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It is well known that a spinning body moving in a fluid suffers a force orthogonal to its velocity and
rotation axis—it is called the Magnus effect. Recent simulations of spinning black holes and (indirect)
theoretical predictions, suggest that a somewhat analogous effect may occur for purely gravitational
phenomena. The magnitude and precise direction of this “gravitational Magnus effect” is still the subject of
debate. Starting from the rigorous equations of motion for spinning bodies in general relativity (Mathisson-
Papapetrou equations), we show that indeed such an effect takes place and is a fundamental part of the spin-
curvature force. The effect arises whenever there is a current of mass/energy, non-parallel to a body’s spin.
We compute the effect explicitly for some astrophysical systems of interest: a galactic dark matter halo,
a black hole accretion disk, and the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. It is
seen to lead to secular orbital precessions potentially observable by future astrometric experiments and
gravitational-wave detectors. Finally, we consider also the reciprocal problem: the “force” exerted by the
body on the surrounding matter, and show that (from this perspective) the effect is due to the body’s
gravitomagnetic field. We compute it rigorously, showing the matching with its reciprocal, and clarifying
common misconceptions in the literature regarding the action-reaction law in post-Newtonian gravity.
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I. INTRODUCTION

The Magnus effect is well known in classical fluid
dynamics: when a spinning body moves in a fluid, a force
orthogonal to the body’s velocity and spin acts on it. If the
body spins with angular velocity @, moves with velocity v, and
the fluid density is p, such force has the form (see e.g., [1,2])

Fypge = apo xv. (1)

(Here  is a a factor that differs according to the flow regime.")
This effect is illustrated in Fig. 1. It can, in simple terms, be
understood from the fact that the fluid circulation induced by
the body’s rotation decreases the flow velocity on one side of
the body while increasing it on the opposite side. The
Bernoulli equation then implies that a pressure differential
occurs, leading to a net force on the body [4].

By its very own nature, the fluid-dynamical Magnus
force hinges on contact interactions between the spinning
body and the fluid. Thus, ordinary Magnus forces cannot
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"Its value is not generically established. According to theo-
retical and experimental results, it is nearly a constant at low
Reynolds numbers [1-3], but seemingly velocity dependent at
higher Reynolds numbers [3].
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exist in the interaction between (i) a fluid and a spinning
black hole (BH), or (ii) an ordinary star and dark matter
(DM) which only interacts with it via gravity. However,
in general relativity any form of energy gravitates and
contributes to the gravitational field of bodies. In particular,
a spinning body produces a “gravitomagnetic field” [5]; if
the spinning body is immersed in a fluid, such field deflects
the fluid-particles in a direction orthogonal to their velocity,
as illustrated in Fig. 1(b), seemingly leading to a nonzero
“momentum transfer” to the fluid. The question then arises
if some backreaction on the body, in the form of a Magnus-
(or anti-Magnus)-like force—in the sense of being orthogo-
nal to the flow and to the body’s spin—might arise. Indeed,
the existence of such a force, in the same direction of the
Magnus effect of fluid dynamics, is strongly suggested by
numerical studies of nonaxisymmetric relativistic Bondi-
Hoyle accretion onto a Kerr BH [6]. These studies focused
on a fixed background geometry and studied the momen-
tum imparted to the fluid as it accretes or scatters from the
BH. A theoretical argument for the existence of such an
effect has also been put forth in Ref. [7], based on the
asymmetric accretion of matter around a spinning BH (i.e.,
the absorption cross-section being larger for counter- than
for corotating particles)—which is but another conse-
quence of the gravitomagnetic “forces”: these are attractive
for counterrotating particles, and repulsive for corotating
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FIG. 1. (a) Magnus effect in fluid dynamics, as viewed from a
spinning body’s frame: the body’s rotation slows down the flow
which opposes the body’s surface velocity, while speeding it up
otherwise, generating a pressure gradient and a net force Fy;,, on
the body. (b) A gravitational analogue of the Magnus effect?—
due to its gravitomagnetic field H, a spinning body deflects
particles of a cloud flowing around it, via the gravitomagnetic
“force” Fgy = Mv x H. By naive application of an action-
reaction principle, a force on the body orthogonal to its spin
and velocity (like the Magnus force) might be expected.

ones, as illustrated in Fig. 1(b) (for particles in
the equatorial plane). Such argument leads however to
the prediction of an effect in the direction opposite to the
Magnus effect (“anti-Magnus”), thus seemingly at odds
with the results in Ref. [6]. Very recently, and while our
work was being completed, there was also an attempt to
demonstrate the existence of what, in practice, would
amount to such an effect, based both on particle’s absorp-
tion and on orbital precessions around a spinning BH [8]
(which, again, are gravitomagnetic effects); a force in the
direction opposite to the Magnus effect was again sug-
gested. These (conflicting) treatments are however based
on loose estimates, not on a concrete computation of the
overall gravitomagnetic force exerted by the spinning body
on the surrounding matter. Moreover, these are all indirect
methods, in which one infers the motion of the body by
observing its effect on the cloud, trying then to figure out
the backreaction on the body (which, as we shall see, is
problematic, since the gravitomagnetic interactions, analo-
gously to the magnetic interactions, do not obey in general
an action-reaction law).

One of the purposes of this work is to perform the first
concrete and rigorous calculation of this effect. We first
take a direct approach—that is, we investigate this effect
from the actual equations of motion for spinning bodies in
general relativity. These are well established, and known
as the Mathisson-Papapetrou (or Mathisson-Papapetrou-
Dixon) equations [9—14]. We will show that a Magnus-type
force is a fundamental part of the spin-curvature force,
which arises whenever a spinning body moves in a medium
with a relative velocity not parallel to its spin axis; it has the
same direction as the Magnus force in fluid dynamics, and
depends only on the mass-energy current relative to the
body, and on the body’s spin angular momentum. Then we
also consider the reciprocal problem, rigorously computing

the force that the body exerts on the surrounding matter
(in the regime where such “force” is defined), correcting
and clarifying the earlier results in the literature. These
effects have a close parallel in electromagnetism, where an
analogous (anti) Magnus effect also arises. For this reason
we will start by electromagnetism—and by the classical
problem of a magnetic dipole inside a current slab—which
will give us insight into the gravitational case.

A. Notation and conventions

We use the signature (— + ++); €,4,, = /—glapyd] is the
Levi-Civita tensor, with the orientation [1230] = 1 (i.e., in flat
spacetime, €1230 = 1); €;jx = €;xo- Greek letters a, 3,7, ...
denote 4D spacetime indices, running 0-3; Roman letters
i, ], k, ... denote spatial indices, running 1-3. The convention
for the Riemann tensor is R%,, =17, , — 1%, + -
denotes the Hodge dual: xF 3 = €,4"F,, /2 for an antisym-
metric tensor F,; = Fl,5. Ordinary time derivatives are

sometimes denoted by dot: X = 9X/0r.

B. Executive summary

For the busy reader, we briefly outline here the main
results of our paper. A spinning body in a gravitational field
is acted, in general, by a covariant force DP*/dr (the spin-
curvature force), deviating it from geodesic motion. Such
force can be can be split into the two components

DP”

dr Weyl + FaMag’ (2)

Feq = —H7PSp;  Fiyyg = 4n€%,, JPS°U7,  (3)
where U“ is the body’s 4-velocity, S its spin angular
momentum 4-vector, and J* = —T%#U s the mass-energy
4-current relative to the body. The force F Weyl is due to the
magnetic part of the Weyl tensor, H,3 = *C,5, U' U,
determined by the details of the system (boundary con-
ditions, etc.). The force FK/[ag’ which, in the body’s rest
frame reads Fyp,, = 4xJ X S, is what we call a gravitational
analogue to the Magnus force of fluid dynamics; it arises
whenever, relative to the body, there is a spatial mass-
energy current J not parallel to S. We argue that (2) is the
force that has been attempted to be indirectly computed in
the literature [6-8], from the effect of a moving BH (or
spinning body) on the surrounding matter. We base our
claim on a rigorous computation of the reciprocal force
exerted by the body on the medium, in the cases where the
problem is well posed, and where an action-reaction law
can be applied. Fy;,, and Fy, ., are also seen to have direct
analogues in the force that an electromagnetic field exerts
on a magnetic dipole.

The two components of the force are studied for spinning
bodies in (“slab”) toy models, and in some astrophysical
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setups. For quasi-circular orbits around stationary axisym-
metric spacetimes studied—spherical DM halos, BH
accretion disks—when S lies in the orbital plane, the
spin-curvature force takes the form F = A(r)S x v, where
the function A(r) is specific to the system. Its Magnus
component is similar for all systems, whereas the Weyl
component greatly differs. The force F causes the orbits to
oscillate, and to undergo a secular precession, given by

<@>:QXL; Q=

A(r)
= S.
dt 2m

The effect might be detectable in some astrophysical
settings, likely candidates are: (i) signature in the
Milky Way galactic disk: stars or BHs with spin axes
nearly parallel to the galactic plane, should be in average
more distant from the plane than other bodies; (i) BH
binaries where one of the BHs moves in the others’
accretion disk, the secular precession might be detected
in gravitational wave measurements in the future, through
its impact on the waveforms and emission directions.

In an universe filled with an homogeneous isotropic
fluid, described by the FLRW spacetime, representing the
large scale structure of the universe, which is conformally
flat, we have that H* =0 = F eyl =0, and so the Magnus
force Fy,, is the only force that acts on a spinning body.

It reads, exactly,
F=—4z(p+ p)(U°)v x S

It acts on any celestial body that moves with respect to the
background fluid with a velocity v § S, and might possibly
be observed in the motion of galaxies with large peculiar
velocities v. Due to the occurrence of the factor (p + p),
this force acts as a probe for the matter/energy content of
the universe (namely for the ratio p/ p, and for the different
dark energy candidates). Any mater/energy content gives
rise to such gravitational Magnus force, except for dark
energy if modeled with a cosmological constant (p = —p).

II. ELECTROMAGNETIC (ANTI)
MAGNUS EFFECT

We start with a toy problem borrowed from the electro-
magnetic interaction. Consider a magnetic dipole within a
cloud of charged particles. Is there a Magnus-type force?

The relativistic expression for the force exerted on a
magnetic dipole, of magnetic moment 4-vector u“, placed
in a electromagnetic field described by a Faraday tensor
F,is [11-13,15]

Dp“
dr

=B uy=Fhys  Bag=xFoUt. (4)

where P* is the particle’s 4-momentum, U“ its 4-velocity,
and B, is the “magnetic tidal tensor” [16,17] as measured

in the particle’s rest frame. In the inertial frame momen-
tarily comoving with the particle, the space components of
Fgy yield the textbook expression

Fpy =V(B-p). (5)

Taking the projection orthogonal to U“ of the Maxwell field
equations F% ;= 4zj%, leads to By = *Fup,U"/2 -
27€4p6,J° U" (cf. Eq. (I.3a) in Table I of Ref. [15]), where
J* is the current density 4-vector. Therefore

1 ”
Baﬁ = B(aﬁ) + 5 *Faﬂ;yUy - 2ﬂ€aﬁo'}/.] U}’. (6)

Thus, the magnetic tidal tensor decomposes into three
parts: its symmetric part Bz, plus two antisymmetric
contributions: the current term —27z¢,,j° U, and the term
*Fo3.,U” /2, which arises when the fields are not cova-
riantly constant along the particle’s worldline (it is related
to the laws of electromagnetic induction, as discussed in
detail in [15]). The force (4) can then be decomposed as

F%M:ngm+Flo\(Aag+Fﬁld’ (7)

a — p(ap) a  — 1 af 14
FSym=B Hp. Find=_§*F ;J/U Hp, (8)
Fiipag = 2me% 5, U7 jouP . 9)

Let h%; denote the space projector with respect to U*
(projector orthogonal to U%),

Since the tensor €,5,,U” automatically projects spatially,
in any of its indices, in fact only the projection of j°
orthogonal to U7, h,j*, contributes to Fy,,. Physically,
h?,j* is the spatial charge current density as measured in
the particle’s rest frame. In such frame, the time compo-
nent of Fy,, vanishes, and the space components read

Fug = 27t X . (11)

This is a force orthogonal to u and to the spatial current
density j, which we dub electromagnetic “Magnus” force. If
the magnetic dipole consists of a spinning, positively (and
uniformly) charged body, so that u||S, the force Fy,, has a
direction opposite to the Magnus force of fluid dynamics
(so it is actually “anti-Magnus”). If the body is negatively
charged, so that u|| —S, the force points in the same
direction of a Magnus force.
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A. Example: The force exerted
by a current slab on a dipole

The induction component FY; has no gravitational
counterpart, as we shall see. Therefore, from now onwards
we will not consider it any further. To shed light on the
components Fy,, and Fg,,, we consider a simple sta-
tionary setup (Exercise 5.14 of Ref. [18]): a semi-infinite
cloud of charged gas which is infinitely long (x direction)
and wide (z direction), but of finite thickness 4 in the
y direction, contained between the planes y = h/2 and
y = —h/2, see Fig. 2.

Outside the slab, the field is uniform and has opposite
directions in either side [18]. The field at any point inside
the cloud is readily obtained by application of the Stokes
theorem to the stationary Maxwell-Ampére equation

V x B = 4zj. (12)
That s, let A be a rectangle in the z—y plane, as illustrated in

Fig. 2, with boundary 0A and normal unit vector n. By the
Stokes theorem

f B-dl:foB-ndA:4ﬂj{j-ndA:4ﬂAszj,
0A A A

(13)
where we took, for the surface A, the orientation n||j. By the
right-hand-rule and symmetry arguments, B is parallel to
the slab and orthogonal to j, pointing in the positive z

direction for y > 0, in the negative z direction for y < 0,

© ©F ©
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FIG. 2. A magnetic dipole u = ue, inside a semi-infinite
cloud of charged particles flowing in the e, direction. The
cloud is infinite along the x and z directions, but of finite
thickness in the y direction, contained within —4/2 <y < +h/2.
The magnetic field B generated by the cloud points in the
positive z direction for y > 0, and in the negative z direction
for y < 0. B has a gradient inside the cloud, whose only
nonvanishing component is B*Y = 4zxj. Due to that, a force
Fgy = B> ey, = 4rxjue,, pointing upwards, is exerted on the
dipole. In this case Fgyy = Fyp, s0 the force is twice the
Magnus force: Fgpy = Fsyy + Fygg = 2F - Considering in-
stead a cloud finite along z, infinite along x and y, F\j,, = 27 jue,
remains the same, but Fg,,, inverts its direction: Fgyy, = —Fyyg,
causing the total force to vanish: Fgy = 0.

and vanishing at y = 0. Therefore §,,
and so

B . dl — B|y=AyAZ’

Bi(y) = 4rAyj = 4xyj. (14)

Consider now a magnetic dipole at rest inside the cloud
(for instance, the magnetic dipole moment of a spinning
charged body), as depicted in Fig. 2. The magnetic field
(14) has a gradient inside the cloud, leading to a magnetic
tidal tensor B% (as measured by the dipole) whose only
nonvanishing component is B% = B*Y = 4xj. Therefore,
the force exerted on the dipole is, cf. Eq. (4),

FEM = Bjiﬂjei = Bzy:uzey = 4ﬂj/"zey' (15)

It consists of the sum of the Magnus force plus the force
Fgy (Fing =0 since the configuration is stationary):

Fey = Fyag + Fsyms
Fyag = 27p X j = 2”j(ﬂzey - l'lyez) (16)
FSym = B(ﬁ)/"jei = Zﬂj(/"zey +ﬂyez) (17)

Equations (15)—(17) yield the forces for a fixed orientation
of the slab (orthogonal to the y-axis), and an arbitrary pu.
This is of course physically equivalent to considering
instead a magnetic dipole g with fixed direction, and
varying the orientation of the slab; in this framework,
taking g = pe,, two notable cases stand out:

1. Slab finite along y axis, infinite along x and z (see
Fig. 2). The Magnus and the “symmetric” forces are
equal: Fyy = Fgyy = 2rjue,, so there is a total
force along the y direction equaling twice the
Magnus force: Fpy = 2F e = 47jpe,,.

