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We consider a theory of scalars minimally coupled to an auxiliary background metric. The theory is
generally covariant and subject to the constraint of vanishing energy-momentum tensor. Eliminating the
auxiliary metric leads to a reparametrization invariant, nonpolynomial, metric-independent action for the
scalar fields. Working in the limit of a large number of physical scalars, a composite massless spin-2
state, the graviton, was identified in previous work, in a two-into-two scalar scattering process. Here, we
further explore the possibility that dynamical emergent gravity is a natural feature of generally covariant
quantum field theories, by studying the self-interactions of the emergent composite graviton. We show
that the fine-tuning previously imposed to ensure the vanishing of the cosmological constant, as well as
the existence of the massless spin-2 state, also assures that the emergent graviton’s cubic self-interactions
are consistent with those of Einstein’s general relativity, up to higher-derivative corrections. We also
demonstrate in a theory with more than one type of scalar that the composite graviton coupling is
universal.
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I. INTRODUCTION

In previous work [1], Carone, Erlich, and Vaman
presented a theory of Dþ N scalar fields in which the
graviton emerges as a massless composite spin-2 bound
state. A number of ingredients were essential as organizing
principles in the construction of the model. First, the tree-
level action, which included a nonpropagating, auxiliary
metric field, was of a form that preserves general covari-
ance. There would be little hope of recovering a massless
composite graviton without such a symmetry requirement.
For the same reason, the regulator for divergent loop
diagrams was required to preserve this symmetry as well.
Second, the energy-momentum tensor of the theory was
exactly vanishing. Aside from aesthetic simplicity, this
condition assures that the emergence of a massless,
composite graviton is not in conflict with the Weinberg-

Witten theorem [2]. It also allows one to solve for the
auxiliary metric field and eliminate it from the theory,
leading to a nonpolynomial and metric-independent form
for the action. When the coordinate invariance of the theory
is gauge fixed, D of the scalars, called clock-and-ruler
fields in Ref. [1], are gauged away, so that the graviton
couples to the nonvanishing energy-momentum tensor of
the remaining, physical degrees of freedom (d.o.f.). The
main result of Ref. [1] followed from the calculation of a
two-into-two scattering amplitude of scalars, to all orders in
perturbation theory and at leading order in 1=N, where
N ≫ 1 refers to the physical scalar d.o.f. The scattering
amplitude was shown to contain a massless pole with an
associated Lorentz-index structure consistent with the
gauge-invariant part of the graviton propagator. We review
the model of Ref. [1] in Sec. II.
The idea that gravity may be the consequence of

quantum corrections in a generally covariant nongravita-
tional theory is not new. An early idea due to Sakharov [3]
is induced gravity: In this approach, one begins with a
quantum field theory (QFT) in a classical background
geometry. Upon integrating out the QFT d.o.f., the one-
loop partition function will contain the Einstein-Hilbert
term for the background metric, a cosmological constant,
and higher-order curvature terms. The metric is not quan-
tized, so induced gravity is a semi-classical theory [4].
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In contrast, the startingpoint of our emergent gravity scenario
is a non-metric QFT.1 In Ref. [1], it was shown how the sum
over an infinite number of loops in this scalar theory leads to a
pole associated with the exchange of a massless spin-2
particle, leading to the identification of the graviton as a
composite state. In this paper, we go beyond the linearized
order to include the self-coupling of the emergent gravitons.
In past models of composite gravitons, going beyond
linearized gravity was a notable stumbling block [6,7].
For other related work on gravity as an emergent phenome-
non in theories of matter, see Ref. [8].
In the present work, we consider a number of issues that

were not resolved in Ref. [1]. The two-into-two scattering
calculation of Ref. [1] yielded information on the emergent
graviton two-point function, but not on gravitational self
interactions. Here we study a scattering amplitude involv-
ing six external scalar lines to extract useful information on
the emergent three-graviton vertex. We show that the
scattering amplitude has the correct form in the limit where
it can be compared to the expectations of the weak field
expansion of general relativity. As noted in the literature
review of Ref. [7], previous composite gravity models have
succeeded in achieving a massless spin-2 pole, but have
failed to produce the correct graviton self-interactions.
Aside from providing a crucial consistency check of
Ref. [1], our results represent distinct progress beyond
past attempts at constructing consistent models with
composite gravitons.
In both the scattering calculations of Ref. [1] and the

present work, scalar loops are regulated by dimensional
regularization, with a finite regularization parameter 1=ϵ,
which we take as a place holder for whatever generally
covariant physical regulator may follow from a realistic
ultraviolet completion of the theory. As a consequence, the
reduced Planck scale MP was identified in Ref. [1] as a
function of 1=ϵ. The same approach is applied in our study
of the emergent three-graviton vertex and we show that the
identification of MP in both calculations are in agreement.
It is worth stressing that our treatment of the regulator as
fixed and determined by a physically measurable quantity
is not new, but an approach that is well known in the
literature on induced gravity models (see, for example, the
review in Ref. [4]). The fact that we employ dimensional
regularization rather than, for example, Pauli-Villars fields
with a fixed mass scale, is a matter of taste, as any choice
that is consistent with general covariance would work
equally well. Unlike induced gravity, where the metric is
classical, the graviton in our scenario emerges a spin-2 pole
in a two-into-two scattering amplitude [1]. An analogous

use of dimensional regularization can also be found in the
composite gauge boson models of Ref. [9], where finite 1=ϵ
is related to the value of a measurable coupling. In the
present work, we also clarify a technical point that was not
explained in Ref. [1]: our calculations follow from a
perturbative expansion about a gauge-fixed background
configuration for the clock-and-ruler fields. While this
implies that our results should maintain a form consistent
with the general covariance of the action, it is not clear how
exactly this comes about. We show that in our perturbative
approach this is due to a cancellation of tree-level and loop
effects that is manifest in our study of the three-graviton
vertex.
Finally, we touch on two other variations of the original

