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We consider a massless, minimally coupled quantum scalar field on a Reissner-Nordström black hole
background, and we study the leading asymptotic behavior of the expectation value of the stress energy
tensor operator hT̂μνiren and of hΦ̂2iren near the inner horizon, in both the Unruh and the Hartle-Hawking
quantum states. We find that the coefficients of the expected leading-order divergences of these expectation
values vanish, indicating that the modifications of the classical geometry due to quantum vacuum effects
might be weaker than expected. In addition, we calculate the leading-order divergences of hT̂μνiren and of

hΦ̂2iren in the Boulware state near the outer (event) horizon, and we obtain analytical expressions that
correspond to previous numerical results.
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I. INTRODUCTION

The classical Einstein’s field equation of general rela-
tivity admits black hole (BH) solutions with internal
structures that possess exotic features such as naked
singularities, Cauchy horizons, and bridges to other uni-
verses. However, this is an ideal picture obtained when
considering a highly symmetric, isolated black hole. Two
well known solutions that have this kind of nontrivial
internal structure are the Reissner-Nordström (RN) solu-
tion, describing a spherically symmetric, electrically
charged BH, and the Kerr solution, describing a stationary,
rotating, and axially symmetric BH.
As it turns out, when one adds (classical) external matter

and perturbations to the picture, the internal region of these
BH solutions is highly modified and a null curvature
singularity is developed in the ingoing section of the inner
horizon—the Cauchy horizon. This singularity has a very
interesting nature—it is a weak singularity, meaning that
the metric there is continuous but not differentiable. As a
result, an observer can pass through this singularity and
experience a regular physical effect (such as finite tidal
forces). This phenomenon has been shown to occur for both
(four-dimensional) spherical charged black holes [1–3] and
rotating black holes [4–7]. Moreover, this picture is
qualitatively the same both for a test-field analysis and
for an analysis that takes into account the backreaction of
the perturbations. Recently, it was shown that even on the
outgoing section of the inner horizon an interesting
singularity is developed—a shock-wave singularity [8,9].
In addition to these classical effects, a very important

source for stress energy (and as a result for backreaction) is
the quantum nature of fields. As Hawking [10,11] showed,
considering quantum fields on a (classical) BH background

might result in a significant effect on the geometry (at least
if taken for long enough time) and change one’s qualitative
picture of this spacetime. In particular, he showed that a BH
should evaporate through an emission of radiation, and
therefore the entire structure of this BH spacetime turns out
to be very different from the one proposed by the classical
picture.
In this paper, we aim at investigating the stress energy

resulting from quantum fields in the interior region of a BH
with a nontrivial internal structure (as discussed above).
Specifically, we are interested in the behavior of the stress-
energy tensor near the Cauchy horizon, where it is expected
to diverge [12–14]. Analyzing this divergence can provide
us with an important insight into the possible modification
of the interior geometry caused by the quantum theory.
We consider the framework of semiclassical general

relativity, in which the gravitational field is treated classi-
cally as a curvature of spacetime, while all the other fields
are taken as quantum fields residing in this background.
Therefore, instead of the classical Einstein’s field equation,
we now have the following:

Gμν ¼ 8πhT̂μνiren; ð1:1Þ

where Gμν is the Einstein tensor of the background
geometry and hT̂μνiren is the renormalized expectation
value of the stress-energy tensor operator associated with
the quantum fields. In Eq. (1.1) and throughout this paper
we adopt standard geometric units c ¼ G ¼ 1 and the
signature ð−þþþÞ.
In Ref. [12], it was shown that the renormalized stress-

energy tensor (RSET), calculated in the Hartle-Hawking
state on a two-dimensional RN black hole background,
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diverges at the inner horizon. Then, it was claimed that also
in four dimensions the RSET is expected to diverge at the
inner horizon. However, this divergence was only claimed
on general grounds, without any actual calculation.
In Refs. [13,14], it was shown that the RSET, calculated

in the Unruh state on a four-dimensional RN black hole
background, must diverge on at least one of the two inner
horizons. It was also shown that this result applies to slowly
rotating black holes as well as under the assumption that
some components of the RSET are continuous functions of
a, the Kerr angular momentum parameter. A stronger
assumption, that of analyticity in a, yields this divergence
for a general value of a. This divergence, in turn, suggests
that the classical picture is strongly modified by quantum
vacuum effects associated with the Hawking evaporation
process. However, as in [12], the form of this divergence
was not found.
Our goal in this work is to analyze these expected

divergences at the inner horizons of black holes with a
nontrivial internal structure. For this purpose, we consider a
simple model with the above-mentioned features: A mass-
less, minimally coupled quantum scalar field on a RN black
hole background. Being massless and minimally coupled,
the scalar field operator Φ̂ðxÞ satisfies the d’Alembertian
equation:

□Φ̂ðxÞ ¼ 0; ð1:2Þ

where the metric used in the calculation of this
d’Alembertian is the RN metric. Then, after finding the
asymptotic form (near the inner horizon) of the scalar field
modes involved in the expression for the RSET, we
calculate the expected leading-order divergence of this
RSET near the inner horizon and show that its coefficient
vanishes. This, in turn, suggests that the modification of the
geometry might be weaker than expected. Our logic is
based on experience from investigating two-dimensional
black hole models, where the asymptotic form of the RSET
near the inner horizon determines the modification of the
geometry there, even when backreaction is taken into
account [15].
An important point in our calculation of the asymptotic

form of the modes near the inner horizon is that the large-l
limit is taken, where l is the usual number appearing in the
angular decomposition of the modes into spherical har-
monics. That is, we assume that the leading-order behavior
of hT̂μνiren and hΦ̂2iren near the inner horizon is determined
by the large-l modes. In the external region of the BH, this
assumption turns out to yield the exact asymptotic form of
the RSET near the outer horizon numerically computed in
[16,17], and in the internal region it is consistent with the
numerical results of [18] that will be published elsewhere
(see below for more details). For other approximation
schemes that have been employed in different cases
than the one considered in this paper, see [19] for an

approximation of the RSET of a conformally coupled
scalar field on a RN background, and [20–23] for related
discussions. See also [16,24].
The organization of this paper is as follows. We start in

Sec. II with the preliminaries needed for our analysis. Then,
in Sec. III, and before we turn to the analysis in the interior
region of the BH, we apply our analytical approach to the
calculation of the leading-order divergence of the RSET
(and of hΦ̂2iren, where Φ̂ is the scalar field operator)in
Boulware state upon approaching the outer (event) horizon
from outside of the BH. Later, in Sec. IV, we review some
useful results from [25], where the two-point function in the
interior region was expressed in terms of a radial function
(or alternatively, in terms of some inner modes) that can be
analytically calculated in the asymptotic region near the
inner horizon. Then, in Sec. V, we find this asymptotic form
of the radial function and use it to calculate in Sec. VI the
leading divergence of hΦ̂2iren and hT̂μνiren near the inner
horizon. We finally conclude in Sec. VII.

II. PRELIMINARIES

A. Coordinate systems and quantum states

In this paper we consider the Reissner-Nordström
spacetime, which in the standard Schwarzschild coordi-
nates has the following metric:

ds2 ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ

�
1 −

2M
r

þQ2

r2

�−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ:

We define the various choices of coordinates on this space
following [25]. First, we define the tortoise coordinate, r�,
using the standard relation

dr
dr�

¼ 1 −
2M
r

þQ2

r2
:

We use this relation to define r� in both the interior and the
exterior regions of the BH. More explicitly, we choose the
integration constants such that r� is given by

r� ¼ rþ 1

2κþ
ln

�jr − rþj
rþ − r−

�
−

1

2κ−
ln

�jr − r−j
rþ − r−

�
ð2:1Þ

in both regions, where κ� are the surface gravities of the
BH corresponding to the inner and outer horizons, and are
defined as

κ� ¼ rþ − r−
2r2�

:

Notice that both κþ and κ− are chosen to be positive. Using
Eq. (2.1), it is easy to see that the outer horizon (at r ¼ rþ)
corresponds to r� → −∞ (both for r� defined in the exterior
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region and for that defined in the interior) and the inner
horizon (at r ¼ r−) to r� → ∞.
Next, we define the Eddington-Finkelstein coordinates

in the exterior region by

uext ¼ t − r�; v ¼ tþ r�;

while in the interior region by

uint ¼ r� − t; v ¼ r� þ t; ð2:2Þ

see Fig. 1. The Kruskal coordinates corresponding to the
event horizon, r ¼ rþ, are defined in terms of the exterior
and interior Eddington-Finkelstein coordinates by

UðuextÞ ¼ −
1

κþ
exp ð−κþuextÞ;

UðuintÞ ¼
1

κþ
exp ðκþuintÞ; VðvÞ ¼ 1

κþ
exp ðκþvÞ:

Note that we are interested in regions I and II of Fig. 1 [i.e.,
the region (−∞ < U < ∞, V > 0)], in which the coordi-
nate v is well defined and so we do not need to introduce

different coordinates, vext and vint, for the exterior and
interior regions.
We make the following notations: Hpast denotes the past

horizon [i.e., the region (U < 0, V ¼ 0)], PNI denotes past-
null-infinity [i.e., (U ¼ −∞, V > 0)], HL is the region
(U > 0, V ¼ 0) and HR is the region (U ¼ 0, V > 0); see
Fig. 1. We call HL and HR the “left event horizon” and
“right event horizon,” respectively.
Let us now define the three quantum states that we

consider in this paper. Again, we follow the notations of
[25]. We begin with defining the Boulware state [26] which
is defined in the exterior region of the BH. In order to do so,
we decompose our (massless, minimally coupled) scalar
field operator Φ̂ðxÞ in the exterior region using two
independent sets of modes fΛωlmðxÞ, known as the
Boulware modes, where Λ denotes “in” and “up.” The
decomposition is given by

Φ̂ðxÞ ¼
Z

dω
X
Λ;l;m

½fΛωlmðxÞâΛωlm þ fΛ�ωlmðxÞâΛ†ωlm�; ð2:3Þ

and the Boulware modes fΛωlm are defined as follows. First,
these modes are solutions of the d’Alembertian equation
satisfied by the scalar field operator Φ̂ðxÞ [see Eq. (1.2)],
i.e.,

□fΛωlmðxÞ ¼ 0: ð2:4Þ
Exploiting the spherical symmetry, we can decompose
fΛωlm as

fΛωlmðxÞ ¼ jωj−1=2ClmðxÞf̃ΛωlðxÞ; ð2:5Þ
where

ClmðxÞ ¼ ð4πÞ−1=2 1
r
Ylmðθ;φÞ; ð2:6Þ

and get a two-dimensional wave equation for f̃Λωl,

f̃Λ;r�r� − f̃Λ;tt ¼ VlðrÞf̃Λ; ð2:7Þ
where

VlðrÞ ¼
�
1 −

2M
r

þQ2

r2

��
lðlþ 1Þ

r2
þ 2M

r3
−
2Q2

r4

�
: ð2:8Þ

The Boulware modes are then defined by demanding that
f̃Λωl are the solutions of Eq. (2.7) that satisfy the following
initial conditions:

f̃inωl ¼
�
0; Hpast

e−iωv; PNI
; ð2:9Þ

f̃upωl ¼
�
e−iωuext ; Hpast

0; PNI
: ð2:10Þ

The Boulware state, j0iB, is then defined by

FIG. 1. Penrose diagram of Reissner-Nordström spacetime. In
the exterior region, region I in the figure, we use the exterior
Eddington-Finkelstein coordinates, while in the interior, region II
in the figure, we use the interior Eddington-Finkelstein coor-
dinates. In addition, the Kruskal coordinate system is shown and
is defined in both regions I and II. The red-framed area denotes
the region in the eternal Reissner-Nordström spacetime which
concerns this paper, i.e., regions I and II.
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âΛωlmj0iB ¼ 0: ð2:11Þ

Note that these modes and quantum state are defined in the
exterior region of the BH (region I of Fig. 1). This state
corresponds to the familiar concept of an empty state at
spatial infinity, in the sense that the expectation value of the
stress-energy tensor (in the asymptotically Lorentzian
coordinate system) in this state goes to zero at large radii
[27]. Moreover, this expectation value, evaluated in a freely
falling frame, diverges at the event horizons.
An alternative and natural name for the Boulware modes

that we will use in this paper is the “outer Eddington-
Finkelstein modes.” Analogous to the definition of these
modes, we can also define “inner Eddington-Finkelstein
modes.” We shall use a similar notation for these modes,
fΛωlm and f̃Λωl [related by Eq. (2.5)], but with Λ denoting
“right” (R) and “left” (L) instead of “in” and “up.” These
modes are defined in the interior region of the BH (region II
of Fig. 1) by the following initial conditions on the left and
right event horizons:

f̃Lωl ¼
�
e−iωuint ; HL

0; HR

; ð2:12Þ

f̃Rωl ¼
�
0; HL

e−iωv; HR
: ð2:13Þ

Wewill use these modes repeatedly later in the paper. Note,
however, that we do not involve these modes in a definition
of a quantum state.
Let us now turn to the definition of the Unruh state [28].

