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In this paper, we explore the signatures of nonrotating and rotating black hole mergers in the matter-free
modified gravity. First, we solve the unstable circular null orbits and the innermost stable circular timelike
orbits via the geodesic motion. The characteristic quantities of these orbits are systematically analyzed by
varying the black hole spin and the scalar field parameter of the gravity. Then based on it, we study the
ringdown modes from the light ring/quasinormal modes correspondence. The final spins of the merged
black holes are also estimated with the Buonanno-Kidder-Lehner recipe. Several black hole merging cases
are investigated in detail. All these results show that the black hole mergers are closely dependent on the
scalar field parameter of the gravity.
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I. INTRODUCTION

Recently, gravitational waves have been directly observed
by LIGO and Virgo [1], and have opened a new window to
probe the fundamental questions of our Universe and
gravitational theory. As expected, these gravitational waves
were produced by merging binary black holes or neutron
stars. Particularly, the exact determination of the masses,
spins, and other parameters for the initial and final black
holes will greatly improve our test near the strong gravita-
tional regimes. Moreover, different modified gravities are
also expected to be tested or restricted by using the
gravitational wave observations [2,3].
Although recent observations incline to support general

relativity (GR) [4,5], some subtle potential deviations may
be witnessed in the coming years when more merging
events are detected and a higher improved signal-to-noise
ratio is achieved. In order to discriminate different relevant
gravity theories by the observations, one needs first to
examine their differences. Importantly, it is necessary to
identify the key signatures of the waveforms of the black
hole mergers for these theories, which is also very useful to
exactly determine the dynamic properties and the nature of
these initial and final black holes.
On the other hand, there is an interesting modified

gravity (MOG), the scalar-tensor-vector gravity theory
proposed by Moffat [6]. Besides the metric tensor fields,
extra massive vector field and scalar fields were introduced.
The scalar fields strengthen the gravitational attraction,
while the vector field produces an effective repulsive

gravitational force. Such theory can be treated as an
alternative to GR for dealing with the galaxy rotation
curves and galaxy clusters without introducing the dark
matter [7–9].
Particularly, many recent works were devoted to explore

the novel properties of the nonrotating and rotating MOG
black holes [10]. A black hole shadow was briefly examined
in Ref. [11]. The thermodynamics of these black holes were
studied in Ref. [12]. The geodesics and accretion disk were
investigated in Refs. [13–17]. Misaligned spin merging
black holes were discussed in Ref. [18]. And the quasinor-
mal modes (QNMs) were calculated in Ref. [19]. All these
results imply that there exists a significant difference between
MOG and GR.
In the present work, we would like to consider the Kerr-

MOG black hole merger, and two issues of the merger are
studied. The first one is the gravitational wave emission
patterns at the last stage, i.e., the ringdown stage, of the
merger. In the eikonal limit, the QNMs are associated with
the unstable circular null geodesics, the light ring, of the
black hole in the asymptotically flat spacetime (for recent
progress, see Refs. [20–22]). Although there exists a small
deviation between the numerical data [23–26], it is still
a good approximation. According to this light ring/QNM
correspondence, the real part of the QNM is related to the
angular velocity of the massless particle orbiting around the
light ring. And its imaginary part is related to the Lyapunov
exponent of the light ring. So through studying the light
ring from the null geodesics, we can obtain the ringdown
modes of the black hole merger. This has a theoretical
guidance to distinguish this MOG from GR by probing the
merger dynamics at the ringdown stage.
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Another issue of the merger we will pursue is the
estimate of the final black hole spin. For this section, we
adopt the Buonanno-Kidder-Lehner (BKL) recipe [27],
which is based on the angular momentum and mass
conservations. And such a recipe has gained great success
on estimating the final black hole spin. Moreover, this
approach has two advantages. First, it considers the orbital
angular momenta and both initial spins of the merged black
holes. Second, it can be applied to general mass ratio
mergers. Then through solving the innermost stable circular
orbits (ISCO) from the timelike geodesics, one can obtain
the final spin of the black hole following this BKL recipe.
The study has been carried out for the Kerr black hole and
Einstein-Maxwell-dilaton black hole mergers. Comparing
with the numerical simulations, the result shows that the
BKL formula is quite accurate [27,28]. More importantly,
such an approach can also be easily generalized to other
different merger configurations, and some interesting
and novel dynamics might be explored immediately. For
example, the “flip” phenomenon was discussed with such a
recipe. Moreover, it was found that it is impossible to spin
up a black hole to extremal values through merger scenarios
[27]. However, considering the energy loss, a near extreme
spinning black hole can be produced by equal mass max-
imally spinning aligned mergers [29].
This paper is organized as follows. In Sec. II, we give a