scenario. In the first, we consider a simple extension of the
theory in which there are two distinct sets of physical
scalars with differing mass, to test the universality of the
graviton couplings. We show that in this case that the
graviton pole persists, and that the graviton couples to
the energy-momentum tensor for each set of scalars with a
common Planck mass that depends on all the parameters of
the theory. In the second, we show how the effects of
background matter can be taken into account by coupling
the composite graviton operator to a classical background
source, so that the graviton acquires a nonzero vacuum
expectation value. Duff [10] showed in the context of
general relativity how the presence of the background
source modifies the flat-space metric in a way that is
consistent with a desired curved background, and demon-
strated this by reproducing the mass-expansion of the
Schwarzschild metric. We identify the Feynman diagram-
matic expansion in the present model that reproduces the
expectation value for the graviton that is relevant in this
approach.
Our paper is organized as follows. In the next section, we

summarize the model of Ref. [1], and correct a number of
sign errors that are important in understanding how general
covariance is maintained in our perturbative approach. In
Sec. III, we isolate the scalar interactions that are relevant
for generating the emergent three-graviton coupling via
loop effects. In Sec. IV, the loop calculations are performed
and the results are compared with the expectations of the
weak-field expansion of general relativity. In Sec. V, we
consider the extension of the theory to more than one set
of distinct scalars and demonstrate the universality of the
graviton couplings. In Sec. VI, we discuss one approach to
incorporating curved background into the theory. In Sec. VII,
we summarize our conclusions.

II. THE MODEL, WITH SIGNS CORRECTED

Our starting point is the same as that of Ref. [1]. For the
sake of completeness we recall here the main features of the
theory we are studying. We are also using this opportunity
to correct some sign errors in Ref. [1]. We begin by
considering a theory of N þD scalar fields in a curved

1We would like to point out that though we use the term
“emergent gravity,” this is not the same as the subject of many
recent works in which gravity is understood as emerging via
entanglement in an underlying microscopic theory (see for
example [5]).
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D-dimensional spacetime described by a background
metric gμν, where μ, ν ∈ f0; 1;…; D − 1g:

S ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
1

2
gμν

�XN
a¼1

∂μϕ
a∂νϕ

a

þ
XD−1

I;J¼0

∂μXI∂νXJηIJ

�
− VðϕaÞ

�
; ð2:1Þ

where g ¼ detðgμνÞ, gμν is the inverse of the metric gμν, and
ηIJ are constants which we take to have the values of the
Minkowski metric in D dimensions. (We use the mostly-
minus convention for the signature of ηIJ and the metric
gμν.) The defining feature of the action in Eq. (2.1) is that
it is invariant under general coordinate transformations,
with the fields XI and ϕa transforming as scalars and the
background field gμν transforming as a metric tensor. The
background metric gμν has no dynamics, i.e., there is no
Einstein-Hilbert term in the action. The theory is defined
via functional integration over field configurations subject
to the constraint of vanishing energy-momentum tensor; the
partition function may be written

Z ¼
Z
Tμν¼0

DgμνDϕaDXIeiS½ϕa;XI;gμν�; ð2:2Þ

where the energy-momentum tensor is given by

TμνðxÞ ¼
2ffiffiffiffiffijgjp δS

δgμνðxÞ ð2:3Þ

¼
XN
a¼1

∂μϕ
a∂νϕ

aþ
XD−1

I;J¼0

∂μXI∂νXJηIJ−gμνL; ð2:4Þ

and where the Lagrangian L is defined by the action in
Eq. (2.1), S≡ R

dDx
ffiffiffiffiffijgjp

L. An explicit solution to
TμνðxÞ ¼ 0 for the metric is

gμν ¼
D=2 − 1

VðϕaÞ
�XN

a¼1

∂μϕ
a∂νϕ

a þ
XD−1

I;J¼0

∂μXI∂νXJηIJ

�
;

ð2:5Þ
which allows the elimination of gμν from the action upon
performing theDgμν integration. With the spacetime metric
determined by Eq. (2.5), the action for the theory resembles
the Dirac-Born-Infeld action with vanishing gauge field,
modulated by the scalar-field potential function VðϕaÞ:

S ¼
Z

dDx

� D
2
− 1

VðϕaÞ
�D

2
−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� det
�XN

a¼1

∂μϕ
a∂νϕ

a þ
XD−1

I;J¼0

∂μXI∂νXJηIJ

�����
vuut :

ð2:6Þ

The general coordinate transformation invariance of
Eq. (2.1) translated into reparametrization invariance of
Eq. (2.6). While Eq. (2.1) is nongeneric (i.e., one could
imagine adding other possible terms that are generally
covariant), it is the simplest starting point for defining a
benchmark model, and hence the most likely to render the
extraction of the emergent graviton self-interactions trac-
table. A result in agreement with Einstein’s gravity would
support the notion that the same would be obtained in a
more complicated theory that is also generally covariant.
We proceed next to gauge fix by identifying the clock-and-
ruler fields XI with the corresponding spacetime coordi-
nates, in analogy with the static gauge condition in string
theory, up to an overall constant factor,

XI ¼ xμδIμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

D
2
− 1

− c1

s
; I ¼ 0;…; D − 1; ð2:7Þ

where c1 is a counterterm whose role will be revisited
below. In order to analyze the theory perturbatively,
we write VðϕÞ ¼ V0 þ ΔVðϕaÞ and expand the action
Eq. (2.6) in powers of 1=V0. We also assume that N,
the number of fields ϕa in the theory, is large and keep only
leading terms in a 1=N expansion. In the two-into-two
scattering calculation of Ref. [1], this made the desired
diagrammatic resummation possible.
The gauge-fixed action, expanded to second order in

1=V0, reads:

S¼
Z

dDx

�
V0

D=2−1
þ1

2

XN
a¼1

∂μϕ
a∂μϕa−ΔVðϕaÞ

−
D
2
−1

4V0

�XN
a¼1

∂μϕ
a∂νϕ

a
XN
b¼1

∂μϕb∂νϕb

−
1

2

�XN
a¼1

∂μϕ
a∂μϕa

�
2
�
−

D
2
−1

2

ΔVðϕaÞ
V0

XN
a¼1

∂μϕ
a∂μϕa

þD
4

ðΔVðϕaÞÞ2
V0

þO
�

1

V2
0

�	
: ð2:8Þ

We further assume a free theory with OðNÞ-symmetric
potential

ΔVðϕaÞ ¼
XN
a¼1

m2

2
ϕaϕa − c2; : ð2:9Þ

The counterterm c1 from Eq. (2.7) is chosen is to
effectively normal order every occurrence of ∂μϕ

a∂νϕ
a

in Eq. (2.8) (i.e., any loop which can be constructed by
contracting the two ϕa’s in ∂μϕ

a∂νϕ
a is rendered zero by

adding the counterterm −c1ημν). Also, the role of the
counterterm c2 from Eq. (2.9) is to normal order every
occurrence of ϕaϕa (i.e., any loop which can be constructed
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by contracting the two ϕa’s in m2ϕaϕa is canceled by the
counterterm c2).
The graviton polewas identified in Ref. [1] by considering

the two-to-two scattering of ðϕaϕa → ϕbϕbÞ scalars in the
large-N limit2 as shown in Fig. 1. Dimensional regularization
was used as a regulator of the loop integrals. The existence of
a massless spin-two state (the graviton) being exchanged in
this process required the fine-tuned choice3