The field operator is decomposed as in Eq. (2.3) and the
modes [satisfying Eq. (2.4)] as in Eq. (2.5). Everything
remains the same except for the initial conditions for the
modes g̃Λωl (where we use the letter g for the Unruh modes)
that now take the form

g̃upωl ¼
�

e−iωU; Hpast ∪ HL

0; PNI
;

and

g̃inωl ¼
�

0; Hpast ∪ HL

e−iωv; PNI
:

Using the decomposition (2.3) but with the Unruh modes
defined above, the Unruh state is defined as in Eq. (2.11).
Explicitly, if we decompose the scalar field operator
Φ̂ðxÞ as

Φ̂ðxÞ ¼
Z

dω
X
Λ;l;m

½gΛωlmðxÞb̂Λωlm þ gΛ�ωlmðxÞb̂Λ†ωlm�; ð2:14Þ

the Unruh state is defined by

b̂Λωlmj0iU ¼ 0: ð2:15Þ

Notice that the Unruh modes (and quantum state) are
defined in both the interior and the exterior regions of the
BH (regions I and II of Fig. 1).
In the Unruh state, the expectation value of the stress-

energy tensor corresponds to the Hawking radiation at
infinity, and it is regular, in a freely falling frame, on the
future event horizon but not on the past horizon [27].
Finally, the third quantum state that we consider is the

Hartle-Hawking state [29]. It is usually defined by an
analytic continuation to the Euclidean sector, but we will
mainly be interested in the mode structure of the state, as
we used above for the Unruh and Boulware states. In fact,
we shall be interested in known mode-sum expressions
for various expectation values at the Hartle-Hawking state
and will not need to use the precise form of the modes
themselves; see below. The expectation value of the stress-
energy tensor in the Hartle-Hawking state corresponds to a
thermal bath of radiation at infinity, and it is regular, in a
freely falling frame, on both of the event horizons [27].
This state is denoted by j0iH.

B. Regularization and renormalization

In this paper, we consider two kinds of composite
operators, Φ̂2ðxÞ and T̂μνðxÞ, which are quadratic in the
scalar field operator and its derivatives. As is well known,
composite operators formally contain divergences and need
to be renormalized in order to yield a well-defined quantity.
In this paper, we follow the renormalization procedure
initiated by Candelas in [27] and recently further analyzed
(and generalized to a much larger extent) in [30–33]. This
procedure is based on the so-called point-splitting method.
We begin this subsection with briefly reviewing the point-
splitting method and then continue with a description of the
pragmatic renormalization procedure used in this paper.

1. Point-splitting

When dealing with composite operators that are quadratic
in the field operator and its derivatives, an intuitive way to
regularize these operators is to “split” the point x into two
distinct points x and x0, and consider the operator that is the
product of the two constituent operators at the two different
points. This operator is obviously well defined. Next, we
can subtract a counterterm that removes the singularity and
take the coincidence limit x0 → x, thereby obtaining the
renormalized operator. This is the so-called point-splitting
method. An essential property of the counterterm is that it is
a local geometric quantity that fully captures the singular
piece. In other words, it is independent of the quantum state
(and therefore we can write the renormalization as an
operator equation). Moreover, note that if we consider the
vacuum expectation value of the split operator, we get the
standard two-point function.
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In Refs. [34,35], Christensen used the DeWitt-Schwinger
expansion of the Feynman Green’s function [36,37] (see
also [38]) to obtain the counterterms needed for the
renormalization of hΦ̂2i and hT̂μνi in the point-splitting
method. In the case of Φ̂2, the result is

hΦ̂2ðxÞiren ¼ lim
x0→x

½hΦ̂ðxÞΦ̂ðx0Þi − GDSðx; x0Þ�; ð2:16Þ

where GDSðx; x0Þ is known as the DeWitt-Schwinger
counterterm, which for a scalar field with mass m and
coupling constant ξ takes the form [16,34]

GDSðx; x0Þ ¼
1

8π2σ
þm2 þ ðξ − 1=6ÞR

8π2

�
γ þ 1

2
ln

�
μ2jσj
2

��

−
m2

16π2
þ 1

96π2
Rμν

σ;μσ;ν

σ
: ð2:17Þ

Here, σ is the biscalar of geodetic separation (also known as
Synge’s world function), which is equal to one-half of the
square of the geodesic distance between x and x0; γ is the
Euler constant; and Rμν and R are the Ricci tensor and
scalar, respectively. The parameter μ is not uniquely fixed
and corresponds to the well-known ambiguity in the
renormalization procedure.
For the stress-energy tensor, the procedure is analogous,

and we have

hT̂μνðxÞiren ¼ lim
x0→x

½hT̂μνðx; x0Þi − CDS
μν ðx; x0Þ�; ð2:18Þ

where CDS
μν ðx; x0Þ is the corresponding counterterm, which

again is a local geometric quantity built from σ and the
metric. In Christensen’s original prescription [35], the
expression hT̂μνðx; x0Þi, to which we may call the split
stress-energy tensor, involves covariant derivatives taken at
both x and x0, along with the bivector of parallel transport,
which transfers a vector at x to a vector at x0. In this paper,
however, we use the alternative form of this prescription
found in [33]. In this new form, all the derivatives in
hT̂μνðx; x0Þi are taken at the same point x, and the bivector
of parallel transport only appears in the new form of the
counterterm. This way, the derivation of the mode-sum
expression for hT̂μνðx; x0Þi is much easier, and one can
naively apply the classical expressions for the stress-energy
tensor for the relevant modes in order to get this mode sum.
For further discussion and the explicit form of this new
counterterm CDS

