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A simple generalization to Einstein’s general relativity (GR) was recently proposed which allows a
correction term TαβTαβ in the action functional of the theory. This theory is called energy-momentum
squared gravity (EMSG) and introduces a new coupling parameter η. EMSG resolves the big bang
singularity and has a viable sequence of cosmological epochs in its thermal history. Interestingly, in the
vacuum EMSG is equivalent to GR, and its effects appear only inside the matter-energy distribution. More
specifically, its consequences appear in high curvature regime. Therefore it is natural to expect deviations
form GR inside compact stars. In order to study spherically symmetric compact stars in EMSG, we find the
relativistic governing equations. More specifically, we find the generalized version of the Tolman-
Oppenheimer-Volkov equation in EMSG. Finally we present two analytical solutions, and two numerical
solutions for the field equations. For obtaining the numerical solutions we use polytropic equation of state
which is widely used to understand the internal structure of neutron stars in the literature. Eventually we
find a mass-radius relation for neutron stars. Also, we found that EMSG, depending on the central pressure
of the star and the magnitude of free parameter η, can lead to larger or smaller masses for neutron stars
compared with GR. Existence of high-mass neutron stars with ordinary polytropic equation of state in
EMSG is important in the sense that these stars exist in GR when equation of state is more complicated.

DOI: 10.1103/PhysRevD.98.024031

I. INTRODUCTION

Einstein’s general relativity (GR) is the most successful
theory of gravity and can explain a wide variety of
gravitational phenomena from local to large structure in
the Universe. Specifically, after decades of being under
intense scrutiny, it is well established that GR passes the
local solar system tests successfully. On the other hand, at
cosmological scales, the standard cosmological model, i.e.
the Λ cold dark matter model, based on GR is the most
complete model to explain the dynamics of the cosmos.
More importantly, recent observations proved that gravi-
tational waves, as one the main predictions of GR, exist and
its power spectrum and properties are consistent with GR’s
descriptions [1].
However, there are several unresolved issues which keep

open the way to frameworks which try to extend GR. For
some examples of unresolved problems in GR we mention
the dark matter problem at the galactic and cosmological
scales, the dark energy enigma, and the presence of
singularities in the early universe and inside black holes.
It is interesting that for all of these problems, modifying GR
can help to find a solution. For instance, for the dark matter
problem, there are some modified theories of gravity which
are relatively successful to explain the dark matter obser-
vations. For widely studied alternative theories to dark

matter particles, we mention the modified-Newtonian-
dynamics (MOND) [2] and its relativistic formulation
TeVeS [3], and scalar-tensor-vector gravity theory known
as MOG [4]. On the other hand, there are several dark
energy models which generalize GR to explain the cosmic
speed up without the cosmological constant Λ. We remind
that, existence of Λ in GR’s generic action causes the
cosmological constant problem, which can be considered
as a serious inconsistency between GR and quantum field
theory. For a comprehensive review on the subject we refer
the reader to [5].
Existence of singularities in GR can be viewed as a

problem in the sense that GR predicts it at high energy
regimes where GR itself is no longer valid because of the
expected quantum effects. However we know that there is
no precise formulation for quantum gravity. Therefore,
there are some classical models in which the big bang
singularity can be resolved in nonquantum approaches. For
one of the recent theories we refer to Eddington-inspired
Born-Infeld (EiBI) theory [6]. This theory is equivalent to
GR in vacuum and its effects appear only inside matter
sources. For other recent attempts to resolve the cosmo-
logical singularities by using extensions of GR, see [7] and
references therein.
Recently another covariant generalization to GR has

been presented in [8,9]. This theory allows a specific
coupling between matter and gravity. More specifically,
GR has been modified by adding a nonlinear TαβTαβ term*mroshan@um.ac.ir
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to the generic action, where Tαβ is the energy-momentum
tensor. The authors in [9] called this theory as energy-
momentum-squared gravity (EMSG). Although EMSG
seems simple, it leads to several interesting consequences.
For example this theory has a regular bounce in the early
universe and possesses a minimum length scale, and a finite
maximum energy density at early universe. Therefore
EMSG can resolve big bang singularity with a classic
and nonquantum prescription. For a detailed study of the
model and its cosmological consequences, we refer the
reader to [9]. In [10] a general version of EMSG has been
investigated and several interesting exact cosmological
solutions have been found.
Since EMSG is introduced to resolve the singularities, it

is natural to expect its deviations from GR to appear only at
high energy/curvature regimes. Therefore it is also neces-
sary to investigate it inside compact stars where energy
scale is high enough to see EMSG deviations from GR. In
this paper we study relativistic stars in the context of
EMSG. In other words, we are interested in spherically
symmetric and static solutions of EMSG in the presence of
matter. It is necessary to emphasize again that EMSG is
equivalent to GR in vacuum.
We find the governing equations including the modified

Tolman-Oppenheimer-Volkov equation in EMSG and solve
them for polytropic models of neutron stars. We also find a
mass-radius relationship for neutron stars, and show that
EMSG supports high-mass neutron stars. It should be
stressed that recent discovery of high-mass neutron stars
[11] rules out many standard equations of state (EOS) in GR.
A great effort is still underway to estimate appropriate EOS
for neutron stars, for example see [12]. The other possibility,
which has been widely investigated, is to interpret the
observations in terms of modified gravity effects at large
curvature, for some recent works which follow this direction
see [13]. From this perspective, neutron stars seem an
appropriate lab to test modified gravity theories.
The outline of the paper is the following. In Sec. II we

briefly introduce EMSG and its field equations. In Sec. III
we introduce the main equations governing the spherically
symmetric matter distribution. In Sec. IV we find two exact
solutions for the field equations of EMSG. Furthermore, in
Sec. V we study polytropic and strange quark stars numeri-
cally. Finally, we summarize the results in the Conclusion
section.