V0 ¼ −
NðD=2 − 1Þ

2

Γð−D=2Þ
ð4πÞD=2 ðm2ÞD=2; ð2:10Þ

leading to the following expression for the scattering
amplitude:

AμνjρσðqÞ

¼ −
3m2

DV0

��
D
2
− 1

�
ðηνρημσ þ ηνσημρÞ − ημνηρσ

�
1

q2
þ � � � ;

ð2:11Þ
where we correct a sign error in Eq. (3.20) of Ref. [1], which
propagated into Eq. (3.22) of that paper, and where
the … indicate terms which vanish as q goes on-shell
(i.e., q2 → 0). The definition of AμνjρσðqÞ is reviewed in
the next section. Comparison with the corresponding grav-
iton-mediated scattering amplitude in a free scalar theory4

AμνjρσðqÞ

¼ −
M2−D

P

D − 2

��
D
2
− 1

�
ðηνρημσ þ ηνσημρÞ − ημνηρσ

�
1

q2
;

ð2:12Þ

where MP is the D-dimensional Planck mass, leads to

MP ¼ m

�
NΓð1 − D

2
Þ

6ð4πÞD=2

�
1=ðD−2Þ

: ð2:13Þ

With D ¼ 4 − ϵ, positivity of the Planck mass requires the
regulator ϵ to be small and negative. The dimensionful
constant V0 as identified in Eq. (2.10) is however positive.
For completenesswe revisit the gauge choice Eq. (2.7). Since
c1 is defined such that c1ημν cancels any loop originating
from ∂μϕ

a∂νϕ
a, expressing c1 in terms of V0 leads to

c1 ¼
V0

D
2
− 1

; ð2:14Þ

which differs by a sign relative to its expression given in
footnote 6 of Ref. [1]. Interestingly, the value of c1 that
eliminates tadpole diagrams exactly cancels the tree-level
gauge choice for the XI in Eq. (2.7).

III. CONTRIBUTIONS TO THE THREE-
GRAVITON COUPLING

In Ref. [1], the existence of a propagating graviton was
demonstrated nonperturbatively, at leading order in a 1=N
expansion, by considering the infinite set of diagrams
shown in Fig. 1. The scattering amplitude was written

iMðp1; a;p2; a → p3; c;p4; cÞ
≡ Eμνðp1; p2Þ½iAμνjρσðqÞ�Eρσðp3; p4Þ; ð3:1Þ

with

Eμνðp1; p2Þ≡ −ðpμ
1p

ν
2 þ pν

1p
μ
2Þ þ ημνðp1 · p2 þm2Þ;

ð3:2Þ
and where q ¼ p1 þ p2 ¼ p3 þ p4. The factor Eμν corre-
sponds to the Feynman rule for the flat-space energy-
momentum tensor for the noninteracting scalar fields,

T μν ¼
XN
a¼1

�
∂μϕa∂νϕa − ημν

�
1

2
∂αϕa∂αϕ

a −
1

2
m2ϕaϕa

��
:

ð3:3Þ
The gauge-invariant part of the graviton propagator was
extracted by studying the 1=q2 pole in AμνjρσðqÞ, and was
shown to have the appropriate form. The calculation
depended only on the quartic scalar interaction vertex in
the theory,

Lint ¼ −
1

4V0

T μνT αβPμνjαβ; ð3:4Þ

where we defined the tensor structure

Pαβjλκ ≡ 1

2

��
D
2
− 1

�
ðηαληβκ þ ηακηβλÞ − ηλκηαβ

�
: ð3:5Þ

FIG. 1. The scattering amplitude considered in Ref. [1].

2This approach is similar to that employed by Suzuki [9] who
identified a composite gauge boson in a particular scattering
process in a theory of emergent electromagnetism.

3Here we correct a sign in the kernelKλκ
ρσ defined in Eq. (3.16)

of Ref. [1]. With λ defined in the same way as in Ref. [1], this
sign changes the condition for the existence of a pole to
1 þ λ ¼ 1 þ NðD=2 − 1ÞΓð−D=2Þðm2ÞD=2=ð2V0ð4πÞD=2Þ ¼ 0,
yielding Eq. (2.10) above.

4Here we correct yet another sign in the scattering amplitude
given by Eq. (3.26) of [1].
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At either end of the sum of scattering diagrams in Fig. 1,
there are two possible ways of choosing the T κλ factor in
Eq. (3.4) that corresponds to the external scalar lines; if we
include this combinatoric factor, we may write an effective
interaction that represents the coupling of the graviton to
two scalars,

Leff ¼ −
1

2
hð1Þαβ T

αβ; ð3:6Þ

where hð1Þαβ ¼ T μνPμνjαβ=V0. (The meaning of the super-
script will be explained below.) Equation (3.6) is of the
same form as the graviton-scalar-scalar coupling that one
would find in a linearized theory with a fundamental
graviton field, up to the normalization of the field.

