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We study here the gravitational collapse of dust in (2þ 1)-dimensional spacetimes for the formation of
black holes (BH) and naked singularities (NS) as final states in a modified theory of gravity, with vanishing
cosmological constant. From the perspective of cosmic censorship, we investigate the collapse of a dust
cloud in Eddington-inspired Born-Infeld gravity (EiBI) and compare the results with those of general
relativity (GR). It turns out that, as opposed to the general relativistic situation, where the outcome of dust
collapse in (2þ 1) dimensions is always a naked singularity, the EiBI theory has a certain range of
parameter values that avoid the naked singularity. This indicates that a (3þ 1)-dimensional generalization
of these results could be useful and worth examining. Finally, using the results here, we show that the
singularity avoidance through homogeneous bounce in cosmology in this modified gravity is not stable.
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I. INTRODUCTION

Several studies on gravitational collapse scenarios in
(2þ 1) dimensional spacetimes have been carried out by
various authors [1–5]. These provide interesting toy models
which may give important insights from the perspective of
quantum gravity. This is because in (2þ 1) dimensional
spacetimes there is no gravity outside the matter. Also the
spacetime metric is always conformally flat as the Weyl
tensor vanishes identically everywhere. On the other hand,
the situation in (3þ 1) and higher dimensions is far more
complicated compared to this [5,6].
To investigate the final collapse outcome in (2þ 1)

dimensional collapse, let us consider the geometry of trapped
surfaces in this case. In general, for a spherically symmetric
spacetime, the equation for apparent horizon is given by
gμν∂μR∂νR ¼ 0, where gμν is the metric tensor, and R is the
area radius. In GR, the equation of an apparent horizon can
alternatively be expressed as F=RN−3 ¼ 1, where N is the
dimension of the spacetime, and F is the mass function for
the collapsing cloud [5]. Thus, we see that the equation of
apparent horizon in the (2þ 1) case is given by Fðt; rÞ ¼ 1
for the gravitational collapse of any general matter field.
It is therefore interesting to note that, in (2þ 1)-

dimensional GR, the geometry of trapped surfaces is
completely determined by the mass function alone of the
cloud, and is independent of the area radius of the
collapsing shells. If the mass function of the collapsing
configuration is bounded from above, with say Fðt; rÞ < 1

for the range −∞ < t < ts and 0 < r < rb, where ts and rb
are the singularity time and the boundary of the cloud
respectively, we then see that the trapping does not occur
during the collapse and the complete singularity that forms
as the collapse end state is necessarily visible to an outside
observer. This situation is strikingly different from four or
higher-dimensional spherically symmetric spacetimes,
where a massive singularity is always necessarily trapped
within an apparent horizon.
A very interesting subcase of this situation is that of

(2þ 1) dimensional dust collapse in GR, where Fðt; rÞ ¼
FðrÞ gives the equation for the apparent horizon, with the
mass function having no time dependence in this case [5].
Here we see that the initial mass of the collapsing cloud
completely determines the final outcome in terms of BH or
NS. Clouds with small enough mass always form a visible
singularity, whereas for larger masses a trapped region is
present at all epochs. However, as demanded by the
regularity conditions, we must avoid trapped surfaces on
the initial surface t ¼ ti, where the collapse commences. In
that case, for the dust collapse case, there are no trapped
surfaces developing at all at any other later epochs until the
singularity formation, and as a result the (2þ 1) dimen-
sions dust collapse always necessarily produces a visible
naked singularity (NS), as opposed to the BH/NS phases
obtained in usual four-dimensional dust collapse.
However, the situation may be different in modified