brief review of the black hole metric and its geodesics.
Based on the geodesics, we calculate the radius and
minimum impact parameter for the light rings. Further,
we study the QNMs at the ringdown stage in Sec. III. In
Sec. IV, we first numerically calculate the ISCO. Then
based on the result, we follow the BKL recipe and estimate
the final black hole spins for several merger configurations.
Finally, the conclusions are presented in Sec. V.

II. KERR-MOG BLACK HOLE AND GEODESICS

The action of the scalar-tensor-vector gravity is formu-
lated as [6]

S ¼ SGR þ Sϕ þ SS þ SM; ð1Þ

with

SGR ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p R
G
; ð2Þ

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
BμνBμν þ

1

2
μ2ϕμϕμ

�
; ð3Þ

SS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

G3

�
1

2
gμν∇μG∇νG − VðGÞ

�

þ
Z

d4x
1

μ2G

�
1

2
gμν∇μμ∇νμ − VðμÞ

�
; ð4Þ

where ϕμ is a Proca type massive vector field with mass μ,
GðxÞ and μðxÞ are two scalar fields, and their potentials are,
respectively, VðGÞ and VðμÞ. SM denotes the matter action.
The tensor field Bμν ¼ ∂μϕν − ∂νϕμ, and it satisfies the
following equations:

∇νBμν ¼ 0; ð5Þ

∇σBμν þ∇μBνσ þ∇νBσμ ¼ 0: ð6Þ

The energy momentum tensor for the vector field is

Tϕμν ¼ −
1

4π

�
B σ
μBνσ −

1

4
gμνBσβBσβ

�
: ð7Þ

Since the effect of the mass μ of the vector field displays at
kiloparsec scales from the source, it can be neglected for a
black hole solution. Moreover, we can also treat G as a
constant independent of the spacetime coordinates. With
this hypothesis, the action will be simplified and easy to
deal with,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

4
BμνBμν

�
: ð8Þ

The corresponding field equation reads

Gμν ¼ −8πGTϕμν; ð9Þ

and G corresponds to Newton’s gravitational constant as
G ¼ GNð1þ αÞ with α being a dimensionless parameter.
So α can be used to measure the deviation of MOG
from GR.
The rotating Kerr-MOG black hole solution can be

obtained by solving the field equation (9). In Boyer-
Lindquist coordinates, the metric is given by [10]

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

ðadt − ðr2 þ a2ÞdϕÞ2; ð10Þ

with the metric functions given by

Δ ¼ r2 − 2GNð1þ αÞmrþ a2 þm2G2
Nαð1þ αÞ; ð11Þ

ρ2 ¼ r2 þ a2 cos2 θ: ð12Þ

For simplicity, we adopt GN ¼ 1. The parameter m is
related to the Arnowitt-Dese-Misner mass M of the black
hole as [17]