However, −hð1Þαβ =2 here represents a composite operator
that is quadratic in the scalar fields, with a two-point
correlation function given by iAμνjρσðqÞ. In Ref. [1], this
amplitude was found to contain a pole in q2 proportional
to iPαβjμν=M2

P in D ¼ 4. Thus, one contribution to the
emergent three-graviton coupling arises from a central
scalar loop that connects three factors of Tμν associated
with the effective interaction in Eq. (3.6). This is illustrated
in the six-scalar scattering amplitude shown in Fig. 2. The
sum of loops representing each “leg” of this diagram was
evaluated in Ref. [1] at leading order in an expansion in q2

and 1=N. Using this result, we can isolate the leading part
of the amplitude in Fig. 2 in a similar expansion. After
including the additional contributions described below, the
final scattering amplitude can be compared to the same
quantity computed in general relativity.
Additional contributions to the emergent three-graviton

coupling arise from the presence of six-scalar interactions

at the next order in 1=V0. Using the solution for gμν that
yields a vanishing total energy-momentum tensor, we may
write gμν ¼ ημν þ hμν, where

hμν ¼ hð1Þμν þ hð2Þμν þ � � � ; ð3:7Þ
with

hð1Þμν ¼ −
ΔV
V0

ημν þ
ðD=2 − 1Þ

V0

∂μϕ · ∂νϕ≡ 1

V0

Pαβ
λκT αβ;

ð3:8Þ
and

hð2Þμν ¼ −
ΔV
V0

hð1Þμν : ð3:9Þ

The second equality in Eq. (3.8) follows after some simple

algebra. The operator hð1Þμν is the same as the one identified
in our discussion of the graviton-scalar-scalar coupling.
The superscript indicates the order in an expansion in 1=V0.
Using Eqs. (3.8) and (3.9), we expand the action in our
theory, Eq. (2.6), to order 1=V2

0, while expressing the result

entirely in terms of hð1Þμν :

Lint ¼
V0

ðD=2 − 1Þ
�
1

6
hð1Þαβhð1Þβγhð1Þγα −

1

8
hð1Þhð1Þαβhð1Þβα

þ 1

48
hð1Þ3 −

ΔV
V0

�
−
1

4
hð1Þαβhð1Þβα þ

1

8
hð1Þ2

��
:

ð3:10Þ
Each factor of −hð1Þ=2 in Eq. (3.10) can connect to the sum
over loop diagrams, described earlier, that generate grav-
iton poles; the first three terms in Eq. (3.10) lead to an
effective three-graviton contact interaction that is indepen-
dent of momentum. No such interaction exists in general
relativity; we will show later how the effects of these terms
are cancelled. A separate contribution to the three-graviton
coupling arises in a similar way from the remaining terms
in Eq. (3.10), except that the factor of ΔV must be joined
to the quartic scalar vertex in Eq. (3.6) by a loop. The
contributions to the six-scalar scattering amplitude dis-
cussed earlier that follow from the interactions in Eq. (3.10)
are shown in Fig. 3. Note that a contribution to the three-
graviton coupling arising from the eight-scalar interactions,
at order 1=V3

0, is absent in this theory. Such a diagram
would require closing a single scalar loop that is cancelled
by the counterterms, appearing in Eqs. (2.7) and (2.9), that
remove all the tadpole diagrams in the theory.
We evaluate the diagrams of Figs. 2 and 3 in the next

section.We show that the part of the result that is quadratic in
the graviton momenta is consistent with the three-graviton
coupling of general relativity, and the part that is independent
of momentum is vanishing. We verify that the Planck scale
determined from this calculation agrees with the result
obtained via the scattering amplitude of Ref. [1]. In both

FIG. 2. Contribution to the loop-generated three-graviton
coupling involving the quartic scalar interaction vertex exclu-
sively. The chains of small circles corresponds to the sum over
loops defined in Fig. 1, which leads to graviton poles. Each pair
of external scalars is assumed to be distinct.
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calculations, loops are regulated using dimensional regulari-
zation, with D ¼ 4 − ϵ, and ϵ fixed at a finite value. This
approach is used as a placeholder for whatever generally
covariant physical regulator may be provided by a realistic
ultraviolet completion of the theory. Proceeding in this way,
the Planck scale becomes a function of 1=ϵ and we will
verify that the result obtained in the next section agrees
exactly with the one found in Ref. [1].

IV. EMERGENT THREE-GRAVITON
VERTEX AND MP

In this section, we study the six-scalar scattering
amplitude given by the diagrams shown in Figs. 2 and
3, and compare to the result expected from general
relativity. The chains of circles forming the three legs
of the diagrams represent the same sums over loops shown
in Fig. 1 that provide the emergent graviton poles. Since
these were previously isolated as the leading order terms
in an expansion in q2, we can reliably compute the leading
order piece of the scattering amplitude as the graviton legs
are taken nearly on shell. It is convenient to parametrize
the result as

iM ¼ 1

M6
P

1

p2

1

q2
1

k2
A; ð4:1Þ

where we define

A ¼ Eλκ
1 E

ψω
2 Eϕχ

3 PλκjαβPψωjγδPϕχjϵζAαβγδϵζ: ð4:2Þ
Here, E1, E2, and E3 refer to the external line factors,
defined earlier, that connect to graviton lines carrying
momenta p, k, and q, respectively. Note that we will only
need to evaluate the 1=ϵ dependence of the central loops in
the diagrams of Figs. 2 and 3, so that all vertices are
evaluated for D ¼ 4.
The innermost loop in the diagram of Fig. 2 involves

three insertions of the energy-momentum tensor T μν, which
has the Feynman rule

i½pμ
1p

ν
2 þ pν

1p
μ
2 þ ημνðm2 − p1 · p2Þ�; ð4:3Þ

for momentum p1 flowing in and momentum p2 flowing
out. The amplitude is then given by

Aαβγδϵζ
1

¼N
Z

d4l
ð2πÞ4

Nαβγδϵζ
1

½ðpþlÞ2−m2�½l2−m2�½ðl−kÞ2−m2� ;

ð4:4Þ

where the numerator factor is

Nαβγδϵζ
1

¼ ½lαðlþ pÞβ þ lβðlþ pÞα þ ηαβðm2 − l · ðlþ pÞÞ�
× ½ðlþ pÞϵðl − kÞζ þ ðlþ pÞζðl − kÞϵ
þ ηϵζðm2 − ðlþ pÞ · ðl − kÞÞ�½ðl − kÞγlδ þ ðl − kÞδlγ

þ ηγδðm2 − ðl − kÞ · lÞ�; ð4:5Þ

and momenta are defined as in Fig. 2. Similarly, diagram of
Fig. 3(b) leads to the amplitude

