near-extremal and extremal
charged hairy black hole solutions under charged massive
scalar field perturbations was studied in [34].
The application of the AdS=CFT correspondence to

condensed matter systems (for a review, see [35]) revived
interest in the dynamics of a scalar field outside a black hole
horizon and its stability. The transition of a metallic state to
a superconducting state, which is a strongly coupled
problem in condensed matter physics, can be described
by its dual weakly coupled gravity problem using the
AdS=CFT correspondence [21]. It was shown that the
effective mass of the scalar field which is trapped just
outside the horizon of a charged black hole [36,37]
becomes negative, breaking in this way an Abelian gauge
symmetry outside the horizon of the Reissner-Nordström
black hole, resulting in an instability of the Reissner-
Nordström spacetime.
In the case of de Sitter charged black holes, instabilities

were found in higher dimensions. It was showed in [38,39]
that higher dimensional Reissner–Nordström–de Sitter
black holes are gravitationally unstable for large values
of the electric charge in D7 spacetime dimensions. The
existence of such instability was proved analytically in the
near-extremal limit [40]. In four dimensions a superra-
diance instability was found [41] in the Reissner–
Nordström–de Sitter black holes against charged scalar
perturbations with vanishing angular momentum, l ¼ 0.
In this work, we study the effect of charged scalar

perturbations on the stability of local solutions of theories
in which a scalar field is kinetically coupled to curvature.
These theories belong to a general class of scalar-tensor
gravity theories resulting from the Horndeski Lagrangian
[42] which recently rediscovered [43], give second-order
field equations and contain as a subset a theory which
preserves classical Galilean symmetry [44–46].
This derivative coupling because it has the dimensions of

length squared, redefines other possible scales present in
the theory like the cosmological constant, giving in this
way various black hole solutions [47–50], while if one
considers the gravitational collapse of a scalar field coupled
to the Einstein tensor then a black hole is formed [51]. The
presence of the derivative coupling has different behaviors
during the cosmological evolution. It acts as a friction term

in the inflationary period [52–54] and also it gives self-
acceleration or self-tuning cosmological solutions [55,56].
Moreover, it was found that at the end of inflation in the
preheating period, there is a suppression of heavy particle
production as the derivative coupling is increased. This was
attributed to the fast decrease of kinetic energy of the scalar
field due to its wild oscillations [57]. This change of the
kinetic energy of the scalar field to Einstein tensor allowed
to holographically simulate the effects of a high concen-
tration of impurities in a material [58].
The above discussion indicates that one of the main

effects of the kinetic coupling of a scalar field to Einstein
tensor is that gravity influences strongly the propagation of
the scalar field compared to a scalar field minimally
coupled to gravity. We will use this property of the charged
scalar field coupled to Einstein tensor to study its behavior
outside the horizon of charged black holes. First we will
study the case of a test scalar field coupled to Einstein
tensor scattered off the horizon of a Reissner-Nordström
black hole. Will show that this new dimensionful derivative
coupling provides a scale for a confining potential, which is
an effect similar to the AdS radius provided by the
cosmological constant, and in the same time modifies
the Bekenstein’s superradiance condition (1.2) with the
derivative coupling appearing explicitly in the superra-
diance condition. Then for a wide range of parameters
satisfying the supperadiant condition, the charged scalar
field will be trapped in this confining potential leading to a
superradiant instability of the Reissner-Nordström black
hole. The stability of Reissner-Nordström and Kerr space-
times was discussed in [59–61] in a different context,
calculating the quasinormal frequencies and the greybody
factors in the presence of the derivative coupling.
These results of the superradiance instabilities of the

Reissner-Nordström black hole indicate that the back-
ground black hole may acquire scalar hair [29] and there-
fore we will study the backreacted effect. We will allow the
scalar field coupled to Einstein tensor to backreact to a
charged spherical symmetric background. This will lead to
the generation of hairy charge Galileon black holes. In
these solutions, the derivative coupling appears as a
parameter in these hairy solutions and then we will study
how the superradiance effect and the superradiance con-
ditions will be modified in the presence of this derivative
coupling in the cases of a time dependent scalar hair [62]
and of a static one [63].
The work is organized as follows. In Sec. II, we will

review the stability of a Reissner-Nordström black hole
under charge scalar perturbations of a scalar field mini-
mally coupled to gravity. In Sec. III, we introduce the
derivative coupling of a scalar field to the Einstein tensor
and we discuss the stability of the background Reissner-
Nordström black hole under charge scalar field perturba-
tions. In Sec. IV, we study the superradiance effect of the
charged Galileon black hole with time-dependent scalar
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hair in Sec. IV, the superradiance in the charged Galileon
black hole with static hair in Sec. V, and our conclusions are
in Sec. VI.

II. SUPPERRADIANT STABILITY OF THE
REISSNER-NORDSTRÖM BLACK HOLE

In this section, we will review the superradiant stability
of the Reissner-Nordström black hole discussed in [10,11].
Consider a Reissner-Nordström black hole of mass M and
electric charge Q with a metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð2:1Þ

where

fðrÞ≡ 1 −
2M
r

þQ2

r2
: ð2:2Þ

A massive charged scalar field was considered in the
Reissner-Nordström spacetime and its dynamics was
described by the Klein-Gordon equation

½ð∇ν − iqAνÞð∇ν − iqAνÞ − μ2�Ψ ¼ 0; ð2:3Þ

where Aν ¼ −δ0νQ=r is the electromagnetic potential of the
black hole. Here q and μ are the charge and mass of the
field, respectively. Consider a scalar wave of the form

Ψlmðt; r; θ;ϕÞ ¼ e−iωtRlmðrÞYðΩÞ; ð2:4Þ

where the angular part is given by

YðΩÞ ¼ eimϕSlmðθÞ; ð2:5Þ

where ω is the conserved frequency of the mode, l is the
spherical harmonic index, and m is the azimuthal harmonic
index with −l ≤ m ≤ l. The frequency mode ω is in general
complex consisting of real part ωR and an imaginary part
ωI . Then, if ωI > 0 we expect a growing mode to develop,
resulting in an instability [64–66]. In the corresponding
holographic picture of a fluid undergoing a phase tran-
sition, ωI defines the relaxation time T ¼ 1=ωI which is
needed for this instability to reach thermal equilibrium [67].
In the above decomposition, R and S denote the radial

and angular part and the radial Klein-Gordon equation is
given by [11]