M ¼ ð1þ αÞm: ð13Þ

Solving Δ ¼ 0, we can obtain the radius of the black hole
horizon
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r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1þ α
− a2

s
: ð14Þ

It is clear that such a black hole can possess two horizons
for M2 > ð1þ αÞa2, one degenerate horizon for M2 ¼
ð1þ αÞa2, and no horizon related to naked singularity for
M2 < ð1þ αÞa2. So the black hole has a maximum spin

amax

M
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1þ α
p : ð15Þ

It is worth noting that this Kerr-MOG black hole will
reduce to the Kerr black hole when α ¼ 0. On the other
hand, if we set a ¼ 0, it will be a static black hole with two
horizons r� ¼ Mð1� 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p Þ. Further taking α ¼ 0,
the Schwarzschild black hole solution will be recovered.
In this rotating Kerr-MOG background, the geodesics of

a test particle with unit mass is [10]

_t ¼ gϕϕEþ gϕtL

g2ϕt − gttgϕϕ
; ð16Þ

_ϕ ¼ −
gttLþ gtϕE

g2tϕ − gttgϕϕ
; ð17Þ

ρ2 _r ¼ σr
ffiffiffiffiffi
R

p
; ð18Þ

ρ2 _θ ¼ σθ
ffiffiffiffi
Θ

p
; ð19Þ

where

R ¼ ðaL − Eðr2 þ a2ÞÞ2 −
�
a2 þ r2 − 2Mrþ αM2

1þ α

�
× ðKþ μ2r2Þ; ð20Þ

Θ ¼ K − a2μ2cos2θ − ðaEsin2θ − LÞ2csc2θ: ð21Þ

The sign functions σr ¼ � and σθ ¼ � are independent
from each other. AndK is the Carter constant. The values of
μ2 are 1 and 0 for massive particle and photon, respectively.
Here, we consider the motion limited in the equatorial
plane. So we have θ ¼ π

2
and K ¼ ðaE − LÞ2. Then we can

reexpress Eq. (18) as the following form:

_r2 þ Veff ¼ 0; ð22Þ

where the effective potential is given by

Veff ¼ −
R
ρ4

: ð23Þ

III. RINGDOWN MODES

The final stage of a black hole merger is known as the
ringdown stage. In this stage, the final black hole settles to a
stationary one, and it is characterized by linearized vibra-
tional modes, i.e., the QNMs. In the eikonal limit, such a
mode is associated with the spacetime’s light ring. And this
light ring/QNM correspondence is effective for an asymp-
totically flat spacetime. The modes of n ¼ jmj are consid-
ered to be the most powerful emitters during the
gravitational waves and thus are most easily detectable
by observatories, so we mainly focus on them in this paper.
Fortunately, these modes are also the easiest ones to fit the
eikonal approximation. More interestingly, these modes
with positive or negative m are related with the equatorial
prograde or retrograde orbital motion.
These modes are expressed in the following form

[20,30–32]:

ωQNM ¼ Ωcm − iðnþ 1=2Þjλj; ð24Þ

where m, n, Ωc, and λ are the quantum overtone number,
angular momentum, angular velocity, and Lyapunov expo-
nent of the light ring, respectively. Moreover, λ and Ωc can
be calculated with the geodesics

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
V 00
eff

2_t2

r ����
rc

; Ωc ¼
_ϕ
_t

����
rc

; ð25Þ

with rc being the radius of the light ring. Here the effective
potential for the photon reads

Veff ¼
ðaE − LÞ2Δ − ðaL − Eða2 þ r2ÞÞ2

ρ4
: ð26Þ

The characteristic parameters of the light rings are deter-
mined by the conditions

Veff ¼ 0; V 0
eff ¼ 0; V 00

eff < 0: ð27Þ

Substituting the effective potential into these conditions,
one will get

ðaL − Eða2 þ r2ÞÞ2 − ðaE − LÞ2Δ ¼ 0; ð28Þ

4ErðaL − Eða2 þ r2ÞÞ − ðaE − LÞ2Δ0 ¼ 0; ð29Þ

8E2r2 − 4EðaL − Eða2 þ r2ÞÞ − ðaE − LÞ2Δ00 > 0: ð30Þ

Solving them, we can obtain the radius rc and the minimum
impact parameter uc of the light rings. For the nonrotating
black hole with a ¼ 0, we have
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uc
M