II. BRIEF INTRODUCTION TO
ENERGY-MOMENTUM
SQUARED GRAVITY

Let us start with the action of EMSG presented in [9]

S ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p ðR − 2Λ − ηT2Þd4xþ SM ð1Þ

where R is the Ricci scalar, κ ¼ 8πG=c4, Λ is the cosmo-
logical constant, and SM is the matter action defined as

SM ¼
Z

Lm
ffiffiffiffiffiffi
−g

p
d4x ð2Þ

in which Lm is the matter Lagrangian density. The energy-
momentum tensor then is usually defined as follows:

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð3Þ

Finally, T2 in the action is given by T2 ¼ TαβTαβ.
Appearance of Tμν in the gravitational action may arise

an important question as: How can matter know the
distribution of itself in advance, i.e. before the action is
varied? To clarify this question let us conveniently assume
that the action of the theory is written as S ¼ SG þ SM,
where SG is the gravitational action. To find the ordinary
matter energy-momentum tensor, it is not necessary to
know anything about SG. Therefore irrespective of the
gravitational theory, one can vary Sm (and not SG) with
respect to the metric tensor and, in principle, find Tμν in
terms of physical variables for a given matter source. For
example these physical variables for a perfect fluid are the
velocity, the density and the pressure of the fluid.1 In fact
one only needs the matter Lagrangian density Lm. In this
case Tμν can be written in terms of Lm, gμν and derivatives
of Lm with respect to gμν, for more details see [14]. From
this perspective, in principle, one can assign a well-defined
energy-momentum tensor to any physical mass/energy
source. Now the above mentioned question can be asked
in a different way: Are we allowed to use Tμν to construct
scalars to be included in the gravitational action SG? Or
equivalently can we use Lm and its derivatives, like
∂Lm=∂gμν to construct scalars to be included in SG?
Although including such scalars in the gravitational

action causes new couplings between matter and gravity
which are absent in GR, there is not a-priori fundamental
reason to prevent them. Consequently, this kind of mod-
ifications has received a continuous interest in the last
decade. For example for theories which introduce Tμν in
the action functional of the theory, we refer the reader to
[14,15], where correction terms including gμνTμν and
RμνTμν appear in the action respectively. For a model in
which Lm (and not its derivatives) linearly appears in SG
see [16,17].
This generalization to GR, i.e. (1), has been also

investigated in [18]. In this paper we assume the metric
signature as ð−;þ;þ;þÞ. Also η is a coupling constant and
its magnitude can be constrained by observations. In fact

1Of course determining the energy-momentum tensor does not
mean that we know the mass/energy distribution in terms of xα.
More specifically, one still needs dynamical differential equations
obtained from variation of S with respect to the matter fields and
the metric tensor to find the physical functions in terms of space-
time coordinates xα.
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EMSG is a one parameter theory and introduced only one
free parameter. It has been shown in [9] that η > 0
otherwise it leads to wrong cosmological epochs. More
specifically, there is no stable de Sitter universe when
η < 0. Therefore, in this paper we will focus on EMSG
with η > 0. One may simply find crude constraint on η. For
example, considering the correction term in the action (1),
in the current phase of the Universe we expect that
ηT2 ≪ Λ. Equivalently, EMSG’s effects can be ignored
in the dark energy dominated phase of the cosmos if

η ≪
Λ

ρ20;critc
4
≃ 10−17 s4 kg−2 ð4Þ

where ρ0;crit ≃ 10−25 kgm−3 is the critical present density,
and Λ ≃ 10−52 m−2. Furthermore, it has been shown in [9]
that EMSG could resolve the big bang singularity in a
nonquantum way, provided that the maximum density and
minimum length scale, which appear at the early universe
of EMSG, are smaller than the Planck density and length
respectively. In this case, it is necessary to assume

η >

�
κ

8π

�
3

ℏc ≃ 10−158 s4 kg−2 ð5Þ

where ℏ is the reduced Planck constant. Recently, param-
eter η has been constrained using observational measure-
ments of neutron stars in [19]. Their bound on positive η
can be written as η < 4.14 × 10−80 s4 kg−2, which is
consistent with conditions (4) and (5).
It is clear that in vacuum EMSG is equivalent to GR, and

inside matter sources is different and, in principle, can lead
to new consequences. In fact although Einstein’s field
equations involve the energy-momentum tensor linearly, in
EMSG there are nonlinear corrections constructed by Tμν.
In EMSG, the metric tensor is the only field attributed to
gravity, and one can find the corresponding field equations
by varying the action (1) with respect to metric tensor [9].
The result can be written as

Gμν þ Λgμν ¼ κTeff
μν ð6Þ

where an effective energy-momentum tensor is defined as

Teff
μν ¼ Tμν þ 2

η

κ

�
Ψμν þ Tσ

μTνσ −
1

4
gμνT2

�
ð7Þ

in which, for a perfect fluid, Ψμν is expressed as

Ψμν ¼ −LmSμν −
1

2
TTμν − 2Tαβ ∂2Lm

∂gαβ∂gμν ð8Þ

where Sμν ¼ Tμν − Tgμν=2, T is the trace of the energy-
momentum tensor. For a perfect fluid system, one may
simply define LM as LM ¼ p, for more details see [20]. It is

straightforward to show that the effective energy-momen-
tum tensor is conserved, i.e. ∇μTeff

μν ¼ 0. This fact directly
means that the ordinary matter energy-momentum tensor is
not conserved. Naturally this fact puts constraint on the
parameter η to make EMSG consistent with the current
observations.