μν ðx; x0Þ, see [33].

2. Pragmatic mode-sum renormalization method

Implementing the point-splitting renormalization is most
easily done using the method introduced in [27,30–33]. In
this method, we first use the mode decomposition of the
field operator in order to get a mode-sum expression for the
split operator (e.g., the two-point function in the case

of hΦ̂2i). The splitting is done along a direction of a
symmetry of the geometry, i.e., in the direction of a Killing
vector. Then, we write the counterterm as an integral,
which is of the same kind as one of those used in the mode-
sum expression (this integral is done over a variable that
is conjugate to the symmetry direction coordinate), and
subtract the two. After doing that, we can take the
coincidence limit and get the result (up to some extra
regularizations that might be needed). The surprising thing
about this procedure is that one can actually take the
coincidence limit right at the beginning. In other words, one
can write a formal mode-sum expression for the expect-
ation value under consideration (e.g., hΦ̂2i), which is a
divergent quantity, and after doing the same for the
counterterm, subtract the two. The quantity obtained in
this way might still be a divergent one, but after removing
these nonphysical divergences one gets the correct result.
In this paper we will only be concerned with a simple

application of this renormalization method. Many of the
subtleties that arise in other cases will not occur in our case.
The results are derived using the t-splitting variant of the
method (see [30,33]), but they were also confirmed using
the θ-splitting variant (see [31]).

C. The trace of the stress-energy tensor

When considering a theory with a conformal symmetry,
such as a massless, conformally coupled scalar field, the
trace of the stress-energy tensor operator is a local, geo-
metric quantity (independent of the quantum state), which
is given by [38]

Tanomaly ≡ 1

2880π2

�
RαβγδRαβγδ − RαβRαβ þ 5

2
R2 þ 6□R

�
:

ð2:19Þ

This result can be generalized to a nonconformal theory as
was shown in [24] and rewritten in a more convenient form
for our analysis in [25]. In this paper, we consider a
massless, minimally coupled scalar field, for which we
have the following result:

hT̂μ
μiren þ

1

2
□hΦ̂2iren ¼ Tanomaly; ð2:20Þ

relating the expectation values of the two quantities we
calculate.

III. EXPECTATION VALUE OF
THE STRESS-ENERGY TENSOR
NEAR THE EVENT HORIZON

Before turning to the calculation of the stress-energy
tensor near the inner horizon, we begin by applying our
analytical approach to the calculation of the leading-order
divergence of hΦ̂2iren and hT̂μνiren in the Boulware state
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upon approaching the outer (event) horizon from outside of
the BH. We consider a massless, minimally coupled scalar
field as our quantum field. In general, the expectation value
of the stress-energy tensor, evaluated in a freely falling
frame, is known to be regular on both the past and the future
event (outer) horizons in the case of the Hartle-Hawking
state, it is regular on the future horizon but not on the past
horizon in the case of the Unruh state, and it diverges on
both of the horizons in the case of the Boulware state (see
the discussion in Sec. II A and Ref. [27] for the case of
Schwarzschild spacetime).

In the present section, in contrast to the analysis in the
interior of the BH (discussed in the rest of the paper), we
will not renormalize the expectation values using the
explicit form of the corresponding counterterms. Instead,
we follow a technique presented in [27,39]1 and use the fact
that the counterterms are geometric quantities independent
of the quantum state, and the fact that the expectation
values diverge at the event horizon most rapidly in the
Boulware state, in order to obtain the leading behavior of
the renormalized expectation values in this state using the
following subtractions:

hΦ̂2ðxÞiB;ren ≅ hΦ̂2ðxÞiB;ren − hΦ̂2ðxÞiU;ren ¼ hΦ̂2ðxÞiB − hΦ̂2ðxÞiU; r → rþ ð3:1Þ

and similarly

hT̂μνðxÞiB;ren ≅ hT̂μνðxÞiB;ren − hT̂μνðxÞiU;ren ¼ hT̂μνðxÞiB − hT̂μνðxÞiU; r → rþ; ð3:2Þ