¼ L
ME

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ45αþ17α2−α3þðð1þαÞð9þαÞÞ3=2

p
ffiffiffi
2

p ð1þαÞ ;

ð31Þ

rc
M

¼ 3þ 3αþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ αÞð9þ αÞp
2ð1þ αÞ : ð32Þ

When α ¼ 0, the above result reduces to the Schwarzschild
black hole case, i.e.,

uc
M

¼ 3
ffiffiffi
3

p
;

rc
M

¼ 3: ð33Þ

On the other hand, for the rotating black hole with a ≠ 0,
due to the dragging effect, the light rings will be different
for prograde and retrograde cases. Although it is impossible
to obtain the analytical formula, we can numerically solve

these conditions (27). And the results are presented in
Figs. 1 and 2 for the prograde and retrograde orbits. For the
prograde orbit, we find that both rc and uc decrease with the
spin a and the parameter α. For the retrograde orbit, rc
increases with the spin a and decreases with α, while uc
decreases with a and increases with α.
For the nonrotating black hole, the angular velocity and

Lyapunov exponent of the unstable null geodesics are
analytically obtained

ΩcM ¼
ffiffiffi
2

p ð1þ αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 45αþ 17α2 − α3 þ ðð1þ αÞð9þ αÞÞ3=2

p ;

ð34Þ

λM ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞ3ð9þ αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 10αþ α2

p
Þ

q
ð3þ 3αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 10αþ α2

p
Þ2 : ð35Þ
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FIG. 1. Radius and minimum impact parameter for the prograde light rings. (a) rc vs a. (b) uc vs a. The parameter α ¼ 0, 0.2, 0.4, 0.6,
0.8, 1 from top to bottom.
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FIG. 2. Radius and minimum impact parameter for the retrograde light rings. (a) rc vs a with α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from top to
bottom. (b) uc vs a with α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from bottom to top.
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For the rotating black hole, the results are shown in Figs. 3
and 4. For the prograde orbit, with the increase of spin a,
the angular velocity Ωc increases, while the Lyapunov
exponent λ decreases. Moreover, Ωc increases with α. The
Lyapunov exponent λ increases with α for small a, and
decreases with α for large a. For the retrograde orbit, Ωc
increases with spin a and decreases with α. On the other
hand, the Lyapunov exponent λ increases with α. And for
small fixed α, λ slightly decreases with the spin a. However,
for large fixed α, λ first increases and then decreases with a.
Before ending this section, we would like to give some

notes for the light ring/QNM correspondence. First, our
calculation is mainly based on the geodesics, which
measures the motion of a pointlike test particle in the
background. So it may be in good approximation if one of
the black holes is small and the other one is huge during the
merger. Interestingly, the results given in Refs. [33–35]
imply that the point particle approximation is also accurate
for the equal mass black hole collisions. Thus such

correspondence is reasonable for calculating the ringdown
modes during the black hole merger.
On the other hand, it is worthwhile to examine the