theories of gravity. In general, most of the modified gravity
theories significantly differ from GR in strong curvature
regimes. Therefore, in such regimes, the dynamics of
gravitational collapse, the formation of spacetime singu-
larities, trapped surfaces, the formation and dynamics of
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apparent horizons etc, may significantly differ from that
found in GR. As a simplest scenario, we investigate the
collapse of a dust cloud with zero cosmological constant in
(2þ 1) dimension in a modified theory of gravity, namely
the Eddington inspired Born-Infeld gravity (EiBI) [7] and
compare the results with those of GR. The EiBI gravity
theory is a class of Born-Infeld inspired gravity theory first
suggested by Deser and Gibbons [8], suggested by the
earlier work of Eddington [9], and the nonlinear electro-
dynamics of Born and Infeld [10]. The EiBI theory is
equivalent to Einstein’s GR in vacuum but differs from it in
the presence of matter. Since its introduction, various
aspects of EiBI gravity have been studied by many
researchers in the recent past. The final fate of a gravita-
tional collapse of homogeneous dust in EiBI gravity was
studied in [11]. Various aspects such as black holes [7,12],
wormholes [13], compact stars [14], cosmological aspects
[7,15–17], astrophysical aspects [18], gravitational waves
[19] etc. have been worked out. See [20] for a recent review
on various studies in EiBI gravity. Our main purpose here
is to study the effect of introducing inhomogeneities in
matter, towards the collapse final states.

II. EDDINGTON-INSPIRED BORN-INFELD
GRAVITY

The action in EiBI gravity is given by

SBI½g;Γ;Ψ� ¼
2

κ

Z
d3x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνðΓÞj

q
− λ

ffiffiffiffiffiffiffiffiffi
−jgj

p i
þ SMðg;ΨÞ; ð2:1Þ

where λ ¼ 1þ κΛ, κ is the EiBI theory parameter, RμνðΓÞ
is the symmetric part of the Ricci tensor built with the
independent connection Γ, SMðg;ΨÞ is the action for the
matter field,Λ is the cosmological constant, and the vertical
bars stand for the matrix determinant. Variations of this
action with respect to the metric tensor gμν and the
connection Γ yield, respectively, [7,15,16]

ffiffiffiffiffiffi
−q

p
qμν ¼ λ

ffiffiffiffiffiffi
−g

p
gμν − κ

ffiffiffiffiffiffi
−g

p
Tμν ð2:2Þ

∇Γ
αð

ffiffiffiffiffiffi
−q

p
qμνÞ ¼ 0; ð2:3Þ

where ∇Γ denotes the covariant derivative defined by the
connection Γ, and qμν is the inverse of the auxiliary metric
qμν defined by

qμν ¼ gμν þ κRμνðΓÞ: ð2:4Þ
In obtaining the field equations from the variation of the
action, it is assumed that both the connection Γ and the
Ricci tensor RμνðΓÞ are symmetric, i.e., Γμ

νρ ¼ Γμ
ρν and

RμνðΓÞ ¼ RνμðΓÞ. Equation (2.3) gives the metric compat-
ibility equation which yields

Γμ
νρ ¼ 1

2
qμσðqνσ;ρ þ qρσ;ν − qνρ;σÞ: ð2:5Þ

Therefore, the connection Γμ
νρ is the Levi-Civita connection

of the auxiliary metric qμν. Either in vacuum or in the limit
κ → 0, GR is recovered [7].
In this work, we study inhomogeneous dust collapse in

(2þ 1) dimensions. It has been shown that, in (3þ 1)
dimensions, the field equations (2.2) and (2.4) can be
combined to write an effective Einstein field equation
Gμ

ν ½q� þ Λδμν ¼ 1
λ T

μ
ν for the auxiliary metric qμν [15],

where T μ
ν is an apparent energy-momentum tensor depen-

dent on the physical energy-momentum tensor Tμ
ν. To show

this for an arbitrary N dimension, we first rewrite Eqs. (2.2)
and (2.4), respectively, as

qμσgσν ¼ δμν − κRμ
νðΓÞ; ð2:6Þ

qμσgσν ¼ τðδμν − κTμ
νÞ; ð2:7Þ

where we have taken Λ ¼ 0 (i.e., λ ¼ 1) for simplicity,
τ ¼ ffiffiffiffiffiffiffiffi