Δ
d
dr

�
Δ
dR
dr

�
þUR ¼ 0; ð2:6Þ

where

Δ≡ r2 − 2MrþQ2; ð2:7Þ

and

U ≡ ðωr2 − qQrÞ2 − Δ½μ2r2 þ lðlþ 1Þ�: ð2:8Þ

To solve the radial equation (2.6) we impose boundary
conditions of purely ingoing waves at the black-hole
horizon and a decaying solution at spatial infinity

R ∼ e−iðω−qQ=rHÞy as r → rH ðy → −∞Þ; ð2:9Þ

and

R ∼ y−iqQe−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
y as r → ∞ ðy → ∞Þ; ð2:10Þ

where the “tortoise” radial coordinate y is defined by
dy ¼ ðr2=ΔÞdr. Because the energy of the incident wave is
positive, the frequencies are restricted to the superradiant
regime (1.2), and the boundary condition (2.9) describes an
outgoing flux of energy and charge from the charged black
hole [4,5]. As it was shown in [68] these boundary
conditions lead to a discrete set of resonances fωng which
correspond to the bound states of the charged massive field.
Defining a new ψ function

ψ ≡ Δ1=2R; ð2:11Þ

Eq. (2.6) can be written in the form of a Schrödinger-like
wave equation

d2ψ
dr2

þ ðω2 − VÞψ ¼ 0; ð2:12Þ

where

ω2 − V ¼ U þM2 −Q2

Δ2
: ð2:13Þ

Then it was shown in [10,11] that there is no superradiant
amplification for the charged Reissner-Nordström black
holes because mainly two necessary conditions cannot be
satisfied simultaneously namely, the condition of super-
radiant amplification (1.2) and the existence of a trapping
potential well.

III. SUPERRRANDIANCE INSTABILITY OF THE
REISSNER-NORDSTRÖM BLACK HOLE WITH

THE DERIVATIVE COUPLING

In the previous section, we discussed the superradiance
effect of a massive charge scalar field coupled minimally to
Gravity resulting from the action

S0 ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R

16πG
− gμνDμΨðDνΨÞ�

−
1

4
FμνFμν − μ2jΨj2

�
; ð3:1Þ
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where Dμ ≡∇μ − iqAμ and Fμν ¼ ∂μAν − ∂νAμ. In what
follows, G ¼ c ¼ 1. We note here that the only scale in the
theory is provided by the mass of the scalar field.
We wand to generalize this action adding a coupling of

the scalar field to Einstein tensor

S0 ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R

16πG
− ðgμν − βGμνÞDμΨðDνΨÞ�

−
1

4
FμνFμν − μ2jΨj2

�
: ð3:2Þ

The motivation for introducing this coupling is twofold.
First of all, the coupling of the scalar field to the Einstein
tensor Gμν captures the strong gravity effects. As it was
discussed in the introduction this coupling modifies the
kinetic properties of the scalar field. The scalar field feels
the strong gravity force and the net result is its kinetic

energy to be reduced [51,54,57,58]. Therefore it would be
interesting to see what is the effect of this coupling to the
superradiance effect.
Varying the action (3.2) we get the Einstein equations

Gμν ¼ 8πTμν; Tμν ¼ TðΨÞ
μν þ TðEMÞ

μν − βΘμν; ð3:3Þ

where TðΨÞ
μν , TðEMÞ

μν are the energy-momentum tensors of the
scalar and electromagnetic fields

TðΨÞ
μν ¼ Ψμν þ Ψνμ − gμνðgabΨab þ μ2jΨj2Þ; ð3:4Þ

TðEMÞ
μν ¼ Fμ

αFνα −
1

4
gμνFαβFαβ; ð3:5Þ

while Θμν is the contribution to the energy-momentum
tensor of the Gμν term

Θμν ¼ −gμνRabΨab þ Rν
aðΨμa þ ΨaμÞ þ Rμ

aðΨaν þ ΨνaÞ −
1

2
RðΨμν þ ΨνμÞ

−GμνΨ −
1

2
∇a∇μðΨaν þ ΨνaÞ −

1

2
∇a∇νðΨμa þΨaμÞ þ

1

2
□ðΨμν þ ΨμνÞ

þ 1

2
gμν∇a∇bðΨab þ ΨbaÞ þ 1

2
ð∇μ∇ν þ∇ν∇μÞΨ − gμν□Ψ: ð3:6Þ

The Klein-Gordon equation is

ð∂μ − iqAμÞ½
ffiffiffiffiffiffi
−g

p ðgμν − βGμνÞð∂ν − iqAνÞΨ� ¼
ffiffiffiffiffiffi
−g

p
μ2Ψ;

ð3:7Þ

and the Maxwell equations are

∇νFμν þ ðgμν − βGμνÞ½2q2AνjΨj2
þ iqðΨ�∇νΨ − Ψ∇νΨ�Þ� ¼ 0: ð3:8Þ

For convenience we had set

Ψμν ≡DμΨðDνΨÞ�; ð3:9Þ

Ψ≡ gμνΨμν: ð3:10Þ

This action if β ¼ 0 represents a massive charged scalar
field with canonical kinetic terms coupled to gravity. If
β ≠ 0 then this scalar field is coupled directly to curvature
through its coupling to the Einstein tensor Gμν. We have to
solve the Einstein-Maxwell-scalar field equations (3.3),
(3.7), and (3.8). To get an insight to the superradiance
effect, we will first solve this system in the probe limit,
assuming that the scalar field does not backreact to the
metric. This means that the Reissner-Nordström metric
solves the Einstein equations and the scalar field acts like a

test field. In the next two sections, we will study the
superradiance effect of the backreacting solutions [47–50]
resulting from the action (3.2).
Before we proceed we will discuss the motivation for