influence of the additional field, i.e., the scalar field
parameter α, on the light ring/QNM correspondence. As
shown in Refs. [25,26], the QNMs for the black hole in the
Einstein-dilaton-Gauss-Bonnet gravity have a close rela-
tion with the coupling parameter. It is also foundd that the
geodesics correspondence predicts only the axial modes of
the perturbation. And they are consistent with each other
for a small coupling parameter. Here let us turn to consider
the influence of the parameter α on the light ring/QNM
correspondence. For simplicity, we only consider the
nonrotating case. Here we list the numerical data in
Table I for the QNMs calculated from the asymptotic
iteration method [19] and from Eqs. (34) and (35). From the
table, we can see that the real part and the imaginary part of
the QNMs have different behaviors with the parameter α.
For α ¼ 0, the real parts of the QNMs obtained from the
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FIG. 3. Angular velocity and Lyapunov exponent for the prograde light rings. (a) Ωc vs a. (b) λ vs a. The parameter α ¼ 0, 0.2, 0.4,
0.6, 0.8, 1 from right to left.
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FIG. 4. Angular velocity and Lyapunov exponent for the retrograde light rings. (a) Ωc vs a with parameter α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1
from top to bottom. (b) λ vs a with parameter α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from bottom to top.
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two methods highly coincide with each other, and the
relative deviation δ ¼ 0.09%. Moreover, the δ of the real
part will increase with α. For example, δ approaches about
10% for α ¼ 9. In contrast, the relative deviation of the
imaginary part of the QNMs has a slight decrease with α,
and it is always under 5% for α ¼ 0–9. Combining with the
result of the real part and the imaginary part of the QNM,
we can arrive at the conclusion that the light ring/QNM
correspondence is effective for the small parameter α.
Hence, we only limit our attention to the small parameter,
i.e., α ≤ 1.

IV. FINAL SPIN ESTIMATION

A. BKL recipe

Here we would like to briefly review the BKL recipe,
which mainly depends on the conservations and is very
easily understood. First, it considers that the mass of this
merged system is conserved. Therefore, the mass of the
final black hole equals the total mass of the initial black
holes, i.e.,

M ¼ M1 þM2: ð36Þ

To the first order, this is a good approximation. For
example, the total radiated energy remains very small,
about Mradiated ∼ 5%Minitial, in the gravitational wave
observations [1].
On the other hand, for a reasonable merger, the two black

holes orbit around each other during the first stage, i.e., the
inspiral stage. Due to the energy loss via a gravitational
wave emission, the binary orbit contracts gradually and the
system evolves quasiadiabatically. During this stage, one
can assume that the individual spins of the black holes will
remain constant. Once the ISCO radius is reached, the orbit
becomes unstable. This will lead to a merger, and then a
final black hole is formed. At this stage, the radiation of the
angular momentum with respect to that of the system is
small. So the angular momentum of the system can be
treated as a conserved quantity. Moreover, it is justified to
estimate the contribution of the orbital angular momentum
to the final black hole spin by adopting the orbital angular
momentum of a test particle orbiting at the ISCO of the
final black hole. Finally, the dimensionless final black hole
spin af can be expressed as [27]

af ¼
L̃orbðrISCO; afÞ

M
þM1a1

M
þM2a2

M
; ð37Þ

where L̃orbðrISCO; afÞ denotes the orbital angular momen-
tum of a test particle with reduced mass M1M2=M orbiting
at the ISCO of the final black hole with spin af. Without
loss of generality, we can assume M1 ≥ M2, and then the
final spin can also be reexpressed in the following con-
venient form [27]:

af ¼ LðrISCO; afÞνþ
χ1M
4

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p �
2

þ χ2M
4

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p �
2
; ð38Þ

where χi ¼ ai=Mi is the dimensionless spins of the initial
black holes and LðrISCO; afÞ is the angular momentum of a
unit mass test particle. The mass parameter ν ¼ M1M2

M2 and
has a value in the range of ½0; 1=4�. By solving the timelike
geodesics, we can obtain the radius and the orbital angular
momentum of the ISCO. Then given the initial mass
parameter ν and spins χ1 and χ2, the final black hole spin
can be calculated with Eq. (38). Importantly, since the
parameter α deforms the gravitational constant character-
ized by the spacetime background, we fix α before and after
the black hole merger.