g=q
p

, Rμ
ν ¼ qμσRσν and Tμ

ν ¼ Tμσgσν. The last two
equations can be combined to obtain

Rμ
νðΓÞ¼ τTμ

νþ1−τ

κ
δμν ; RðΓÞ¼ τTþ1−τ

κ
N; ð2:8Þ

where R ¼ Rμ
μ and T ¼ Tμ

μ. The Einstein tensor for qμν then
follows immediately,

Gμ
νðΓÞ ¼ Rμ

νðΓÞ − 1

2
Rδμν ¼ T μ

ν ; ð2:9Þ

where

T μ
ν ¼ τTμ

νþPδμν ; P¼ðτ−1ÞðN−2Þ
2κ

−
1

2
τT: ð2:10Þ

τ can be obtained from Tμ
ν by taking determinant on both

sides of Eq. (2.7). we obtain

τ2¼ τN ½detðδμν−κTμ
νÞ� ⇒ τ¼½detðδμν−κTμ

νÞ� −1
N−2: ð2:11Þ

Note that, in (3þ 1) dimensions (N ¼ 4), for a dust Tμ
ν (the

only nonzero component is Tt
t ¼ −ρ, ρ being the energy

density), the form of the apparent energy-momentum tensor
T μ

ν represents perfect fluid with an effective isotropic
pressure given by P (≠ 0) [15]. This complicates the
collapse problem in (3þ 1) dimensions. However, this is
not the case in (2þ 1) dimensions. In (2þ 1) dimensions
(N ¼ 3), for a dust Tμ

ν , τ ¼ 1=ð1þ κρÞ, P ¼ 0 and hence
the form of T μ

ν also represents dust, thereby simplifying
the field equations to a great extent. Therefore, as a first
attempt, we consider the (2þ 1)-dimensional case. Here,
we would like to point out that the physical meaning of
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solutions is given by the physical metric gμν, not by the
auxiliary metric qμν; qμν is introduced for convenience.
Therefore, for a dust in (2þ 1) dimensions, though the
effective Einstein equation for qμν and hence the solution
for qμν is similar to the (2þ 1) dust solution of GR, the
solution for gμν, which determines the physical properties
of the solution, will be different from that of GR.

III. INHOMOGENEOUS DUST COLLAPSE
IN (2 + 1) DIMENSIONS

We assume, respectively, the most general physical and
auxiliary metrics of the form

ds2g ¼ gμνdxμdxν ¼ −e2αðr;tÞdt2 þ e2βðr;tÞdr2 þ S2ðr; tÞdθ2;
ð3:1Þ

ds2q ¼ qμνdxμdxν ¼ −e2νðr;tÞdt2 þ e2ψðr;tÞdr2 þR2ðr; tÞdθ2:
ð3:2Þ

For the matter part, we consider a dust form of matter,
whose energy-momentum tensor is given by Tμν ¼
ρðr; tÞuμuν, where ρðr; tÞ and uμ are, respectively, the
energy density and four velocity of the dust. The con-
servation equation∇μTμt ¼ 0 gives αðr; tÞ ¼ αðtÞ. Without
loss of generality, we take αðr; tÞ ¼ 0. We have another
conservation equation∇μTμr ¼ 0 which has to be satisfied.
Using field equation (2.2), we obtain

e2νðr;tÞ ¼ λ2 ¼ ð1þ κΛÞ2; ð3:3Þ

R2

S2
¼ e2ψ−2β ¼ λðλþ κρÞ ¼ ð1þ κΛÞð1þ κρ̄Þ; ð3:4Þ

where ρ̄ ¼ ρþ Λ. The tr-component of the field equa-
tion (2.4) (i.e., Rtr ¼ 0) can be integrated to obtain

e2ψðr;tÞ ¼ R02ðr; tÞ
1þ fðrÞ ; ð3:5Þ

where fðrÞ is an integration constant. Here, the prime
indicates differentiation with respect to r. The other
components of the field equation (2.4) are given by