where the subscripts B and U denote the Boulware and Unruh states, respectively.
In Refs. [27,39], formal expressions for hΦ̂2i and hT̂μνi (in the three quantum states discussed here) as mode sums

involving the Boulware modes (see Sec. II A) were found. Let us quote them here for future reference.2 If we denote the
Boulware modes by fupωlm and finωlm, we have for hΦ̂2i the following expressions:

hΦ̂2ðxÞiB ¼
Z

∞

0

dω
X
l;m

½jfupωlmðxÞj2 þ jfinωlmðxÞj2�; ð3:3Þ

hΦ̂2ðxÞiU ¼
Z

∞

0

dω
X
l;m

�
coth

�
πω

κþ

�
jfupωlmðxÞj2 þ jfinωlmðxÞj2

�
; ð3:4Þ

hΦ̂2ðxÞiH ¼
Z

∞

0

dω
X
l;m

coth

�
πω

κþ

�
½jfupωlmðxÞj2 þ jfinωlmðxÞj2�; ð3:5Þ

where again the subscripts B, U, and H denote the Boulware, Unruh, and Hartle-Hawking states, respectively. For the
stress-energy tensor hT̂μνi, we similarly have

hT̂μνðxÞiB ¼
Z

∞

0

dω
X
l;m

fTμν½fupωlmðxÞ; fup�ωlmðxÞ� þ Tμν½finωlmðxÞ; fin�ωlmðxÞ�g; ð3:6Þ

hT̂μνðxÞiU ¼
Z

∞

0

dω
X
l;m

�
coth

�
πω

κþ

�
Tμν½fupωlmðxÞ; fup�ωlmðxÞ� þ Tμν½finωlmðxÞ; fin�ωlmðxÞ�

�
; ð3:7Þ

hT̂μνðxÞiH ¼
Z

∞

0

dω
X
l;m

coth

�
πω

κþ

�
fTμν½fupωlmðxÞ; fup�ωlmðxÞ� þ Tμν½finωlmðxÞ; fin�ωlmðxÞ�g; ð3:8Þ

1Note, however, that in these references the scalar field is conformally coupled instead of minimally coupled.
2Notice that Refs. [27,39] considered Schwarzschild spacetime and a conformally coupled scalar field, while we are interested in

Reissner-Nordström spacetime and a minimally coupled scalar field. However, there is no serious qualitative difference between the two
for this analysis (carried out in the exterior region of the BH), and the expressions map into each other under κ ↔ κþ, where κ is the
surface gravity of the BH, and under a suitable change in the functional form of the integrand in the mode-sum expression for the stress-
energy tensor.
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where

Tμν½f; f�� ¼
1

2
ðf;μf�;ν þ f;νf�;μ − gμνgαβf;αf�;βÞ:

Substituting the above expressions for hΦ̂2i and hT̂μνi in
the different states into Eqs. (3.1) and (3.2), we get the
following mode sums for the leading asymptotic behavior
of hΦ̂2iB;ren and hT̂μνiB;ren on approaching the outer (event)
horizon from outside of the BH:

hΦ̂2ðxÞiB;ren ≅ −2
Z

∞

0

dω

e2πω=κþ − 1

X
l;m

jfupωlmðxÞj2;

r → rþ; ð3:9Þ

and

hT̂μνðxÞiB;ren ≅ −2
Z

∞

0

dω

e2πω=κþ − 1

×
X
l;m

Tμν½fupωlmðxÞ; fup�ωlmðxÞ�; r → rþ:

ð3:10Þ

Next, using an asymptotic calculation of the up
Boulware modes fupωlm near the event horizon, we will find
the explicit asymptotic behavior of hΦ̂2iB;ren and hT̂μνiB;ren
by substitution of these modes into Eqs. (3.9) and (3.10). In
order to do it, we begin by exploiting the time-translational
symmetry and write f̃Λωl [recall that f̃

Λ
ωl is related to f

Λ
ωlm via

Eq. (2.5)] as a product of a simple time-dependent part
(common to the up and in modes) and a radial function as
follows:

f̃Λωlðr; tÞ ¼ e−iωtΨΛ
ωlðrÞ: ð3:11Þ

By substituting into Eq. (2.7), we get the following
equation for the radial functions:

ΨΛ
ωl;r�r� þðω2 − VlðrÞÞΨΛ

ωl ¼ 0: ð3:12Þ

The asymptotic forms of these functions are easily deter-
mined from those of f̃Λωl [given in Eqs. (2.9) and (2.10)] and
are given by

