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We show how a suitably prepared set of clocks can be used to determine all components of the
gravitational field in general relativity. We call such an experimental setup a clock compass, in analogy to
the usual gravitational compass. Particular attention is paid to the construction of the underlying reference
frame. Conceptual differences between the clock compass and the standard gravitational compass, which is
based on the measurement of the mutual accelerations between the constituents of a swarm of test bodies,
are highlighted. Our results are of direct operational relevance for the setup of networks of clocks, for

example in the context of relativistic geodesy.
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I. INTRODUCTION

The question of how the gravitational field can be
determined in an operational way is of fundamental impo-
rtance in gravitational physics. In this paper, we demonstrate
how clocks may be used in a general-relativistic context.

In Ref. [1] we derived a generalized deviation equation
by employing the covariant expansion technique based on
Synge’s world function [2,3]. In particular we showed, how
the deviation equation, and one of its generalizations, can
be used to measure the curvature—i.e. the gravitational
field—by monitoring the mutual accelerations between
the constituents of a swarm of test bodies. This led to
explicit prescriptions for the setup of the constituents of a
device called a “gravitational compass” [4], i.e. a realiza-
tion of a gradiometer in the context of the theory of general
relativity.

On the experimental side, modern clocks reached an
unprecedented level of accuracy and stability [5-10] in
recent years. An application of clocks for the determination
of the gravitational field represents an interesting issue.
In analogy with our previous investigation [1], such an
ensemble or network of suitably prepared clocks may also
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be called a clock compass, or a clock gradiometer. In this
work, we show how an ensemble of clocks can be used to
determine the gravitational field from the mutual frequency
comparison of the clocks.

The structure of the paper is as follows. In Sec. II we
work out a suitable set of coordinates which allows for
the description of events in the vicinity of a world line.
In Sec. III we show how an ensemble of clocks has to be
prepared to find physical quantities, such as acceleration
and velocity, through mutual frequency comparisons of
the clocks. In particular, in Sec. IV we determine explicit
configurations for clock gradiometers which allow for a
measurement of all independent components of the curva-
ture tensor. We draw our conclusions in Sec. V. The
Appendix contains a brief overview of the notations and
conventions, as well as a directory of symbols in Table II,
used throughout the article.

II. REFERENCE FRAME: INERTIAL AND
GRAVITATIONAL EFFECTS

Our previous work [1] on the gravitational compass
based on deviation equations made clear that a suitable
choice of coordinates is crucial for the successful deter-
mination of the gravitational field. In particular, the opera-
tional realization of the coordinates is of importance when
it comes to actual measurements.

© 2018 American Physical Society
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From an experimentalists perspective so-called (gener-
alized) Fermi coordinates appear to be realizable opera-
tionally. There have been several suggestions for such
coordinates in the literature in different contexts [2,11-38];
for a time line of the corresponding research see Table 1. In
the following we are going to derive the line element in the
vicinity of a world line, representing an observer in an
arbitrary state of motion, in generalized Fermi coordinates.

A. Fermi normal coordinates

Following Ref. [14] we start by taking successive
derivatives of the usual geodesic equation. This generates
a set of equations of the form (for n > 2)

d"x° Ldxt dxbe
ds" b gy ds ’

(1)

where the I" objects with n > 3 lower indices are defined by
the recurrent relation

Ly, = a(blrb,..b,,)a —(n— 1)Fc(b1“.b,,_2arbn_lbn)c (2)

from the components of the symmetric linear connection
I, =T.% A solution x? = x%(s) of the geodesic equa-
tion may then be expressed as a series

TABLE I. Time line of works on coordinates.

Spacetime

Year Curved Flat Acceleration

1922 Fermi [11,12] X X
1932 Walker [16] X
1960 Synge [2] X
1963 Manasse & Misner [17]
1973 Misner et al. [18]

1977 Ni [19]

1977 Mashhoon [20]

1978 Ni & Zimmermann [21]
1978 Li & Ni [22] X
1978 Ni [23]

1979 Li & Ni [24]

2004 Chicone & Mashhoon [31]
2008 Klein & Collas [35]

2012 Delva & Angonin [37]

Results in special backgrounds (PN, Kerr, etc.).