considering the action (3.2). As we discussed in the
previous section, if we scatter a scalar field with canonical
kinetic terms (β ¼ 0 in the action (3.2) we considered) off
the horizon of a Reissner-Nordström black hole, we do not
see any superradiance amplification. The main reason for
this is that because asymptotically the space is flat there is
no any barrier or trapping potential to capture the reflected
wave and inspite that the Bekenstein superradiance con-
dition is satisfied we do not have an amplification of the
scalar wave which would have to result in an instability of
the Reissner-Nordström background metric [10,11]. As we
will discuss in the following, the presence of the derivative
coupling modifies the Bekenstein superradiance condition
and in the same time generates a confining potential outside
the horizon of the Reissner-Nordström black hole and this
will lead to an instability of the background metric.
The action (3.2) we considered is part of the shift-

symmetric Horndeski action [42]. The new information it
introduces the derivative coupling β of the scalar field to
Einstein tensor, which has the dimensions of length
squared, is a scale in the theory which effectively on short
distances acts as a cosmological constant [47–50].
Therefore, the space is not any more flat and as it was
shown in [49] a potential well is formed near the horizon of
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a Reissner-Nordström. Having this result, in this paper, we
will study the superradiance effect of a massive charge
scalar field coupled to Curvature in the background of a
Reissner-Nordström black hole.
Considering the Reissner-Nordström metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð3:11Þ

with fðrÞ ¼ 1–2M=rþQ2=r2 and an electromagnetic
potential At ¼ − Q

r we decompose the scalar field as in (2.4)

Ψ ¼ e−iωteimφSðθÞψðrÞ
r

: ð3:12Þ

Then the radial equation resulting from the Klein-Gordon
equation (3.7) using (3.12) can be written in a Schrödinger-
like form

d2ψ
dr2�

þ UeffðrÞψðr�Þ ¼ 0; ð3:13Þ

where we have defined the “tortoise” coordinate

dr�
dr

¼ r2

fðrÞðr2 þ βð1 − f − rf0ÞÞ ð3:14Þ

and the effective potential is given by

Ueff ¼
�
ω −

qQ
r

�
2

− f

�
lðlþ 1Þ

r2
þ μ2 þ f0

r2

�

þ β

�
−
ðf − 1Þð2f2 − flðlþ 1Þ þ 2q2Q2Þ

r4
þ ðfμ2 − 2ω2Þf0

r

þ 4ðf − 1ÞqQωþ 2ðf½f − 1þ lðlþ 1Þ� − q2Q2Þf0
r3

þ 2ðf − 1Þðfμ2 − 2ω2Þ þ 8qQωf0 þ 4fðf0Þ2 þ f½2f þ lðlþ 1Þ�f00
2r2

�

þ β2
�ðf − 1Þ2ð2f2 þ q2Q2Þ

r6
þ ω2ðf0Þ2

r2

þ ðf − 1Þð−2ðf − 1ÞqQωþ ðfð1þ f − lðlþ 1ÞÞ þ 2q2Q2Þf0Þ
r5

−
f0ð−4ðf − 1Þω2 þ 4qQωf0 þ 2fðf0Þ2 þ fð2f þ lðlþ 1ÞÞf00Þ

2r3

þ ðf − 1Þð2ðf − 1Þω2 − fð2f þ lðlþ 1ÞÞf00Þ
2r4

−
8ðf − 1ÞqQωf0 þ 2ðfð2ðf − 1Þ þ lðlþ 1ÞÞ − q2Q2Þðf0Þ2

2r4

�
: ð3:15Þ

Note that the effective potential because of the presence
of the derivative coupling β has the lapse function at second
order and this introduces high order terms in the radial
coordinate r. Then the effective potential depends on seven
parameters UeffðM;Q; μ; q;ω; l; βÞ and even its numerical
study is difficult.
The effective potential at infinity goes like

U∞ ∼ ω2 − μ2; ð3:16Þ
while near the horizon can be approximated as

UrH ∼
ðr2H þ βΦ2Þ2ðω − qΦÞ2

r4H
þOðr − rHÞ; ð3:17Þ

where Φ ¼ Q=rH is the electric potential at the horizon.

In a scattering experiment, the Klein-Gordon equa-
tion (3.13) has the following asymptotic behavior,

ψ ∼
�Te−iσr� ; as r → rH

e−ir�
ffiffiffiffiffiffiffiffiffiffi
ω2−μ2

p
þ Reir�

ffiffiffiffiffiffiffiffiffiffi
ω2−μ2

p
; as r → ∞

ð3:18Þ

where we have set

σ ≡ ðr2H þ βΦ2Þðω − qΦÞ
r2H

: ð3:19Þ

These boundary conditions correspond to an incident
wave of unit amplitude from spatial infinity, giving rise to a
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reflected wave of amplitude R and a transmitted wave of
amplitude T at the horizon.
Since the effective potential is real, there exists another

solution ψ̄ to (3.13) which satisfies the complex conjugate
boundary conditions [69]. The solutions ψ and ψ̄ are
linearly independent and, thus, their Wronskian W ¼
ψ d

dr�
ψ̄ − ψ̄ d

dr�
ψ is independent of r�. Evaluating the

Wronskian at the horizon and infinity, respectively, we get

Wðr → rHÞ ¼ 2iσjTj2; ð3:20Þ

Wðr → ∞Þ ¼ −2iðjRj2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

q
; ð3:21Þ

and by equating the two values, we get

jRj2 ¼ 1 −
σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − μ2
p jTj2: ð3:22Þ

We can see that if σ < 0, the wave is superradiantly
amplified, jRj2 > 1 [70]. So, the superradiant condition
(1.2) in the presence of the derivative coupling is modified
to

ðr2H þ βΦ2Þðω − qΦÞ < 0: ð3:23Þ

To see whether the superradiance will cause the insta-
bility of the Reissner-Nordström black hole, we need to
check whether there exists a potential well outside the
horizon to trap the reflected wave. If the potential well
exists, the superradiant instability will occur, and the wave
will grow exponentially over time near the black hole to
make the background Reissner-Nordström black hole
unstable. We are interested in solutions of the radial
equation (3.13) with the physical boundary conditions of
purely ingoing waves at the horizon and a decaying
solution at spatial infinity. A bound state decaying expo-
nentially at spatial infinity is characterized by ω2 < μ2. We
choose the parameters M;Q; μ; q; β;ω to meet this con-
dition together with the superradiant condition (3.23). In
what follows we will set l ¼ 0 and fix the horizon
at rH ¼ 1.