Ψin
ωlðrÞ ≅

�
τinωle

−iωr� ; r� → −∞
e−iωr� þ ρinωle

iωr� ; r� → ∞
;

and

Ψup
ωlðrÞ ≅

�
eiωr� þ ρupωle

−iωr� ; r� → −∞
τupωle

iωr� ; r� → ∞
;

where ρΛωl and τΛωl are the reflection and transmission
coefficients (corresponding to the mode Λ), respectively.
Now, since we want to find the asymptotic form of fupωlm

near the event horizon, we concentrate on finding the
asymptotic form of Ψup

ωlðrÞ near r� → −∞. For that, we
expand the potential (2.8) near r ¼ rþ (or r� → −∞) and
get the asymptotic form

VlðrÞ ≅ Cþðr − rþÞ
≅ Cþðrþ − r−Þ exp ð−2κþrþÞ exp ð2κþr�Þ;
r� → −∞; ð3:13Þ

where

Cþ ¼ rþ − r−
r4þ

�
l2 þ lþ 1 −

r−
rþ

�
:

Substituting this potential into Eq. (3.12), we find the
following asymptotic form of the radial equation near
r ¼ rþ:

Rωl;r�r� þ ½ω2 − Cþðrþ − r−Þ expð−2κþrþÞ
× expð2κþr�Þ�Rωl ¼ 0; ð3:14Þ

where RωlðrÞ denotes the asymptotic form of Ψup
ωlðrÞ near

r ¼ rþ. Notice that the boundary condition (or asymptotic
form) of RωlðrÞ at r� → ∞ is different from that of Ψup

ωlðrÞ,
because we are considering an exponential potential in
Eq. (3.14). We are looking for a solution RωlðrÞ that decays
exponentially at r� → ∞ and takes the form eiωr� þ
ρupωle

−iωr� at r� → −∞. The solution that satisfies these
conditions is

Rωlðr�Þ ¼
�

Cþr4þ
rþ − r−

�−iω=ð2κþÞ 2 exp ðiωrþÞ
Γð−iω=κþÞ

× Kiω=κþ

 
2r2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ

rþ − r−

s
eκþðr�−rþÞ

!
;

where KαðzÞ is a modified Bessel function of the second
kind. We can easily write this expression in terms of r by
noticing that at r� → −∞ we have (recall that we are only
interested in Rωl in this asymptotic region)

eκþðr�−rþÞ ≅
�
r − rþ
rþ − r−

�
1=2

; r → rþ:

In the rest of the calculation, we make the assumption
that the leading divergence we are calculating results from
large-l values. In addition to the match between the
analytical expressions thus derived and numerical results
(see below), one can motivate this assumption using the
following heuristic argument. First, we notice that the mode
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sums (3.9) and (3.10) contain the factor ðe2πω=κþ − 1Þ−1,
which decays exponentially at large ω. As a result, the
dominant contribution to the integral over ω comes from
small-ω values (up to the scale κþ=2πω). Next, since at
large-l values (and fixed r) the redial functions ΨΛ

ωl decay
exponentially with l according to the WKB approximation
to the solution of Eq. (3.12) (recall that ω is small), the
dominant contribution to the sum over l comes from l
values that satisfy (see the discussion about the WKB
method in Sec. V B)

l ≤
r2

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðr − r−Þ

p ≡ lMax:

At each r > rþ, lMax is finite and so is the mode sum;
however, at the event horizon (r ¼ rþ) lMax diverges and
we get an infinite contribution to the mode sum. This
suggests that the leading (in r − rþ) divergence we wish to
calculate is a large-l effect, and we assume that it is
obtained from the leading large-l behavior. Therefore,
we take this limit of Rωl. It is more convenient to work
with the variable

l̃ ¼ lþ 1

2
ð3:15Þ

instead of l, and so we write Rωl in terms of l̃ and take the
asymptotic large-l̃ form of it. Using

r2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ

rþ − r−

s
¼ l̃þOðl̃−1Þ ð3:16Þ

we get (writing the expression in terms of r)

RωlðrÞ ≅ l̃−iω=κþ
2 exp ðiωrþÞ
Γð−iω=κþÞ

Kiω=κþ

�
2l̃

�
r − rþ
rþ − r−

�
1=2
�
:

Recalling that as r� → −∞ this radial function should take
the form eiωr� þ ρupωle

−iωr� , we get the following expression
for ρupωl (to leading order in l̃):

ρupωl ≅ l̃−2iω=κþe2iωrþ
Γðiω=κþÞ
Γð−iω=κþÞ

; ð3:17Þ

where ΓðxÞ is the Euler gamma function.
Now that we found the asymptotic form of Ψup