1986 Ashby & Bertotti [26]

1988 Fukushima [28]

1993 Semerak [29]

1994 Marzlin [30]

2005 Bini et al. [32]

2005 Chicone & Mashhoon [39]
2006 Chicone & Mashhoon [33,34]
2010 Klein & Collas [36]

2012 Turyshev et al. [38] X

*x X x X X X

x X X X

*x X *x X
> X X X

X X X X X X X X
X X X X X X

> X

B al, + dx® 4 5% d?x* L 5% d3x L
Xt =x S—| t=—| +——=| +---
0" ds |y " 2 dst|, 6 ds?|,
20 30
s s
=g+ sv* — EFbC“vbvc - grbcd“vhmd -, (3)
where in the last line we used g := x|y, v :=4=|  and

l(lm“ =" 4|, for constant quantities at the point around
which the series development is performed.

Now let us setup coordinates centered on the reference
curve Y to describe an adjacent point X. For this we
consider a unique geodesic connecting Y and X. We define
our coordinates in the vicinity of a point on Y(s), with
proper time s, by using a tetrad 4, which is Fermi
transported along Y, i.e.

X0=s, = X"=12,@. (4)

Here a =1,...,3, and 7 is the proper time along the
(spacelike) geodesic connecting Y(s) and X. The & are
constants, and it is important to notice that the tetrads are
functions of the proper time s along the reference curve Y,
but independent of z. See Fig. 1 for further explanations. By
means of this linear ansatz (4) for the coordinates in the
vicinity of Y, we obtain for the derivatives with respect to 7
along the connecting geodesic (n > 1)

dn+1X(z

d"x’ dx”
" dr

In other words, in the chosen coordinates (4), along
the geodesic connecting ¥ and X, one obtains for the
derivatives (n > 2)

dxbr  dxbn
r a o =0. 6
o (©)
This immediately yields
Upp,* =0, (7)

along the connecting curve, in the region covered by the
linear coordinates as defined above.

The Fermi normal coordinate system cannot cover the
whole spacetime manifold. By construction, itis a good way
to describe the physical phenomena in a small region around
the world line of an observer. The smallness of the
corresponding domain depends on the motion of the latter,
in particular, on the magnitudes of the acceleration |a| and
angular velocity |w| of the observer which set the two
characteristic lengths: #; = ¢?/|a| and #,o; = ¢/|w|. The
Fermi coordinate system X* provides a good description for
the region |X|/¢ < 1. For example, this condition is with a
high accuracy valid in terrestrial laboratories since 7, =
c?/|ge| ~10'® m (one light year), and £, = ¢/|Qg| ~
4 x 10" m (27 astronomical units). Note, however, that
for a particle accelerated in a storage ring £~ 107° m.
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FIG. 1. Construction of the coordinate system around the
reference curve Y. Coordinates of a point X in the vicinity of
Y(s)—with s representing the proper time along Y—are con-
structed by means of a tetrad 4,(®). Here 7 is the proper time along
the (spacelike) geodesic connecting Y and X. By choosing a
linear ansatz for the coordinates the derivatives of the connection
vanish along the geodesic connecting Y and X.

Furthermore, the region of validity of the Fermi coordi-
nate system is restricted by the strength of the gravitational
field in the region close to the reference curve, Zgp, =
min{|Rpea| ™%, |Rapeal/|Rapeac|}> 0 that the curvature
should have not yet caused geodesics to cross. We always
assume that there is a unique geodesic connecting Y and X.

B. Explicit form of the connection

At the lowest order, in flat spacetime, the connection of a
noninertial system that is accelerating with a* and rotating
with angular velocity w® at the origin of the coordinate
system is

Lo’ = Lot =0, Lo = a“,
Foao = dgy, F()ﬂa = —8“/;],007. (8)
Hereafter €4, is the three-dimensional totally antisymmetric

Levi-Civita symbol, and the Euclidean three-dimensional
metric J,4 is used to raise and lower the spatial (Greek)

indices, in particular a, = 8,5a” and e5, = 5*¢55,. For the
time derivatives we have
a()rooo = 60Faﬁc - O,

aOFO(J,'O = bow

aorooa = 8061(1 =: ba,
aoroﬁa = —Saﬁyaoa)y = —Saﬁyﬂy. (9)

From the definition of the curvature we can express the next
order of derivatives of the connection in terms of the
curvature:

8(1F000 = ba - a/}‘?ﬂaywy’

aar‘OO/j = _ROaOﬁ - gﬁa}/ny + aaaﬁ - %w}/wy + wawﬁa

6al—'oﬂo = _ROaﬂO - aaaﬂ,

3aroﬁ7’ = _ROaﬁy + Syaé(ﬂéaﬂ. (10)
Using Eq. (7), we derive the spatial derivatives

2
Ol = 5 Rapy” (11)

(see also the general solution given in Appendix B
of Ref. [1]).