III. RELATIVISTIC COMPACT STARS IN EMSG:
GENERALIZED TOLMAN-OPPENHEIMER-

VOLKOV EQUATION

In order to find the governing equations describing the
internal structure of a star in EMSG, let us start with the
general form of the static and spherically symmetric metric

ds2 ¼ −bðrÞc2dt2 þ dr2

fðrÞ þ r2dΩ2: ð9Þ

Throughout this work we assume a perfect fluid energy-
momentum tensor for the compact object as

Tμν ¼
�
ρþ p

c2

�
uμuν þ pgμν ð10Þ

where p, ρ and uμ are the pressure, energy density, and four
velocity of the fluid, respectively. We mention again that
outside matter fields, EMSG coincides with GR. In [9] an
exact spherically symmetric solution outside a charged
black hole, where the matter fields do not vanish, has been
found. Using the above mentioned metric and Tμν, it is
straightforward to show that the “tt” and “rr” components
of the field equation (6) can be written as

rf0 þ f − 1þ κc2ρeffðrÞr2 ¼ 0 ð11Þ

fb0rþ bðf − 1Þ − κpeffðrÞbr2 ¼ 0 ð12Þ

where the prime stands for derivative with respect to r, and
ρeffðrÞ and peffðrÞ are defined as

ρeffðrÞ ¼ ρðrÞ þ Λ
κc2

−
ηc2

2κ

�
8ρ

p
c2

þ ρ2 þ 3
p2

c4

�
ð13Þ

peffðrÞ ¼ pðrÞ − Λ
κ
−
ηc4

2κ

�
ρ2 þ 3

p2

c4

�
: ð14Þ

Hereafter we assume that the cosmological constant is
zero. This assumption is not restrictive in the sense that it is
natural to expect that Λ has no effect inside massive stars.
On the other hand instead of using the component “θθ”

let us use the equation obtained from the conservation of
effective energy-momentum tensor, i.e. ∇μTeff

μν ¼ 0. The
only nonzero component of this equation is given by
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b0
�
ρeff þ

peff

c2

�
þ 2b

p0
eff

c2
¼ 0: ð15Þ

It is clear that be setting η to zero, the standard equations in
GR are recovered. Equations (11), (12) and (15) are three
differential equations for four unknown functions bðrÞ,
fðrÞ, ρðrÞ and pðrÞ. Therefore we need an EOS in order to
construct a complete set of differential equations. Before
moving on to discuss the boundary conditions, let us
combine Eqs. (11), (12) and (15) in order to find the
generalized version of the Tolman-Oppenheimer-Volkov
(TOV) equation. It is straightforward to integrate (11) and
write fðrÞ as

fðrÞ ¼ 1 −
κc2meffðrÞ

4πr
ð16Þ

where meff is an effective mass parameter defined as

meffðrÞ ¼ 4π

Z
r

0

ρeffðrÞr2dr: ð17Þ

Using Eqs. (12) and (16), the conservation equation (15)
can be rewritten as follows:

dpeff

dr
¼ −

ρeffc2 þ peff

r2

�
κ

2
peffr3 þ

κc2meffðrÞ
8π

�

×

�
1 −

κc2meffðrÞ
4πr

�
−1
: ð18Þ

Naturally by setting the parameter η to zero, the standard
TOV equation is recovered.
It is interesting that the EMSG corrections appear in the

field equations as effective energy density and pressure.
In other words the main equations (11), (12), (15), and
TOV equation (18) are exactly the same as the corre-
sponding equations in GR. The only difference is that the
effective quantities ρeff and peff appear instead of ρ and p.
This point induces a remarkable mathematical simplicity
in our analysis.
From Eqs. (13) and (14), at least at first glance, one may

infer that EMSG corrections, effectively, reduce the energy
density and pressure in the system. Therefore, one may
conclude that EMSG weakens the gravitational strength
caused by a given ρ and p. This behavior is totally in
agreement with the main aim of the theory which is
preventing the singularities. It is necessary to emphasize
that at relativistic situations, the pressure has gravitational
effects and, in principle, can support the local gravitational
collapse instead of preventing it. For example, in the post-
Newtonian regime where the relativistic effects are impor-
tant, it has been shown that by increasing the pressure, the
Jeans mass decreases [21]. This means that pressure can
trigger the gravitational instability.

However although it seems satisfactory, it must be
stressed that reducing the pressure effectively does not
necessarily mean that the gravitational strength has been
weakened. In other words, in nonrelativistic situations,
reducing the pressure supports the gravitational collapse.
In other words, in this case reduction in pressure high-
lights the gravitational effects. Therefore, as we will see in
the next section, the overall influence of EMSG on the
mean density and other properties of the stars is not trivial.
In other words in some cases EMSG lead to more compact
stars compared to GR, and in some other cases leads to
less compact stars.
In the subsequent sections we solve the governing

equations using analytic and numeric prescriptions.

IV. ANALYTIC SOLUTIONS

Keeping in mind the mathematical similarity between
EMSG equations and GR, one may expect that all analytic
solutions for ρ and p in GR are also valid in EMSG for ρeff
and peff . In the following let us consider some special
cases, and present two exact solutions for the governing
equation.