Aαβγδϵζ
2 ¼ m2N

Z
d4l
ð2πÞ4

Nαβγδϵζ
2

½ðpþ lÞ2 −m2�½l2 −m2� ; ð4:6Þ

where the numerator factor is

Nαβγδϵζ
2 ¼ −½lαðlþ pÞβ þ lβðlþ pÞα

þ ηαβðm2 − l · ðlþ pÞÞ�Pγδjϵζ: ð4:7Þ

Let us first focus on the part of the amplitude that is
quadratic in the momenta p, k, and q, which excludes any
contribution from the diagram of Fig. 3(a). We note by
inspection of Eq. (4.6) that Aαβγδϵζ

2 will involve terms
proportional to either pαpβ or p2ηαβ. Terms of the first
type vanish since they are contracted with the external line
factor E1, while terms of the second type are higher-order in
our expansion about the limit p2 ¼ k2 ¼ q2 ¼ 0. Hence,
the diagram of Fig. 3(b) does not contribute at leading order
to the part of the amplitude A that is quadratic in the
graviton momenta.
The diagram of Fig. 2, however, does contribute. Using

Eq. (4.2) and the notation Ei
μ
μ ≡ Ei and EiμνE

μν
j ≡ Ei · Ej,

we find

A ¼ iN
8π2

m2

ϵ

�
−
1

6
E1E2E

μν
3 kμkν þ

1

3
E1 · E2E

μν
3 kμkν

−
2

3
Eμν
1 kνE

αβ
2 pβE3μα þ perms

�
þ higher order; ð4:8Þ

where “perms” refers to two additional cyclic permutations
in which

(a) (b)

FIG. 3. Contribution to the loop-generated three-graviton
coupling involving six-scalar interaction vertices. The two dia-
grams shown, labelled (a) and (b), are discussed in the text. The
chains of small circles corresponds to the sum over loops defined
in Fig. 1, which leads to graviton poles. Each pair of external
scalars is assumed to be distinct. Two other diagrams similar to
the second one are not shown.
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ðE1; pÞ → ðE2; kÞ → ðE3; qÞ → ðE1; pÞ; ð4:9Þ
and “higher order” represents terms that vanish when the
gravitons are exactly on shell.
We can compute the analogous result in the weak field

expansion of general relativity. We work with a rescaling
of the graviton field so that the propagator in de Donder
gauge is iPαβjμν=q2, and the coupling of the graviton to
the energy-momentum tensor is hμνT μν=MP. Defining the
following quantities,

f1 ¼ −ip2ηαβηγδηϵζ; ð4:10Þ

f2 ¼ −
i
2
q2ηαβðηγζηϵδ þ ηδζηϵγÞ; ð4:11Þ

f3 ¼ −
i
2
q · kηαβðηγϵηδζ þ ηϵδηζγÞ; ð4:12Þ

f4 ¼ −
i
8
q2ðηβϵηγζηαδ þ ηβϵηδζηαγ þ ηβζηγϵηαδ þ ηβζηδϵηαγ

þ ηαϵηγζηβδ þ ηαϵηδζηβγ þ ηαζηγϵηβδ þ ηαζηδϵηβγÞ;
ð4:13Þ

f6 ¼ −ikαkβηϵζηγδ; ð4:14Þ

f7 ¼ −
i
4
ðqαkβ þ qβkαÞðηϵδηζγ þ ηϵγϵζδÞ ð4:15Þ

f8 ¼ −
i
2
kαkβðηϵγηζδ þ ηϵδηζγÞ; ð4:16Þ

f9 ¼ −
i
4
ηαβðqϵkγηδζ þ qϵkδηγζ þ qζkγηδϵ þ qζkδηγϵÞ;

ð4:17Þ

f10 ¼ −
i
4
ηαβðqϵqγηζδ þ qϵqδηζγ þ qζqγηϵδ þ qζqδηϵγÞ;

ð4:18Þ

f11 ¼ −
i
4
ηαβðkϵqγηζδ þ kϵqδηζγ þ kζqγηϵδ þ kζqδηϵγÞ;

ð4:19Þ

f13 ¼ −
i
8
ðqϵqγηαζηβδ þ qϵqδηαζηβγ þ qζqγηαϵηβδ

þ qζqδηαϵηβγ þ qϵqγηβζηαδ þ qϵqδηβζηαγ

þ qζqγηβϵηαδ þ qζqδηβϵηαγÞ; ð4:20Þ

f14 ¼ −
i
8
½ðkϵηαζ þ kζηαϵÞðqγηβδ þ qδηβγÞ

þ ðkϵηβζ þ kζηβϵÞðqγηαδ þ qδηαγÞ�; ð4:21Þ
we find that the Feynman rule for the three-graviton vertex
shown in Fig. 4 can be written

iVαβγδϵζ
3h ¼ −

4

MP

�X
i

cifi þ perms

�
; ð4:22Þ

where “perms” refers to the five remaining permutations of
the labels of the external lines ðα; β; pÞ, ðγ; δ; kÞ, and
ðϵ; ζ; qÞ. The coefficients ci are given by

c1 ¼
1

16
; c2 ¼ −

1

2
; c3 ¼ −

3

8
; c4 ¼

1

4
;

c5 ¼ 0; c6 ¼ −
1

4
; c7 ¼

1

4
; c8 ¼

1

2
;

c9 ¼
1

2
; c10 ¼ 1; c11 ¼

1

4
;

c12 ¼ 0; c13 ¼ −1; c14 ¼ −
1

2
: ð4:23Þ

The origin of the fi and the normalization of Eq. (4.22) are
described briefly in the Appendix5 Computing the same
six-scalar amplitude that we considered in our purely scalar
theory, we find

AGR ¼ −6iM2
P

�
ðk2 þ p2 þ q2Þ

�
1

3
Eμν
1 E2ν

αE3αμ

þ 1

12
E1E2E3

�
þ
�
−
1

6
E1E2E

μν
3 kμkν þ

1

3
E1

· E2E
μν
3 kμkν −

2

3
Eμν
1 kνE

αβ
2 pβE3μα

−
1

6
ðp2 þ k2ÞE3E1 · E2 þ perms

	�
: ð4:24Þ

In the limit where the gravitons are nearly on shell, this result
coincides with the amplitude A determined in our scalar
theory provided we identify −6iM2

P with iNm2=ð8π2ϵÞ.
Hence, we conclude

FIG. 4. Conventions for the Feynman rule for the three-graviton
vertex.