R̈0

R0 þ
R̈
R
¼ λ2 − 1

κ
; ð3:6Þ

1 − e2β−2ψ

κ
¼ 1

λ2

�
R̈0

R0 þ
_R _R0

RR0

�
−

f0

2RR0 ; ð3:7Þ

1 − e2β−2ψ

κ
¼ 1

λ2

�
R̈
R
þ

_R _R0

RR0

�
−

f0

2RR0 ; ð3:8Þ

where an overdot denotes differentiation with respect to t.
Comparing (3.7) and (3.8), we get R̈0=R0 ¼ R̈=R. Therefore,
from (3.6), we obtain

R̈þ ω2R ¼ 0; ð3:9Þ

where ω2 ¼ λ2−1
2κ ¼ ð1þ κΛ

2
ÞΛ. Therefore, we are left with

two equations. Defining R2=S2 ¼ e2ψ−2β ¼ ð1þ κΛÞ×
ð1þ κρ̄Þ ¼ U, we obtain from (3.8)

Uðr; tÞ ¼ 1

1 − κ
λ2
ðR̈R þ _R _R0

RR0Þ þ κf0
2RR0

: ð3:10Þ

Therefore, once we solve Eq. (3.9) for Rðr; tÞ, we obtain all
the unknown functions. The function fðrÞmust be related to
the initial data. Note that, depending on the cosmological
constant Λ, we have three distinct case, namely, ω2 ¼ 0

(Λ ¼ 0), ω2 > 0 (Λ > 0), and ω2 < 0 (Λ < 0).
Note that, in obtaining the solutions of the field equa-

tions above, we have not put any restriction on sign and
value of the cosmological constant so far. However, unlike
in GR, in this EiBI theory, the analysis of the collapse with
non-zero cosmological constant is quite complicated and
involved because of the extra parameter κ. Therefore, from
now onwards, we consider the case of collapse with Λ ¼ 0.
In this case ω2 ¼ 0. Therefore, the solution of (3.9) is given
by Rðt; rÞ ¼ c1ðrÞtþ c2ðrÞ. Using the freedom of scaling,
we choose initially at t ¼ 0, the radius of the collapsing
shells scale as,

Sð0; rÞ ¼ Rð0; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρiðrÞ

p ¼ r; ð3:11Þ

where ρiðrÞ is the initial density profile. Therefore, we
obtain

Rðt; rÞ ¼ c1ðrÞtþ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρiðrÞ

p
: ð3:12Þ

The function c1ðrÞ must be chosen in such a way that
Sðt; 0Þ ¼ 0. Therefore, we must have c1ð0Þ ¼ 0 at the
center. Using Uð0; rÞ ¼ 1þ κρiðrÞ in (3.10), we obtain

fðrÞ ¼ c21ðrÞ − 2

Z
r

0

ρirdr − κ

Z
r

0

r2ρiρ0i
1þ κρi

dr: ð3:13Þ

Therefore, the physical metric becomes

ds2g ¼ −dt2 þ
R02 − κ R0

R ðρirþ κr2
2

ρiρ
0
i

1þκρi
Þ

1þ fðrÞ dr2

þ
�
R2 − κ

R
R0

�
ρirþ

κr2

2

ρiρ
0
i

1þ κρi

��
dθ2; ð3:14Þ

and the energy density is given by
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ρðt; rÞ ¼ U − 1

κ
¼

ρirþ κr2
2

ρiρ
0
i

1þκρi

RR0 − κðρirþ κr2
2

ρiρ
0
i

1þκρi
Þ
: ð3:15Þ

Note that, for κ ¼ 0, the above reduces to the inhomo-
geneous dust collapse obtained in (2þ 1)-dimensional
general relativity [4].