A. Case ρeff = constant

One of the well-known analytic solutions in GR is the
Schwarzschild constant-density interior solution. Therefore,
it is straightforward toverify thatwhen the effective density is
constant inside radiusR (i.e.ρeff ¼ ρ0), and is zero for r > R,
the effective pressure inside the star is given by

peffðrÞ ¼ ρ0c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κc2meff

4πR3 r2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κc2meff

4πR

q
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κc2meff

4πR

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κc2meff

4πR3 r2
q ð19Þ

where meff is an constant mass obtained from (17). In fact
meff is the mass parameter of the star which appears in the
external Schwarzschild external solution. It is interesting that
although the mathematical form of the metric outside a
spherical energy-matter distribution is the same in EMSG
and GR, their mass parameters are different.
The solution (19) represents a star in EMSG with a

complicated equation of state given by

p ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ

3η
ðρ − ρ0Þ þ

13

9
ρ2

s
−
4

3
ρc2: ð20Þ

For the corresponding solution in GR, the density ρ is
constant. However, here the effective density is constant,
and consequently both density and pressure are functions
of r. To find them, let us first write ρ and p in terms of the
effective quantities. To do so we use (13) and (14) and
ignore nonlinear contributions of ηc2=κ. The result is
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ρðrÞ ≃ ρeff þ
ηc2

2κ

�
8ρeff

peff

c2
þ ρ2eff þ 3

p2
eff

c4

�

pðrÞ ≃ peff þ
ηc4

2κ

�
ρ2eff þ 3

p2
eff

c4

�
ð21Þ

substituting ρeff ¼ ρ0 and Eq. (19) into above equations one
may easily find the exact form of ρðrÞ and pðrÞ in terms
of r. The result can be written as

ρðrÞ ¼ ρ0 þ
ηc2ρ20
2κ

�
26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − αÞð1 − αr2=R2

p
Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αr2=R2

p
− 3

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p Þ2
�

þ ηc2ρ20
2κ

�
αð21þ 5r2=R2Þ − 26

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αr2=R2

p
− 3

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p Þ2
�

ð22Þ

pðrÞ ¼ ρ0c2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − αr2=R2
p

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p

3
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αr2=R2

p �

þ ρ20c
4η

2κ

 
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αr2=R2

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p

3
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αr2=R2

p
!

2

þ 1

!

ð23Þ

where, for the sake of simplicity, α is defined as

α ¼ κc2meff

4πR
: ð24Þ

Note that as in GR, the central pressure obtained from (21)
in the limit r → 0 diverges when κc2meff=4πR → 8=9.
Therefore the necessary condition for existence of this
solution is κc2meff=8πR < 4=9, which is reminiscent of the
Buchdahl’s theorem in GR. We found this result for a
specific equation of state (20) in EMSG, while Buchdahl’s
theorem holds for all equation of states.

B. Relativistic pressureless stars: p= 0

It is interesting that in EMSG, pressureless stars can
exists. We know that in GR, pressureless matter cannot be
stable against its own self-gravity. However, as it can be
read from Eq. (14), for a pressureless system the effective
pressure is not necessarily zero. Consequently the effective
pressure may support the star against gravitational collapse.
We set the pressure p to zero in the main equations (11),
(12) and (15). In this case from Eq. (15) one may
straightforwardly find

bðrÞ ¼ ð1 − γρðrÞÞ−2 ð25Þ

where γ is a constant of integration. We substitute this
relation into (12) to obtain the following result for fðrÞ:

fðrÞ ¼ −
ðc4ηr2ρðrÞ2 − 2Þðκ − c2ηρðrÞÞ
2ð2c2ηrρ0ðrÞ − c2ηρðrÞ þ κÞ : ð26Þ

Finally we substitute (26) into Eq. (11) to obtain a second
order differential equation for ρðrÞ. The result is

− 2c6η3rρðrÞ4 − 2ηð3c2ηrρ0ðrÞ2 þ κrρ00ðrÞ þ 2κρ0ðrÞÞ
þ c4η2rρðrÞ3ð−c2ηr2ρ00ðrÞ þ 3c2ηrρ0ðrÞ þ 5κÞ
þ c2ηrρðrÞ2ðc4η2r2ρ0ðrÞ2 þ κðc2ηr2ρ00ðrÞ − 4κÞ
− 6c2ηκrρ0ðrÞÞ þ ρðrÞð2c4η2κr3ρ0ðrÞ2
þ c2ηð4ηþ 3κ2r2Þρ0ðrÞ þ rð2c2η2ρ00ðrÞ þ κ3ÞÞ ¼ 0;

ð27Þ

this nonlinear equation can be solved numerically, and we
could not find any analytic solution for it. In order to find an
exact solution, let us restrict ourselves to a constant-density
case, i.e. ρ0ðrÞ ¼ 0. In this case Eq. (27) can be written as

�
1 −

2ηc2

κ
ρ

��
1 −

ηc2

κ
ρ

�
¼ 0: ð28Þ

One of the solutions is larger than the maximum density
allowed in the early universe. Therefore we choose the
second solution given by

ρðrÞ ¼ κ

2ηc2
ð29Þ

substituting (29) into Eq. (25) we arrive at bðrÞ ¼ γ�, where
γ� is a constant which should be determined using the
boundary conditions. We know that at the surface of the
star, the metric is given by the Schwarzschild metric.
Consequently we have

bðrÞ ¼ 1 −
κc2M�

4πR� ð30Þ

where M� and R� are the mass and radius of the star
respectively. In fact by matching the interior and exterior
solutions it is easy to show that M� ¼ meffðR�Þ ¼ πR�3κ

2ηc2 .