2. Slab finite along z axis, infinite along x and y (slab
orthogonal to ). The Magnus force remains the
same as in case 1; but Fg,, changes to the exact
opposite, Fsy, = —2njue, = —Fy,. The total
force on the dipole now vanishes: Fgy = 0.

The results in case 2 follow” from noting that, for a slab
orthogonal to the z axis, B is along y and given by
B = —4njze,, leading to a magnetic tidal tensor with only
non-vanishing component B”* = B»* = —4zj, thus caus-
ing BU/) to globally change sign comparing to case 1. For
other orientations of the slab/dipole, the forces Fgy,, and
Fy,, are not collinear. When p coincides with an eigen-

vector of the matrix B(/), they are actually orthogonal; in
the slab in Fig. 2 (orthogonal to the y-axis), that is the case

for u = u(e, + e.)/V2 and p = u(e, — ey)/\/i (the third

*Equivalently, they follow from rotating the frame in Fig. 2 by
—n/2 about e, [which amounts to swapping y <> z and changing
the signs of the right-hand members of Eqs. (15)—(17)] while still
demanding p = pe,.
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eigenvector of BU/), u = pe,, has zero eigenvalue and leads
t0 Fyyg = Fgym = 0).

Notice that neither the field B at any point inside the
cloud, nor its gradient, or the force (15), depend on the
precise width & of the cloud; in particular, they remain
the same in the limit 2 — oo0. The role of considering (at
least in a first moment) a finite / is to fix the direction of B.
Equation (12), together with the problem’s symmetries,
then fully fix B via Eq. (13) and, therefore, Fyy,,. Taking
the limit 4 — oo in cases 1-2 above yields two different
ways of constructing an infinite current cloud, each of them
leading to a different B and force on the dipole (the
situation is analogous to the “paradoxes” of the electric
field of a uniform, infinite charge distribution, or of the
Newtonian gravitational field of a uniform, infinite mass
distribution, see Sec. III B 3). Had one started with a cloud
about which all one is told is that it is infinite in all
directions, it would not be possible to set up the boundary
conditions needed to solve the Maxwell-Ampére equa-
tion (12), so the question of which is the magnetic field
(thus the force the dipole) would have no answer.’

B. Reciprocal problem: The force exerted
by the dipole on the slab

There have been attempts at understanding and quantify-
ing the gravitational analogue of the Magnus effect [7,8].
However, in these works, the force on the spinning body was
inferred from its effect on the cloud, by guessing its back
reaction on the body. Here we will start by computing it
rigorously in the electromagnetic analogue, i.e., the recip-
rocal of the problem considered above: the force exerted by
the magnetic dipole on the cloud. It is given by the integral

F gip cloud = / J X Bdipd3x =Jj X / Bdipd3x' (18)
cloud cloud

Consider a sphere completely enclosing the magnetic dipole,
and let R be its radius; we may then split

Fdip.cloud =Jx / Bdipd3x +J % /
r<R

r>R

B dip d 3 X ( 1 9)
The interior integral yields

8
/ Bypd’x == p. (20)
r<R 3

as explained in detail in pp. 187-188 of [19]. The magnetic
field in any region exterior to the dipole is (e.g., [18,19])

3(u-rr
(ﬂrs ) . (21)

14
Bdip|r>R = _ﬁ +

This indeterminacy is readily seen noting that, given a
solution of Eq. (12), adding to it any solution of the homogeneous
equation V x B = 0 yields another solution of Eq. (12).

For the setup in Fig. 2 (slab orthogonal to the y-axis,
p = pe.), and considering a spherical coordinate system
where z2/r? = cos® @ and the plane y = h/2 is given by
the equation r = h/(2sinfsin¢), the exterior integral
becomes

/ Bdipd3x = 2/.lez

>R
5o fx (B 3cos20—1 4

x/ dG/ d¢/ dr 77 GinG = ape.,  (22)
0 0 R r 3

with # = h/(2sin0sin ¢). Substituting Eqs. (20) and (22)
into (19), and comparing to Eq. (15), we see that

Fdip,cloud = _4ﬂjﬂey =—Fgy = _Fcloud,dip9 (23)

i.e., the force exerted by the dipole on the cloud indeed
equals minus the force exerted by the cloud on the dipole.
It is however important to note that this occurs because
one is dealing here with magnetostatics; for general electro-
magnetic interactions do not obey the action-reaction law
(in the sense of a reaction force equaling minus the action).
This is exemplified in Appendix B 1. In particular it is so for
the interaction of the dipole with individual particles of
the cloud.

If one considers instead a slab orthogonal to the z axis
(contained within —h/2 < z < +h/2), and noting that the
plane z = h/2 is given by r = h/(2cos6), one obtains
[~ r Baipd®x = —(8x/3)pe., which exactly cancels out the
interior integral (20), leading to a zero force on the cloud:
F gip cloua = O (matching, again, its reciprocal).

Just like in the reciprocal problem, the results do not
depend on the width & of the slabs, so taking the limit
h — oo of the slabs orthogonal to y and to z are two
different ways of obtaining equally infinite clouds, but on
which very different forces are exerted. Here the issue does
not boil down to a problem of boundary conditions for
PDE’s (as was the case for B in Sec. II A); it comes about
instead in another fundamental mathematical principle
(Fubini’s theorem [20,21]): the multiple integral of a
function which is not absolutely convergent, depends in
general on the way the integration is performed. This is
discussed in detail in Appendix A. It tells us that, like its
reciprocal, Fgi, iouq s not a well defined quantity for an
infinite cloud.

III. GRAVITATIONAL MAGNUS EFFECT

Contrary to idealized point (“monopole”) particles,
“real,” extended bodies, endowed with a multipole struc-
ture, do not move along geodesics in a gravitational field.
This is because the curvature tensor couples to the multi-
pole moments of the body’s energy momentum tensor 7%
(much like in the way the electromagnetic field couples to
the multipole moments of the current 4-vector j). In a
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multiple scheme, the first correction to geodesic motion
arises when one considers pole-dipole spinning particles,
i.e., particles whose only multipole moments of T%
relevant to the equations of motion are the momentum
P* and the spin tensor S (see e.g., [11,12,22] for
their definitions in a curved spacetime). In this case
the equations of motion that follow from the conservation

laws T;O;f =0 are the so-called Mathisson-Papapetrou
(or Mathisson-Papapetrou-Dixon) equations [9-14].
According to these equations, a spinning body experiences
a force, the so called spin-curvature force, when placed in a
gravitational field. It is described by

DP® 1
= ——R%, SWUP = F, 24
dr 2 P (24)

where U® = dx®/dz is the body’s 4-velocity (that is, the
tangent vector to its center of mass worldline). This is a
physical, covariant force (as manifest in the covariant
derivative operator D/dr = U*V ,), which causes the body
to deviate from geodesic motion. Under the so-called
Mathisson-Pirani [9,23] spin condition S*Uj; =0, one
may write S = ™S U,, where S* = %, U’S* /2 is
the spin 4-vector [whose components in an orthonormal
frame comoving with the body are S*=(0,S)].
Substituting in (24), leads to [15,16],

DP*
F* = = —HPas,, 25
dr p ( )
where
My = %Ryps U'UY = ~ e Ry UMDY, (26
af = * a[tﬁl/U U _Eea/l irﬁvU U ’ ( )

is the “gravitomagnetic tidal tensor” (or “magnetic part” of
the Riemann tensor, e.g., [24]) as measured by an observer
comoving with the particle. Using the decomposition of the
Riemann tensor in terms of the Weyl (C,g,5) and Ricci
tensors (e.g., Eq. (2.79) of Ref. [25]),

a, ([ [a 1 et
RPy5 = C 5+ 25/ RV 5 — gRé[yég], (27)

we may decompose H,; as
1 o
Hep = Hiap) + Higp = Hap + §€a/3ayUyR U, (28)
where the symmetric tensor Hoy = Hiap) is the magnetic

part of the Weyl tensor, Hus = xC,5, U*U". Using the
Einstein field equations

apfu

1
R/u/ = 877 (Tﬂl/ - EgﬂyTaa> + Ag(lﬂ’ (29)

this becomes (cf. e.g., Eq. (I.3b) of Table I of [15])
Haﬂ = H(aﬂ) + [H][aﬂ] - Htxﬂ - 4ﬂ€aﬂ0yUyJG, (30)

where J* = —T%#U 5 1s the mass/energy current 4-vector as
measured by an observer of 4-velocity U (comoving with
the particle, in this case). We thus can write

F* = —H"ﬁSﬁ + 47re"ﬁayj/’S"U7’ = Fyey + Fipag: (31)
where
Fipag = 47m€% 55, urJrse, (32)
Fey = —H7S. (33)
Since the tensor €, U” automatically projects spatially (in
any of its free indices), only the projection of J# orthogonal
to U7, k¥, J* [see Eq. (10)], contributes to Fy,,.

Equations (31)—(33) thus tell us that the spin-curvature
force splits into two parts: F$Vey1, which is due to the

magnetic part of the Weyl tensor, and is analogous (to some
extent) to the “symmetric force” Fg,, of electromagnetism,
Eq. (8). The second part is Fy;,, which is nonvanishing
whenever, relative to the body, there is a spatial mass-

energy current hﬁ]" not parallel to S*. In the body’s rest
frame, we have

Fypae = 47J X S, (34)

thus FYy,, is what one would call a gravitational analogue

of the Magnus effect in fluid dynamics, since
(1) it arises whenever the body rotates and moves in a
medium with a relative velocity not parallel to its
spin axis (that is, when there is a spatial mass-energy
current density J relative to the body, such
that S } J);

(i1) the force is orthogonal to both the axis of rotation of
the body (i.e., to S) and to the current density J, like
in an ordinary Magnus effect; moreover, it points
precisely in the same direction of the latter.*

Notice that Eq. (31) is a fully general equation that can

be applied to any system, and that the “Magnus force” F Mag

depends only on U%, §%, and the local J¢, and not on any
further detail of the system. The force F &,eyl, by contrast,

“This is always so if the parallelism drawn is between J and the
flux vector of fluid dynamics. If the analogy is based instead
on the velocity of the fluid relative to the body, the gravitational
and ordinary Magnus effects have the same direction for a perfect
fluid obeying the weak energy condition (cf. Sec. VI and
Eq. (110) below), but otherwise it is not necessarily so (e.g.,
an imperfect fluid conducting heat gives rise to mass currents
nonparallel to the fluid velocity).
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strongly depends on the details of the system (as exem-
plified in Sec. III B below). This can be traced back to the
fact that Fy,, comes from the Ricci part of the curvature,

totally fixed by the energy-momentum tensor 7% of the
local sources via the Einstein equation. (29), whereas the
Weyl tensor describes the “free gravitational field,” which
does not couple to the sources via algebraic equations, only
through differential ones (the differential Bianchi identities
[25,26]), being thus determined not by the value of 7% at a
point, but by conditions elsewhere [25].

Note also that, in general, Fy;,, is not the total force in
the direction orthogonal to S and J; F' ﬁ,ﬁ,eyl may also have a
component along it

A. Post-Newtonian approximation

Up to here, we used no approximations in the description
of the gravitational forces. For most astrophysical systems,
however, no exact solutions of the Einstein field equations
are known; in these cases we use the post-Newtonian (PN)
approximation to general relativity. This expansion can be
framed in different—equivalent—ways; namely, by count-
ing powers of ¢ [27,28] or in terms of a dimensionless
parameter [17,29-32]. Here we will follow the latter, which
consists of making an expansion in terms of a small
dimensionless parameter €, such that U ~¢? and v <e,
where U is (minus) the Newtonian potential, and v is the
velocity of the bodies (notice that, for bodies in bounded
orbits, v ~ v/U). In terms of “forces,” the Newtonian force
mVU is taken to be of zeroth PN order (OPN), and each
factor € amounts to a unity increase of the PN order. Time
derivatives increase the degree of smallness of a quantity
by a factor ¢; for example, OU/0t ~ Uv ~ eU. The 1PN
expansion consists of keeping terms up to O(e*) = O(4) in
the equations of motion [30]. This amounts to considering a
metric of the form [27,31]

goo = —1 + 2w —2w? + 0(6)
gio = A;i + O(5); gij = 6;(1 +2U) + 0(4),  (35)

where A is the “gravitomagnetic vector potential” and the
scalar w consists of the sum of U plus nonlinear terms of
order €*, w= U+ O(4). For the computation of the
space part of the force (25), the components H,;, Hp;,
of the gravitomagnetic tidal tensor (26) are needed. Using
U* = U°(1,v) and the 1PN Christoffel symbols in e.g.,
Eq. (8.15) of Ref. [28],6 they read

’Its behavior however (unlike the part F Mag) 1S not what one
would expect from a gravitational analogue of the Magnus effect,
namely (a) it is not determined, nor does it depend on J and S in
the way one would expect from a Magnus effect and (b) it is not
necessarily nonzero when J x S # 0. For this reason we argue
that only Fy,, should be cast as a gravitational “Magnus effect.”

®Identifying, in the notation therein, w — U + ¥, A; - —4U,.

1 .
_ Ik k k
H; = —5¢i Apij— € U + 260U

— ;" U gm0+ 0(5), (36)

N | ) .
Ho; = e;;'U 07 + Eejlk-Ak.liU] + ¢ ;U wv/ok (= 0(4)),

(37)

where dot denotes ordinary time derivative, 0/0r.
Equation (36) is a generalization of Eq. (3.41) of
Ref. [27] for nonvacuum, and for the general case that
the observer measuring the tensor H,3 moves (i.e., v # 0).
It is useful to write H;; in terms of the gravitoelectric (G)
and gravitomagnetic (H) fields, defined by [17,27,31]

G=Vw-A+06), H=VxA+0(5). (38
The reason for these denominations is that these fields play

in gravity a role analogous to the electric and magnetic
fields.” One has then

1
ij - _5
—€;;"Gy,v" + 0(5). (39)

H H;;—eG* +2¢/"0,G;

Noting that the orthogonality relation S,U* = 0 implies
So = =S;v' = O(1), it follows, from Egs. (25) and (37),
that F/ =—HYS; —H% Sy =—H"S,; +0O(5), and so the 1PN
spin-curvature force reads

Fi— %H“"Si — (8 x G)/ = 2¢*mp, G .8,
— €MGy,0kS; + O(5). (40)
Its Magnus and Weyl components, Eqs. (32) and (33), are
F{V[ag = 4re' ; SKTY — pv/) 4+ O(5), (41)

Fiyey = —H'S; + O(5) (42)

eyl =
| P . 4
=S HUDS; =260, G mtks; + 0(5): - (43)

where for p one can take the mass/energy density as
measured either in the body’s rest frame, or in the PN
background frame (the distinction is immaterial in Eq. (41),
to the accuracy at hand). Notice that 7% — pv/ = higJ? [see
Eq. (10)] is indeed the spatial mass-energy current with

"Namely comparing the geodesic equation d?x'/dt* = Fi/m
[Fi given by Eq. (46)] with the Lorentz force, and comparing
Einstein’s field equations in e.g. Eq. (3.22) of Ref. [27] with the
Maxwell equations.
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respect to the body’s rest frame (7%, in turn, yields the
spatial mass-energy current as measuredin the PN frame).