IV. SPACETIME SINGULARITIES AND
APPARENT HORIZONS

The gravitational collapse takes place from a regular
initial data given at t ¼ 0, and any shell labeled by the
coordinate r collapses to a zero area radius at a time
t ¼ tsðrÞ, i.e., where SðtsðrÞ; rÞ ¼ 0, thereby forming a
spacetime singularity. It should be noted that SðtsðrÞ;rÞ¼0
will be satisfied when either [see Eq. (3.14)]

RðtsðrÞ; rÞ ¼ 0;⇒ tsðrÞ ¼
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρiðrÞ

p
−c1ðrÞ

ð4:1Þ

or

RðtsðrÞ; rÞR0ðtsðrÞ; rÞ ¼ κ

�
ρirþ

κr2

2

ρiρ
0
i

1þ κρi

�
: ð4:2Þ

Using Eq. (3.12) and putting t ¼ 0, Eq. (4.2) can be
rewritten as

RðtsðrÞ; rÞR0ðtsðrÞ; rÞ ¼
κρirffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρ

p R0ð0; rÞ: ð4:3Þ

In order to avoid occurrence of a shell-crossing singularity,
we assume that R0 > 0 throughout the collapse. Therefore,
Eq. (4.3) will be satisfied when κ > 0. For κ > 0, Eq. (4.3)
will be satisfied before Eq. (4.1) is satisfied. Therefore, the
singularity formation time tsðrÞ for κ < 0 and κ > 0 are
given by the solution of (4.1) and (4.3), respectively. For
κ ¼ 0, both these singularity times coincide with that in
general relativity collapse.
At the spacetime singularity formed due to the collapse,

both the energy density ρðt; rÞ and the curvature scalar
(Ricci scalar) diverge for κ > 0. However, for κ < 0, though
the Ricci scalar diverges, the energy density remains finite
(ρðtsðrÞ; rÞ ¼ 1

jκj) at the singularity formed due the collapse.
This somewhat peculiar feature for the class κ < 0 has been
observed in different spherically symmetric, static charged
black hole and wormhole spacetimes in this modified
gravity theory. We note that this is a markedly different
behavior as compared to the general relativity scenarios,
where curvature scalar divergences typically imply the
divergence of mass-energy density.
The nature of singularities formed during the collapse

depends on the formation and dynamics of the apparent
horizon. An apparent horizon is represented by
gμνS;μS;ν ¼ 0. If a given shell labelled by r gets trapped

(gμνS;μS;ν < 0), and this remains so till the time tsðrÞ,
the result is a black hole singularity. However, if it does not
get trapped for all t ≤ tsðrÞ, or becomes untrapped
(gμνS;μS;ν > 0) as t → tsðrÞ, then the result is a formation
of naked (timelike) singularity. A timelike singularity is
locally naked if future directed outgoing null geodesics
emerging from it encounter a trapping region in future.
Otherwise, it will be globally naked.
To see how the collapse dynamics evolves from a regular

initial data given at t ¼ 0, we have to choose the functions
c1ðrÞ and ρiðrÞ. For ρiðrÞ, we choose two types of initial
density profile given by

ρiðrÞ ¼
( ρ0 þ ρ2r2

ρ0
sinðπrrbÞ

πr
rb

; 0 ≤ r ≤ rb; ð4:4Þ

where ρ0 is the initial density at the center r ¼ 0 and rb is
given by ρiðrbÞ ¼ 0. Concerning c1ðrÞ, we must choose it
in such a way that c1ð0Þ ¼ 0. We choose two different form
of c1ðrÞ. Firstly, we choose c1ðrÞ in such a way that
fðrÞ ¼ 0. This gives

c1ðrÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Z
r

0

ρirdrþ κ

Z
r

0

r2ρiρ0i
1þ κρi

dr

s
: ð4:5Þ

Note that c1ð0Þ ¼ 0. Secondly, we choose c1ðrÞ ¼ −r.
Figures 1 and 2 show, for a given initial data, the singularity
time tsðrÞ and the apparent horizon time tahðrÞ for both
choices of c1ðrÞ. Note that, for κ < 0, the whole singularity
curve is covered since tsðrÞ > tahðrÞ. Therefore, a black
hole is always formed as the end state of the collapse for
κ < 0. On the other hand, for κ > 0, the whole singularity
curve is naked since no apparent horizon or trapped surfaces