B. ISCO

As mentioned above, in order to obtain the final spin of
the black hole, we first need to solve the ISCO. So here we
will consider such a special orbit for a test particle. From
the geodesics, the conditions to determine the ISCO are

Veff ¼ 0; ∂rVeff ¼ 0; ∂r;rVeff ¼ 0: ð39Þ
Plunging the effective potential, the conditions reduce to

ðaL − Eða2 þ r2ÞÞ2 − ððaE − LÞ2 þ μ2r2ÞΔ ¼ 0; ð40Þ
4ErðaL − Eða2 þ r2ÞÞ þ 2μ2rΔ

þ ððaE − LÞ2 þ μ2r2ÞΔ0 ¼ 0; ð41Þ

4EðaL − Eða2 þ r2ÞÞ − 8E2r2 þ 2μ2Δþ 4μ2rΔ0

þ ððaE − LÞ2 þ μ2r2ÞΔ00 ¼ 0: ð42Þ

TABLE I. QNMs for the nonrotating black hole in modified gravity. The first row shows the QNMs for the
electromagnetic perturbation with n ¼ jmj ¼ 3 obtained with the asymptotic iteration method given in Ref. [19].
The second row is obtained with Eqs. (34) and (35). The parameter δ measures the relative deviation between these
two methods.

α ¼ 0 α ¼ 1 α ¼ 4 α ¼ 9

AIM [19] 0.5779 − 0.7063i 0.6891 − 0.7200i 0.7687 − 0.6988i 0.7927 − 0.6743i
Light ring/QNM 0.5774 − 0.6736i 0.6370 − 0.6868i 0.6922 − 0.6753i 0.7177 − 0.6582i
δ [%] 0.09 − 4.63i 7.56 − 4.61i 9.95 − 3.36i 9.46 − 2.39i
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For the nonrotating black hole, we can express the angular
momentum and energy in terms of the radius of the ISCO as

L=μ ¼ � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr −Mαþ rαÞp

2M2α − 3Mrð1þ αÞ þ r2ð1þ αÞ ; ð43Þ

E=μ ¼ M2α − 2Mrð1þ αÞ þ r2ð1þ αÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞð2M2α − 3Mrð1þ αÞ þ r2ð1þ αÞÞ

p :

ð44Þ
And the radius of the ISCO is given by

rISCO=M ¼ 2þ ð1þ αÞ−2
3K

1
3 þ ð4þ αÞð1þ αÞ−1

3K−1
3;

ð45Þ
where K ¼ 8þ α2 þ ð7þ ffiffiffiffiffiffiffiffiffiffiffi

5þ α
p Þα. When α ¼ 0, one

will get

rISCO=M ¼ 6; LISCO=Mμ ¼ 2
ffiffiffi
3

p
;

EISCO=μ ¼ 2
ffiffiffi
2

p

3
; ð46Þ

for the Schwarzschild black hole. On the other hand,
when a ≠ 0, the analytical result can be obtained for the
Kerr black hole with α ¼ 0; see Ref. [36]. When α ≠ 0,
no analytical result is available. Nevertheless, we can
numerically solve Eq. (39). The results are listed in
Figs. 5 and 6 for prograde and retrograde ISCOs,
respectively. For the prograde ISCO, both the angular
momentum LISCO and radius rISCO decrease with the
black hole spin a and the parameter α. For the
retrograde ISCO, we clearly see that the angular momen-
tum LISCO decreases and the radius rISCO increases with
the spin a. However, LISCO increases and rISCO decreases
with α.
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FIG. 5. Angular momentum and radius for the prograde ISCO. (a) LISCO vs a. (b) rISCO vs a. Parameter α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from
top to bottom.
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FIG. 6. Angular momentum and radius for the retrograde ISCO. (a) LISCO vs a with α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from bottom to top.
(b) rISCO vs a with α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from top to bottom.
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C. Equal spin merger