To obtain the coordinate acceleration of a spinning test
body, we first note that, under the Mathisson-Pirani spin
condition, the relation between the particle’s 4-momentum
P and its 4-velocity is (e.g., [22]) P* = mU* + S%ay,
where m = —P*U,, is the proper mass, which is a constant,
a® = DU%/dz the covariant acceleration, and the term
S"‘ﬁa/j is the so-called “hidden momentum” [13,15,22].
In the post-Newtonian regime one can neglect8 the
hidden momentum, leading to the acceleration equation
ma®*~DP?%/dr = F*. Using DU%/dr = d*x*/dt* +
I3, UPU" and d/dr = (dt/dr)d/dt, where 1 is the coor-
dinate time, one gets, after some algebra,

d%x A .
md—; = Fl+ F +0(5), (44)
where
. dxt 0 : dxP dxr 4
Fr=m o =V | " ar (43)

is the inertial “force” already present in the geodesic
equation for a nonspinning point particle: d*x'/dt> =
F{/m (cf. e.g., Eq. (8.14) of [28]). Using, again, the
1PN Christoffel symbols in Eq. (8.15) of [28], yields

F :
L= (14 -2U0)G+vxH-30Uv—-4(G -v)v + 0(6).

(46)

Equation (44) is a general expression for the coordinate
acceleration of a spinning particle in a gravitational field,
accurate to 1PN order.

B. A cloud “slab”

1. The Magnus force on spinning objects

Before moving on to more realistic scenarios, we start by
investigating the gravitational Magnus force, in the PN
approximation, for the gravitational analogue of the electro-
magnetic system in Sec. Il A. In particular, we consider
a spinning body (for example, a BH) inside a medium
flowing in the e, direction, that we assume to be infinitely
long and wide (in the x and z directions), but of finite

¥That actually amounts to pick, among the infinite solutions
allowed by the (degenerate) Mathisson-Pirani spin condition,
the “non-helical” one (avoiding the spurious helical solutions)
[15,33]. For such solution, the acceleration comes, at leading
order, from the force F*; and so the term D(S“ﬁ aﬁ) /dz is always
of higher PN order than F* (for details, see Sec. 3.1 of the
Supplement in [15]). It is also quadratic in spin, and, as such,
arguably to be neglected at pole-dipole order [14,15,33].

® ® 7 ®
y Sy
- o= — G — f=0
s T 5
® ® H F

FIG. 3. A spinning body (e.g., a BH), with § = Se_, inside a
massive cloud flowing in the e, direction. The cloud is infinite
along x and z, and finite along the y-axis, contained within
—h/2 <y <h/2. The vector H is the gravitomagnetic field
generated by the cloud; it points in the negative (positive) z
direction for y > 0 (< 0). It has a gradient inside the cloud, whose
only non-vanishing component is H*¥ = —16zJ; due to that, a
spin-curvature force F = (1/2)H*’Se, = —87JSe,, pointing
downwards, is exerted on the body. In this case Fyy = Fyyeyi,
so the total force is twice the Magnus force: F = Fyjyg + Fyey =
2Fy,s- Considering instead a cloud finite along z, and infinite
along x and y, Fy, = —47JSe, remains the same, but Fyyy
changes to the exact opposite: Fyye,; = —F,,, causing the total
spin-curvature force to vanish: F = 0.

thickness & (y direction), contained within the planes
—h/2 <y < h/2. The system is depicted in Fig. 3.

The Einstein field equations yield a gravitational ana-
logue to the Maxwell-Ampére law (12), as we shall now
see. For the metric (35), the Ricci tensor component Ry; =
(V x H),;/2 = 2G + O(5), where H is the gravitomagnetic
field as defined by Eq. (38). On the other hand, from the
Einstein equations (29), we have that Ry; = 8zT,; + O(5).
Equating the two expressions, and taking the special case of
stationary setups, we have (cf. e.g., Eq. (2.6d) of Ref. [31])

VxH = -16z], (47)

where we noted that 7% = J' + O(5), and J* = —T%uy is
the mass/energy current as measured by the reference
observers u® = u’5¢ [at rest in the coordinate system of
(35)]. This equation resembles very closely Eq. (12). For a
system analogous to that in Fig. 2—a cloud of matter
passing through a spinning body—an entirely analogous
reasoning to that leading to Eq. (14) applies here to obtain
the gravitomagnetic field

H = H*(y)e, = —16nylJe,. (48)

This solution is formally similar to the magnetic field in
Eq. (14), apart from the different factor and sign. For a
spinning body at rest in a stationary gravitational field, the
spin-curvature force, Eq. (40), reduces to

N N 1
Fi :EH./JSJ.@F:§V(H‘S), (49)
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(cf. e.g., Eq. (4) of [34]), similar to the dipole force (15).
Hence, due to the gradient of H, whose only nonvanishing
component H'/ is H*Y = —16xJ, a force F is exerted on a
spinning body at rest inside the cloud, given by

F = —8zJS.e,. (50)

It is thus along the y direction, pointing downwards, in
the same direction of an ordinary Magnus effect (and
opposite to the electromagnetic analogue). This force
consists of the sum of the Magnus force plus the Weyl
force: F = Fypye + Fyeyis

Fyg = 4nJ xS = 4nJ(Sye. — S.e,), (51)
Fwey] = _Hijﬂjei = _4”J(Szey + Syez). (52)

Here, H = H(/) = —H("J) /2, and its non-vanishing com-
ponents are H¥ = H** = 4xJ. Again, Egs. (50)—(52) yield
the forces for a fixed orientation of the slab (orthogonal to
the y-axis), and an arbitrary S. Of course, this is physically
equivalent to considering instead a body with fixed spin
direction, and varying the orientation of the slab; choosing
S = Se_, one can make formally similar statements to those
in Sec. Il A, by replacing Fgy,, by Fyyy. Namely, the two
notable cases arise:

1. Cloud finite along the y-axis, infinite along x and z
(Fig. 3). The Magnus force Fy,, equals the Weyl
force: Fypg = Fyey = —47JSe,, so there is a total
force downwards which is twice the Magnus force:
F = 2F\;,, = —8nJSe,.

2. Cloud finite along z, infinite along x and y (i.e., slab
orthogonal to S). The Magnus force Fy,, remains
the same as in case 1; the Weyl force is now exactly
opposite to the Magnus force: Fy,, = 4nJSe, =
—F\j,g, s0 the total spin-curvature force vanishes:
F:FMag +FWeyl = 0.

In case 2 we noted that, for a slab orthogonal to the z axis,
H = 167xJze,, and so the magnetic part of the Weyl tensor
HY changes sign comparing to the setup in Fig. 3:
‘H¥ = H** = —4xJ. For other orientations of the slab/S,
the Weyl and Magnus forces are not parallel. When $
coincides with an eigenvector of the magnetic part of the
Weyl tensor H", Fyy o S, being therefore orthogonal to
F\p,,- For the cloud in Fig. 3 (orthogonal to the y-axis), this
is the case for S = S(e, +e.)/vV2 and S = S(e, —e,)/V2
(the third eigenvector of H/, § = Se,, has zero eigenvalue
and leads to Fyj,y = Fyey = 0). Cases 1-2 sharply illus-
trate the contrast between the two parts of the spin
curvature force: on the one hand the Magnus force
Fyp,g, which depends only on S and on the local mass-
density current J, and is therefore the same regardless of
the boundary; and, on the other hand, the Weyl force, which
is determined by the details of the system, namely the
direction along which this cloud model has a finite width 4.

Similarly to the electromagnetic case, neither H at any
point inside the cloud (or its gradient H'), nor Fyyy,
depend on the precise value of /; the role of its finiteness
boils down to fixing the direction of H. Equation (47),
together with the problem’s symmetries, then fully fix H
(analogously to the situation for B in Sec. Il A). One
can then say that, in this example, the magnetic part of the
Weyl tensor, H;; = H;; (and therefore Fy.y), is fixed by
the boundary, whereas antisymmetric part of the gravito-
magnetic tidal tensor, H;;, depends only on the local mass
current density J, cf. Eq. (30).

In general one is interested in the total force F = F,, +
Fyyey (for it is what determines the body’s motion); the
dependence of Fyyy on the details/boundary conditions
of the system shown by the results above hints at the
importance of appropriately modeling the astrophysical
systems of interest.

2. The force exerted by the body on the cloud

Previous approaches in the literature attempted to com-
pute the gravitational Magnus force by inferring it from
its reciprocal—the force exerted by the body on the cloud
[7,8]. Unfortunately, these attempts were not based on
concrete computations of such force, but on estimates
which are either not complete (and thereby misleading) or
rigorous, and turn out in fact to yield incorrect conclusions
(see Sec. III B 3 and Appendix B 2 a below for details). In
this section we shall rigorously compute, in the framework
of the PN approximation, the “force” exerted by the
spinning body on the cloud for the setups considered above.

In the first PN approximation, the geodesic equation for
a point particle of coordinate velocity v = dx/dt can be
written as dv/dt = Fy/m, with F; given by Eq. (46). This
equation exhibits formal similarities with the Lorentz force
law; namely the gravitomagnetic “force” mv x H, analo-
gous to the magnetic force gv x B. The total gravitomag-
netic force exerted by the spinning body on the cloud is the
sum of the force exerted in each of its individual particles,
given by the integral

_ 3
Fioay cloud = / J X Hpoqyd”x
cloud

:J X/ Hbodyd3x +J X/ Hbodyd3x
r<R r>R
(53)

where Hy,qy 18 the gravitomagnetic field generated by the
spinning body. Equation (47), formally similar to (12) up to
a factor —4, implies that

*This can be shown by steps analogous to those in pp. 187-188
of Ref. [19], replacing therein the magnetic vector potential A by
the gravitomagnetic vector potential Apogy (x) = —4 [ Jpoay(x')/
|x —x'|dx’.
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16
Hbodyd3x ES ——ﬂ:S (54)
r<R 3

and that the exterior gravitomagnetic field is (cf. e.g.,
[5.35])

S S-rr
Hbody|r>R:2'F_6( rs) s (55)

analogous, up to a factor —2, to (20) and (21), respectively.
Therefore, for § = Se_, and a slab finite in the y direction
(contained within —h/2 < y < h/2), as depicted in Fig. 3,
an integration analogous to (22) leads to

Fbody,cloud = 877"Jsey =-F= _Fcloud,bodyv

i.e., minus the force exerted by the slab on the body,
Eq. (50), satisfying an action-reaction law. For a slab finite
in the z direction (contained within —h/2 <z < h/2),
like in the electromagnetic analogue the force vanishes:
Fogy cloua = 0, matching its reciprocal.

Several remarks must however be made on this result.
First we note that, unlike the spin-curvature force F =
Fouapody €xerted by the cloud on the body (which is a
physical, covariant force), the gravitomagnetic “force”
my x H, that (when summed over all particles of the
cloud) leads to Fyogycioud> 1S an inertial force, ie., a
fictitious force (in fact H is but twice the vorticity of the
reference observers, see e.g., [17,35]). Moreover, an
integration in the likes of Eq. (53) is not possible in a
strong field region, for the sum of vectors at different points
is not well defined. Such integrations make sense only in
the context of a PN approximation, which requires a
Newtonian potential such that U « 1 everywhere within
the region of integration. This requires a body with a radius
such that R > m (and spinning slowly), so that the field is
weak even in its interior regions, which precludes in
particular the case of BHs or compact bodies. (It does
not even make sense to talk about an overall force on the
cloud in these cases). In addition to that, the interior integral
fr «wJ X Hbodyd3x obviously only makes sense if the cloud
is made of dark matter or some other exotic matter that is
able to permeate the body; otherwise J =0 for r <R,
and so such integral would be zero."” Finally, it should
be noted that, although for these stationary setups the
action F jouqpody €quals minus the reaction Fyogy cioud> 1N
general dynamics the gravitomagnetic interactions, just like

1Still that will not lead to a mismatch between action and
reaction [comparing to F = Fjouqpoay @8 given by Eq. (50)],
because in that case the mass current around the body would not
be uniform and along x [that would violate the PN continuity
equation dp/0t = =V - J + O(5)], but instead one would have a
continuous flow around the body, as described by fluid dynamics,
accordingly changing fr> rd X Hbodyd3x.

magnetism, do not obey the action-reaction law (contrary to
the belief in some literature). This is due to the momentum
exchange between the matter and the gravitational field.
In particular it is so, at leading order, for the spin-orbit
interaction of the spinning body with individual particles of
the cloud, as discussed in detail in Appendix B 2 a.

3. Infinite clouds

In the framework of the post-Newtonian approximation,
the situation with infinite clouds is analogous to that in
electromagnetism discussed in Sec. I A. Taking the limit
h — oo in the cases of a slab contained within —4/2 <
y < h/2 (case 1 above), or —h/2 < z < h/2 (case 2), are
two different ways of constructing an infinite cloud, each of
them leading to a different gravitomagnetic field H inside, a
different Weyl force Fyy,; (only the Magnus force Fyy,, is
the same in both cases), and thus to a different total spin-
curvature force F exerted on a spinning body. [Again,
notice that none of these quantities depends on the precise
value of the slab’s width &, but only in the direction along
which the slab was initially taken to be finite, cf. Egs. (48),
(50)—~(52)]. The same applies to the reciprocal force,
Foay clouds €xerted by the body on the cloud. This manifests
that, just like in the electromagnetic case, these are not well
defined quantities for an infinite (in all directions) cloud.
If one had started with a cloud about which all one is told
is that it is infinite in all directions, the questions of which
is F=Fouapody and Fpogy coua Would simply have no
answer. This is down to the same fundamental mathemati-
cal principles at stake in the electromagnetic problem: in
the case of Fjouq body- to the impossibility of setting up the
boundary conditions required to solve Eq. (47); and, in the
case of Fiyqy ciouds t0 the implications of Fubini’s theorem,
discussed in Appendix A. The situation is moreover
analogous to the “paradox” concerning the Newtonian
gravitational field of an infinite homogeneous matter
distribution, which likewise is not well defined, and is a
well known difficulty in Newtonian cosmology (see e.g.,
[25,36-40] and references therein).

This means that the problem of the force exerted on a
spinning body by an infinite homogeneous cloud (or its
reciprocal) cannot be solved in the context of a PN
approximation, and in particular in the framework of an
analogy with electromagnetism. Recently, an attempt to
find F =Fjouqpoay (cast therein as “gravitomagnetic
dynamical friction”) for such a cloud has been presented
[8]; a result was inferred from an estimate of the reciprocal
force Fyogy cloua- However, not only the correct answer is
actually that the force is not well defined for the problem
and framework therein, but also the estimate obtained has a
direction opposite to the Magnus effect, which is at odds
with the result from the exact relativistic theory (where the
problem is well posed, see Sec. VI below), and even with
the result obtained from a PN computation for the setting at
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stake: therein a stellar cloud with spherical boundary is
considered, with arbitrarily large radius R. The limit
R — oo yields yet another way of constructing an infinite
cloud. The force exerted by the body on such cloud,
Fiodycoud =J X [, g Hpoayd®x, is obtained from (54),
and reads, regardless of the value of R, Fyogyciouds =
—167J x §/3. Hence, a naive'' application of an action-
reaction principle leads to a force on the body parallel to
J x 8, in the same direction of the Magnus effect (But,
again, such result is irrelevant, for the problem is not well
posed in this framework).