C. Explicit form of the metric

In order to determine, in the vicinity of the reference
curve Y, the form of the metric at the point X in coordinates
y* centered on Y, we start again with an expansion of the
metric around the reference curve

1
Javlx = Gaply + Gav.clyy* + Egab.cd|yycyd 4+ (12)

Of course in normal coordinates we have ¢.,|y = s,
whereas the derivatives of the metric have to be calculated,
and the result actually depends on which type of coor-
dinates we want to use. The derivatives of the metric may
be expressed just by successive differentiation of the
metricity condition V_.g,, = 0:

Yab,c = ng(arb)cd7
Yab,cd = Z(adge(arb)ce + adrc(aegb)e)’

(13)

In other words, we can iteratively determine the metric by
plugging in the explicit form of the connection and its
derivatives from above.

In combination with Eq. (8) one finds

900.0 = 90a.0 = 9ap,0 = Yapy = 0,
900.a = Zaw Yoap = gaﬁ},aﬂ’_ (14)

For the second-order derivatives of the metric we obtain,
again using Eq. (13) in combination with Egs. (9), (10),
and (14)

900,00 = 902,00 = 9ap.00 = Yap0 = 0, 900.a0 = 2by,
Goapo = —€ g5 Yoy = Eapyl’ -

gOO‘aﬂ = _2R0ﬂa0 + 2aaaﬂ — 25(1/3&)},(1)” + 2a)aa)ﬂ,
4 2
— 0 —
Goapr = =3 Rapr) Gaprs = 3 Ryap)s- (15)

Note that Rys,” + Ryo° + Ry’ = 0, in view of the Ricci
identity. Since Rj,° = 0, we thus find Ry, = Rysa)-
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As a result, we derive the line element in the Fermi coordinates (up to the second order):
ds2|X(yO’ ya) = (dy0)2[1 + 2aaya + 2bayay0 + (aaaﬁ - 5aﬁwya)y + wawﬁ - ROaﬁO)yayﬁ]

2 |
+ 2dY0dy* (e ,5,0" Y + €45, Y Y0 — 3 Ropoy’y'] — dy*dy? {5(1/; - ngﬁayyy‘S] +0(3). (16

It is worthwhile to notice that we can recast this result as

dsz‘X(yov ya> = (dy())z[l + ZZZaya + (aaa/)’ - 5(1/3&))/&)}/ + &)a&)ﬂ - ROaﬂO)yayﬂ]

- 2 1
+2dy°dy* 8aﬂ}’wyyﬂ - gRaﬂyOyﬁyy:| — dy*dy’ [5aﬂ - §Ryaﬂ5yyy6] +0(3), (17)

by introducing a, = a, + y°0ya, = a, + y°b, and @, =
w, + YOyw, = w, + 'y, which represent the power
expansion of the time-dependent acceleration and angular
velocity.

III. APPARENT BEHAVIOR OF CLOCKS

The results from the last section may now be used to
describe the behavior of clocks in the vicinity of the
reference world line, around which the coordinates were
constructed.

There is one interesting peculiarity about writing the
metric like in Eq. (16), i.e. one obtains clock effects which
depend on the acceleration of the clock (just integrate along
a curve in those coordinates and the terms with a and @ will
of course contribute to the proper time along the curve).
J

[
This behavior of clocks is of course due to the choice of the
noninertial observer, and they are only present along curves
which do not coincide with the observers world line. Recall
that, by construction, one has Minkowski’s metric along the
world line of the observer, which is also the center of the
coordinate system in which Eq. (16) is written: all inertial
effects vanish at the origin of the coordinate system.