Finally Eq. (26) yields

fðrÞ ¼ 1 −
κ2

8η
r2: ð31Þ

It is important to mention that the density of this star is
exactly equal to the maximum energy density which
appears in the early universe [9]. Therefore this solution
presents a very dense star. Naturally, if the radius of this star
is smaller than the Schwarzschild radius, then it can be
considered as a black hole. We stress again that the metric
outside the star is given by the Schwarzschild space-time.
This happens since there is no difference between EMSG
and GR in the vacuum. Interestingly, this behavior directly
implies that the Birkhoff’s theorem holds also in EMSG. In
this case, we have found the exact solution for the metric
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components and the matter distribution inside a pressure-
less black hole with constant density in EMSG.
In fact as has been shown in [9], this solution is

reminiscent of Einstein’s cosmological model where the
cosmological constant Λ is introduced to support a static
cosmological model. More specifically, quite similar to the
above solution, existence of Λ appears as a negative
effective pressure and prevents the gravitational collapse.
However we know that Einstein model is not stable. Let us
check the stability of our solution against small perturba-
tions. To shed light on the stability of this solution, and for
the sake of simplicity, we consider the corresponding star in
the weak field limit. In this case, using the mathematical
similarity between GR and EMSG, we can say that the
mathematical form of the Newtonian governing equations,
i.e. the continuity, Euler and Poisson equations, do not
change in EMSG. The only difference is to replace ρ and p
in the standard case with the corresponding effective
quantities. Therefore our main equations to study the
stability of the system are

∂ρeff
∂t þ∇ · ðρeffuÞ ¼ 0 ð32Þ

du
dt

þ∇peff

ρeff
þ∇Φ ¼ 0 ð33Þ

∇2Φ ¼ 1

2
κc4ρeff ð34Þ

where u is the velocity field of the fluid, and is zero for the
background solution. In the following we study the stability
of the solution using the both Eulerian and Lagrangian
formulations.
Using the Eulerian description of the small perturbations,

we perturb the physical quantities collectively shown as
Q → QþQ1, where subscripts “1” stands for first order
perturbations. Substituting these perturbations within
Eqs. (32)–(34), and keeping only the first order terms, we
arrive at

∂ρeff1
∂t þ∇ · ðρeffu1Þ ¼ 0 ð35Þ

du1

dt
þ c2s

∇peff1

ρeff
þ∇Φ1 ¼ 0 ð36Þ

∇2Φ1 ¼
1

2
κc4ρeff1 ð37Þ

where peff1 ¼ p1=2, ρeff1 ¼ ρ1=2, and the effective sound
speed cs is defined as

c2s ¼
dpeff

dρeff
: ð38Þ

Of course this effective speed parameter does not belong to
any physical transform of matter or energy. It should be
noted that the sound speed for the background system,
which is pressureless, is zero. It is easy to verify that
c2s ¼ −c2. By differentiating Eq. (35) with respect to time,
and using Eqs. (36) and (37), we find

∂2ρ1
∂t2 − c2s∇2ρ1 −

1

2
κc4ρeffρ1 ¼ 0: ð39Þ

Now as usual let us assume a Fourier mode for the
perturbation ρ1 as follows:

ρ1ðr; tÞ ¼ ρaeiðk·r−ωtÞ: ð40Þ

By substituting this solution within (39), we find the
following dispersion relation for the propagation of the
plane waves

ω2 ¼ c2sk2 −
1

2
κc4ρeff : ð41Þ

It is clear that since c2s < 0 and ρeff > 0 the right-hand side
is always negative. This means that all wavelengths are
unstable. Consequently, this stellar solution is unstable
and is not interesting from observational point of view.
However, it is interesting that, not only is this solution
reminiscent of Einstein’s cosmological model, it is also
unstable as well.
Although the above stability analysis is enough to rule

out this solution, it is also instructive to use the Lagrangian
description for the evolution of the radial adiabatic pertur-
bations. In fact, the radial stability analysis of the star can
be done analytically for this case. In the following we
briefly prove that the star is also unstable against radial
perturbations. Assuming that the Lagrangian displacement
is ξ and the velocity is u ¼ ðuðr; tÞ; 0; 0Þ, the perturbed
Euler equation is written as

Δ
�
du
dt

þ p0
eff

ρeff
þΦ0

�
¼ 0 ð42Þ

where the Lagrangian perturbation operator Δ and the
Eulerian perturbation operator δ are related as

Δ ¼ δþ ξ · ∇; ð43Þ

for more details we refer the reader to [22]. Again we
benefit the mathematical similarity between EMSG and
GR. In this case it is easy to verify that the eigenvalue
equation for the radial perturbations in a spherical star is
given by [see Eq. (6.5.6) in [22]]

d
dr

�
ρeff

c2s
r2

d
dr

ðr2ξÞ
�
−

4

r2
dpeff

dr
ξþ ω2ρeffξ ¼ 0 ð44Þ
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where ξðr; tÞ is the radial component of vector ξ, and we
have assumed a time dependency eiωt for it. Keeping in
mind that peff is constant, the above equation can be
rewritten as

d
dr

�
1

r2
d
dr

ðr2ξÞ
�
þ ω2

c2s
ξ ¼ 0: ð45Þ

Fortunately, this differential equation can be simply solved
to arrive at

ξðr; tÞ ¼
�
αj1

�
rω
cs

�
þ βy1

�
rω
cs

��
eiωt ð46Þ

where α and β are constants of integration, and j1 and y1 are
the spherical Bessel functions of the first and second kinds
respectively. On the other hand since, c2s < 0, we cannot
find any stable mode (ω2 > 0), and all frequencies are
unstable. In fact, for the same reason as in the Eulerian
description, i.e. c2s < 0, all radial perturbations are unstable
in the Lagrangian description.