FIG. 1. Plots showing the singularity time tsðrÞ (blue) and the
apparent horizon time tahðrÞ (orange) for both κ < 0 (solid
curves) and κ > 0 (dashed curve). The initial density profile is
ρiðrÞ ¼ ρ0 þ ρ2r2 and c1ðrÞ given by Eq. (4.5). Here, we have

taken jκj ¼ 0.3, ρ0 ¼ 0.3, ρ2 ¼ −0.175 and rb ¼
ffiffiffiffiffiffiffiffi
− ρ0

ρ2

q
. For

κ > 0, no apparent horizon or trapped surfaces form till the
singularity time.
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form till the singularity time. Therefore, for the initial data in
Figs. 1 and 2, a naked singularity is always formed as the end
state of the collapse for κ > 0.
However, in the κ > 0 case, with a given different initial

data (e.g., with a higher initial central density), apparent
horizons may form for the second choice of c1ðrÞ, i.e., for
c1ðrÞ ¼ −r. Figure 3 shows such an example where the
initial central density is taken to be higher than that used in
Figs. 1 and 2. Note that, with the higher initial central
density, still an apparent horizon does not form for the choice
of c1ðrÞ given by fðrÞ ¼ 0. However, with the same higher
initial central density, apparent horizons do form for the
choice c1ðrÞ ¼ −r, and the dynamics of the apparent
horizons in this case are different from that obtained in
the κ < 0 case. In this case, an apparent horizon is first

formed at r ¼ r1. As the collapse evolves, this apparent
horizon then splits in two— one traveling inward and other
traveling outward. A trapped region is formed between the
two apparent horizons. As the collapse evolves further, the
outer apparent horizon takes a turn at r ¼ rc and starts
traveling inward. Whereas, the inner apparent horizon
approaches the r ¼ 0 shell and collapses to zero radius.
However, at the same time, another apparent horizon is
formed at r ¼ 0. This apparent horizon travels outward and
annihilate with the outer one at r ¼ r2. The whole singu-
larity curve lies outside the trapping region between the two
apparent horizon. A shell labeled by r < rc gets trapped at
t ¼ tahðrÞ given by the lower orange curve and then gets
untrapped (at t ¼ tahðrÞ given by the upper orange curve)
before it collapses to zero radius. Therefore, the singularities
formed due to collapse of these shells are timelike and hence,
are naked. The apparent horizon does not form for r > rc.
These shells outside r ¼ rc do not get trapped for all
t ≤ tsðrÞ. Hence, the singularities formed out of the collapse
of these shells are timelike and naked. For the second choice
of the initial density profile ρiðrÞ, similar conclusions hold.
From the above analysis for the two sets of initial

conditions, it is clear that the singularity formed out
of the collapse is covered for κ < 0 and naked for κ > 0.
This can also be shown in a general way by evaluating
gμνS;μS;ν along the singularity curve. The expression for
gμνS;μS;ν is complicated. However, it can be shown that
limt→tsðrÞg

μνS;μS;ν → −∞ for κ < 0. Therefore, the singu-
larity for κ < 0 is always trapped, spacelike and hence
covered. On the other hand limt→tsðrÞg

μνS;μS;ν → ∞ for
κ > 0. Therefore, the singularity for κ > 0 is always timelike
and hence naked.