On the other hand, general relativity (in its exact form),
unlike electromagnetism, or Newtonian and PN theory,
has no problem with an infinite universe filled everywhere
with a fluid of constant density; in fact this is precisely the
case of the FLRW solution, which is the standard cosmo-
logical model, and where the spin-curvature force exerted
on a spinning body is well defined, as we shall see in
Sec. VI below.

IV. MAGNUS EFFECT IN DARK
MATTER HALOS

Consider a dark matter halo with a spherically sym-
metric density profile p(r), with arbitrary radial depend-
ence. Here (by contrast with the example in Sec. III B) we
will not base our analysis in the test particle’s center of
mass frame, but instead consider a particle moving in the
static background with velocity v, see Fig. 4. To compute
the spin-curvature force acting on it, we start by computing
the gravitoelectric field G and its derivatives inside the
halo. To lowest order (which is the accuracy needed for
the 1PN spin-curvature force), G amounts to the Newtonian
field

M
G=- <;’>r = M(r)G, (56)
r
where G = —r/r? is the Newtonian field of a point mass per
unit mass and
M(r) = 4z / " Pp(r)dr (57)
0

is the mass enclosed inside a sphere of radius r. It follows
that

r;r

! (58)

G,-,j:M(r)gi’j—4ﬂ'p 5 -

i
r

"In rigor an action-reaction law cannot be employed here, for
such setup is not stationary (see in this respect Appendix B). The
actual force exerted on a spinning body with velocity v at any
point inside the sphere is given by Eq. (64). It thus differs by a
factor 4/3 from —Fyqy cioud-

halo

Dark matter ,/
A

\

\

1

\

=
e

FIG. 4. Spinning bodies moving in a “pseudo-isothermal” DM
halo. For a body in quasicircular orbits, with spin lying in the
orbital plane, the Magnus (Fyg,,) and Weyl (Fy.,) forces are
parallel. The total force is of the form F = A(r)S x v, pointing
outwards the orbital plane on one half of the orbit, and inwards
the other half; this “torques” the orbit, leading to a secular orbital
precession £2. For a body moving radially towards the center of
the halo, Fy.y = 0, and so the total force exerted on it reduces
to the Magnus force: F = Fy, = 47pS X v;. Generically Fyyey
and Fyj,, have different directions. If the halo’s density was
uniform, Fy.y = 0 = F = Fy,, for all particles.

Since the source is static, H =0 = G; therefore, by
Eg. (39), the gravitomagnetic tidal tensor H;; as measured
by a body/observer of velocity v reduces here to
Hi; = 2¢;*"v,G;,, — €;;" Gy ,v*. Splitting into symmetric
and antisymmetric parts, one gets, after some algebra,

Hij=Hijy = ZWO XT)T})s (59)
Hyij = %eij,elkmﬂ-ﬂkm = 4npe;;v', (60)
where
Ay =240 (61)
The spin-curvature force on the body, F' = —H/'S;, reads

then, cf. Egs. (41) and (42) (notice that, for a static source,
T% = 0)

F= FWeyl + FMag7 (62)

Fiyey = —HS;,  Fyy = 41pSxv,  (63)

with H;; given by (59).

A. Spherical, uniform dark matter halo

Let us start by considering a spherical DM halo of
constant density p = p,, which, although unrealistic, is
useful as a toy model. It follows from Eqgs. (57) and (61)
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that M(r) = 4zpyr’/3 and A(r) = 4np,, therefore, by
Egs. (59) and (63), the magnetic part of the Weyl tensor,
and the Weyl force, vanish for all v: H;; =H;
0 = Fyey = 0. The gravitomagnetic tidal tensor reduces
to its antisymmetric part, H;; = Hj;;;, and the total force
reduces to the Magnus force, cf. Eq. (62),

F = FMag = 47[p0S X V. (64)

This equation tells us that any spinning body moving inside
such halo suffers a Magnus force. It is (to dipole order) the
only physical force acting on the body, deviating it from
geodesic motion. It can also be seen from Egs. (44)—(46)
that Fyp,e/m is, to leading PN order, the total coordinate
acceleration in the direction orthogonal to v.

B. Realistic halos

The simplistic model above can be improved to include
more realistic density profiles.

Power law profiles (p < r~7)—In some literature (e.g.,
[41,42]) models of the form p(r) = Kr™" are proposed,
where K is a r independent factor. The condition that the
mass (57) inside a sphere of radius r be finite requires
y < 3; in this case we have

=Y
Krt 0 P
3—y 3—y

A(r) =12z (65)

For y = 2, this yields the isothermal profile p(r) = K/r?,
leading to A(r) = 12zp(r), and to a constant orbital
velocity v = V/Gr = 2+/Knx. This is consistent with the
observed flat rotation curves of some galaxies, and is
known to accurately describe at least an intermediate region
of the Milky Way DM halo [41]. Values 1 <y < 1.5 have
also been suggested [42,43], based on numerical simula-
tions, for the inner regions of spiral galaxies like the
Milky Way.

Pseudo-isothermal density profile—Consider a density
profile p(r) given by [43]

p(r) = ; (66)

where r, is the core radius. For r > r., the velocity of the
circular orbits becomes nearly constant, whilst at the same
time not diverging at » = 0 (as is the case for the isothermal
profile, p(r) o r~2). From Egs. (57), (61), and (66), we
have

2
A(r) = 12zpy r—; [1 — " arctan <L)} . (67)
r r re
Notice that A(r) > 0 for all r.

Substitution of the expressions for p(r) and A(r) in (59)
and (60), (63), yield, for each model, the gravitomagnetic
tidal tensor H;; as measured by the body moving with
velocity v, and the spin-curvature force exerted on it.
Comparing with the situation for the uniform halo high-
lights the contrast between the two components of the spin-
curvature force (and the dependence of the Weyl force on
the details of the system): Fyy,, remains formally the same
(for it depends only on the local density p and on v),
whereas Fyy.,; is now generically nonzero. It is different for
each model, and has generically a different direction from
Fpog- The Weyl force vanishes remarkably when (at some
instant) v||r. Hence, if one takes a particle with initial radial
velocity, initially one has, exactly, F = F Mag> and after-
wards the spin-curvature force will consist on Fyy,, plus a
smaller correction Fyy, due to the nonradial component
of the velocity that the particle gains due to the force’s
own action.

C. Objects on quasicircular orbits

We shall now consider the effect of the spin-curvature
force (Fypag + Fwey) exerted on test bodies on (quasi)
circular orbits within the DM halo. The evolution equation
for the spin vector of a spinning body reads, in an
orthonormal system of axes tied to the PN background
frame (i.e., to the basis vectors of the coordinate system in
(35); this is a frame anchored to the “distant stars™) [5,29,35]

ﬁ—ﬂ x S;

1
it QS:——vxa+%va, (68)

2

where the first term is the Thomas precession and the second
the geodetic (or de Sitter) precession. Since the only force
present is the spin-curvature force, then @ = F/m, and the
Thomas precession is negligible to first PN order. So, in what
follows, Q ~ 3v x G/2. Without loss of generality, let us
assume the orbit to lie in the xy-plane. Two notable cases
to consider are the following.

1. Spin orthogonal to the orbital plane (S =S%,)

In this case Q||S, and so dS/dt =0, i.e., the compo-
nents of the spin vector are constant along the orbit (so it
remains along e,). The Magnus and Weyl forces are

S-L S-L
( )er’ FWeyl:FMag+A(r)< )
mr mr

FMag = —47'[/) €,

(69)

where L = mr X v is (to lowest order) the orbital angular
momentum (see e.g., [5]). All the forces are radial. For
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A(r) < 4zp, Fyey points in the same direction of Fy,,,
which resembles case 1 of the slab in Sec. III B. For
A(r) > 4zp, which is the case in all the models considered
in Sec. IV B, Fyyy points in the direction opposite to Fypyg,
resembling case 2 of the slab. As for the total force F, it
points in the same direction of Fyy,, for A(r) < 87zp, which,
for the power law profiles p « 7 in Sec. IV B, is the case
for y < 1.5; it vanishes when A(r) = 8zp; and it points in
opposite direction to Fyy,, when A(r) > 8zp, which is the
case for y > 1.5. The pseudo-isothermal profile (66)
realizes all the three cases, having an interior region where
F||Fypyg, Whereas F|| — Fyy,, for large r. The orbital effect
of F amounts to a change in the effective gravitational
attraction.

2. Spin parallel to the orbital plane (S*=0)

In this case Eq. (68) tells us that S precesses, but remains
always in the plane; since £2, is constant, this equation
yields (taking, initially, S = Se,)

S = Scos(Qt)e, + Ssin(Q1)e,,. (70)

To the accuracy needed for Eq. (63), v~ v(—sin ¢e,+
cos gey), with ¢ = wt, where w is the orbital angular
velocity. Therefore

S xv=wScos(¢p — Qt)e, = vScos[(w — Q)tle,. (71)
The Magnus, Weyl, and total forces then read

Frag = 47pSv cos|(o — Q)tle.,
Fyey = [A(r) = 4zp]Sv cos[(w — Q)le..,
F = A(r)S xv = A(r)Svcos|[(w — Q)tle,. (72)

All these forces are thus along the direction orthogonal to
the orbital plane. The situation is inverted comparing to the
case in Sec. IVC1 above: Fy,, points in the same
direction of Fyy,, for A(r) > 4zp, and in opposite direction
for A(r) < 4zp. For all the models considered in Sec. IV B
(the pseudo-isothermal, and those of the form p « r~7, with
0 <y < 3), we have A(r) > 4zp, cf. Egs. (65) and (67); so
both Fy,; and the total force F point in the same direction
as Fyy, (the latter condition requiring only A(r) > 0),
see Fig. 4.

The force F causes the spinning body to oscillate (in
the e, direction) along the orbit, perturbing the circular
motion. The coordinate acceleration orthogonal to the
orbital plane is, from Egs. (44)-(46), 7 = F*/m + G*.
G* is the component of the gravitational field along z,
that is acquired when the body oscillates out of the plane.
Making a first order Taylor expansion about z = 0, we have
G*~G,,|,_oz = G, z. The general solution, for G, <0
and G, . # —Aa?, is

z(t) = ¢y cos(y/—G_ ;1) + ¢y 8in(y/—G_ 1) + Zcos(Awt),
(73)

where

_ S Ay S Ao
T mG,.+A0® mQ(2w-Q)’

(74)

c, and ¢, are arbitrary integration constants, Aw = @ — €
and r is the radius of the fiducial circular geodesic. In
the second equality in (74) we noted, from Eq. (58), that
G.. = —G/r = —*. Noticing, moreover, from Eqs. (56)
and (61), that

(S}

A(r) =302 =32 (75)

2

and Q, = 3w’r?/2, we can re-write (74) as a function of the
orbital velocity (v = wr) only,

(76)

The first two terms of Eq. (73) are independent of the spin-
curvature force (if F =0, they simply describe the z
oscillations of a circular orbit lying off the xy-plane), so
¢, and ¢, essentially set up the initial inclination of the
orbit. Two natural choices of these constants stand out
(analogous to those first found in Ref. [44], for orbits
around BHs).

Constant amplitude regime: ¢y = ¢, = 0. In this case
z(t) = Zcos(Awt), yielding a “bobbing” motion of fre-
quency Aw and constant amplitude Z. They may be seen as
an orbit which is inclined relative to the fiducial geodesic,
and whose plane precesses with the frequency of the
geodetic precession (€2).

“Beating” regime: one starts with the same initial data
of a circular orbit in the xy-plane: z(0) =z(0) =0,
implying ¢, = 0, ¢; = —Z. Using the trigonometric iden-
tity cos(b) — cos(a) = 2 sin[*F2] sin[452], Eq. (73) becomes

2(f) = 2Zsin [2“’ > 2, t] sin [% } (1)

This corresponds to a rapid oscillatory motion of frequency
(2w — ) /2 (close to the orbital frequency w), modulated
by a sinusoid of frequency €2,/2 (half the frequency of the
spin precession), and of peak amplitude 2Z. In spite of
the simplifying approximations made in its derivation,
Eq. (77) shows very good agreement with the numerical
results plotted in the right panel of Fig. 5. As shown by
Eqgs. (74)-(76), Z is proportional to the ratio S/m, known as
the test body’s “Mgller radius” [45]; it is the minimum size
an extended body can have in order to have finite spin
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First 5 cycles

z—t plot

FIG. 5. Numerical 1PN results for quasicircular orbits in a pseudo-isothermal DM halo, with p, = 108 Mg pc~3, r. = 0.02 kpc
(typical of satellite galaxies [46]), and r = 8r,, case in which v = 0.15¢. The test body has the Sun’s mass m = M, and an initial spin
vector S|, = Se,, with S = 0.5m?. Left panel: three-dimensional plot of the orbit, showing the orbital precession & S in Eq. (80) (i.e.,
about e, initially). Right panel: plot of z(7)/2Z, for t € [0, 27/€]; the numerical result agrees well with the (simplified) analytical result
(77). It shows clearly the modulation by the spin precession €: the orbital precession € causes z oscillations of initially increasing
amplitude, reaching its peak z = 2Z at t = x/Q,, corresponding to the maximum inclination of the orbital plane. At that point the
direction of S (thus of €) becomes inverted relative to the initial one, so the orbital inclination (and the oscillation amplitude) starts

decreasing.

without violating the dominant energy condition [22,45].
Since v < 1, we see from Eq. (76) that Z is always larger
than such radius.

The force (72) originates also a precession of the orbital
plane. Recalling that (to lowest order) L = mr X v,

dL d

E:mrxd—l;:er: —A(r)rx (vxS8), (78)
where we substituted dv/dt = d?x /dt* from Eqgs. (44)—(46)
(noting that G x r = 0), and A(r) is given by Eq. (61).
Using the vector identity rx (v xS) = (rxv) xS+
(S xr) xv, we have

%:A(r) %SxL—(er)xv. (79)
The first term is fixed along the orbit, and is already in a
precession form. The second term must be averaged along
the orbit, in order to extract the secular effect. First we note,
from (68), that Q; = 3vG/2 ~ we?, so typically Q, < o,
and, therefore, along one orbit, the spin vector is nearly
constant. So, for averaging along an orbit, we may ap-
proximate S~ Se,.. It follows that ((Sxr)xv)=
—Srv(sin’p)e, =S x L/(2m), leading to the secular
orbital precession

<%> =QxL; 9:%3. (80)

So we are led to the interesting result that the orbit
precesses about the direction of the spin vector S. This

can be simply understood from Fig. 4: since S is nearly
constant along one orbit, the force (72) points in the
positive e, direction for nearly half of the orbit, and in
the opposite direction in the other half; this “torques” the
orbit, causing it to precess. The effect is clear in the
numerical results in the left panel of Fig. 5. This precession
is, of course, not independent from the oscillations studied
above; in fact, it is the origin of the beating regime of
Eq. (77), which may be seen as follows. Multiplying the
angular velocity Q of rotation of the orbital plane by r,
yields the “rotational velocity” of the orbit; this precisely
matches [under the same assumption @ >> €, that leads to
Eq. (80)] the initial slope of the function 2Z sin(Q,z/2) that
modulates (77):

QZ~Qr. (81)

So, the increase in the amplitude of the oscillations in Fig. 5
(these rapid oscillations are the variation of z along each
orbit, notice) is the reflex of the orbital precession €2. Now,
such orbital rotation does not go on forever in the same
sense, because S itself undergoes the precession in Eq. (68),
which means that after a time 1 = 7/, the direction of the
spin vector is reversed. Likewise Q and (dL/dt) are
reversed (before one full revolution about S is completed
if Q < Q, as is usually the case), and this is why the
amplitude in Eq. (77) is modulated by the geodetic spin
precession €.