5We would like to warn the attentive reader that the three-
graviton vertex as given in Feynman’s lectures on gravitation [11]
is incomplete. In the literature there are more succinct expressions
for the vertex, but they refer to the interactions of another field,
namely the tensor density gμν ≡ ffiffiffiffiffiffi−gp

gμν ¼ ημν þ hμν. See for
example [10,12].
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M2
P ¼ −

N
48π2

m2

ϵ
; ð4:25Þ

with ϵ < 0. Although the 1=ϵ originates here from a loop
diagram in the three-gravitonvertex calculation, the resulting
relation to MP agrees with the scattering calculation of
Ref. [1], i.e., Eq. (2.13).
We now consider the momentum-independent contribu-

tions to the amplitude A, which we denote A0. The contact
terms shown in Fig. 3(a) give the contribution

A0
tree ¼ −iV0½−E1E2E3 þ 2ðE1E2 · E3 þ permsÞ

− 8Eμν
1 E2ν

αE3αμ�: ð4:26Þ

The central loop in Fig. 3(b) gives no contribution; this is
clear since a momentum-independent part would have to
remain in the limit pμ ¼ 0, and we have already established
that this contribution to A exclusively involves terms
proportional to pαpβ or p2ηαβ. On the other hand, we
may evaluate the result coming from the diagram of Fig. 2.
We find

A0
loop ¼ −

1

2

iN
16π2

m4

ϵ
½−E1E2E3 þ 2ðE1E2 · E3 þ permsÞ

− 8Eμν
1 E2ν

αE3αμ�: ð4:27Þ

Cancellation is assured if

V0 ¼ −
N
2

m4

16π2ϵ
; ð4:28Þ

which is satisfied for the same value of V0 that gave us a
massless graviton pole. Aside from higher-derivative cor-
rections, our results for the three-graviton coupling are
consistent with the expectations of general relativity.
This conclusion is gratifying since the action of our

theory is generally covariant and the choice of the back-
ground for the clock-and-ruler fields is a convenient gauge
choice, analogous to static gauge in string theory. We
therefore expect that the form of the three-point coupling
should be in accord with general relativity, aside from
higher-derivative corrections. Among the sign corrections
discussed in Sec. II, we note that the corrected sign in the
expression for V0 relative to the result in Ref. [1] not only
assures the masslessness of the graviton, but here also
provides for the nontrivial cancellation between the contact
terms in Eq. (4.26), and the one-loop terms in Eq. (4.27).
Finally, we comment on higher-derivative corrections.

The diagram in Fig. 2 also contributes to terms in the three-
graviton vertex that involve four graviton momenta. Since
this part of the central loop is logarithmically divergent, the
result is proportional to N=ϵ, which is suppressed by a
factor ofm2 relative to the result of Eq. (4.8). For largeN=ϵ,
m can be substantially smaller than MP, but still sufficient
to render these effects harmless at the distance scales where

gravity has been probed [13]. For the sake of argument, if
ϵ ∼ 10−11, consistent with the phenomenological bound
ϵ < 4 × 10−11 from Ref. [14], and N ¼ 100, one finds
m ≈ 7 × 10−6MP ≈ 1013 GeV. However, it should be
stressed that the suppression of these higher-derivative
interactions bym2 rather thanM2

P is peculiar to dimensional
regularization, where the regulator is dimensionless; this
result does not generalize to other regulators, for example,
Pauli-Villars fields or a Schwinger time / heat kernel UV
regulator. We therefore do not consider the suppression of
higher-derivative interactions by powers of the scalar mass
to be an intrinsic feature of these models.

V. UNIVERSALITY OF THE GRAVITON
COUPLING

In this section, we consider a theory with two distinct
sets of noninteracting scalar fields, ϕa

1 with a ¼ 1…N1, and
ϕb
2 with b ¼ 1…N2, distinguished only by their masses m1

andm2. We wish to show that extending the scalar theory in
this way preserves a massless spin-2 graviton state, and that
the graviton couples universally to both types of scalars.
The action of the theory, prior to imposing the constraint

of vanishing total energy-momentum tensor, is

S ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
1

2
gμν

�XN1

a¼1

∂μϕ
a
1∂νϕ

a
1 þ

XN2

a¼1

∂μϕ
a
2∂νϕ

a
2

�

−
XD−1

I;J¼0

∂μXI∂νXJηIJ − Vðϕ1;ϕ2Þ
�
: ð5:1Þ

This extension of the original theory is obtained via the
replacements

XN
a¼1

∂μϕ
a∂νϕ

a →
XN1

a¼1

∂μϕ
a
1∂νϕ

a
1 þ

XN2

a¼1

∂μϕ
a
2∂νϕ

a
2; ð5:2Þ

and

VðϕÞ → Vðϕ1;ϕ2Þ≡ V0 þ ΔVðϕ1;ϕ2Þ; ð5:3Þ

where

ΔVðϕ1;ϕ2Þ ¼
m2

1

2

XN1

a¼1

ϕa
1ϕ

a
1 þ

m2
2

2

XN2

a¼1

ϕa
2ϕ

a
2: ð5:4Þ

It follows that

T μν ¼ T μν
1 þ T μν

2 : ð5:5Þ

The interaction vertex that is relevant to the two-into-two
scattering calculation can be inferred from the results of
Sec. III
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Lint ¼ −
1

4V0

PαβjμνðT 1 þ T 2ÞμνðT 1 þ T 2Þαβ: ð5:6Þ

Generalizing our earlier notation, we define the functions

Eμν
i ðp; kÞ≡ −ðpμkν þ pνkμÞ þ ημνðp · kþm2

i Þ; ð5:7Þ

for i ¼ 1, 2, corresponding to the Feynman rule for a T i
factor, assuming inwardly or outwardly directed momenta
p and k. The scattering amplitude shown in Fig. 5(a) has the
form

iMðp1; i;p2; i → p3; j;p4; jÞ
¼ Eμν

i ðp1; p2Þ½iAijðqÞμνjρσ�Eρσ
j ðp3; p4Þ: ð5:8Þ

with q ¼ p1 þ p2 ¼ p3 þ p4. This is equivalent to the
recursive representation shown in Fig. 5(b), which leads to