V. NUMERICAL SOLUTIONS

In this section we solve the field equations (11), (12) and
(15) for more realistic stars. To do so it is necessary to choose
an appropriate set of boundary conditions. At the center, it is
clear from (11) and (12) that fð0Þ ¼ 1. On the other hand, we
solve the equations for a wide range of central pressure,
pð0Þ ¼ pc. Therefore we know the central pressure and
density, i.e. ρð0Þ ¼ ρc. It is necessary to mention that with a
time reparametrization we can set bð0Þ ¼ 1. In fact, it turns
out that density profile and the final mass and the radius of
the star remain unchanged by changing bð0Þ.
Therefore we know all the three initial conditions neces-

sary to solve the equations. On the other hand in order to find
the mass and radius of the star, the field equations (11), (12)
and (15) are integrated numerically outward up to the star
radius R�, where the pressure gets zero, i.e. pðR�Þ ¼ 0. On
the other hand, our numerical solution should match the
external solution for r > R�. By matching the solution we
can find themass of the star, i.e.M�. Fortunately, the external
solution is exact and given by Schwarzschild metric, for
which bðrÞ ¼ fðrÞ ¼ 1 − κc2M�=4πr. We emphasize again
that themass appeared in the externalmetric, is obtained from
ρeff and not ρ. Imposing the Darmois-Israel matching
condition for a spherically symmetric space-time, the match-
ing conditions can be written as

½bðrÞ� ¼ ½fðrÞ� ¼ 0 ð47Þ

where ½…� is the jump across the surface r ¼ R� defined as
½T� ¼ TþðR�Þ − T−ðR�Þ whereþ and −means the quantity
T evaluated outside and inside the surface respectively. On
the other hand, using Eqs. (11) and (12), one can show that

the radial derivative of the metric components are not
continuous across the surface. More specifically we have

½f0� ¼ κc2Rρ−effðR�Þ; ½b0� ¼ −κR2p−
effðR�Þ: ð48Þ

Albeit in order to find the mass of the star, i.e. M, we only
need to use (47). Notice that for the same situation in GR, we
have ½b0� ¼ 0. Therefore discontinuity in ½b0� seems as a new
feature in EMSG. However, as we already mentioned the
pressure vanishes at the surface of the star. Therefore using
the definition of peff and Eq. (48), we have

½b0� ¼ ηc4

2
R2ρ−ðR�Þ2: ð49Þ

On the other hand, for ordinary matter distributions which
obey the standard polytropic EOS, the matter density
vanishes everywhere and the pressure is zero, for example
see (50). Therefore for these systems as in GR we have
½b0� ¼ 0. In other words, for well-known models for neutron
stars we have ½b0� ¼ 0.
On the other hand for exotic quark stars descried in the

subsequent sections, the matter density can be nonzero at
r ¼ R� while the pressure is zero. In this case we have a
discontinuity in ½b0� in EMSG. However it is well known
that the physics and the conditions for the existence of these
stars are still hypothetical and unproven from observational
point of view. Consequently it is unlikely to expect a direct
observational evidence for this new feature in EMSG. Of
course, a careful and detailed analysis of junction con-
ditions in EMSG, would help to clarify this issue. We leave
this point as a subject of study for future works.
It is necessary to mention that in order to solve the

equations we need the EOS of the star. In the following we
study two different EOS, which are widely used in the
literature to investigate the internal structure of relativistic
stars.

A. Polytropic stars

Hereafter for simplicity in numerical integration wework
in units where c ¼ G ¼ 1. It is well known that the EOS of
neutron star matter is still a challenge topic at present.
However, for describing matter inside a neutron star, at least
at the first approximation, it is convenient to follow
Damour and Esposito-Farese work [23] in which a poly-
tropic EOS has been introduced. This EOS is given by

ρ ¼ p
Γ − 1

þ
�

p
Kρ1−Γ0

�
1=Γ

ð50Þ

where the exponent Γ and polytropic constant K are
dimensionless parameters. We use two cases for these
parameters introduced in [23] as K ¼ 0.0195, Γ ¼ 2.34
and K ¼ 0.00936, Γ ¼ 2.46. However the main results
are qualitatively the same. Therefore we only report the
former case when ρ0 ¼ 1.66 × 1017 kgm−3. In order to
integrate the governing equations numerically, using the
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procedure introduced in the previous section, we choose the
central pressure pc in the interval 6 × 1029–1.2 × 1033 Pa.
This choice yields to the central energy in the interval
2.3 × 1015–1.59 × 1017 kgm−3. These values are consistent
with the typical values attributed to the central pressure and
density of neutron stars.
The results have been shown in Figs. 1 and 2. Figure 1

shows the mass-radius relation for different values of η. The
blue solid curve belongs to GR. This curve coincides with
the results presented in [24]. As expected by increasing η
the deviation between GR and EMSG increases. It should

be noted that the central pressure pc increases when
moving from right to left on each curve in this figure.
On the other hand, Fig. 2 illustrates the mass of the star

with respect to pc. As expected at larger central pressures
the deviation between two theories gets more evident. It is
necessary to mention that there are two restrictions which
must be satisfied, and curves terminate when these con-
ditions are violated. The first condition is that the sound
speed at the center must be smaller than the speed of light.
On the other hand, the second derivative of the pressure
should be negative in the center of the compact star. As we
already mentioned, we have an effective pressure which
plays role instead of pressure itself. Consequently we need
d2peff=dr2 < 0 at r ¼ 0. As we shall see, this condition
restricts the magnitude of the central pressure. To see this
fact more clearly let us expand the metric components and
effective quantities around the center as follows:

fð1Þ ≃ 1þ f2r2; bðrÞ ≃ 1þ b2r2

ρeffðrÞ ≃ ρe þ ρ2r2; peffðrÞ ≃ pe þ p2r2 ð51Þ
now substituting these expansions into the main equa-
tions (11), (12) and (15), we find three equations for three
coefficients, i.e. f2, b2 and pe. Notice that ρe does not
appear in these equations. Finally we find the coefficients in
terms of ρe and pe as follows:

f2 ¼
1

3
κρe

b2 ¼
κ

6
ðρe þ 3peÞ

p2 ¼ −
κ

12
ð3p2

e þ 4ρepe þ ρ2eÞ; ð52Þ

therefore the above mentioned condition for the existence
of compact stars, i.e. p2 < 0, can be written as