In Fig. 5 numerical results are plotted for a test body with
the Sun’s mass m = Mg and S = 0.5m2, in a pseudo-
isothermal DM halo typical of a satellite galaxy (corre-
sponding to much larger DM densities than those typical of
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the Milky Way, which makes them more suitable to
illustrate the effects described above). Such results are
obtained by numerically solving the system of equations
formed by md’x/dt* = mG + F + Fp, together with
Eq. (68), with F as given by Egs. (62) and (63), (59),
(67), and G given by Egs. (56), (57), and (67). The term Fp,
is the dynamical friction force

2X 2\ v v
Fp = —40mpm? [ erf(X) = ==X | — X = ,
b i ( ( ) \/7_7" > Ucirc

(82)

which is here included. It follows from Eq. (8.6) of [41],
or Eq. (3) of [47], by taking 1 = 10 and V20 = vg.=
velocity of the circular orbit at r, cf. [41]. (The impact of
Fp, in the case of the motion in Fig. 5, turns out to be
unnoticeable.)

3. Particular examples in the Milky Way DM Halo

Pseudo-isothermal profile—The DM density at the solar
system position is about 0.01 My/pc® = 107! kgm™>
[48,49]; the Sun’s distance from the center of
the Milky Way is ro = 8 kpc. The core radius r. of the
Milky Way DM halo is about 1 kpc. Assuming the pseudo-
isothermal density profile in Eq. (66), this means that
po = 0.7M pc=3. The velocity v of the quasicircular orbits
is obtained from Egs. (67) and (75). For a body orbiting at
r = rg, the peak amplitude in Egs. (76) and (77) then reads

27 =35x 1035 (83)
m

The time to reach it (“beating” half period) is however very
long: e & 7/Q = 10" yr (10*x age of the universe);
this corresponds to @/ (2€,) = 10° laps around the center.
Noting that the initial of slope of the function
2Zsin(Q,t/2) that modulates Eq. (77) is Z€, the maxi-
mum amplitude actually reached within the age of the
universe (=t,) is

Q.1
2Z ey =27 sin{ 20} ~ ZQ 1 (84)
31]210 S
~Qrty = — 85
o 2r m (85)

where in the second approximate equality we used (81),
and in the last equality we used (80), (75). Hence, for the
setting above,

S
2Zsaqay = 14 x 1072 = 025 . (86)

Both Z and the angular velocity Q of orbital precession,
Eq. (80), are proportional to the body’s Mgller radius S/m.

For a Sun-like star (m = Mg, S~0.2m*> [50], S/m =
3 x 10> m), the effect is very small: the secular orbital
precession (80) inclines the orbit by about 1.6 m per lap,
with peak amplitude 2Z = 10° m (about 1400 times
smaller that the Sun’s diameter), and 2Z,q,, ~ 10? m.
Larger or more massive bodies will typically have a larger
Mgller radius, thereby yielding more interesting numbers;
but, on the other hand, for large m, the dynamical friction
force Fp, Eq. (82) (which is proportional to m?), becomes
also important. From the known objects moving in the
Milky Way’s DM halo, those with largest Mgller radius are
(due to their size and flattened shape) Milky Way’s satellite
galaxies. Consider first, for a comparison (still at’? r ~ o),
a hypothetical satellite galaxy with diameter ~2.5 kpc, and
assume it to be a “scale reduced” version of the Milky Way
(diameter 55 kpc, mass myy = 1012 M, angular momen-
tum Syw = 2.6 x 10°! m?), rotating with the same veloc-
ity. Since S & mu,R, this yields Sg/Syw ~ (2.5/55)%,
Mg/ Myw ~ (2.5/55)3, leading to a Mgller radius
Seat/ Mg ~ 0.02 pc. In this case the orbit inclines at an
initial rate of 4 x 10'> m per orbit (2 x 10* m per year),
and the peak amplitude, as predicted by Eqs. (74)—(77) and
(83) would now be 2Z ~ 60 pc. Such large peak value
however is never reached, due to the damping action of Fpy;
the numerical results shown in Fig. 6 show that a peak of
about 0.001 pc (i.e., about 10 times the radius of the solar
system), is reached within about 2.2 Gyr (a fifth of the age
of the universe), after which the orbit and its oscillations
pronouncedly decay. As a concrete example in the
Milky Way DM Halo, we take the Large Magellanic
Cloud (the largest satellite galaxy), located at r = 48 kpc
from the MW center. It has mass 71 yc & 1010 M o diameter
~4.3 kpc, and rotational velocity v, & 9 x 10* ms™! [51],
from which we estimate a Mgller radius Syyc/mimc~
0.3 pc. We find a gradual inclination of the orbit of about
~4 x 107 masyr~! (or 3 x 10* myr™!); this is far beyond
the current observational accuracy, since the uncertainty in
the LMC’s proper motion is presently much larger
(~1072 masyr~' [51]). The peak amplitude predicted by
Eqgs. (74)—(77) and (83) is 2Z =~ 1 kpc (which, again, is not
reached due to dynamical friction). Numerical simulations
(similar to those in Fig. 6) show that an effective peak of
about 1073 pc is reached within 2.5 Gyr.

Power law profiles.—For the models of the form p(r) =
Kr77 in Sec. IV B, substituting (65) in (75), (80), it follows
from Eqgs. (76) and (85) that

28 S [3-y]/2
2 —=—|—5— 7/2-1, 87
mv m[K;z] : (87)

Pt is nearly the case for the Canis Major Dwarf, and nearly
twice that value for the Sagittarius dwarf.
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FIG. 6. Orbits of a satellite galaxy in the Milky way DM halo (numerical 1PN results). Due to their disk-like shape, galaxies have a
large Mgller radius S/m, making them especially suitable test bodies for the effects under study. The satellite is assumed to be a scale
reduced version of the Milky Way, of diameter 2.5 kpc, and orbiting at a distance 8 kpc (= Sun’s distance) from the Halo’s center. The
peak amplitude predicted by Eqs. (74)—(77) is 2Z = 60 pc; but it is never reached, due to the very strong dynamical friction. Still a peak
of about 1073 pc is reached after about 2.2 Gyr (~1/5 the age of the universe).

S 67T[0K
ZZtoday ~ Qrto = —

I—y
r
m3—y

. (88)

where K is determined from the value of p(rg) which we
assume, for all models, p(ry) =~ 0.01Mg pc™ [42,48,49].
Fory = 1, Z,4ay = 0.08S/m is approximately constant, and
Z decreases with r as Z « r~'/2; for bodies orbiting at
r=rg, one has Z~23 x 10°S/m. That is, the peak/
present time amplitudes are, respectively (at r = rg),
somewhat larger/smaller than those for the pseudo-
isothermal profile, Eqs. (83) and (86). For 1 <y <2, it
follows from Eq. (83) that both Z and Z,,4,, decrease with
r. The isothermal case, y = 2, yields a Z = 1.6 x 103S/m
approximately independent of r, and Zg,y o At
r=Tro» Ziogay = 0.155/m; thus Z is slightly smaller and
Zioday Slightly larger that in the pseudo-isothermal profile.
However, contrary to the pseudo-isothermal case (where
Zioday Teaches a maximum ~0.26S/m at r= 1.5 kpc),
Zioday Increases steeply as one approaches the halo center,
approaching the peak value Z [cf. Eq. (85)].

Inside the galactic disk.—The above are results taking into
account DM only; so they apply to orbits outside the
galactic disk. Within the disk, the density of baryonic
matter, in the vicinity of the Sun, is about py, ~ 0.1Mg pc~>
[41,48], i.e., one order of magnitude larger than that of DM.
This leads to an enlarged effect. The field produced by the
disk is a complicated problem (see Sec. V below). The
analysis of a simple model in Sec. V B reveals however
that, just for an order of magnitude estimate, the force
caused by the disk can be taken as the corresponding
Magnus force Fyp,, and its contribution to the orbital

precession as Q, ~ Fyy,,/(vm) ~ 47p,S/m. Assuming, for
DM, the pseudo-isothermal profile (66), leads t0 2Z; gy~
Qrty ~2S/m, cf. Eq. (85) [here Q = Q, + Qppp, with Qpy
given by Egs. (67) and (80)].

More importantly, the galactic disk might reveal a
signature of the orbital precession (80): BHs or stars with
spin axes nearly parallel to the galactic plane are, on
average, more distant from the plane than other bodies, by a
distance of order ~4Zq,, /7. This effect might be
observable. The most precise map of the sky is expected
to be given by the Gaia mission [52], able to measure angles
of about 2 x 10~!! rads. Therefore, on test bodies whose
distance d from Gaia (i.e., from the Earth) is such that
d < 4Zoday/ (72 x 107'1), the effect would be within the
angular resolution. To be concrete, consider a giant star like
Antares; it has radius R, ~ 10°Rg, mass my, ~ 12 M,
surface rotational velocity v,,, = 7 x 107>. For simplicity,
assume it to be uniform and rotate rigidly, leading to a
Mgller radius S, /m,, = 2 X 107 m (five orders of mag-
nitude larger than that of the Sun). Assuming the pseudo-
isothermal profile, this yields a present time amplitude
2Zoday ~ 28/m = 4 x 107 m. Giants of this type, with spin
axes nearly parallel to the galactic plane, should on average
be farther from the plane than others, by about ~3 x 10’ m
(~1073x Antares’s diameter). Considering the density
value at r = rg, their maximum allowed distance from
the Earth (so that the effect can be detected) is then
dax * 0.04 kpc, which is not far from the order of

PNote that the time scale for formation and flattening of the
galactic disk is much shorter than that of the orbital precession
Qr/Q).
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magnitude of Antares’ actual distance (d = 0.17 kpc), and
of other large stars. Thus, albeit small, the effect on such
stars is close to the angular resolution. The matter density
(baryonic and DM) increases however as one approaches
the galaxy center; for stars along the line connecting the
solar system to the center, the angle that the effect subtends
on the GAIA spacecraft is 0 & Zyqay/d, With d = rg — 7.
For DM models of the type ppy o r™7 with y > 1, the angle
6 increases with decreasing r (after initially decreasing, and
bouncing), cf. Eq. (88). Considering the isothermal profile
(y = 2), and taking into account DM only, 6 enters GAIA’s
resolution for r <4 pc. The Magnus signature on the
galactic disk might thus serve as a test for such models.
Independently of such DM models, the baryonic matter is
known to reach high densities in the galaxy’s inner regions;
using p,(r) as given in Eq. (2) of [53], we have that, for
r <1 pc, the baryonic matter alone is sufficient for 6 to
enter GAIA’s resolution.

V. MAGNUS EFFECT IN ACCRETION DISKS

The gravitational Magnus effect due to DM is limited
by its typically very low density. Accretion disks around
BHs or stars provide mediums with relatively much higher
densities, where the effect can be more significant,
possibly within the reach of near future observational
accuracy.

A. Orders of magnitude for a realistic density profile

The standard model for relativistic thin disks is the
Novikov-Thorne model [54], which generalizes the
Shakura-Sunyaev [55] model to include relativistic correc-
tions. According to such model the disk is divided into
different regions, the outer and more extensive of them
being well approximated by the Newtonian counterpart.
The density of the later reads (in the equatorial plane) [55]

11/20 M3 615
p=Trs e [l—ﬂ DX 10°kgm™,  (89)
7 Mgy r

where 7 = r/Mgy, Mgy is the mass of the central BH,
Fin = rin/Mgy, a the “viscosity parameter” and fgyq
Eddington’s ratio for mass accretion (e.g., [46]). The
density (89) leads to a Magnus force Fyp, = 47pS X v
(cf. Eq. (41) of interesting magnitude, compared with other
relevant forces.

Comparing with the Newtonian gravitational force mGgy
exerted on the body by the central BH, we have Fy,,/
(m||Gggl|) ~ r*pvS/(mMyy). Different estimates can be
made. Let us consider the case of a binary of BHs with
similar masses m ~ Mpy; in this case Fyy,/(m|Ggyl|)~
Sr?pv, where S = §/m? (for a fast spinning BH S < 1; for
extended bodies it could be much larger). Now we need an
estimate for » (the velocity of the “test” body with respect to
the disk of the “source” BH); it can be taken has having the

magnitude'® v~ /Mgy /r=7""/2. Then [converting kg m™3
to geometrized units, and using Mgy = Mo (Mpy/Mg)1,

11
Fag = b
—— %~ SF(M 1—+/2] 73/8 90
R TAC] [T Y
where
M 13
F (M) = 1.6 x 10715 £11/2047/10 {%]
0]

Let us now compare the magnitude of Fyp, with the
spin-orbit force Fgq exerted on the “test” body due to its
spin S (given by Eq. (97) below). Assume it to move,
relative to the central BH, with velocity ~v (i.e., of the
same order of magnitude of that relative to the matter in the
disk, see footnote) so that Fg, ~ MpyvS/r>. It follows that

Fype 3 61
Mag - pr _ ]:(MBH) |:1 _ \/;:| ;9/8.
Fso Mgy r

Comparing with the magnitude of the spin-spin force
Fss ~ SpuS/r* [34],

1
Fyag _pvrt _ por*  F(Mgy) [1 _ \ﬁ} 13y
Fss  Sgu  SguMiy Sgr 7 ’

©on

(92)

where Sgy = Spn/May.

Finally, let us compare the magnitude of Fyy,, with
that of the “orbit-orbit” gravitomagnetic forces Fpg =
vy X H e in the binary; that is, the force exerted on
the “test” body (dub it body 2) due to the gravitomagnetic
field H ., generated by the translational motion of the
“source” (body 1), with respect to the binary center of mass
frame. This is of interest in this context for being an effect
that has already been detected to very high accuracy in
binaries (relative uncertainty of about 1073, in observations
of the Hulse-Taylor pulsar [56]). It is moreover typically
larger than its spin-spin and spin-orbit counterparts. The
translational gravitomagnetic field is given by Eq. (B6)
(H, = H,,,, therein); so Foo~ mMgyv,v,/r*, which
we may take as Foo~ mMgyv®/r? (see footnote 14).
Considering moreover m ~ Mgy, we have

"“Except for the case that the “test” body is much smaller and
as such can be in a circular orbit corotating with the source’s disk,
and the latter is moreover mostly gravitationally driven (i.e., not
very affected by hydrodynamics), the test body will not comove
with the matter on the disk. In general the orbit will be eccentric
relative to the center of the disk; so it will have a velocity v
relative to the matter in the disk typically within the same order of
magnitude of its velocity relative to the central BH. It is also so
for counterrotating, or for unbound orbits.
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Range of frequencies of the emitted gravitational radiation for binary systems in which the Magnus force Fy,, is larger than

Fso and Fgg, for a = 0.01, fggq = 0.2 [see Eq. (89)] and Sy = 0.1M3}. The solid curves represent, as functions of the central BH’s
mass (Mpy), the frequencies for which Fyp,, ~ Fso and Fypg ~ Fsg. In the shadowed regions it holds, respectively, Fy,e 2 Fso and
Fyag 2 Fss- The Magnus force tends to be the leading spin dependent force at low frequencies and for SMBHs, namely within the
band of pulsar timing arrays (10~ Hz < fgw < 1077 Hz). The frequency for which F Mag ~ F'ss lies moreover just below (or within,

depending on a, fgqq, and Sgy) the LISA band.