A. Flat case

We start with the flat spacetime and switch to a quantity
which is directly measurable, i.e. the proper time quotient
of two clocks located at Y and X. It is worthwhile to note
that for a flat spacetime, R; jk’ = 0, the interval (16) reduces
to the Hehl-Ni [40] line element of a noninertial (rotating
and accelerating) system:

ds?|x (%, y%) = (1 4 axy*)*(dy°)? — Spp(dy” + %,y dy°)(dy’ + & ,,@"y’dy’) + O(3). (18)

From Eq. (16) we derive

ds|y ds|y

+ 20%,5, (VP + y0yPn7)] + O(3)
1- 5{,/;11”1/’

Here we introduced the velocity v* = dy®/dy". Defining

ds|x\? dy®\?
—= ) == ) [ = 0™ + 2a,y* + 2b,y"Y° + vV (a,a5 — 5,50,0" + w,wp)

(19)

2a,y" + 2by*Y° + Y'Y (agap — Sopw, 0" + wawp) + 20745, (Y + Y0y + O(3).  (20)

V&= 0" + % @y, (21)

we can rewrite the above relation more elegantly as

dsl|y

(ﬂ)z _ (js_y‘i)z[(l + 8y%)? = 8 VAV + O(3). (22)

Equation (20) is reminiscent of the situation which we encountered in case of the gravitational compass, i.e. we may look
at this measurable quantity depending on how we prepare the

d 2
C(ya’ yO’ Ve, a®, w®, bY, na) = (&) . (23)

ds|y
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B. Curved case

Now let us investigate the curved spacetime; after all we
are interested in mapping the gravitational field by means
of clock comparison. The frequency ratio becomes

ds|y\? 1
—= =1 4+— (2 a4 2ph yay0
<dS|Y> + 1— 5aﬁ1)a1)ﬁ agy” + Yy

+ YV (a,a5 — Rogpo — Sup, 0" + 0,05)

4
+ 21}“8aﬂy(yﬂw7’ +y0yPyr) - 3 UayﬂnyaﬂyO
1
+ g Uflvﬁy}/yﬁRyaﬁ({| + 0(3) (24)

Analogously to the flat case in Eq. (23), we introduce a
shortcut for the measurable frequency ratio in a curved
background, denoting its dependence on different quan-
tities as C(y*, y°, v, a®, @, b*, ", Rypys)-

Note that in the flat, as well as in the curved case, the
frequency ratio becomes independent of »* and #* on the
three-dimensional slice with fixed y° (since we can always
choose our coordinate time parameter y° = 0), i.e. we have
C(y*, v, a” o*) and C(y*,v*, a* % R,p,s) respectively.

IV. CLOCK COMPASS

We now consider different setups of clocks to measure
physical quantities by means of mutual frequency compar-
isons. For example, we could ask the question: can we detect
rotation just by clock comparison, i.e. can we measure all
three components of w”, by a suitable setup of clocks with
respect to the clock on our reference world line Y?

Here our strategy is similar to our analysis of the
gravitational compass in Ref. [1]. We start by labeling
different initial values for the clocks:

1 0 0
Myer=10], @y=|1]|, Oyr=1]0],
0 0 1
1 0 1
Wy [1], o= 1], @m0l (2
0 1 1
and
C11 0 0
(1>,UH _ 0 ; (2)1}(1 _ cn |, (3)1)(1 — 0 ,
0 0 C33
C41 0 Co1
(4>/Ua = Cqp |, (5)1}05 = Cs2 |, (6)7)a == 0 s
0 Cs3 C63
(26)

and
dy; 0 0
Da*=1 0 |, @a*= | dy, |, Gar=1 0 [,
0 0 ds;
dy 0 dg
Wa®=1dyp |, Oa®=|ds, |, ©a*=] 0 |,
0 ds3 de3
(27)
and
e 0 0
De*=1|{ 0 |, QD= | ey |, Cp*=| 0 |,
0 0 €33
€4 0 €61
W= en |, Ca®=]es, |. ©a*=] 0
0 €53 €63
(28)

Here the ¢’s, d’s and e’s are real-valued parameters.