A. Case I: ω < qΦ and r2H + βΦ2 > 0

We will first examine the case where ω < qΦ and β > 0
so that (3.23) is satisfied. Our aim is to see if a trapping
potential is formed outside the horizon of the black hole.
Since the effective potential (3.15) is a high-order poly-
nomial in the radial coordinate r and therefore its analytical
treatment is difficult, we will rely on its numerical inves-
tigation. We intend to study the effective potential (3.15)
systematically, varying its parameters to get mainly the
following physical information. First, what is the range of
parameters Q and M for which a trapping potential is
formed and, second, if the scalar field is strongly coupled to

curvature (large β) does the potential well depends? To do
that, we will fix the parameters q and ω, μ as the relation
ω2 < μ2 to be satisfied and leave the others free to vary.
In Table I, we give the ratio ðQ=MÞ2 for various values of

Q and M. Our criterion for building up the values that
appear in Table I was that we looked among the various
values of the ratio ðQ=MÞ2 to such values of the ratio
approaching one (near-extremal case), one (extremal limit),
and far way from one. For a characteristic value ofQ andM
in the first part of Table I, we depict the effective potential
as a function of r in Fig. 1, while in Fig. 2 we depict the

TABLE I. The first and third sections correspond to a ratio less
than 8=9, while the second greater than 8=9.

M Q ðQ=MÞ2
0.505 0.1 0.039
0.52 0.2 0.148
0.545 0.3 0.303
0.58 0.4 0.476
0.625 0.5 0.640
0.68 0.6 0.779
0.745 0.7 0.883

0.82 0.8 0.952
0.905 0.9 0.989
1. 1. 1.000
1.105 1.1 0.991
1.22 1.2 0.967
1.345 1.3 0.934
1.48 1.4 0.895

1.625 1.5 0.852
1.78 1.6 0.808
1.945 1.7 0.764
2.12 1.8 0.721
2.305 1.9 0.679
2.5 2. 0.640

r

15

10

5

10

Ueff

1.2 1.4 1.6 1.8 2.0 2.2

5

FIG. 1. The potential as a function of the radial coordinate for
coupling constant β ¼ 150, β ¼ 100, β ¼ 50 (blue, red, green),
mass and charge for the black hole and the scalar field
M ¼ 0.625, Q ¼ 0.5, μ ¼ 0.63, q ¼ 0.86, respectively, and
ω ¼ 0.34.
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effective potential as a function of r for a characteristic
value of Q and M in the second part of the Table I. We
observe that irrespective of the value of the ratio Q=M a
trapped potential is formed outside the horizon of the black
hole and most importantly as the derivative coupling β is
increased and the ratio ðQ=MÞ2 approaching the extremal
limit the potential well gets deeper. This suggests that as the
strength of the coupling of the scalar field to curvature is
increased and the black hole approaches its extremal limit,
the superradiant instability is amplified.
Finally, in Fig. 3, we depict the effective potential as a

function of r for fixed values of ω, μ, q, β and for different
values ofQ andM belonging to the third part of Table I. We
observe that the potential well is deeper as the ratio Q=M
gets smaller. This corresponds to larger values of the mass
M and chargeQ since we are in the third part of the Table I.

This suggests that a highly charged massive black hole
radiates more.
We note that the behavior shown in the above figures are

characteristic of the non zero value of the derivative
coupling. If β ¼ 0 then we can see from (3.15) that the
effective potential does not develop a well and the we do
not expect superradiance amplification [11].

B. Case II: ω > qΦ and r2H + βΦ2 < 0

We consider now the case where ω > qΦ and
β < −ðrH=ΦÞ2, so again (3.23) is satisfied. This case is
interesting. In [47,49] fully backreacted black hole solu-
tions were found in the presence of the derivative coupling
β. However, these solutions exists only in the case of
positive coupling while if the coupling constant β is
negative, then the system of Einstein-Maxwell-Klein-
Gordon equations is unstable and no solutions were
found. In [57], a very small window of negative β was
shown to be allowed. For negative derivative coupling the
stability of the Galileon black holes was investigated but
there is no conclusive result. For example, in [71,72], the
black hole quasinormal modes in a scalar-tensor theory
with field derivative coupling to the Einstein tensor were
calculated.
In our study in this section, the scalar field coupled to

Einstein tensor does not backreact on the fixed Reissner-
Nordström background metric. Therefore, the physical
propagating degrees of freedom do not interact with the
background metric to alter it. The same is happening in
cosmology. It is known that the effect of the derivative
coupling in a fixed FRW background metric, has the effect
that for β positive the Universe contracts and if β is negative
the Universe expands [53]. The reason for this behavior is
that the derivative coupling defines an effective cosmo-
logical constant. Also the stability of a static Universe was

100

50

50

100

1.2 1.4 1.6 1.8 2.0 2.2 2.4
r

Ueff

FIG. 3. The potential as a function of the radial coordinate for
coupling constant β ¼ 10, mass and charge for the scalar field
q ¼ 0.86, μ ¼ 1.63, ω ¼ 1.28. The ratio ðQ=MÞ2 is 0.852, 0.808,
0.760, 0.720, 0.679, 0.64 (red, orange, yellow, green, blue, cyan),
respectively.