V. HOMOGENEOUS DUST COLLAPSE

Let us now consider the homogeneous case. We set
ρiðrÞ ¼ ρ0. Therefore, for the choice fðrÞ ¼ 0, i.e., for

FIG. 2. Plots showing the singularity time tsðrÞ (blue) and the
apparent horizon time tahðrÞ (orange) for both κ < 0 (solid
curves) and κ > 0 (dashed curve). The initial density profile is
ρiðrÞ ¼ ρ0 þ ρ2r2 and c1ðrÞ ¼ −r. Here, we have taken

jκj ¼ 0.3, ρ0 ¼ 0.3, ρ2 ¼ −0.175 and rb ¼
ffiffiffiffiffiffiffiffi
− ρ0

ρ2

q
. For κ > 0,

no apparent horizon or trapped surfaces form till the singularity
time.

(a) (b)

FIG. 3. Plots showing the singularity time tsðrÞ (blue) and the apparent horizon time tahðrÞ (orange) for (a) c1ðrÞ given by Eq. (4.5) and
(b) c1ðrÞ ¼ −r. The initial density profile is ρiðrÞ ¼ ρ0 þ ρ2r2. Here, we have taken κ ¼ 0.3, ρ0 ¼ 0.7, ρ2 ¼ −0.175 and rb ¼

ffiffiffiffiffiffiffiffi
− ρ0

ρ2

q
.
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c1ðrÞ ¼ − ffiffiffiffiffi
ρ0

p
r, the metric and the energy density become,

respectively,

ds2g ¼ −dt2 þ a2ðtÞ½dr2 þ r2dΩ2� ð5:1Þ

and ρðtÞ ¼ ρ0
a2, where

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð− ffiffiffiffiffi

ρ0
p

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρ0

p
Þ2 − κρ0

q
: ð5:2Þ

Note that, for κ > 0, all the shells collapse simultaneously
at time given by

t ¼ ts ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κρ0
p

− ffiffiffiffiffiffiffi
κρ0

p Þffiffiffiffiffi
ρ0

p : ð5:3Þ

In this case, the apparent horizon time is given by

tahðrÞ ¼
1ffiffiffiffiffi
ρ0

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κρ0
p

−
ffiffiffiffiffiffiffi
κρ0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ0r2

p �
≤ ts: ð5:4Þ

Therefore, the singularity formed in the homogeneous
collapse for κ > 0 is always covered for fðrÞ ¼ 0. Note
that, in the inhomogeneous case, the singularity for κ > 0
was always naked. This implies that the inhomogeneity
plays an important role in making the singularity visible for
κ > 0.
On the other hand, for κ < 0, all the collapsing shells

undergo a bounce at t ¼ tb ¼
ffiffiffiffiffiffiffiffiffi
1þκρ0
ρ0

q
, thereby avoiding the

formation of singularity. In the inhomogeneous case, for
κ < 0, we always had formation of black hole singularity
out of the collapse. However, the homogeneous case for
κ < 0 gives bouncing solution. Therefore, it can be con-
cluded that, under small inhomogeneous perturbation,
singularity avoidance through the homogeneous bounce
will be unstable, leading to the formation of spacetime
singularity. Similar bouncing solutions have been observed
in homogeneous cosmology in this gravity theory.
Therefore, our result suggests that these bouncing cosmo-
logical solutions may be unstable under small inhomo-
geneous perturbation. In fact, it has been found that, for
κ < 0, linear perturbations of the homogeneous bouncing
cosmological solutions in four dimensional EiBI gravity are
unstable [21,22]. For the other choice of c1ðrÞ, i.e., for
c1ðrÞ ¼ −r, similar conclusion holds.
To illustrate further the qualitative difference between the

inhomogeneous and the homogeneous collapse for κ < 0,
let us consider the physical area radius Sðt; rÞ given by