A. Linear acceleration determination

Now let us search for a configuration of clocks which
allows for a determination of the three components of the
linear acceleration a” of the observer. Assuming that all
other quantities can be prescribed by the experimentalist,
we rearrange Eq. (23) as follows:

2a,y" + aazy®y’ = B(y*, 1%, o%), (29)

where all the measured frequency ratios, as well as all
prescribed quantities are collected on the rhs
B(y*, 1%, @) = (1 = 0*)(C = 1) = Yy (0ap — 5450

— 20% 5,y 0. (30)
Note that for brevity we suppress the functional depend-
ence on parameters of the measured frequency ratios on the
rhs. Taking into account Egs. (25)-(28), we end up with the
system
2aa(n)ya + aaaﬁ(”)ya(n)yﬁ — B((")ya’ (m)va’ (p)wtl)

= (nm.p)p, (31)

Inserting Eq. (25) yields the set (redundant equations are
not displayed)

a% +2a, = (LLYB, (32)
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a3 +2a, = >11B, (33)
@ + 24 — G0, (34)
2a; +2a, + (a; + a)? = *LUB, (35)
2ay + 2a5 + (a, + a3)* = G1UB, (36)
2a, +2a5 + (a; + a3)* = VB, (37)

This system does not allow for an extraction of the linear
accelerations, but this can be achieved by the introduction
of clocks at the positions

-1 0 0
(7>ya = 0 s (8)ya =1 -11, (Q)ya = 0
0 0 -1

(38)

This yields a set of three equations like Egs. (32)—(34),
which can be subtracted from each other, leading to

(g _ (a+6.1.1)g) (39)

FNY

d, =

In terms of the C’s, for which we use here and in the
following the same shorthand notation as for the B’s, we
have

(1 _ C%l)((a,l,l)c _ (“+6‘1’1)C). (40)

a, =

=

Hence we need six clocks to determine all components of
the linear acceleration a,; see Fig. 2 for a symbolical sketch
of the solution.

B. Rotational velocity determination

Analogously to the strategy in the preceding section, we
rearrange the system (23) as follows:

t (1,1,1)
(2,1,1)
# (3,1,1)

(7.1,1)
(8,1,1)
(9.1,1)

FIG. 2. Symbolical sketch of the explicit solution for linear
acceleration (40). In total six suitably prepared clocks (hollow
circles) are needed to determine all acceleration components. The
observer is denoted by the black circle.

Zvaeaﬂyyﬂwy - yayﬂ(éaﬁa)z - waa}ﬂ) = B(ya’ v, aa)’
(41)

where

B(y*, v*,a%) = (1 = v*)(C = 1) = 2a,y" — a,azy"y".
(42)

Taking into account Egs. (25)—(28) we end up with

2<’")Ua8(z/3y(n)yﬁwy - (")ya(n)yﬁ(éaﬂwz - w"wﬁ)
— B((y, My (P)gy = (nmp)g, (43)

Consequently the rotational velocity can be determined
with the help of six clocks, an explicit solution being

wl — L ((2,2.1)3 _ (2'3’1>B>,
2C33
1
2 __ _~ (3.3,1)B _ (3,1,1)B
@ 2C11 ( >’
1
3~ (l.l,l)B _ (1,2.1)B 44

or explicitly in terms of the C’s

2 T 2 7
! — l—c33|1-¢3 ((2,2,1)C_ 1) - @3Nc 41|,
2C33 _1 - C%3 ]
1—c% [1=¢2 |
2 _ 11 33 (3,3,1)C —1) = (3,1,1)C 11,
@ 2C11 _1 — C%l ( ) + ]
1—-c%, [1=¢? |
3 22 11 (1,1,1)C —-1) = (1,2,1)C 11. 45
w 2C22 _1 _ C%z ( ) + ] ( )

See Fig. 3 for a symbolical sketch of the solution.

C. Linear velocity determination

Again we rearrange the system (23) as follows:

(1=0?)(C—1) = 2v%,5,)’ 0" = B(y*,a”, 0"), (46)

(1,1,1) (1,2,1)
(2,2,1) (2,3,1)
(3,1,1) (3,3,1)

FIG. 3. Symbolical sketch of the explicit solution for the
rotational velocity (45). In total six suitably prepared clocks
(hollow circles) are needed to determine all velocity components.
The observer is denoted by the black circle.

024032-6
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where

B(ya’ aa5 wa) = Zaaya + yayﬂ(aaa/} - 5(1/50)2 + w(lw[)’)'

(47)
This yields
(1- 5aﬂyavﬂ>((n,m,p)c -1) - 2/Ua€aﬂy(n)yﬂ(p)wy
= B((Myx, (mga, (P)wa) — (nmp)g (48)

From this system we can determine the linear velocity as
follows:

1
o= 5 (B2 - DA = By + ey = 24,
1
v = e [—((1IC = 1)A 4+ &2, — €2, + 2d,],
1
P oA g -2l ()

where the common factor is given by

di, +2dy,
A= Te_ 1" (50)

An alternative, and slightly simpler, solution for the
velocity reads as

Again we start by rearranging the system (23):

(1,2,2) (1,2,3)

FIG. 4. Symbolical sketch of the explicit solution for the linear
velocity (51). In total four suitably prepared clocks (hollow
circles) are needed to determine all velocity components. The
observer is denoted by the black circle.