r

0.3

0.2

0.1

0.1

0.2

Ueff

2 3 4 5 6 7

FIG. 4. The potential as a function of the radial coordinate
for coupling constant β ¼ −45, β ¼ −35, β ¼ −25 (blue, red,
green), mass and charge for the black hole and the scalar
field M ¼ 0.625, Q ¼ 0.5, μ ¼ 1.63, q ¼ 1.6, respectively,
and ω ¼ 1.6.
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FIG. 2. The potential as a function of the radial coordinate for
coupling constant β ¼ 200, β ¼ 100, β ¼ 50 (blue, red, green),
mass and charge for the black hole and the scalar fieldM ¼ 0.82,
Q ¼ 0.8, μ ¼ 0.63, q ¼ 0.86, respectively, and ω ¼ 0.6.
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studied in [72] where conditions for the coupling was found
for both signs of β. In the next sections where we study the
backreacting effects, we take the derivative coupling to be
positive (opposite sign to the usual kinetic term).
In Figs. 4 and 5, we depict the effective potential as a

function of r, again for two characteristic values of the ratio
Q and M belonging to the first and second part of Table I.
As before, in both cases we found that there exists a
negative minima of the potential well which gets deeper for
larger (absolute) values of the derivative coupling β.
Therefore, for a range of parameters satisfying relation
(3.23), for ω > qΦ and a negative β there is a confining
potential, indicating that there should be an instability in the
system of a charged scalar field scattered off a Reissner-
Nordström black hole and this is due to superrandiant
amplification.

An interesting behavior is observed if we fix the value of
the derivative coupling β. Then, in Fig. 6, we depict the
effective potential as a function of r for fixed values of ω, μ,
q, β and we vary the values of change Q and mass M
belonging to the first part of Table I. We see that as the ratio
is increased eventually a trapping potential is formed. Note
that this happening as the charge Q is increased. In Fig. 7,
we depict the effective potential for values of Q and M
which they belong to the second part of the Table I. We
observe that a trapping potential is formed only for values
of Q and M which they give a ratio that it is far away from
the extremal limit or the near extremal limit. Finally in
Fig. 8, we see the formation of a trapping potential for
values ofQ andM belonging to the third part of Table I. We
observe that as the mass M and charge Q in increased the
potential well gets deeper.
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r

FIG. 6. The potential as a function of the radial coordinate for
coupling constant β ¼ −120, mass and charge for the scalar field
q ¼ 0.86, μ ¼ 0.63, ω ¼ 0.62. The ratio ðQ=MÞ2 is 0.64, 0.779,
0.883 (red, blue, green), respectively.
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r
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1.2 1.4 1.6 1.8 2.0

FIG. 7. The potential as a function of the radial coordinate for
coupling constant β ¼ −50, mass and charge for the scalar field
q ¼ 0.4, μ ¼ 0.63, ω ¼ 0.6. The ratio ðQ=MÞ2 is 0.952, 0.989,
1.000, 0.991, 0.967, 0.939, 0.895 (red, orange, yellow, green,
blue, cyan, black), respectively.
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FIG. 8. The potential as a function of the radial coordinate for
coupling constant β ¼ −20, mass and charge for the scalar field
q ¼ 0.6, μ ¼ 1.63, ω ¼ 1.28. The ratio ðQ=MÞ2 is 0.852, 0.808,
0.760, 0.720, 0.679, 0.64 (red, orange, yellow, green, blue, cyan),
respectively.
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FIG. 5. The potential as a function of the radial coordinate for
coupling constant β ¼ −100, β ¼ −50, β ¼ −25 (blue, red,
green), mass and charge for the black hole and the scalar
field M ¼ 0.82, Q ¼ 0.8, μ ¼ 1.63, q ¼ 0.9, respectively,
and ω ¼ 1.6.
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IV. SUPERRADIANCE IN THE CHARGED
GALILEON BLACK HOLE WITH TIME

DEPENDENT HAIR

In the previous sections, we have investigated the
instability of the Reissner-Nordström black hole, when
the incident wave is described by a charged scalar field,
coupled to gravity and to the Einstein tensor. In what
follows, we will examine the case where the scalar field φ

coupled to Einstein tensor backreacts to the background
metric. As shown in [50], a hairy black hole is generated,
the charge Galileon black hole. Then we will consider a
complex, massive, charged scalar field ϕ of mass μ and
charge q scattered off the horizon of the Galileon black hole
and we will study if superradiance radiation.
We consider a general action in which we have also

included a coupling of the gauge field to the scalar field φ

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

4
FμνFμν − ηgμν∂φμ∂φν þ βGμν∇μφ∇νφ − γTμν∇μφ∇νφ

− η0ðDμϕÞ�ðDμϕÞ − μ2ϕϕ�
�
; ð4:1Þ

where Dμ ¼ ∇μ − iqAμ and Fμν ¼ ∇μAν −∇νAμ. Varying the action (4.1), we get the Einstein equations,

Gμν ¼ Tð1Þ
μν þ Tð2Þ

μν þ Tð3Þ
μν þ Tð4Þ

μν þ Tϕ
μν; ð4:2Þ

where we have defined

Tð1Þ
μν ¼ −Λgμν þ TðMÞ

μν ;

Tð2Þ
μν ¼ β

�
1

2
∇μφ∇νφR − 2∇λφ∇ðμφRλ

νÞ −∇λφ∇ρφRμλνρ − ð∇μ∇λφÞð∇ν∇λφÞ þ ð∇μ∇νφÞ□φ;

þ 1

2
Gμνð∇φÞ2 − gμν

�
−
1

2
ð∇λ∇ρφÞð∇λ∇ρφÞ þ

1

2
ð□φÞ2 −∇λφ∇ρφRλρ

��
;

Tð3Þ
μν ¼ 1

2
γ

�
FμσFνρ∇σφ∇ρφþ ðFμσFβσ∇βφ∇νφþ FνσFβσ∇βφ∇μφÞ −

1

2
gμνFβσFτ

σ∇βφ∇τφ

þ 1

8
gμν∇ρφ∇ρφFτβFτβ −

1

2
FμσFν

σ∇ρφ∇ρφ −
1

4
∇μφ∇νφFτβFτβ

�
;