3p2
e þ 4ρepe þ ρ2e > 0 ð53Þ

where the central values of the effective quantities are
related to the corresponding values for the pressure and
density of the system as follows

ρe ¼ ρc −
η

2κ
ð8ρcpc þ ρ2c þ 3p2

cÞ

pe ¼ pc −
η

2κ
ðρ2c þ 3p2

cÞ ð54Þ

Now assuming that the central density is smaller than the
allowed maximum density in the theory, i.e. ρmax ¼ κ=2η,
one can easily show that the condition (53) is satisfied if

pc <
κ

3η
−
ρc
3
: ð55Þ

In fact, our numerical solutions show that this condition
also guarantees that dpeff=dr < 0 everywhere throughout
the star. We have taken into account both of these

FIG. 1. The mass-radius relation for different values of η. The
blue solid curve belongs to GR. Curves terminate when there is
no physical solution for the governing equations. The mass has
been scaled in terms of solar mass M⊙.

FIG. 2. The mass of the star with respect to the central pressure
pc (km−2) for the same values of η presented in Fig 1.
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restrictions in the solutions. Interestingly, as it is clear from
Fig. 2 for stars with the same central pressures in the
interval pc ≲ 5.8 × 10−4 km−2, EMSG leads to smaller
masses for neutron stars compared with GR. On the other
hand, in higher central pressures, EMSG leads to larger
masses. In Fig. 3 we have shown the radius of the star with
respect to the central pressure. It is clear that for pc <
6 × 10−4 km−2 (pc > 6 × 10−4 km−2) the radius of the star
is smaller (larger) than in GR. This is interesting in the
sense that, within GR, this EOS leads to maximum mass
M� ≃ 1.9 M⊙, which is smaller than the observed value

2.01� 0.04 M⊙ [11]. In other words, EMSG can recover
the observed value without invoking stiffer EOS.
It is also interesting to mention that, as it is clear from

Fig. 2, for each η there is a specific pc for which the mass of
the star is equivalent to a star in GR with different radius
and internal properties. On the other hand, as seen in Fig. 1,
for each value of η, there always exists a star in EMSG with
a same mass and radius in GR. However the central
pressure of these stars and their density profiles are not
the same. Although in both figures it seems that all curves
intersect the GR curve in a same point, it turns out that this
is not the case.
It should be noted that for low pc, where EMSG gives

smaller masses compared with GR, the radius of the stars
is also smaller than in GR. In this case it can be shown
that stars are more compact in EMSG. To do so let us
define parameter C as a measure of the mean density as:
C ¼ M�=R�3. We have plotted the relative difference
between C in EMSG and GR with respect to central
pressure, i.e Δ ¼ ðCEMSG − CGRÞ=CGR in Fig. 4. It is clear
from this figure that for small pc, and independent from the
magnitude of η, the mean density defined by C, in EMSG is
larger than GR. Existence of more compact stars in EMSG
is not surprising in the sense that the main feature of the
theory is to avoid singularities. However it is clear that
when the central pressure and the free parameter η are
relatively large, stars can be less compact in EMSG.
It is important mentioning that for two stars with the

same central pressure, one in GR and one in EMSG, the
density and pressure are not necessarily smaller in EMSG.
More specifically, depending on the radius ρeff (peff ) can
be smaller or even larger than the corresponding values in
GR. In the top panels of Fig. 5 we have illustrated relative
difference between density in GR, i.e. ρGR, and the
effective density in EMSG for two different values of
central pressure with respect to distance from the center of
the star. It is clear that at larger distances the effective
density gets larger than ρGR. Also when pc is larger, the
interval in which ρeff>ρGR gets wider. On the other hand,
as expected, larger η leads to larger differences between
two theories.
In the bottom panels of Fig 5, we have shown the relative

difference between pressure of the star in GR, i.e. pGR, and
the effective pressure in EMSG, for two different values of
pc. It is clear again that for large pc, at larger radii the
effective pressure is larger than pGR. On the other hand
when pc is small, the effective pressure remains smaller
than pGR for all chosen values of η.
The overall outcome of these differences is that the star,

depending on the values of η and central pressure pc, the
mean density defined by C can be smaller or larger than
in GR.
As our final remark in this section, it should be noted

that, as expected, the behavior of EMSG inside compact
stars depends on the EOS and internal properties. In the

FIG. 4. Relative difference between density parameter C in
EMSG and GR with respect to pc (km−2). Different colors
belong to different values of η used in previous figures.

FIG. 3. The radius of the star R�ðkmÞ with respect to the central
pressure pc (km−2). Different colors belong to the different values
of η presented in Fig. 1. The blue solid curve belongs to GR.
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subsequent section, as another example, we briefly show
that EMSG increases the mass of quark stars for all values
of η and pc. Furthermore these stars are less compact in
EMSG compared with GR.