1
ol = 2ex (2130 - 1)A + %],
1
2 (U230 A 4 2
v 2633[ ( JA + e33].
1
v} = —[(12IC - 1)A + 3,]. (51)
2es,

In other words, four clocks are necessary to determine all
components of the linear velocity; see Fig. 4 for a
symbolical sketch of the solution.

D. Curvature determination

Now we turn to the determination of the curvature in a
general spacetime by means of clocks. We consider
the nonvacuum case first, when one needs to measure
20 independent components of the Riemann curvature
tensor R, %

4 1
(n)ya(n)yﬂ <_R0(lﬁ0 — gR}/(lﬁ()(m)Uy + 3Ray5/j<m)/l]7(m)v5> = B((”)ya’ (m)va7 (p)aa7 (‘1)600)’ (52)
where
B(y*, 1%, a% w®) == (1 = 1?)(C = 1) = 2a,y" — y*y#(a,a5 — Sypw,0" + wawp) — 20%€,5, Y 0 . (53)

Analogously to our analysis of the gravitational compass [1], we may now consider different setups of clocks to measure as
many curvature components as possible. The system in Eq. (52) yields (please note that only the position and the velocity

indices are indicated)

01 : Ryp0 = VB, (54)
02: Ryyp0 = ?—tcgzlcgzl(czz —c4) N (IB3, — WDBCS, + U12Bc%, — 14Bc,), (55)
03 : Ryppy = =3¢q ¢ (¢ — €42) ™ (WVBeyy = MBeyy + (WBeyy — 14Bey), (56)
04 : R3110 = 2103_3l cg3 (€33 = ce3) ™ (MBS = (MBcg; + (FIBcgy — (19Bc3;), (57)
05:Ry33 = —303_310531 (c33 — 063)_1((1’1)3033 — DBcgy + (13Bcgs — (1'6)3033)» (58)

024032-7
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3 4 4 1 1
06 : Ryp13 = §c5‘21c5—31 (_(1.5)3 + Rio10 — §R2110052 - §R3110€53 - §R12120§2 - §R1313C§3>7 (59)
07 : R2020 = (2’2)3, (60)
) 3 il 1 2
08-R021z=ZCu ' B—R2020+§R1212€11 ; (61)
3
09 : R3pp = 103_310531(033 —c53) 7' (#PBcl; — BBy + @IBcZ, — @IBcy), (62)
10 : Rysp3 = —3c35 ¢354 (c33 — cs53) (2P Bey; — 2Besy + 23Bes; — B2Bcy;), (63)
. 3 12 _ee 4 4 1 , 1 2
11 : Ry = 5%1C:3 |~ B + Ropo + §R0212C61 - §R3220C63 - §R1212C61 - §R2323C63 , (64)
12 : R3030 = <3’3)B, (65)
. 3 e 1 >
13 Rosi3 =z B—R3030+§R1313011 , (66)
) 3 _if62 1 2
142 Rypz = A B — R3p30 + §R2323C22 ) (67)
. 3 o e 4 4 1 ,» 1 2
1S R3i3, = PR G B + R3p30 + §R0313C41 + §R0323C42 - §R1313C41 - §R2323C42 , (68)
. o 4 4 1 ,
16 : Ryp10 = A0 B — Rip10 — Rano —§R0212011 —§R2110011 +§R1212€11 , (69)
_ 1 (o) 4 4 1 ,
172 Rypo = A0 B — Ry020 — R3030 — §R0323022 - §R3220022 + §R2323022 ; (70)
1 4 4 1
18 1 R3p10 = 2 <(6'1>B = Ryp10 — R3030 — 5R0313€11 - §R3110€11 +3R13130%1)- (71)