Tð4Þ
μν ¼ η

�
∂μφ∂νφ −

1

2
gμν∂σφ∂σφ

�
;

with

TðMÞ
μν ≡ 1

2

�
FμσFν

σ −
1

4
gμνFαβFαβ

�
; ð4:3Þ

and

Tϕ
μν ¼ −

μ2

2
gμνjϕj2 þ

η0

2
ð−gμν∇κϕ

�∇κϕþ∇μϕ
�∇νϕþ∇μϕ∇νϕ� − 2q2AμAνjϕj2

− q2gμνAκAκjϕj2 − iqAκgμνðϕ�∇κϕ − ϕ∇κϕ
�ÞÞ:

Assuming that the scalar field ϕ is a test field and it does not backreact to the metric (that is, keeping linear terms of ϕ) we
end up with the coupled system of Einstein-Maxwell equations,

Gμν ¼ Tð1Þ
μν þ Tð2Þ

μν þ Tð3Þ
μν þ Tð4Þ

μν ; ð4:4Þ

∂μ

� ffiffiffiffiffiffi
−g

p �
Fμν − γ

�
1

2
Fμν∇σφþ ðFσ

μ∇νφ − Fσ
ν∇μφÞ

�
∇σφ

��
¼ 0; ð4:5Þ
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while the scalar field equation reads

∇μ½ðβGμν − ηgμν − γTμν
ðMÞÞ∇νφ� ¼ 0: ð4:6Þ

A static spherically symmetric metric of the form,

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ; ð4:7Þ

was assumed in [62] and the scalar field was taken to be
linearly time dependent as

φðt; rÞ ¼ qstþ ψðrÞ; ð4:8Þ

while the electromagnetic potential turned out to be

Aμdxμ ¼ AðrÞdt − P cosðθÞdφ: ð4:9Þ

A solution to the above equations in the special case where
hðrÞ ¼ fðrÞ was found,

hðrÞ ¼ 1 −
μ

r
þ ηr2

3β
þ γðQ2 þ P2Þ

4βr2
;

ðψ 0ðrÞÞ2 ¼ 1 − fðrÞ
fðrÞ2 qs2;

Ftr ¼ FðrÞ ¼ Q
r2
; Fθφ ¼ CðθÞ ¼ P sinðθÞ:

ð4:10Þ

The coupling constants, along with the integration con-
stants and the parameter qs are related as

P2βðΛγ þ ηÞ ¼ Q2ηðγ − βÞ; qs2 ¼
ηþ Λβ
βη

;

C0 ¼
1

η
ðη − βΛÞ: ð4:11Þ

Recently the stability of the black hole solution (4.10)
was discussed in details in [73]. It was found that the
couplings η and β should have the opposite signs to
guarantee the stability of the formed black hole solution.

A. The dynamics of the scalar field ϕ outside
the charge Galileon black hole

We study now the scattering of the test massive charged
scalar field ϕ off the horizon of the charge Galileon black
hole. The dynamics is described by the Klein-Gordon

equation (we redefine μ2

η0 ≡ μ2s)

½ð∇ν − iqAνÞð∇ν − iqAνÞ − μ2s �ϕ ¼ 0: ð4:12Þ
We decompose ϕðt; r; θ;ϕÞ as

ϕðt; r; θ;ϕÞ ¼ e−iωtRðrÞYðθ;ϕÞ: ð4:13Þ

In the above decomposition R and Y denotes the radial and
angular part of the solution. Then the Klein-Gordon
equation takes the form

−
1

fðrÞ
∂2ϕ

∂t2 þ f
∂2ϕ

∂r2 þ 1

r2
∂2ϕ

∂θ2 þ
1

r2sin2θ
∂2ϕ

∂ϕ2
þ cos θ
r2 sin θ

∂ϕ
∂θ þ 2iqP

r2
cos θ
sin2θ

∂ϕ
∂ϕ

−
q2P2

r2
cos2θ
sin2θ

ϕ

þ
�
rf0ðrÞ þ 2f

r

� ∂ϕ
∂r −

2iqQ
rfðrÞ

∂ϕ
∂t

þ
�
q2Q2 − μ2sr2fðrÞ

r2fðrÞ
�
ϕ ¼ 0; ð4:14Þ

while the angular part takes the form

1

r2

� ∂2

∂θ2 −
m2

sin2θ
þ cos θ

sin θ
∂
∂θ þ

2i2mqP cos θ
sin2θ

−
q2P2cos2θ

sin2θ

�
YðθÞ ¼ λYðθÞ: ð4:15Þ

Applying the transformations Y → 1ffiffiffiffiffiffiffi
sin θ

p Ỹ, this equation can be written in the form of the Jacobi differential equation, and it

admits the corresponding solution with eigenvalues

λ ¼ −ðnþ 1Þðnþ qPÞ: ð4:16Þ

When the magnetic charge P is zero, the Jacobi equation reduces to Legendre differential equation, with eigenvalues
nðnþ 1Þ, while the eigenfunctions turn out to be the spherical harmonics Ylm. Meanwhile, when P ¼ 0 and β ¼ 0 the
metric reduces to the Reissner-Nordström spacetime, as discussed in Sec. II.
Now we can go back to Klein-Gordon of the full solution, which, after substitutions, reduces to the radial Klein-Gordon

equation
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fðrÞ d
2RðrÞ
dr2

þ
�
rf0ðrÞ þ 2fðrÞ

r

�
dRðrÞ
dr

þ
�ðωr − qQÞ2 − ððnþ 1Þðnþ qPÞ þ μ2sr2ÞfðrÞ

r2fðrÞ
�
RðrÞ ¼ 0: ð4:17Þ

When r → rH we have fðrÞ ¼ 0 and then the third term is divergent at the horizon. To avoid this, we take the coordinate
transformation to the tortoise coordinate r�, dr� ¼ 1