11

Fyag  pSP2 6]
MgN'OrISJ:(MBH)|:1—\/j:| 7,5/8’
r

93
Foo ~ 0 (93)

where, again, we used v ~ \/Mgy/r.
All the four ratios (90)-(93) increase with Mgy, and

depend also on r; the ratio to the Newtonian force decreases
with r, whereas all the others increase with r. Choosing,
from the range of values in [46], @ ~ 0.01, fggq ~ 0.2, and
considering supermassive BHs with Mgy ~ 10° M, F Mag
starts being larger than Fgq for r 2 81 Mpy. Assuming the
central black hole to be fast spinning (unfavorable case)
with e.g., Sgy~0.1, we have that Fyag 2 Fsg for r2
17Mpg. Assuming moreover that the “test” black hole is
also fast spinning (favorable scenario) with e.g., S = 0.5,
Faag 2 Foo forr 2 6 x 10° My Even comparing with the
Newtonian force, the magnitude of Fyy,, is interesting: for
r <2 x 10*Mgy, we have Fy,,/(m|Gl)) 2 107%; this is
the same order of magnitude of the leading 1PN corrections
(which are of fractional order € ~ Mpy/r~ 1074, see
Sec. IIT A).

These comparisons are relevant for binary systems, due
to the impact of spin effects (both spin-orbit and spin-spin)
in the emitted gravitational radiation, which is expected to
be observed in the near future [57-63]. There are different
existing/proposed detectors, operating at different frequen-
cies (see e.g., [64]). The frequency fgw of the emitted
gravitational radiation is approximately related to the
Kepler orbital angular velocity @ by fgw = @/z. Since
o~ MY 3% = Mgl 732, one may eliminate either
Mgy or 7 from Egs. (89)-(93) above. Eliminating 7 [by
substituting 7 — (@Mpgy)~>/?] one obtains p(Mgy, ®), and
all the ratios above, as functions of Mpy and w. We
are especially interested in the ratios to the spin-spin and

spin-orbit forces; they both decrease with w; hence, solving
for @ the equalities Fype/Fso =1 and Fype/Fss =1
yields, as a function of Mpy, the maximum orbital angular
velocity @, (Mpy) [and thus the maximum gravitational
wave frequency fowmax(Mpn)] allowed in order to have
Fg larger than Fgg or Fgo. These curves are plotted in
Fig. 7, for a ~ 0.01, fraq ~ 0.2, and Spy; = 0.1. They tell us
that the Magnus force is more important at low frequencies,
and for supermassive black holes. Within the band of
groundbased detectors such as LIGO (10 Hz < fgwS
10° Hz) it is much smaller than Fgy and Fgg. Within
the band of the spacebased LISA [65] (1075 Hz<
few < 1Hz), we have that Fy,, < Fgo. Fixing the
frequency at the most favorable value fgw = 107> Hz
(i.e., fixing @ ~ 3 x 1073 s71), and plotting the correspond-
ing ratio Fyj,e/Fso = p(Mpy)/w* (not shown in Fig. 7),
one sees that Fy,e/Fso < 1072. On the other hand, Fig. 7
shows also that the frequency for which Fyp,, ~ Fsg lies
just below the LISA band. In fact, the magnitude of Fyy,,
is already comparable to Fgg within LISA’s band (for
fow ~10° Hz, F Mag Teaches a maximum Fyg,, ~ 0.2Fgg
for M ~ 107 M ). Moreover, mild deviations in the disk
parameters from the conservative choice above (e.g.,
a ~ 0.005, fraa ~ 0.8 [55]), or simply considering a central
black hole with smaller spin (e.g., Sgy ~ 0.03) are suffi-
cient to make Fyy,, of the same order of magnitude as Fgg
within such band. Since LISA is expected to be sensitive to
spin-spin effects [58,63], this suggests that there might be
prospects of detecting as well the Magnus effect. The
lowest frequency planned detectors are pulsar timing arrays
(PTAs, see e.g., [64,66-70]), of band 107 Hz < fow=<
1077 Hz, and which in the future are expected to detect
waves from individual SMBH binary sources [66,69].
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Within this band, Fig. 7 shows that Fy,, can be the leading
spin effect.

B. Miyamoto-Nagai disks

Although to compute the Magnus force (41) all one needs
to know is the disk’s local density p and the relative velocity
v of the test body, in order to determine the body’s motion,
one needs the total spin-curvature force F = Fyp,y + Fyyeyi;
that requires knowledge of the gravitational field produced
by the sources (disk plus central BH), since Fy, depends
on it. This is however a complicated problem. There is an
extensive literature on the fields of disks, from exact
solutions [71-78]), to perturbative [79,80], PN [81], and
Newtonian [82—85] solutions. Even though the formalism in
Sec. III (by being exact) could in principle be used to treat the
exact problem, most exact solutions in the literature are not
practical or suitable for our problem, since they are either
nonanalytical [78,80], or describe the field only outside the
disk [71], or are not realistic models of astrophysical systems
[71-77]. In this context the Newtonian solutions provide the
more treatable examples for us. According to Eq. (43), to
compute Fyy,, (and thus F) to leading PN order, only the
Newtonian and gravitomagnetic (H) fields of the source are
needed. By considering a Newtonian field, one is ignoring
the gravitomagnetic fields (frame-dragging) produced by
the rotation of the disk (and of the central BH); this would
be accurate if either the disk was static, or composed of
counterrotating streams of matter, or the test body moves
considerably faster relative to the disk than the disk’s
average rotational velocity (so that one can have
vG > H). One might argue that none of these is a realistic
assumption—the disk is (at least in part) gravitationally
driven, so it must rotate, with a velocity of the same order
of magnitude of the velocity of orbiting test bodies. But still
it is no less realistic than most exact solutions—which are
precisely static [71-76] and/or composed of streams of
matter flowing in opposite directions [72—77]. More realistic
solutions, where H is taken into account, are found in PN
theory; the field is however very complicated already at
1PN, and not obtained analytically (e.g., [81]). So, here, just
to illustrate the basic features of the spin-curvature force
produced by the disk, we consider one of the simplest
Newtonian 3D models,” the Miyamoto-Nagai disks
[82—84], also called the “inflated” Kusmin model [84].
The Newtonian potential is
Ule. Mo + Mon _ Udgisk + Upn

0.7) =
Ve + (VTR +ap T

(94)

SThere are also 2D models of thin-disks such as those by
Kusmin-Toomre [82—84]; they are however unsuitable for study-
ing the spin-curvature force, for having singular tidal tensors
along the disk.

where ¢? = x? + y?, Mgy is the disk’s total mass, and b
and a are constants with dimensions of length. The ratio b/a
is a measure of the flatness of the disk [82]. The Laplace
equation V2U = V?U . = —47p yields the disk’s density,
Eq. (5) of [82]. The Weyl force is obtained from Eq. (43),
which reads here Fiy,, = 2¢(},,G)"v*S;, where G is, to
the accuracy needed for this expression, the sum of the
Newtonian fields produced by the disk and the central BH,
G ~VUgy + VUpgy. Tt can be split into the Weyl forces
due to the disk and due to the central BH, which read
explicitly, in the equatorial plane

FWeyl = FWeyldisk + Fgy (95)

B M ik
Weyldisk [}"2 + (a + b)z]%

3r/(Sxv)-r+3(r-S)(vxr)

- P+ (a+b) ]
(a + b)M gisx

b[r? + (a + b)Y

(S x )|z, — € S0,

[51(S x v)? + S%ei*p,]

(96)

FBH:_3M33H vxS+2r[<v xr)-S] (v-r)er]
r

’,.2 r2

97)

(Notice that Fy is the well-known expression for the spin-
orbit part of the spin-curvature force exerted by a BH on a
spinning body, e.g., Eq. (44) of [34]).

1. Quasi-circular orbits

We shall now consider the effect of the spin-curvature
force (Fypyg + Fyweyi) produced by the disk on test bodies
on (quasi-) equatorial circular orbits around the central
object. This demands the central object to be much more
massive than the test body, Mgy > m. We also consider the
test body to be a BH, in order to preclude surface effects
(such as an ordinary Magnus effect), and ensure that the
motion is gravitationally driven. In the equatorial plane
o = r, thus the disk’s density p = —V?U/4x, that follows
from (94), is

Mdisk 3r2 a
= +20 (98
4x[r? + (a + b)?]3/? (98)

3_
P+ (a+b)? b

(cf. Eq. (5) of [82]). As in Sec. IV B, there are two notable
cases to consider.

Spin  parallel to the symmetry axis (S = S%e,).—
Equation (68) tells us that, in this case, the components
of § are constant. The Magnus, Weyl and total force due to
the diSk, Fdisk = FMag + FWeyldiSk’ are
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S-L
Py = _4ﬂp%er’
(S - L)M gig 3r2 a
F . = - b ’
Weyldisk mr[rz + (Cl + b)2]3/2 2+ (a + b)l + b e,
3(S - L)Mgy. 2
Fyg = 2 213/2 | 2 e
mr[r? + (a + b)?]¥% [r* + (a + b)

with p as given by Eq. (98). So the Magnus and Weyl
forces are both radial, but have opposite directions.
This resembles case 2 of the slab model of Sec. III B,
but now the resulting force Fg; is not zero. It has, for
r? < (a+ b)?, the same direction of the Magnus force,
and opposite direction for r > (a + b)?; in any case
it is of qualitative different nature from Fyp,, Or Fyyy
in that it lacks the important a/b term (that can be very
large for highly flattened disks). Since the forces are
radial, the orbital effect amounts to a change in the
gravitational attraction—for r > (a + b)?, Fgg is repul-
sive (attractive) when § is parallel (antiparallel) to the
orbital angular momentum L; and the other way around
for r < (a+ b)% lts relative magnitude compared to
the Newtonian gravitational force produced by the disk
is Faige/(mG) ~ vS/(rm).

The effect is important in connection to the measure-
ments of the gravitation radiation emitted by binary
systems, namely in mass estimates. These are affected
[63] by the spin-orbit (Fgg = Fgy) and spin-spin (Fgg)
forces. Fsg = Fyy is given by Eq. (97), and like F 4 it is
parallel to the symmetry axis; Fgg [not taken into account in
Eq. (97)] is given by e.g., Eq. (24) of [34] (it is parallel to
the symmetry axis if the spin of the central BH is along e,).
As we have seen in Sec. VA using a realistic density
profile, the Magnus force Fyy,, is generically larger than
both Fgg and Fgg in systems emitting GW’s within the
band of pulsar timing arrays, and is comparable to Fgg in
the lowest part of LISA’s band. In the latter, in particular,
the impact of Fgg in the mass measurement accuracy is
significant [63]; hence that of Fyg,, (and Fgg) might
likewise be.

Spin parallel to the orbital plane (S° = 0).—In this case
Egs. (68)—(70) tell us that the spin vector S precesses,
but remains in the plane. The Magnus, Weyl (Fyyeyigisk+
Fgy = Fyey1), and total spin-curvature force, F = Fyp,,+
Fyyey1, are, from Egs. (41), (95)-(98),

Mdisk 31’2 +a Sxv
P4 (a+b)?P2 P+ (a+b)? b ’

F Weyldisk — [

(99)

M
Fyg = 478 x v, Fgy=3—2"Sxv,  (100)
r

. _ (3+42a/b)M gy Mgy
F:A(V)SXV, A(r):[r2+(a+b)2]3/2+3 }"3 P
(101)

with p given by (98). It is remarkable that all the
components of the force are parallel. In particular, for
large a/b (thin disks), Fyj,, and Fyeygix are qualitatively
similar. This resembles case 1 of the slab model in
Sec. I B. Since S xv=wScos[(w—C)1]e,, cf. Eq. (71),
the force (101), similarly to its counterpart in the DM halo
of Sec. IV, causes the spinning body to bob up and down (in
the e, direction) along the orbit. It leads also to a secular
orbital precession, which is again of the form (80),

A(r)

Q:
2m

S, (102)

where A(r) is now given by Eq. (101), leading to a much
larger precession. Unfortunately here we are unable to
derive an analytical expression for the oscillations along z
caused by Q in the likes of Eq. (77) of Sec. IV B. This
because the first order Taylor expansion G* =~ G%|._yz
made therein is here a bad approximation to the true value
of G* when the body is outside the equatorial plane, due to
the rapidly varying derivative G, at the equatorial plane.
This causes Eq. (77) to fail, which is made clear by
numerical simulations. Still one can devise rough, but
robust estimates of the peak orbital inclination and oscil-
lation amplitude. As explained in Sec. IV B and caption of
Fig. 5, since the orbital precession € is proportional to S, it
is constrained by the spin precession € [Eq. (68)], because
after a time interval t = 7/€ = f, the direction of S,
and thus of © and (dL/dt), become inverted relative to the
initial ones, so the inclination stops increasing and starts
decreasing. Approximating the inclination angle a by Qt,
one may estimate the peak inclination angle and oscillation
amplitude by

Q2 wrQd

Apeak ~ Qtpeak = Qs 5 Zpeak ~ Tpeak = Q

S

(103)

Testing first the validity of these estimates in the problem
of Sec. IV B, we notice that therein z,,, differs from the
precise result 2Z ~ 2Qr/Q, by a factor z/2 (corresponding
to the error in approximating the peak of a sinusoidal
function by a first order Taylor expansion at ¢t = 0). For the
present problem, these estimates are validated by numerical
results assuming the force expressions (95)—(97).

It should be stressed that Eq. (80), with A(r) as given by
(101), assumes the orbit to lie near the equator, since the
force expressions (95)—(97), (99)—(101), are for the equa-
torial plane. The precession € will however gradually
incline the orbit; as the inclination increases, the body will
be in contact with the disk’s higher density regions for
shorter periods of time, so Eq. (80) will gradually become a
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worse approximation (it is a peak value). From relations
(103) we see that, when Q < Q, the peak inclination angle
is small, so the orbit remains, on the whole, close to the
equatorial plane. Otherwise, the approximation remains
acceptable after several orbits if € <« w. Noting that
Q,=3Gv/2~:3M2/(2r%%) and w=+/G/r=MY3r 3/,
and since S < m? (for BHs), Mgy < Mgy, r > 2Mpgy, and
we are assuming m << Mgy, we have that, for not too large
a/b, both Q < Q, and Q <« w are satisfied. The compu-
tation of the precise precession for an arbitrary inclination
can be done using the general expression for the force as
given in Eq. (43), with G = VU given by Eq. (94).

An important conclusion that can directly be extrapo-
lated to more realistic models, is that the orbital precession
caused by the disk has the order of magnitude
Q ~ Fypae/ (vm) ~ pS/m, which might possibly be meas-
urable in a not too distant future: the secular precession of
the orbital plane of binary systems affects the principal
directions and waveforms of the emitted gravitational
radiation [57-59,61,62,86,87]. In the absence of disk (thus
of Magnus force), such precession reduces to that caused
by the spin-orbit and spin-spin couplings. Both are
expected to be detected in gravitational wave measure-
ments in the near future [57-59,61,62]. The former is the
leading one, and has magnitude of the form Qgy o S/7°
[59,62,86]; in particular, for the precession caused by the
force (97), Qo ~ (Myy/m)S/r?, cf. Egs. (101) and (102).
Comparing with the magnitude of the Magnus precession,

Q pl"3 _pNFMag

-~ R

Qo Mgy o Fgo

, (104)

cf. Eq. (91). The the orbital precession originated by the
spin-spin couplings has approximate magnitude Qgg ~
SguS/(mvr*) (cf. e.g., Eq. (11.a) of [86]); hence

Q  purt Fag
Qss  Spy Fss

(105)

cf. Eq. (92). So, the ratios amount to those of the
corresponding forces. This means that what is said in
Sec. VA and Fig. 7, concerning the relative orders of
magnitude of the forces, applies here to the precessions.
Namely, in SMBH binaries emitting low frequency GWs,
such as those within the pulsar timing arrays band, the plots
in Fig. 7 show that the Magnus precession € can be the
leading spin-induced orbital precession, larger than both
Qg and Qgp. As an example, taking Mgy ~ 100 M, we
have that Q/Qgo 2 1 for fgw S 2 x 1077 Hz(~6 yr!),
cf. Fig. 7, the approximate equalities corresponding to
F~10, p~6x1073 kgm™ [cf. Egs. (89) and (91)].
Taking a “test” companion of mass m ~0.1Mpy =
10° M and spin S = 0.5m?, the Magnus precession for
such setting, Q ~ 0.5pm = 10~ Hz, amounts to an orbital

inclination of ~0.6 degrees per cycle, reaching a peak
angle apeq ~ 2° [cf. Eq. (103)] after a time interval ey =
7/Qs = 1 yr (=23.4 cycles). If (as above) the central black
hole has spin Spy = 0.1M3,, we have Q ~32Q.
Considering instead, for the same binary, a frequency
one order of magnitude smaller, fgw ~ 2 x 1078 Hz, cor-
responding to ¥ ~47, p =6 x 107 kgm™3, the Magnus
precession Q ~ 107! Hz becomes the dominant spin-
induced precession: Q ~ 10Qg, ~ 7 x 10?Qgg, amounting
to an orbital inclination of ~0.6° per cycle, reaching a peak
angle @pe ~9° in a time interval fyey = 7/~ 50 yr
(~15.5 cycles).