Introducing the abbreviations

3 4 1
K, = 10531 —43B + Ryg19 + 2Ra010 + Ragoo — 3 (Ra10 + Raxo)c33 — 3 (Ri313 + 2R313 + Rozoz)eis |, (72)
3 4 (5.1) 4 1 > ]
Ky = Zén|=" B + Raozo + 2R3000 + R3030 + 3 (Ro212 + Roziz)enn — §(R1212 +2Rp213 + Riziz)ey |, (73)
3 4 (6.2) 4 1 > |
K; = 12| B + Rio10 + 2R3010 + R3030 — 3 (Ra110 + Rozps) e — 3 (Ri212 + 2R310 + Ryzna) e | (74)
we find the remaining three curvature components q
1 212 Ryon =5 (K3 — K»). (77)
193R1023=§(K3—K1), (75)
See Fig. 5 for a symbolical sketch of the solution. The B’s
20 : Rygps = % (K, — K)), (76) Eethg’sse equations can be explicitly resolved in terms of
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FIG. 5. Symbolical sketch of the explicit solution for the
curvature (54)—(77). In total 21 suitably prepared clocks (hollow
circles) are needed to determine all curvature components. The
observer is denoted by the black circle. Note that all (94, but
only -3y are needed in the solution.

(DB = (1 = ¢2,)((WC = 1), (78)
(123 = (1 = )(1DC - 1), (79)
13B = (1= ¢2,)(13C - 1), (80)
9B = (1= —d)(Ue-1). @)
9B = (1 - ¢, — Z)(1Sc - 1), (82)
198 = (1= - )(19C—1),  (83)
DB = (1= ¢2,)(Vc=1), (84)
2B = (1 - c%,)(*C - 1), (85)

@3B = (1 - ) (*IC-1), (86)
@IB = (1-c% - &) (®IC-1),  (87)
QOB = (1 -2, — 2)(?9C - 1), (88)
GOB = (1-¢2,)(BVCc—-1), (89)
(2B = (1-c%)(3c-1), (90)
B3IB = (1 - ¢3)(BIC - 1), 1)
BB = (1—c2 —2)(BHC-1), (92)
DB = (1=c2)(*VC 1), (93)
43)g — (1- c§3)(<4,1>c -1), (94)
DB = (1-¢2,)(Vc—1), (95)
(2B = (1-c%)(5Ac-1), (96)
6B = (1-¢2)(®NCc-1), (97)
628 = (1 = ¢2,)(®2c - 1). (98)

E. Vacuum spacetime

In vacuum the number of independent components of the
curvature is reduced to the ten components of the Weyl
tensor C,,,.4- Replacing R, in the compass solution (54)—
(71), and taking into account the symmetries of the Weyl
tensor, we may use a reduced clock setup to completely
determine the gravitational field. Note that all other
components may be obtained from the double self-duality
property Capea = _zl‘eabefecdghcefgh:

Ol . C2323 = —<I’I>B, (99)
3

02: C0323 = ZC£2]C221 (C22 — C42)_1(<1’1)BC%2 - <1’I)BC‘2‘2 + (I’Z)BCZz - (1’4)BC%2), (100)

03 & C3p30 = 3¢53 ¢ (0 — c42) " ((WDBeayy — WDBeyy + (W PBey; — (19Bey,), (101)

04 : Cypo0 = *B, (102)
. 3 il 1 2

05 : Csppp = A B + Cy3p3 — §C2020033 ) (103)
. 3 _ifen 1 P

06 : Cpzi3 = —zn(” B — Cypo —§C3o30011 , (104)
. 3 0 ifas 4 4 1 , | 2

07 : C3pp0 = —5Cs | B + Cy3p3 +§C0323052 - §C3220053 - §C3030652 - §C2020053 , (105)
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3 4 4 1 1
08: Cspp = —50511 o ((2’6>B = Cyppo + §C0313061 + §C32ZOC63 - §C30306%1 + §C2323C%3), (106)
3 4 4 1 1
09:Cyy3, = _ECZII ch <(3’4)B = C3030 — §C0313C41 - §C0323C42 - §C2020C4211 + 3C2323032)- (107)
With the abbreviations
3 1 @y 1 2
K, = 16| B — Ca303 + 2C313 + Coppo + 3 (Ca020 — 2C3130 — Cozz)C33 | » (108)
3 (5.1) 1 2
K, = 26|77 B + Capn0 + 2C3020 + C3030 + 3 (C3030 = 2C3000 + Capno) Ty | » (109)
3 (6.2) 1 2
K; = _Zczz B + Cp3p3 — 2Cx15 — C3030 — 3 (C3o30 —2C3p — C2323)022 s (110)

the remaining three curvature components read

1

103C1023=§(K3—K1), (111)
1

11 1C2013:§(K2—K1)’ (112)
1

121 G091 = g(K3 - K>). (113)

A symbolical sketch of the solution is given in Fig. 6.