Based on the study of the ISCO for the black hole, we
would like to estimate the final spin parameter of the
merger. First, we consider a simple case where the two
black holes have equal spin, i.e., χ1 ¼ χ2 ¼ χ. Therefore,
the final spin (38) will be of the form

af ¼ LðrISCO; afÞνþMð1 − 2νÞχ: ð47Þ
Given ν and χ, we can solve the final spin from the above
equation. Here we plot the final spin af as a function of the
mass parameter ν for χ ¼ 0, 0.2, 0.4, and 0.65, respectively,
in Fig. 7. For the case of χ ¼ 0, it describes a merger of two
nonrotating black holes. If these two black holes have the
same mass parameter ν ¼ 0.25, then we will obtain af ≈
0.6631 for the Kerr black hole with α ¼ 0. Interestingly,
this value will decrease when α is nonvanishing. For
example, af ≈ 0.6368, 0.6160, 0.5990, 0.5847, 0.5724
for α ¼ 0.2, 0.4, 0.6, 0.8, 1, respectively. We can also find
that the final spin af increases with ν, while it decreases
with α. If these black holes have initial spins, the results are
similar [see Figs. 7(b)–7(d)].

On the other hand, we would like to examine the
behavior of the final spin af when the two merged black
holes approach its extremal case. For this purpose, we list
the final spin af for χ ¼ 0.99 1ffiffiffiffiffiffiffi

1þα
p in Fig. 8. From it, one

can clearly see that the final spin decreases with the mass
parameter ν, which is quite different from that of Fig. 7.
This is a novel result. And it is also consistent with the
result given in Refs. [27,28].
Next, we consider another simple case that the two

initial black holes have the same mass, i.e., ν ¼ 0.25.
Then we present the final spin af for different initial
values of the spin χ in Fig. 9. Positive or negative χ
denotes that the initial spin is either aligned or antialigned
with respect to the initial orbital angular momentum. From
the figure, it is clear that the final spin af increases with χ
from negative to positive values. For fixed χ, the final spin
af decreases with α. For example, varying α ¼ 0, 0.2, 0.4,
0.6, 0.8, 1, afðχ ¼ −0.5Þ=M ≈ 0.4819, 0.4599, 0.4430,
0.4296, 0.4186, 0.4094 and afðχ ¼ 0.5Þ=M ≈ 0.8281,
0.7935, 0.7645, 0.7391, 0.7158, 0.6936. Moreover, we
can also obtain the result that no matter the initial spin’s
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FIG. 7. Final spin af vs mass parameter ν for equal spin merger. (a) χ ¼ 0. (b) χ ¼ 0.2. (c) χ ¼ 0.4. (d) χ ¼ 0.65. The parameter
α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from top to bottom.
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alignment or antialignment, the final spin of the black
hole is always aligned with the initial orbital angular
momentum.

D. Unequal spin merger

In this subsection, we would like to consider the unequal
spin case but with equal mass. So we set χ2 ¼ βχ, χ1 ¼ χ,
and ν ¼ 0.25. Adopting these values, the final spin will be
in the following form:

af ¼
1

4
ðLðrISCO; afÞ þMχ þ βMχÞ: ð48Þ

Taking one of the black hole spins as 0.5, and regarding that
it is aligned or antialigned with respect to the initial orbital
angular momentum, we illustrate the value of the final spin
parameter for equal mass black holes in Fig. 10. Because β
varies from −1 to 1, we can see that the final spin increases
or decreases with β for an aligned or an antialigned case.
It is also obvious that the final spin decreases with α for
both cases.

E. Generic spin configuration merger

Now, we consider a generic spin configuration merger,
which means that the orbit plane of the ISCO can be
inclined with respect to the final total angular momentum.
For this case, the calculation of the orbital contribution to
the total angular momentum is required to perform a
numerical integration of generic geodesics in the black
hole background or use the radial potential for some certain
quasiadiabatic spherical orbits [37]. On the other hand, one
can alternatively adopt the fit formula given in Ref. [38].
Here we choose the latter one. Then the orbital angular
momentum of the inclined orbit reads [27,38]

Lðϑ; afÞ ¼
1

2
ð1þ cosϑÞLproðrproISCO; afÞ

þ 1

2
ð1 − cos ϑÞjLretðrretISCO; afÞj; ð49Þ

where the inclination angle ϑ measures the angle between
the final spin af and the orbital angular momentum. Let us
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FIG. 8. Final spin af vs mass parameter ν for equal spin merger
with initial high spin χ ¼ 0.99 1ffiffiffiffiffiffiffi