Moreover, LISA’s band is just above the frequency for
which Q meets the magnitude of Qg (according to the
density profile in Eq. (89), for the conservative choice of
parameters made above); Q being already within the same
order of magnitude as Qgg in the lower part of LISA’s
band (fgw ~ 10~ Hz).

VI. MAGNUS EFFECT IN COSMOLOGY:
THE FLRW METRIC

A setup of especial interest to consider is the gravita-
tional Magnus effect for a spinning body moving through
an homogeneous medium (or “cloud”) representing the
large scale matter distribution of our universe. As discussed
in Sec. III B 3, this is problematic in the framework of a PN
approximation, and of an analogy with electromagnetism,
in particular when the cloud is assumed infinite (in all
directions), due to the indeterminacy of F Weyl- General
relativity however admits a well known exact solution
corresponding to an homogeneous isotropic universe (finite
or not)—the FLRW spacetime, believed to represent the
large scale structure of our universe. The metric is

dr?
1—kr?

ds? = —di* + a2(;)( + r2de* + r2sin29d¢2>.

(106)

It is well known that this is a conformally flat metric, that
is, its Weyl tensor vanishes: C,4,5 = 0. This makes this
metric remarkable in this context: the Weyl force vanishes,
and therefore, the total spin-curvature force exerted on a
spinning body (f any) reduces to the Magnus force,
Eq. (32),

Fyey = 0= F* = Fyp,. (107)
Let U* = U°(1, "), where U° = dt/drand v/ = U'/U° =
dx'/dt, be the 4-velocity of some arbitrary observer.
The gravitomagnetic tidal tensor it measures has, as only
non-vanishing components,
H.. = IH][U] = €ijkOUkA(t7 r, 9)

1

(108)
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where

[\

—

7
a*(t)

At r,0) = [k + a(1)* — a(t)a(r)].

It thus reduces to the current term (responsible for the
Magnus effect): Hys = Hjgp = —4meqp,,U7J7, cf. Eq. (30).
For the observers at rest (v = 0) in the coordinate system
of (106), the gravitomagnetic tidal tensor vanishes,
H,s = 0. Therefore, the spin-curvature force on a spinning
body at rest vanishes: F* = —IH]ﬂ“Sﬂ = 0. This is the
expected result: a body at rest in the coordinates of
(106) is well known to be comoving with the background
fluid, so relative to it the spatial mass/energy current J is
zero, implying that the Magnus force (34) vanishes.
Consider now an observer of 4-velocity U“* =
U°(1, "), moving with respect to the coordinate system
of (106); i.e., with a “peculiar” velocity v # 0. Such an
observer measures a nonzero antisymmetric gravitomag-
netic tidal tensor (108); this means that a spinning body
moving with velocity v suffers a spin-curvature force
F* = —l]-l]ﬂ“Sﬂ, whose components read, in terms of the
metric parameters,
FO=0; F =A(t,r,0)S xv, (109)
where (v x S)" = ¢%,0/S*, and the coordinate system is
that of (106). On the other hand, the energy-momentum
tensor corresponding to the metric (106) is that of a
perfect fluid, 7% = (p + p)u®u? + pg®, where u® is the
fluid’s 4-velocity; thus J* =-T%Ugz=y(p+ p)u® - pU®,
where y = —u,U%. From Eq. (107), we have that
F* = 4my(p + p)e® s, u’ STUT; (110)
since the fluid is at rest in the coordinate system of (106),
we have that u* = 65 and y = U°, and therefore'®
F = —4z(p + p)(U%)%v x S. (111)
This equation leads to an important conclusion: in the
general case that p 4+ p # 0, a spinning body arbitrarily
moving in the FLRW metric suffers a net force in the
direction of the Magnus effect; such force is the only force
that acts on the body, deviating it from geodesic motion.
If the weak energy condition holds, p + p >0 (cf. e.g.,
Eq. (9.2.19) of Ref. [89]), we have that F (= Fy,,) is

'®One may check that Eq. (109) indeed equals (111) using the
Friedman equations (e.g., Egs. (5.11)—(5.12) of [88])
at)?+k_8zp+A a4z

A
a@? 3 a3 P -3

3

parallel to S x v, similarly to the Magnus effect of fluid
dynamics. "7 This is the case for ordinary matter, radiation,
or DM. In the case p = —p, corresponding to cosmo-
logical constant/dark energy, the Magnus force vanishes,
F = 0. This can also be equivalently seen from the fact
that the Ricci tensor for a cosmological constant is
R, = Aggp, which, via Egs. (27) and (28) (with
Copys = 0) implies H,z = 0 for all observers. Or from
the fact that the effective energy-momentum tensor of a
cosmological constant is 7% = pg®, which does not lead
to any spatial mass-energy currents with respect to any
observer: J* = —pU?, so (see Eq. (10) h“ﬂlﬂ =0 for
all U?. Other dark energy models have been proposed
however, for which p # —p (e.g., [90-93]), and that, as
such, would generate a Magnus force. Candidates even
exist for which p < —p [93] (violating the weak energy
condition), leading to an anti-Magnus force.

We thus come to another interesting conclusion: the
gravitational Magnus force on spinning celestial bodies
acts as a probe for the matter/energy content of the universe,
in particular, for the ratio p/p, and for the different dark
energy candidates. The bodies that should be more affected
are rotating galaxies (which one can treat as extended
bodies) with large peculiar velocities v. The effect is any
case very small, given the constrains in place: WMAP results
[94] show our universe to be nearly flat, implying an average
density close to the critical value p ~ 10726 kg m™3; assum-
ing an equation of state of the form p = —wp, the parameter
w is constrained from observations to be within —1.2 S w <
—1/3 (e.g., [25,93]). Taking w ~ —0.8, considering a galaxy
with the same diameter 2R = 55 kpc and Mgller radius S/m
as the Milky way, and moving with a peculiar velocity
v~ 10° kms~! (areasonably high value [95]), it would take
about 10*x age of the universe in order for the deflection
caused by the Magnus force, Ax~ (1/2)ArPF/m~
2nAt?pvS/m, be of order the galaxy’s size.

Finally, we note that a reciprocal force Fpygy ciouds 1N
the likes of that computed in Secs. III B-IV, cannot be
computed here; such integrals assume that everywhere the
metric can be taken as nearly flat, so that vectors at different
points can be added. The metric (106), however, is not
asymptotically flat (g,, diverging at infinity), so any such
integrals are not valid mathematical operations here. This
is the general situation in the exact theory: Fjouqpoay = F
(the spin-curvature force) is a physical force always well
defined, whereas its reciprocal, Fyoqy cioud> 1 NOL.

"We note that this result is contrary to that estimated in [8].
Equation (111) is, supposedly, the exact relativistic solution for
the problem addressed in [8]: the force exerted on a spinning
body moving in a medium (“field of stars”) of uniform density p,
representing the large scale stellar distribution of the universe. For
the accuracy at hand in [8], Eq. (111) yields F = —4zpy x S. The
force estimated in [8] however does not agree with this result,
having even the opposite direction (i.e., it is anti-Magnus).
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VII. CONCLUSIONS

In the wake of earlier works [6,7] where a gravitational
analogue to the Magnus effect of fluid dynamics has been
suggested, we investigated its existence in the rigorous
equations of motion for spinning bodies in general rela-
tivity (Mathisson-Papapetrou equations). We have seen that
not only the effect takes place, as it is a fundamental part
of the spin-curvature force. Indeed, as made manifest by
writing it in tidal tensor form, such force can be exactly
split into two parts: one due to the magnetic part of the
Weyl tensor (the Weyl force Fy,,), plus the Magnus force

(F ﬁ,[ag), which arises whenever, relative to the body, there is

a spatial mass/energy current non-parallel to its spin axis,
and has the same direction as the Magnus effect of fluid
dynamics. The effect was seen moreover to have a close
analog in electromagnetism; namely in the force exerted in
a magnetic dipole inside a current slab. Such setting, and its
gravitational counterpart, provided useful toy models for
the understanding of the contrast between the two parts of
the spin-curvature force: the Magnus force, which depends
only on the body’s angular momentum and on the mass-
density current of the medium relative to it, and the
dependence of the Weyl force on the details and boundary
conditions of the system. This dependence shows clearly
in the astrophysical systems studied, and means also that
some problems tried to be addressed in earlier literature
were not well posed.

Gravitational Magnus effects could have interesting
signatures in cosmology or in astrophysics. They are shown
to lead to secular orbital precessions that might be
detectable by future astrometric or gravitational-wave
observations. These effects are considered here in three
astrophysical settings: DM halos, BH accretion disks, and
the FLRW metric. In DM halos, due to their low density,
the effects are typically small, being more noticeable for
bodies with large “Moller radius” S/m, yielding a further
possible test for the existence of DM and its density profile
(in addition e.g., to the dynamical friction effect proposed
in [47]). In accretion disks, due to their high density, the
orbital precession caused by the Magnus force is more
important; it can be comparable, or larger, than the spin-
spin and spin-orbit precessions, and, in the future, possibly
detectable in the gravitational radiation emitted by binary
systems with a disk. In the FLRW spacetime (describing
the standard cosmological model), is shown that a Magnus
force acts on any spinning body moving with respect to
the background fluid, it is the only covariant force acting on
the body (deviating it from geodesic motion), and has the
same direction of its fluid dynamics counterpart. It should
affect primarily galaxies with large peculiar velocities v. All
forms of matter/energy give rise to such Magnus force
except for dark energy if modeled with a cosmological
constant, so it acts as a probe for the nature of the energy
content of the universe.
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APPENDIX A: INFINITE CLOUDS
AND FUBINI’S THEOREM

In Sec. IIB we considered two different ways of
obtaining an infinite cloud in all directions (a slab
orthogonal to the y axis delimited by —h/2 <y < h/2,
and a slab orthogonal to the z axis delimited by
—h/2 <z < h/2, in the limit & — o), and seen that
the force Fip cioua €xerted on them by the magnetic dipole
is different in each case. We consider here yet another
route: an infinite cloud obtained by taking the limit
R — oo of a sphere of radius R. From Eq. (20), which
holds for any sphere containing the dipole (finite or
infinite), we have then Fg, jouq = —87uje,/3; which is
yet another different result, comparing to (23), and to the
force exerted on the slab orthogonal to z (Fgip cioua = 0)
These inconsistencies stem from a fundamental a math-
ematical principle, embodied in Fubini’s theorem [20,21]
(in turn related with Riemann’s series theorem, e.g., [36]);
namely, that the multiple integral of a function which is
not absolutely convergent (i.e., the integral of the absolute
value of the integrand does not converge) depends on the
way the integration is performed. This is the case of the
integrals mentioned above. Take e.g., the “spherical”
infinite cloud; we have

[ [ [ [l
ro<r<R dip 0 0 ro r

16 R
sin 0drdpdd = — L 1n H
3 \/§ ro

where r, is the radius of some minimal sphere enclosing
the dipole. This integral diverges for R — co (and/or

ro — 0), whereas [, _, g B d’x = 0.
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To make the connection with Fubini’s theorem explicit,
we go back to the slabs of Sec. I B, and write the integrals
therein in terms of Cartesian coordinates. Since both slabs
are infinite in the x direction, we have'®

Ym Zm o0 2 2 - 2 - 2
/ Byyd®x = Se, / / / = T2 T dxdzdy
r>R R R R r

= Ry
— Y=Vm |<=Zm X=00
= =8, %'[i_x {xR arctan - ue,

Ry

WY+ 2+ R?

— Y=Ym |Z=Zm
= 8|} _x"l:=k [arctan
y
— arctan = | e,
z

where y,, and z,, denote the upper integration bounds for
the respective coordinates. In the first equality we noticed
that the only surviving component is along e,, and that,
by symmetry, one needs only to integrate over the octant
x> R,y > R, z> R, multiplying then the result by a factor
of 8. The slab orthogonal to the y axis corresponds to
setting z,, = o0, y,, = h/2; taking afterwards the limit
h — oo amounts to

/ Bg,d’x = 8|§_;°{ oy {— arctan’
r>R Zz

+arct Ry !
arctan —————— e, — —TJmue,.
Yl | L R
(A1)

The slab orthogonal to the z axis corresponds to y,, = oo,
zm = h/2; taking afterwards the limit 7 — co amounts to

/ Bgi,d®x =8 iz;"{ =R [— arctan’
r>R Z

-+ arctan Ry e. = 8z e
Z\/y2+Z2+R2 He = 3ﬂz.

(A2)

The integrals (A1) and (A2) differ only in the order of the
integrations (or of the infinite limits) over the y and z
coordinates; yet the outcome is very different. This is a
consequence of Fubini’s theorem [20,21]: the double
integral of a function which is not absolutely convergent
is not, in general, well defined; when written as a iterative
integral, the result may depend on the order of integration.
Since the problem of considering an infinite cloud by
taking initially a slab of width A either along y or along z

'8The lower bound R in the integrals actually amounts to leave
a cube of side 2R outside the integral, not a sphere of radius R;
that does not however have any effect on the outcome, in the
limit 7 — oo.

(and taking afterwards the limit 7 — o0), boils down to
the order of the iterations in the multiple integrals (Al)
and (A2), this just tells us that Fgp coug, as defined by
Eq. (18), is not a well defined quantity for an infinite (in all
directions) cloud.

APPENDIX B: ACTION-REACTION LAW AND
MAGNETIC AND GRAVITOMAGNETIC
INTERACTIONS

In the previous literature [7,8] where a gravitational
analogue of the Magnus effect (or a ‘“gravitomagnetic
dynamical friction”) was implied, the force on the spinning
body was not directly computed from the concrete equa-
tions of motion for the body as done herein, but instead
indirectly inferred from estimating the body’s effect on the
surrounding matter/other bodies, and then naively applying
a Newtonian-like action-reaction principle. This is prob-
lematic however. Although for the toy model, stationary
settings of Sec. IIIB, we have shown that the force
Foay cioua €xerted by the body on the cloud indeed equals
minus its reciprocal F = F 4,4 poay (the force exerted by the
cloud on the body), this is not true in general dynamics: the
gravitomagnetic interactions, similarly to their magnetic
counterparts, do not obey an action-reaction law of the type
of Fpp = —Fp 5. For instance, the force exerted by the
spinning body on an individual particle of the cloud does
not (contrary to the belief in some literature) equal minus
the force exerted by the particle on the spinning body. This
is a leading order effect, which is a consequence of the
interchange between field momentum and the “mechani-
cal” momentum that the bodies/matter possess. Below we
discuss this issue in detail, starting by the electromag-
netic case.