S2ðt; rÞ ¼ R
R0

�
RR0 − κ

�
ρirþ

κr2

2

ρiρ
0
i

1þ κρi

��
; ð5:5Þ

where Rðt; rÞ is given by (3.12). Let us now consider the
fðrÞ ¼ 0 and ρi ¼ ρ0 þ ρ2r2 case. We further consider that

the inhomogeneity is very small, i.e., j ρ2ρ0 jr2 ≪ 1. For
κ < 0, the term inside the square bracket in the above
equation is always positive. Therefore, the physical area
radius Sðt; rÞ goes to zero only when the auxiliary area
radius Rðt; rÞ goes to zero and R0 ≠ 0. For small inhomo-
geneity, i.e., for j ρ2ρ0 jr2 ≪ 1, we have

R
R0 ≃ r

− ffiffiffiffiffi
ρ0

p
t½1þ ρ2

4ρ0
ð1þ2κρ0
1þκρ0

Þr2� þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρ0

p

− ffiffiffiffiffi
ρ0

p
t½1þ 3ρ2

4ρ0
ð1þ2κρ0
1þκρ0

Þr2� þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρ0

p þ κρ2r2ffiffiffiffiffiffiffiffiffi
1þκρ0

p :

ð5:6Þ
Now, at t ¼ ts=bðrÞ given by Rðts=bðrÞ; rÞ ¼ 0, we have

R0ðts=bðrÞ; rÞ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κρ0
p

�
−
ρ2
ρ0

�
r2; ð5:7Þ

which is positive and nonzero for ρ2 ≠ 0. Therefore, in the
inhomogeneous case (ρ2 ≠ 0) with κ < 0, Rðts=bðrÞ; rÞ ¼ 0

implies Sðts=bðrÞ; rÞ ¼ 0, thereby implying a spacetime
singularity with ts=bðrÞ ¼ tsðrÞ being the singularity time.
However, in the homogeneous case (ρ2 ¼ 0), both R and R0

become zero at t ¼ ts=bðrÞ, and R
R0 ¼ r for all t including

t ¼ ts=bðrÞ. Therefore, in the homogeneous case with
κ < 0, Rðts=bðrÞ; rÞ ¼ 0 does not imply Sðts=bðrÞ; rÞ ¼ 0.
In fact, it is clear from Eq. (5.5) that, in this case, the term
within the square bracket becomes minimum at t ¼ ts=bðrÞ
(¼

ffiffiffiffiffiffiffiffiffi
1þκρ0
ρ0

q
), thereby giving a bounce with ts=b ¼ tb ¼ffiffiffiffiffiffiffiffiffi

1þκρ0
ρ0

q
being the time when the bounce occurs. This

explains why a small inhomogeneity makes the homo-
geneous bounce unstable, thereby making it singular.

VI. CONCLUSIONS

In this paper, from the perspective of cosmic censorship,
we have investigated the collapse of a dust cloud in (2þ 1)
dimension in Eddington-inspired Born-Infeld gravity
(EiBI). We have studied the formation of black holes
(BH) and naked singularities (NS) as the final states of
collapse and compared the results with those of general
relativity (GR). It is found that, as opposed to the general
relativistic situation where the outcome of dust collapse in
(2þ 1) dimensions is always a naked singularity [5], the
formation of naked singularity can be avoided in EiBI
gravity for negative Born-Infeld theory parameter κ. The
inhomogeneous dust collapse with negative κ always leads
to the formation of a black hole singularity. On the other
hand, the inhomogeneous dust collapse with positive κ
always leads to the formation of a naked singularity. This
indicates that a (3þ 1) dimensional generalization of these
results could be useful and worth examining. Finally, using
the results here, we have shown that the singularity
avoidance through homogeneous bounce in cosmology
in this modified gravity is not stable.
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Here, as pointed out earlier, we have analysed the
collapse with zero cosmological constant. Unlike in GR,
in EiBI theory, the analysis of the collapse with non-zero
cosmological constant is complicated and involved
because of the extra parameter κ. It will be interesting

to see whether and to what extent the collapse with non-
zero cosmological constant qualitatively differs from that
with zero cosmological constant. This case has to be
studied separately in some detail. We hope to address this
in future.
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