1þα
p . The parameter α ¼ 0, 0.02,

0.04, 0.06, 0.08, 0.1 from top to bottom.
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FIG. 9. Final spin af vs initial spin χ for equal spin and equal
mass black hole merger with α ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 from top
to bottom.
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consider a simple case where these two merged black holes
have the same masses and spins. Thus the final spin af can
be solved as

af ¼ 1

8
ðLpro þ jLretj þ 4Mχ þ ðLpro − jLretjÞ cosϑÞ: ð50Þ

Here we show the final spin af as a function of χ for
different values of ϑ and α in Fig. 11. From it, we can see
that the angle ϑ has a significant influence on the final spin
af. And with the increase of ϑ, the final spin af increases.

V. CONCLUSIONS

In this paper, we studied the main features of the Kerr-
MOG black hole merger in a modified gravity. The results
show a significant dependence on the dimensionless scalar
field parameter α.
At first, we explored the property and geodesics for the

Kerr-MOG black hole. For the nonrotating case with α ≠ 0,
the black hole has two horizons, which is different from the
Schwarzschild black hole case. On the other hand, com-
pared to the rotating Kerr black hole, the maximum spin

will be reduced by α, i.e., amax=M ¼ 1ffiffiffiffiffiffiffi
1þα

p . Then the

geodesics was obtained, which also shows an α-dependent
property.
Based on the null geodesics, we investigated the gravi-

tational waves at the ringdown stage, which can be
effectively approximated by the light rings. The real and
imaginary parts are, respectively, described by the angular
velocity Ωc and the Lyapunov exponent λ. Our result
implies that, for the prograde orbit,Ωc increases with α, and
λ increases with α for small a while it decreases with α
for large a. For the retrograde orbit, Ωc decreases with α,
while λ increases with it.
Next, using the result of the ISCOfor themassive particles,

we estimated the final black hole spin via the BKL recipe.
Several especially interesting cases were explored.
For the case of the equal spin merger, the final spin af

decreases with the dimensionless scalar field parameter α.
It was also found that the final spin af increases with ν for
a low initial spin. While the initial spin approaches its
maximum value, af will not increase but will decrease with
ν; see Fig. 8. So we can expect that there may exist a critical
value of χ where the final spin af is independent of the
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FIG. 11. Final spin af vs χ with ϑ ¼ 0°, 30°, 45°, 60°, 75°, 90° from bottom to top. (a) α ¼ 0. (b) α ¼ 0.2. (c) α ¼ 0.6. (d) α ¼ 1. Note
that jχj ≤ 1ffiffiffiffiffiffiffi

1þα
p for a black hole merger.
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mass parameter ν. Certainly, such a critical value will be
reduced by α. Further, if these two merged black holes have
equal masses, the final spin will also be reduced by α.
Nevertheless, no matter the initial spin’s alignment or
antialignment, the final spin of the black hole is always
aligned with the initial orbital angular momentum.
For the case of the unequal spin merger, we found that

the final spin increases or decreases with β for an aligned or
an antialigned case. Moreover, for both the cases, the final
spin presents a monotonically decreasing behavior with the
increase of the dimensionless scalar field parameter α.
We also considered the generic spin configuration

merger, which allows that the orbit plane has an inclination
angle with respect to the final total angular momentum.
Then we adopted the fit formula given in Ref. [38] to
modify the orbital angular momentum. Considering the two

black holes have equal mass and spin, we studied the final
spin af as the initial spin χ for different inclination angles ϑ
and α. The result implies that the final spin af increases
with the inclination angle ϑ.
In summary, our study reveals that for this modified

gravity, the black hole merger closely depends on its
characteristic parameter, i.e., the dimensionless scalar
field parameter α. We expected that such an influence
of α can be determined by the gravitational wave detection
in the near future.
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