B. Strange quark stars:

By assuming that the strange quark matter consisting of
massless quarks is the ultimate ground state of matter, then
compression of matter to high temperature and density may
convert the entire star into strange quark matter. From
observational point of view it is very difficult to distinguish
between these stars and normal neutron stars, for more
details about these stars we refer the reader to [25]. In the
first order perturbation theory in quantum chromodynamics
(QCD), the EOS of quark stars is given by [26]

ρ ¼ 3pþ 4B ð56Þ
where B (the bag constant) is the difference between the
energy density of the perturbative and nonperturbative
QCD vacuums. At zero pressure and temperature B holds
quark matter together and guarantee the existence of the
strange quark stars. Here we adopt the typical value of the
bag constant given by B ≃ 9.6 × 1017 kgm−3 [27]. With
this choice, at the surface of star where p ¼ 0, we have
ρ ¼ 4B. In other words, assuming that the density ρ is a
decreasing function, ρ must be larger than 4B everywhere
in the star.
The numerical results for this case have been summa-

rized in Fig. 6. In this figure blue curves belong to GR,
and other colors belong to different values of η in EMSG,
and are equal to values which have been used for polytrops.

FIG. 5. Top panels: Relative difference between ρGR and ρeff for two different values of pc, i.e. pc ¼ 0.0004 and 0.002, with respect to
distance from center of the star. Bottom panels: The corresponding relative difference between pGR and peff with respect to r.
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The top left panel shows the mass-radius relation. For these
stars EMSG leads to larger masses for all values of central
pressure and η. However the difference is not too signifi-
cant. We have zoomed to the curves and plotted it as a box
inside the top left panel. For this EOS, for the same reason
we already mentioned for polytopic stars, curves terminate
when the following condition fails:

pc <
κ

6η
−
2B
3
: ð57Þ

In the top right panel, the mass of the star is plotted
with respect to the central pressure. It is clear that by
increasing η, EMSG leads to larger masses. Furthermore

it is seen in the bottom left panel that the radius of stars is
also larger in EMSG. However, the mean density param-
eter C of quark stars are significantly smaller in EMSG,
see the bottom right panel in Fig. 6. Comparing this panel
with Fig. 4 it turns out that EMSG is more efficient
in quark stars to reduce the mean density defined by C.
Another significant difference is that EMSG prevents
quark stars with high central pressures. In other words,
schematically, we see that for larger η all curves terminate
in a relatively small pc compared with allowed pressures
in stars in GR.
Before closing this section, it is worth mentioning that

the EOS (56) has an interesting behavior in EMSG. In fact

FIG. 6. In the all panels the blue curve belongs to GR and other colors demonstrate different values for η given in the top right panel.
Top panels: the left panel shows the mass-radius relation of strange quark stars in EMSG, and the right panel shows the radius of the star
with respect to pc. Bottom panels: The left panel represents the radius of the star with respect to pc, and the right panel shows the relative
difference between the density parameter C of quark stars in GR and EMSG.
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let us assume that the EOS is linear and given by ρ ¼ wp
where w is the equation of state parameter. In this case it is
easy to show that in EMSG we have, effectively, a same
EOS, i.e ρeff ¼ wpeff , provided that w ¼ 3 or w ¼ −1.
Therefore for a radiation dominated star with w ¼ 3, there
would be no difference between mass-radius relation in
GR and EMSG. However in strange quark stars although
w ¼ 3, there is also a constant, i.e. B in the EOS. In this
case the EOS does not keep its shape, i.e. Eq. (56), and can
be expressed as

ρeff ¼ 3peff þ 4Bþ 8ηB
κ

ð2Bþ pÞ: ð58Þ

Consequently it is natural to expect small deviations from
mass-radius relation in GR. In this case, as it is clear from
(58), the bag constant B measures the magnitude of the
deviations between EMSG and GR.

VI. CONCLUSIONS

In this paper two kinds of compact stars have been
investigated in the context of energy-momentum-squared
gravity. This theory leads to a nonsingular cosmology in the
early universe, and its corrections to the standard gravity
appear only in the high energy regime. The cosmological
consequences of the theory have been investigated in [9].
The main aim in the current paper is to study the possible
consequences of EMSG in compact stars, where we expect
deviations from GR. By defining appropriate effective
quantities, EMSG’s field equations get similar to those
of GR. This similarity induces substantial simplicity in
calculations and interpretations.
We found two exact stellar solutions. The first solution

corresponds to a star with constant ρeff . In this case we
could exactly find the radial dependency of ρðrÞ and pðrÞ.
In our second analytic solution, we investigated a

pressureless star in the context of EMSG. As we know,
such a star cannot exist in GR. Although pressureless stars
can exist in EMSG, we show that these relativistic stars are
not stable. We checked the stability of these stars using both
Lagrangian and Eulerian descriptions, and both methods

confirmed that pressureless stars are unstable to local and
radial perturbations. From this perspective, this stellar
solution is reminiscent of Einstein’s cosmological model.
As an attempt to include more realistic stars in this study,

we found two numeric solutions. More specifically, we
solved the field equations for two different EOSs: the
polytopic and strange quark stars. In the case of polytropic
stars it turned out that neutron stars with masses larger than
2 M⊙ are allowed in EMSG. Therefore EMSG can explain
recent high-mass neutron star observations without invok-
ing exotic EOSs. It is interesting that for small central
pressures, EMSG leads to smaller masses compared to
corresponding stars in GR. Furthermore, in some cases,
depending on the internal structure of the stars, EMSG
leads to more compact stars compared with GR, and in
some situations lead to less compact stars.
On the other hand in the case of strange quark stars we

found that masses are always larger in EMSG, and the stars
are less compact. Also we showed that large central
pressures, compared with the corresponding quark stars
in GR, are not allowed in EMSG.
For future studies it would be interesting to study the

slowly rotating stars in the context of EMSG. Also the
Palatini formulation of EMSG may lead to interesting
consequences in the stellar and cosmological issues.
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