F. Constrained clock compass

It is interesting to note that in the case of a constrained
compass, when the relative velocities of the clocks to each

(1,1)

~1.2) 1,3)
(2,1) e (2,2) (4,3)
(6,2)
a
1.4 1,5 2,6)
(3,4)

FIG. 6. Symbolical sketch of the explicit vacuum solution for
the curvature (99)—(113). In total 11 suitably prepared clocks
(hollow circles) are needed to determine all curvature compo-
nents. The observer is denoted by the black circle. Note that all
(1-0)y4 but only (I-3)y* are needed in the solution.

other are vanishing, only six components of the curvature
can be determined at best:

01:R,00 =B, (114)

02 : Rypoo = ¥B, (115)

03 : Ryp30 = OB, (116)
1

04 : Rypjp = 3 (4B - 1B - pB), (117)
1

05 . R3020 — 5 ((S)B - <2)B - <3)B), (1 18)
1

06 : Raoro = 5 (©B - (g —G)B), (119)

V. CONCLUSIONS AND OUTLOOK

Here we proposed an experimental setup which we call a
clock compass, in analogy to the usual gravitational
compass [1,4]. We have shown that a suitably prepared
set of clocks can be used to determine all components of the
gravitational field, i.e. the curvature, in general relativity, as
well as to describe the state of motion of a noninertial
observer.

We have worked out explicit clock compass setups in
different situations, and have shown that in general six
clocks are needed to determine the linear acceleration as
well as the rotational velocity, while four clocks will
suffice in the case of the velocity. Furthermore, we gave
explicit setups which allow for a determination of all
curvature components in general as well as in vacuum
spacetimes by means of 21 and 11 clocks, respectively. In
view of possible future experimental realizations it is
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interesting to note that restrictions regarding the choice of
clock velocities in a setup lead to restrictions regarding
the number of determinable curvature components.
Further special cases should be studied depending on
possible experimental setups.

In summary, we have shown how the gravitational field
can be measured by means of an ensemble of clocks. Our
results are of direct operational relevance for the setup of
networks of clocks, especially in the context of relativ-
istic geodesy. In geodetic terms, the given clock con-
figurations may be thought of as a clock gradiometers.
Taking into account the steadily increasing experimental
accuracy of clocks, the results in the present paper should
be combined with those from a gradiometric context, for
example in the form of a hybrid gravitational compass
which combines acceleration as well as clock measure-
ments in one setup. Another possible application is the
detection of gravitational waves by means of clock as
well as standard interferometric techniques. An interest-
ing question concerns the possible reduction of the
number of required measurements by a combination of
different techniques.
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APPENDIX: NOTATIONS AND
CONVENTIONS

Our conventions for the Riemann curvature are as
follows:

TABLE II. Directory of symbols.
Symbol Explanation
Gab Metric
V=9 Determinant of the metric
op Kronecker symbol
Eabed> Eapy (4D, 3D) Levi-Civita symbol
x4, y¢ Coordinates
S, T Proper time
b’ Connection
Rupe?s Cope? Riemann, Weyl curvature
YO (Fermi propagated) tetrad
Y(s), X(z) (Reference) world line
& Constants in spatial Fermi coordinates
v, w*, V¢ (Linear, rotational, combined) velocity
a* Acceleration
b*, n* Deriv. of (linear, rotational) acceleration
C Frequency ratio
A, B, K3 Auxiliary quantities
Operators
0, V; (Partial, covariant) derivative
% =“.” Total covariant derivative
d _ «” Total derivative

ds —
[13RE]

Power expansion

ZTC]”'de],..d,;[ba] = Zv[avb]TCl»..delmdl

k
= E Rape T %y g,
=1
I
_E RabdjeTclmckdl...e...d,' (Al)
=1

The Ricci tensor is introduced by R;; = Rkijk, and the
curvature scalar is R = ¢"R; ;- The signature of the space-
time metric is assumed to be (+1,—1,—1,—1). Latin
indices run from 0, ..., 3, and greek indices from 1, ..., 3.
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