Aμνjρσ
ij ¼ A0

μνjρσ
ij þ

X
k

ðKikÞμναβAαβjρσ
kj ; ð5:9Þ

where A0 corresponds to the tree-level amplitude and we
have stripped off the external line factors. It follows from
the form of the interaction in Eq. (5.6), however, that the

amplitudes Aμνjρσ
i;j are independent of i and j. Dropping

these labels, we may write Eq. (5.9) as

Aμνjρσ ¼ Aμνjρσ
0 þ Kμν

αβAαβjρσ; ð5:10Þ

where

Kμν
αβ ¼ Kμν

αβðN1; m1Þ þ Kμν
αβðN2; m2Þ; ð5:11Þ

with the kernel Kμν
αβðN;mÞ identical to that of a theory

with a single set of N scalar fields with masses m [1],

Kμν
αβ ¼ −

NðD=2 − 1Þ
4V0

Γð−D=2Þ
ð4πÞD=2 ðm2ÞD=2

�
1 −

D
12

q2

m2

�

× ðδναδμβ þ δνβδ
μ
αÞ þOðq4Þ; ð5:12Þ

where we have included the sign correction noted in Sec. II.
The condition that the amplitude in Eq. (5.10) includes a
massless pole generalizes to

V0 ¼ −
ðD=2 − 1Þ

2

Γð−D=2Þ
ð4πÞD=2

X
i

Niðm2
i ÞD=2: ð5:13Þ

With this tuning of V0, one finds

Aμνjρσ ¼ −
3

DV0

� P
iNiðm2

i ÞD=2P
iNiðm2

i ÞD=2−1

�

×

��
D
2
− 1

�
ðηνρημσ þ ηνσημρÞ − ημνηρσ

�
1

q2
þ � � �

ð5:14Þ

from which one infers that the Planck mass is given by

MP ¼
�
Γð1 −D=2Þ
6ð4πÞD=2

X
i
Niðm2

i ÞD=2−1
� 1

D−2
: ð5:15Þ

This reduces to the result in the theory with a single set ofN
scalars in the limit that one or the other of the terms in the
sum dominates (or to a theory of 2N scalars of mass m,
whenm1 ¼ m2 ¼ m). Note that for comparableN1 andN2,
the Planck scale is set by the mass of heavier of the scalars,
while the other can be much lighter.
In the two-scalar theory, the metric fluctuation that

follows from the constraint of vanishing energy-momentum
tensor can be written

hμν ¼
D=2 − 1

V0

�XN1

a¼1

∂μϕ
a
1∂νϕ

a
1 þ

XN2

a¼1

∂μϕ
a
2∂νϕ

a
2

�

− ημν
ΔV
V0

þOð1=V2
0Þ; ð5:16Þ

which is algebraically equivalent to

hμν ¼
1

V0

Pαβ
μνðT 1 þ T 2Þαβ þOð1=V2

0Þ: ð5:17Þ

Following the same approach we used previously to write
down the lowest-order effective interaction for a funda-
mental graviton field, we find from Eq. (5.6),

Leff ¼ −
1

2
hμνðT 1 þ T 2Þμν; ð5:18Þ

where we have taken into account the two ways in which
we may identify the fundamental graviton field. This is of

(a)

(b)

FIG. 5. Two-into-two scattering diagrams. The labels take the
values 1 or 2, indicating the set of scalars to which a given line is
associated; external lines are chosen such that only s-channel
diagrams are relevant. Label (b) provides a recursive representa-
tion of label (a).
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the expected form, consistent with a universal coupling of
the graviton to the two types of scalar fields in the theory.
The strength of the gravitational interaction is set by MP in
Eq. (5.15). The results of this section extend trivially to
more than two sets of distinct scalar fields.

VI. THE EXPECTATION VALUE OF THE
EMERGENT METRIC

In the current setup, where the energy-momentum tensor
has a vanishing vacuum expectation value (VEV), the
expectation value of the metric fluctuation

hð1Þμν ¼ 1

V0

PμνjαβT αβ ð6:1Þ

is zero, and the metric is flat.
We would like to consider a scenario where a conserved

source term is added to the action,

δS ¼ −
1

2

Z
dDxJαβðxÞPαβjμνT μν: ð6:2Þ

In the presence of the external source, Jαβ, the metric
fluctuation can acquire a non-zero VEV

hhð1Þμν iJ ¼
1

ZJ

Z
Dϕhð1Þμν eiðS½ϕ�þδSÞ; ð6:3Þ

where the normalization factor ZJ is the partition function
in the presence of the source. Diagrammatically, the VEV is
given by an infinite sum of which the lowest order terms are
depicted in Fig. 6.
This procedure mirrors at each step the general relativity

calculation performed by Duff [10] who showed that by
summing such quantum tree diagrams, where the wavy
lines in Fig. 6 denote the flat space graviton propagator, one
can recover, for example, an order-by-order (in terms of
mass) expansion of the Schwarzschild metric, if the source
is taken to be spherically symmetric. By analogy, we expect

the same result to hold in our theory, so that we obtain an
emergent curved metric.6

VII. CONCLUSIONS

In this paper, we have considered graviton interactions
in a theory of emergent gravity proposed by Carone,
Erlich and Vaman [1]. The original proposal was a theory
of Dþ N scalar fields and was defined via a functional
integral, subject to the constraint of vanishing total
energy-momentum tensor. The set of D fields, called
clock-and-ruler fields, had profiles that determined the
background metric, but otherwise could be gauged away.
The composite graviton state was found to couple to the
nonvanishing energy-momentum tensor of the remaining
N scalar fields. While the original work in Ref. [1]
demonstrated the existence of a massless, spin-2 pole
in scalar two-into-two scattering amplitudes in the large N
limit, the coupling of the graviton to itself, the universality
of the coupling when additional scalars of differing mass
are present, and an approach to incorporating curved
backgrounds were not discussed. Those issue were clari-
fied in the present work.
In particular, we showed here that the effective three-

graviton coupling inferred from scattering amplitudes
involving six external scalar lines is consistent with the
expectations of the weak-field limit of general relativity.
The internal graviton lines in the theory with a funda-
mental graviton field are contained within sums over loop
subdiagrams that each generate an emergent graviton
pole. The scattering amplitude arises by connecting these
loop chains using the available four- and six-scalar
vertices in the theory. This is similar to the way that
non-Abelian gauge boson vertices were generated in the
composite models of Ref. [9]. We showed by direct
calculation that the Planck scale inferred from the induced
three-graviton vertex, a function of the generally covariant
physical regulator of the theory, agrees with the result
found in the scattering calculation of Ref. [1]. Moreover,
we explained in the present work why the perturbative
expansion about a fixed background does not lead to an
explicit breaking of general covariance, once loop cor-
rections are taken into account.
The success of our emergent gravity model in repro-

ducing the Einstein-Hilbert three-graviton coupling is
predicated on starting with the diffeomorphism-invariant
scalar action given in Eq. (2.6). At the same time, for those
readers familiarwith Sakharov’smodel for induced gravity, it
might beworth pointing out that our Fig. 2 Feynman diagram
bears a resemblance with the matter one-loop Feynman
diagram which induces the cubic graviton two-derivative-
coupling interaction terms in Sahkarov’s model. Therefore it