fðrÞ dr. Then the radial Klein-Gordon equation becomes

R00ðr�Þ þ 2fðrÞR0ðr�Þ
r

þ
�ðωr − qQÞ2 − ððnþ 1Þðnþ qPÞ þ μ2sr2ÞfðrÞ

r2

�
Rðr�Þ ¼ 0: ð4:18Þ

We can bring this equation in a Schrödinger-like form

d2Rðr�Þ
dr�2

þUeffðrÞ
r2

Rðr�Þ ¼ 0; ð4:19Þ

where the Ueff is the effective potential, given by the relation

UeffðrÞ ¼ ðωr − qQÞ2 − fðrÞ½ðnþ 1Þðnþ qPÞ þ rf0ðrÞ þm2r2�: ð4:20Þ

As we can see, the effective potential encodes all the
information about the background and the test scalar
field. More specifically, the fðrÞ metric function has
the derivative coupling constant β as a parameter that
interest us.
Now we have to determine the solutions of the radial

component of the scalar field at the boundaries. Let us
assume that the potential is rea1. Then, since the back-
ground is stationary, the field equations are invariant
under the transformations t → −t and ω → −ω. Thus,
there exists another solution R̄ which satisfies the complex
conjugate boundary conditions. The solutions R and R̄ are
linearly independent and thus their Wronskian is indepen-
dent of r�.
At the horizon, fðrÞ ¼ 0 and UeffðrÞ ¼ ðrω − qQÞ2, so

we get the solution

Rðr�Þ ¼ C1;he
i
ðrhω−qQÞr�

rh þ C2;he
−iðrhω−qQÞr�

rh ; ð4:21Þ

where the presence of a horizon compels the amplitude C1;h

to be zero, while C2;h is the amplitude of the trans-
mitted wave.
To study the equation’s behavior at large r, we first have

to notice that in this case, the fact that our metric is not
asymptotically flat, affects the form of the effective
potential which at large distances is,

Ueff ¼ω2−μ2s −
2η

3β
−
ηðnþ 1ÞðnþqPÞ

3β
− r2

�
μ2sη

3β
þ 2η2

9β2

�
:

ð4:22Þ

If we want to have a Schrodinger-like equation for the
radial component of the scalar field at the r → ∞ limit, we
have to impose the following relation between the coupling
constants

η ¼ −
3μ2β

2η0
: ð4:23Þ

Then Ueff equals now a constant and the resulting solution
reads

Rðr�Þ ¼ C1;∞e
i

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−μ2s−

2η
3β−

ηðnþ1ÞðnþqPÞ
3β

p 

r�

þ C2;∞e
−i
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2−μ2s−
2η
3β−

ηðnþ1ÞðnþqPÞ
3β

p 

r�
; ð4:24Þ

where C2;∞ corresponds to the amplitude of an incident
wave from spatial infinity and C1;∞ to the amplitude of the
reflected wave.

1. Superradiance condition

Now that we have determined the solutions of the R
component of the scalar field at the boundaries, we are able
to evaluate the Wronkians of two linearly independent
solutions at the boundaries

Wðr → rHÞ ¼ −2ikHjC2;Hj2;
Wðr → ∞Þ ¼ 2ik∞ðjC1;∞j2 − jC2;∞j2Þ: ð4:25Þ

Taking the two expressions to be equal, we find

jC1;∞j2 ¼ jC2;∞j2 −
kH
k∞

jC2;Hj2: ð4:26Þ

For kh
k∞

< 0 the wave is superradiantly amplified. In this

case, kH ¼ ωrH−qQ
rH

and k∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2s −

2η
3β −

ηðnþ1ÞðnþqPÞ
3β

q
,

so we end up with the inequality
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ðrHω − qQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2s −

2η
3β −

ηðnþ1ÞðnþqPÞ
3β

q < 0; ð4:27Þ

which leads us to the superradiant condition

rHω < qQ: ð4:28Þ
This condition is the Bekenstein superradiance condition
for the Galileon black hole with a time dependent scalar
field backreacting to the metric. The information of the
derivative coupling enters the final inequality via the rH,
affecting the superradiance condition. We also have to
underline the fact that, only waves with

ω2 > μ2s þ
2η

3β
þ ηðnþ 1Þðnþ qPÞ

3β
; ð4:29Þ

propagate to infinity restricting in this way the allowed
values of the frequency ω of the incitant wave.
Before ending this section, we note that the constraint

(4.23) which it is imposed in order to have superradiance,
connects the scattered test wave parameters of its mass and
its kinetic energy with the parameters of the background
Galileon black hole.

V. SUPERRADIANCE IN THE CHARGED
GALILEON BLACK HOLE WITH STATIC HAIR

We will study the superradiance effect of a specific
model of a hairy Galileon black hole [63]. In this model the
scalar field is coupled to the background only with the
Einstein tensor. Under the presence of an electric field, an
asymptotically locally flat hairy black hole solution was
obtained in the presence of a cosmological constant. The
action is given by

I½gμν;φ� ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
κðR − 2ΛÞ

þ β

2
Gμν∇μφ∇νϕ −

1

4
FμνFμν

�
; ð5:1Þ

where κ ¼ 1
16πG. Then the following solution was found

ds2 ¼ −FðrÞdt2 þ 15½4κr2ð2 − Λr2Þ − q2�2
r4

dr2

FðrÞ þ r2dΩ2;

ð5:2Þ
where

FðrÞ ¼ 48κ2Λ2r4 − 320κ2Λr2 þ 120κð8κ þ Λq2Þ

−
μ

r
þ 240κ

q2

r2
− 5

q4

r4
; ð5:3Þ

ψðrÞ2 ¼ −
15

2

ð4κΛr4 þ q2Þð4κr2ð2 − Λr2Þ − q2Þ2
r6β

1

FðrÞ ;

ð5:4Þ

A0ðrÞ ¼
ffiffiffiffiffi
15

p �
q3

3r3
− 8κ

q
r
− 4κΛrq

�
; ð5:5Þ

where ψðrÞ ¼ φ0ðrÞ. Observe that the derivative coupling β
does not appear in the metric function but only in the scalar
field solution.
As before, we consider a massive test scalar wave Y ¼

Ylmðt; r; θ;ϕÞ in the background of the above black hole
solution. The dynamics of this wave is described by the
Klein-Gordon equation

½ð∇ν − iqAνÞð∇ν − iqAνÞ − μ2�Y ¼ 0; ð5:6Þ

where electromagnetic potential Aν is given by (5.5). Then
writing the scalar field as

Ylm ¼ eimϕSðθÞRðrÞe−iωt; ð5:7Þ

where ω is the conserved frequency, l is the spherical
harmonic, andm is the azimuthal harmonic. R and S denote
the radial and angular part, and the radial Klein-Gordon
equation is

Δ
�
d
dr

Δ
dR
dr

�
þ UR ¼ 0; ð5:8Þ

where

Δ ¼ Fr2ffiffiffiffi
X

p ; ð5:9Þ

and

U ¼ ðωr2 − qAr2Þ2 − Δð
ffiffiffiffi
X

p
lðlþ 1Þ þ μ2

ffiffiffiffi
X

p
r2Þ:

ð5:10Þ

For our convenience, we have define X ¼ 15½4κr2ð2−Λr2Þ−Q2�2
r4 .