1. Magnetism

It is well known that electromagnetic forces do not obey
the action reaction law, and that the center of mass position
of a system of charged bodies is not a fixed point. Notice
that this does not imply any violation of the conservation
equations for the total energy-momentum tensor; in fact, it
is a necessary consequence of the interchange between
mechanical momentum of the bodies and electromagnetic
field momentum. We analyze next some examples relevant
to the problem at hand.

a. Simplest example: Two moving point charges
(Feynman paradox)

Consider the setup in Fig. 8(a): a pair of point particles
with equal charge g and mass M, and with orthogonal
velocities, one (particle 1) moving directly towards the
other with v; = v;e,, and the other moving orthogonally
with v, = (I To first “post-Coulombian” [13,17,30]
order, the electric and magnetic fields generated by a
moving charge are [17] (cf. also [19,30])
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FIG. 8. Two situations where action-reaction law is not obeyed
in electrodynamics: (a) two orthogonality moving point charges
(Feynman paradox); (b) interaction of a magnetic dipole with a
particle of the cloud. In (a), the electric forces each particle exerts
on the other are nearly opposite, but particle 2 exerts a non-
vanishing magnetic force gv; x B, on particle 1, whereas particle
1 does not exert any magnetic force on particle 2. In (b), the force
exerted by the dipole (particle 2) on the moving particle 1 is only
minus half the force that the latter exerts on the former,
Fgip = —2F gip 1.

r, 1 a q
E,=¢g(1 . gy B, =— Bl
a Q( +(Pa)r2 2qra a rgvaxra ( )

where r, = x — x,, x is the point of observation, x, is the
[ IS4

instantaneous position of particle “a”, a, its acceleration,
and

v2 1 3(ry-v,)?
¢a57a_§(ra'aa)_§ arga

For a system of two bodies, to 1PC accuracy, a, in
the equation above is to be taken as the Coulomb
force caused by the other body, divided by the mass:
a, = (¢*/M)r,/ri,. The electric force exerted by particle
1 on particle 2 is then

F E 2<1+ q2 >r12
EL12 = gL = g ¢ — 3
2Mr12 r?z

and its reciprocal, the force Fgp,; = gE, exerted by
particle 2 on particle 1, is

) 6]2 Iy
Fgo=¢q 1+¢2_2Mr21 2
21

2
=—g*(1+ 0 — q 2
1 < ¢2 2M}"]2> r?z

where we noted that r;, =r; —r, = —r,;. Thus, the
electric forces are of opposite direction and of nearly equal
magnitude: Fgy;, ~ —Fg, (they slightly differ because
@, # ¢,). The same however does not apply to the
magnetic forces: particle 1 exerts no magnetic force on
particle 2, Fy;, =0, since, at the site of particle 2,
B, =qgv, xry/ r?z = 0, whereas particle 2 exerts a non-
vanishing magnetic force on particle 1:

2

_quivs,
2 ¥y
)

Fyp i =qvi xB, =

Therefore
Fi)=Fgri2#F,; =Fgy1 +Fua

showing that an action-reaction law (in a naive Newtonian
sense) does not apply here. This example, sometimes called
the “Feynman paradox,” is due to Feynman, see Ref. [96]
p- 26-5 and 27-11, and Fig. 26-6 therein. Further dis-
cussions on this problem are given in e.g., Sec. 8.2.1 of
Ref. [18], and, in more detail, in Ref. [97].

b. Interaction of a magnetic dipole with individual
particles of the cloud

Consider a system composed of a magnetic dipole g =
ue, placed at the origin (call it particle 2), and a particle of
the cloud (particle 1, of charge ¢) in the equatorial plane,
and at the instantaneous position depicted in Fig. 8(b). The
magnetic field created by the magnetic dipole is given by
Eq. (9); the force it exerts on particle 1 is thus

VXU vu

—— =qg—=e,.
3 q4-3¢
T3 1

Fgip1 = qv X Bgip, = —q (B2)

Let us now compute the force that particle 1 exerts on
the dipole. The magnetic field created by a generically
moving charge is, from Eq. (B1), Beparee = qv X1/ r; the
jii

force it exerts on the dipole is F} = Bijargch i =

charge,dip
V(i - Beparge)» f. Eqs. (4) and (5); explicitly:

ﬂév_3qwngﬂ
r r

Fcharge,dip =q r. (B3)

Hence, the force exerted by particle 1 on the dipole is

KXy (vxrp)-p 2upg
Fl,dip:q 3 -3 5 Fip=——3—-6€,.
1 21 |

Comparing with Eq. (B2), again we see that action does
not meet reaction: F; g, = —2F g, ; (the sign is opposite as
expected, but the magnitudes do not meet).

Let us now consider particle 3 lying at x; = r;e,, and
moving (again) with velocity v = ve,. The force that the
dipole exerts onit, Fi, 3 = qv X Byip(x3), is, from Eq. (21),

VX 3(p-ry)v Xry vuq
Fop3 =—-q—5—+4 5 =-2-5"¢,.
3 3 3

Its reciprocal (the force that particle 3 exerts on the dipole)
is, from Eq. (B3),
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Xy (vxry)-p vpgq
F34,=q 3 — o9 I3 =—3-6€
p k 5 3

T3 23 3

since the second term of the second expression vanishes.
Thus, again, action does not meet reaction, only now it is
the magnitude of the force on the particle that is twice that
on the dipole: Fgj, 3 = —2F;3 gjp.

c. A magnetic dipole and an infinite straight wire

Consider again a magnetic dipole y = pe, placed at the
origin, and an infinitely long wire placed along the
straightline (parallel to the x axis) defined by y = y,,
z =0, with a current I =2j flowing through it in the
positive x direction, j = je,. X is the cross sectional area of
the wire. The force exerted by the magnetic dipole (placed
at the origin, and with gy = pe,) on the wire is, from
Eq. (21),

i Jxp  2ul
Fgip wire = / J X Bgi, = _/ L =—"e,
wire wire I Yo

Let us now compute its reciprocal, i.e., the force that the
wire exerts on the dipole. The magnetic field generated by
the wire is well known to be (e.g., Sec. 5.3 of [18], or
Eqgs. (14.22)—(14.24) of [96])

2
Bwire = ) [y e, — Zey]

(Z2 + y/2

where y' = y — y,. Thus B"/

wire has the only nonvanishing
components B =Bt

wire wire 21(22 - yl2)(Z2 + y/2)—2'
Therefore, the force exerted on the dipole, F e qip =

Ji — :
Bwire:ujei = v(ﬂ : Bwire)’ 18
2ul
wiredip — — 5 €y = _Fdip,wire-
Yo

F

So, in this case, the action-reaction law is obeyed, just like
for the current slabs in Sec. II A. This is the expected result
because one is dealing here with magnetostatics, where
there cannot be an exchange between mechanical and field
momentum, for the latter is constant and equal to zero (the
Poynting vector is zero, since the electric field is zero).

2. Gravitomagnetism

Analogous examples to the ones above can be given in
gravity—two point masses momentarily in orthogonal
motion, the interaction of the spinning body with individual
particles of the cloud (Sec. III B 2), and with the entire
cloud—with entirely analogous conclusions. (As for the
infinite wire of Sec. B 1 ¢, it cannot be mirrored here since
the metric of an infinitely long cylindrical mass is not
asymptotically flat). Below we discuss in detail the espe-
cially important second example.

-
FSOZ.] rél
FS()LZ

-

s©®

FIG. 9. A situation where the action reaction law is not obeyed
in PN gravity [analogue of Fig. 8(b)]: the spin-orbit force Fgn, ;
exerted by the spinning body (e.g., a BH) on a moving particle is
not the same as the spin-orbit force Fgo; , that the latter exerts on
the former: FSO],2 = _3FSOZ.1/2'

a. Interaction of a spinning body with individual
particles of the cloud

Consider a system composed of a spinning body
momentarily at rest (body 2, of mass M,, and angular
momentum S), and a point mass (body 1, of mass M)
moving with velocity v; = v, as illustrated in Fig. 9.

To 1.5PN order, the coordinate acceleration of a
(spinning or nonspinning) body in a gravitational field is
generically given by Eqgs. (40), (44), and (46). The
coordinate acceleration of the spinning body (body 2),
due to the gravitational field generated by the moving point
mass 1, is then (since v, = 0)

szz 1
G = (1=200G + 4 F

(B4)
where U; = M,/ r, is the Newtonian potential of body 1
and F is the spin-curvature force on body 2. The latter
amounts to the whole spin-orbit force that acts on body 2,
so we may write F = Fgg;,. From Eq. (40),
. . | .
Floy, = F/ = SHYS, = (Sx Gy (BS)
Here H, is the gravitomagnetic field generated by the
translational motion of body 1; it is given by
Hl =Vx Alv with A1 = —4-M1v/r1 (Cf c.g., [17,31]),
or, explicitly

M,
Hl :—4—3VXI‘1
n

(B6)

The gravitoelectric field Gy, to the accuracy at hand, is
to be taken, in this expression, as the leading term G~

—Mr,/r3. In order to compute G, one notes that 7| = —v,
and that 7, = —r, - v/r;. One gets"

“Transforming this expression to body 1’s rest frame (by
noticing that the velocity v; = v of body 1 in the rest frame of
body 2 equals minus the velocity v, of body 2 in body 1’s rest
frame: v = —v,), yields Eq. (97).
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Fgo1
3M 2ris|(v xrp) - S V-rp)Sxr
_ 31vxS+ 12l( 212) ]+( 12)2 2|
2 V) A7)

(B7)

Notice that this amounts to the whole spin-orbit force that
acts on body 2: Fgg 1, = F.

The coordinate acceleration of body 1 (the point mass)
is, from Eqgs. (44)—(46),

aaxli

W—(1+1)2—2U2>G2—4<GZ‘V)V+VXH2 (BS)

where U, = M,/r, is the Newtonian potential of the
spinning body (F = 0 in this case, since body 1’s spin
is zero). The gravitomagnetic field H, generated by the
spinning body 2 is given by Eq. (55) (replacing therein
r — r,); therefore the gravitomagnetic “force” Mv x H, it
exerts on body 1, which amounts to the whole spin-orbit
force Fgp,; acting on body 1, is given by

1 6 Fso)1
VXH, =—— |2V XS ——(Fy; - S)V X1y | = ——.
2 r% r%2<21 ) 21 M,

(B9)

Using the vector identity (5.2a) of [98], we can rewrite
this result as

Fsoo,1
3M, |4 2 X -S
oMt s rip[(vxri) -S|

3 2 2
ry 13 ) V)

2(v-rip)Sxry

s

(B10)

cf. Eq. (5.3a) of [98]. Comparing with (B7), we see that the
spin-orbit interactions do not obey an action-reaction law:
Fgo17 # —F0p.1. In other words, the spin-curvature force
(B7) exerted by body 1 on body 2, is different from the
gravitomagnetic “force” (B9) exerted by body 2 on body 1.
Notice that Fgq, is the analogue of the electromagnetic
force F g4, of Sec. B 1b, and Fgq, ; the analogue of F, ;.
Therefore, the overall coordinate accelerations of the two
bodies do not likewise obey an action-reaction law:

szz

d2x1
My—5#M; —
2 dt2 ?é 1

drr -’

In fact, comparing (B4) to (B8), we see that actually all the
PN terms (not only the spin-orbit ones) differ; only the
Newtonian parts of MG, and M,G, match up to sign.

For the setup in Fig. 9, where particle 1 lies in the
equatorial plane at the instantaneous position x| = rye,,
and has velocity v; = v = ve,, we have

3M 2 - S 3M,S
FSOI.ZZTl v xS+ "12[(‘”;'12) ] _ 31 vey
2 ST AT
(B11)
and
2 2M,S
Fsopy =My xHy; =—<MpyxS§=- 31 vey. (B12)
"2 2

Therefore, Fgoy, = —3F502.1/2.

Let us now consider particle 3 lying at x; = rze, (i.e., on
top of the spinning body, above the equatorial plane), and,
again, with velocity vy = v = ve,, see Fig. 1(b). The spin-
orbit force that it exerts on the spinning body, Fgo3, = F,
is obtained from Eq. (B7), replacing therein r, — r3,, with
I3 =713 —17,

3M 2 - S 3M,S

Fso30 = 3 [vxS—i— "32[("X2r32) q __ 3% ”ey,
3 3 23

(B13)

where we noted that (v x r3,) - § = 0. The spin-orbit force
exerted by the spinning body on particle 3, Fgpp3 =
M3V X H2, is

2M3 3 4M3Sl)
F502,3:rT[VXS—rT<r23'S)VXr23:| :Tey_
23 23 23
(B14)

Thus, again, action does not equal minus reaction: Fgp, 3 =
—4F503.2/3.

Analogously to the electromagnetic case, this mismatch
between action and reaction does not mean a violation of
any conservation principle; it can be cast as an interchange
between mechanical momentum of the bodies and field
momentum (in the sense of the Landau-Lifshitz pseudo-
tensor, see [31]). It is the same principle that is behind the
famous bobbings in binary systems [99], where the center
of mass of the whole binary bobs up and down.

The examples above illustrate an important aspect
depicted in Fig. 1(b): cloud particles in the equatorial
plane deflect in the negative y direction [i.e., to the left in
Fig. 1(b)], cf. Eq. (B12), and push the spinning body to the
right, as Eq. (B11) shows; however, cloud particles in
regions outside the equatorial plane do the opposite: they
deflect to the right [cf. Eq. (B14)], and push the spinning
body to the left, with a force whose magnitude is twice that
of the force exerted by the particles at the equatorial plane,
as shown by Eq. (B13). It is the effect of the latter that
eventually prevails in the cloud slab (orthogonal to y) of
Fig. 3, where the net force on the cloud points in the
positive y direction (and the force on the spinning body
points in the negative y direction), whereas in the special
case of a slab orthogonal to z (i.e., to the body’s spin axis)
the two effects exactly cancel out.
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The above explains also why in the earlier work [7] the
authors were misled into concluding that the force on the
spinning body was opposite to the Magnus effect (“anti-
Magnus”, upwards in Fig. 3): the argument therein is based
on the asymmetric accretion that occurs in a spinning BH,
i.e., the absorption cross section being larger for counter-
rotating particles than for corotating ones. This is a grav-
itomagnetic phenomenon, due to the fact that the
gravitomagnetic force Fgy = Mv x H is attractive for
counterrotating particles, and repulsive in the corotating
case. That can easily be seen considering again particles
with velocity v = ve,, as in Fig. 1(b); from Eq. (55), it
follows that the radial component of the gravitomagnetic

force is Fgy - r/r = —2MuvSy/r* (attractive for positive v,
repulsive for negative y). However, it is crucial here to
distinguish between the radial component of Fgy (which
determines its attractive/repulsive nature), from the force
itself, and the overall deflection it causes. If one looks only at
the equatorial plane, the reasoning in [7] is qualitatively
correct, since, as depicted in Fig. 1(b), particles in the
equatorial plane suffer a deflection opposite to that corre-
sponding to a Magnus effect. That however overlooks the
key fact that, as exemplified by the particles along the axis in
Fig. 1b, there are regions outside the equatorial plane where
particles are deflected in the opposite direction, i.e., in the
direction expected from a Magnus effect.
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