(a)

(b)

FIG. 6. (a) The Feynman diagrams contributing to the VEV of
the metric fluctuation in the presence of an external source. The
source is depicted by the crossed circle. The second diagram
includes the three-graviton vertex. (b) Scalar loops that lead to the
emergent graviton pole.

6For a different approach to incorporating curved backgrounds
in the present framework, and which involves a modification of
the starting point in Ref. [1], see Ref. [15].
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might seem thatwe areguaranteed in recovering theEinstein-
Hilbert cubic graviton interaction. However, in Sakharov’s
model, the matter loops also induce nonvanishing cubic
graviton interaction with no derivatives, and which can be
interpreted as arising from a cubic order expansion of a
cosmological constant term. Such terms are absent in our
approach since we have canceled the cosmological constant
by construction. Specifically, the fine tuning given in
Eq. (2.10) which ensured the existence of the massless
composite graviton also led to the vanishing of the non-
derivative cubic graviton interaction terms as detailed in
Eqs. (4.26) and (4.27).
We also considered extending the theory to the case

where we begin with two sets of noninteracting scalar fields
of differing masses. This is a natural consistency check on
the theory, since it would be unacceptable if, for example,
there were a different effective Planck mass for each set of
scalars. We verified that the composite graviton couples to
the energy-momentum tensor of each set of scalars with a
strength set by a single Planck mass, which is a function of
the number and mass of each type of scalar field. We noted
that in the case where there is a hierarchy in the scalar
masses (assuming the numbers of each type are compa-
rable), the Planck scale is determined by the heavier scalar,
while the other can be arbitrarily lighter. Finally, we briefly
noted how to incorporate the physics of a curved back-
ground while still expanding about a flat one, by coupling
the composite scalar operator that is identified with the
metric to a classical source, implementing an approach
known in the context of the weak-field limit of general
relativity.
A number of issues are appropriate for future work. In

the type of scalar theories considered here, it is worthwhile
considering how the diagrammatic analysis generalizes in
the case where scalar interactions are present in the theory
before the constraint of vanishing energy-momentum
tensor is applied. More precisely, how would the analysis
be modified if the scalar potential in Eq. (2.9) were to
include, for example, a quartic term? While the diagrams
included in the scattering calculation of Ref. [1] are still
present, additional diagrams that contribute to the ampli-
tude are expected; it needs to be shown that the graviton
pole persists in this case. Another interesting issue is the
generalization of the diagrammatic approach of Ref. [1] to
theories involving fields of spin-1=2 and 1, required for
applications to phenomenologically relevant quantum field
theories. Work in that direction is underway [16], and will
be presented elsewhere.

ACKNOWLEDGMENTS

The authors are grateful for many fruitful discussions
with Joshua Erlich. The work of C. D. C. and T. V. B. C.
was supported by the NSF under Grant No. PHY-1519644.
The work of D. V. was supported in part by DOE Grant
No. DE-SC0007894. D. V. would also like to acknowledge

the hospitality of the College of William and Mary Physics
Department for the duration of this work.

APPENDIX: THREE-GRAVITON VERTEX
DECOMPOSITION

The Feynman rule for the three-graviton vertex in the
weak-field expansion of general relativity was used in
Sec. IV. One can understand the Feynman rule from the
following considerations: The three-graviton part of

ffiffiffi
g

p
R

can be decomposed in terms of an operator basis, where
each operator involves two derivatives and three graviton
fields. The following 14 operators form a suitable basis:

O1 ¼ h2□h ðA1Þ
O2 ¼ h□hαβhβα ðA2Þ
O3 ¼ h∂μhαβ∂μhβα ðA3Þ
O4 ¼ hαβ□hβμhμα ðA4Þ
O5 ¼ hμν∂μh∂νh ðA5Þ
O6 ¼ hμνh∂μ∂νh ðA6Þ
O7 ¼ hμν∂μhαβ∂νhβα ðA7Þ
O8 ¼ hμνhαβ∂μ∂νhβα ðA8Þ
O9 ¼ h∂μhμα∂νhνα ðA9Þ
O10 ¼ h∂μ∂νhμαhνα ðA10Þ
O11 ¼ h∂νhμα∂μhνα ðA11Þ
O12 ¼ hαβ∂μhμα∂νhνβ ðA12Þ
O13 ¼ hαβ∂μ∂νhμαhνβ ðA13Þ
O14 ¼ hαβ∂νhμα∂μhνβ: ðA14Þ

The cubic terms of
ffiffiffi
g

p
R can then be written

½ ffiffiffi
g

p
R�ð3Þ ¼

�
1

16
O1−

1

2
O2−

3

8
O3þ

1

4
O4

�

þ
�
−
1

4
O6þ

1

4
O7þ

1

2
O8

�

þ
�
1

2
O9þO10þ

1

4
O11−O13−

1

2
O14

�
ðA15Þ

The momentum-space Feynman rule that follows from
Eq. (A15) leads to the quantity in parentheses in
Eq. (4.22). The prefactor of 4=MP arises from the following
considerations: we start with the Lagrangian L ¼
−M2

P½
ffiffiffi
g

p
R�=2þ hμνT μν=2, and then rescale hμν → 2hμν=

MP to place thegraviton kinetic terms in canonical form. This
leads to the graviton-matter coupling hμνT μν=MP, men-
tioned in Sec. IV, as well as an overall factor of −4=MP
multiplying the Feynman rule that follows from Eq. (A15).
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