Defining a new function Ψ,

Ψ ¼ Δ1
2R; ð5:11Þ

Eq. (5.11) can be written in the form of a Schrondinger-like
wave equation

dΨ2

dr2
þ VΨ ¼ 0; ð5:12Þ

where

V ¼ 1

4Δ2

��
dΔ
dr

�
2

− 2Δ
d2Δ
dr2

þ 4U

�
: ð5:13Þ

To solve the radial Klein-Gordon equation (5.8) we define
the “tortoise” coordinate
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dr�
dr

¼
ffiffiffiffiffiffiffiffiffiffi
XðrÞp
FðrÞ : ð5:14Þ

Then the equation (5.8) takes the form

d2R
dr2�

þ U
r4
R ¼ 0: ð5:15Þ

A. Superradiance condition

We impose boundary conditions of purely ingoing waves
at the black-hole horizon and a decaying solution at spatial
infinity. We calculate the frequencies

k2H ¼ Veffðr → rþÞ ¼ ðω − qAðrHÞÞ2; ð5:16Þ

k2∞ ¼ Veffðr → ∞Þ ¼ ∞: ð5:17Þ

At spatial infinity k2∞ → ∞, so there is no solution for the
wave at infinity.
To overcome this problem, we have to impose conditions

on the parameters as in the case of the Galileon black hole
we studied in Sec. IV. The easiest choice is to put the
cosmological constant Λ ¼ 0. Then the metric (5.2) takes
the form

ds2 ¼ −FðrÞdt2 þ 3ð8κr2 −Q2Þ2
r4

dr2

FðrÞ þ r2dΩ2; ð5:18Þ

where FðrÞ and XðrÞ are

FðrÞ ¼ 192κ2 −
μ

r
þ 48κ

Q2

r2
−
Q4

r4
; ð5:19Þ

XðrÞ ¼ 3ð8κr2 −Q2Þ2
r4

: ð5:20Þ

The electromagnetic potential of the black hole is

A0ðrÞ ¼
ffiffiffiffiffi
15

p �
Q3

3r3
− 8κ

Q
r

�
; ð5:21Þ

and it goes to zero at infinity. as expected.
Following the same procedure, with the new functions X,

F, A0, we solve the equation the radial equation (5.8) and
take purely ingoing waves at the black hole horizon and a
decaying solution at spatial infinity

R ∼ exp−iðω − qAðrþÞÞr�; r → rþðr� → −∞Þ;
ð5:22Þ

and

R ∼ exp
n
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 192κ2μ2

q
r�
o
; r → ∞ðr� → ∞Þ:

ð5:23Þ

Evaluating the Wronskian at the horizon and infinity,
respectively, and equating the two values, we get

jRj2 ¼ jIj2 − ω − qAðrþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 192κ2μ2

p ðjTj2Þ: ð5:24Þ

We can see that if

ω < q
ffiffiffiffiffi
15

p �
Q3

3r3H
− 8κ

Q
rH

�
; ð5:25Þ

the wave is superradiantly amplified.

VI. CONCLUSIONS

In this work we studied the superradiant effect in a class of
scalar-tensor Horndeski theory. We considered first a mas-
sive charge scalar field coupled to Einstein tensor
with a derivative coupling, scattered off the horizon of a
Reissner-Nordström black hole. We showed that this deri-
vative coupling provides a scale for a confining potential,
and in the same time modifies the Bekenstein’s super-
radiance condition (1.2) with the derivative coupling appear-
ing explicitly in the superradiance condition. We found that
for a wide range of parameters the superradiant condition is
satisfied and in the same time a trapping potential is formed
outside the horizon of a Reissner-Nordström black hole. As
the strength of the coupling of the scalar field to curvature is
increasing the depth of the potential is increasing indicating
the amplification of the superradiant instability. The same
amplification occurs for constant coupling as the mass and
charge of the black hole is increasing.
This superradiance instability indicates that the back-

ground Reissner-Nordström black hole may require scalar
hair. Then we studied the backreacted effect. We allowed
the scalar field coupled to Einstein tensor to backreact to a
charged spherical symmetric background. This leads to the
generation of hairy charge Galileon black holes. The basic
property of these solutions is that the derivative coupling
appears as a parameter in these hairy solutions. We studied
the superradiance effect and found the superradiance
conditions of a massive charged scalar wave scattered
off the horizon of these Galileon black holes. We discussed
two specific solutions. The first solution is a charge
Galileon black hole solution with a time dependent scalar
hair and in the second solution the scalar hair is static.
In both cases the derivative coupling, which shows how

strong the scalar field is coupled to curvature, influences
the superradiat radiation. In the case of a fixed Reissner-
Nordström black hole background, the recover the
Bekenstein superradiance condition for any value of the
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derivative coupling β if β > 0, while if β < 0 then the
Bekenstein superradiance condition is modified. In the case
that the massive charge scalar field is scuttered off the
horizon of the charge Galileon black hole the derivative
coupling appears explicitly in the superradiance condition
the strength of which influences the superradiance radia-
tion in the case the scalar hair of the Galileon black hole
is time-dependent, while the superradiance condition is

independent of β if the scalar hair is static for the particular
solution we considered.
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