ωlðrÞ near
rþ [recall that Ψup

ωlðrÞ ≅ RωlðrÞ], we have the asymptotic
form of fupωlm using Eqs. (3.11) and (2.5). Substituting it to
Eqs. (3.9) and (3.10) yields the leading asymptotic behavior
of hΦ̂2iB;ren and hT̂μνiB;ren on approaching the outer (event)
horizon of the BH3:

hΦ̂2ðxÞiB;ren ≅ −
κþ

96π2ðr − rþÞ
; r → rþ;

and

hT̂μ
νðxÞiB;ren ≅

κ2þ
5760π2ðr− rþÞ2

0
BBB@
33 0 0 0

0 −11 0 0

0 0 19 0

0 0 0 19

1
CCCA;

r→ rþ: ð3:18Þ

Note that the stress-energy tensor is presented in a mixed
form and in Schwarzschild coordinates. A straightforward
calculation reveals that this expression for the stress-energy
tensor satisfies the energy-momentum conservation equa-
tion at leading order. Moreover, these two expressions for
hΦ̂2iB;ren and hT̂μνiB;ren satisfy Eq. (2.20) at leading order
and correspond to previous numerical results obtained
in [16,17].
We obtained that the expectation values of Φ̂2 and T̂μν in

Boulware state diverge at the event horizon. We shall
proceed to analyze the expectation values of these operators
in Unruh and Hartle-Hawking states in the interior region of
the BH.

IV. THE TWO-POINT FUNCTION IN THE
INTERIOR REGION OF THE BLACK HOLE

In the previous section, we looked at the exterior region
of the BH and used mode-sum expressions for hΦ̂2i and
hT̂μνi [see Eqs. (3.3)–(3.8)] in terms of the Boulware modes
(or outer Eddington-Finkelstein modes) in order to find
their asymptotic behavior on approaching the event (outer)
horizon. The season for using the Boulware modes was the
simple equation satisfied by the radial functions of these
modes. Finding the asymptotic form of these radial
functions enabled us to get the desired asymptotic behavior
of hΦ̂2i and hT̂μνi.
In order to investigate the leading-order behavior of hΦ̂2i

and hT̂μνi near the inner horizon, we will use the same
technique. That is, we will use mode-sum expressions in
terms of the inner (instead of outer) Eddington-Finkelstein
modes, and after finding the asymptotic form of their radial
functions, we will get the asymptotic behavior of hΦ̂2i and
hT̂μνi. It is important to note, however, that even though the
general idea of the calculation is the same as that of the one
carried out in the exterior region, many things are different.
For example, the potential that appears in the radial
equation is no longer positive, a fact that influences the
analysis of the radial functions inside the BH. Moreover,
we will not use subtractions as in Eqs. (3.1) and (3.2).
Instead, we will use explicit renormalization using
counterterms.

3In these calculations we took advantage of the fact that the
leading contribution comes from large-l values and switched the
summation over l with an integral.

ORR SELA PHYS. REV. D 98, 024025 (2018)

024025-8



In this section, we review the form of the mode-sum
expression for the two-point function in the interior region
found in Ref. [25]. The mode sum is in terms of the inner
Eddington-Finkelstein modes, defined in Eqs. (2.12),
(2.13), and (2.5). After taking the coincidence limit, one
gets hΦ̂2i. hT̂μνi can also be obtained after the application
of a certain differential operator.4 The focus in [25] is on

the symmetrized form of the two-point function, which is
also known as the Hadamard elementary function and is
defined by

Gð1Þðx; x0Þ ¼ hfΦ̂ðxÞ; Φ̂ðx0Þgi:

There, it was found that in the Unruh state we have

Gð1Þ
U ðx; x0Þ ¼

X
l;m

Z
∞

0

dω

�
coth

�
πω

κþ

�
ffLωlmðxÞ; fL�ωlmðx0Þg þ

�
coth

�
πω

κþ

�
jρupωlj2 þ jτupωlj2

�
ffRωlmðxÞ; fR�ωlmðx0Þg

þ 2csch

�
πω

κþ

�
ReðρupωlffRωlmðxÞ; fL�−ωlmðx0ÞgÞ

�
; ð4:1Þ

where ρupωl and τ
up
ωl are the reflection and transmission coefficients that correspond to the up Boulware mode (in the exterior

region), respectively. We define curly brackets acting on functions as a symmetrization with respect to the arguments of
these functions, i.e.,

fAðxÞ; Bðx0Þg ¼ AðxÞBðx0Þ þ Aðx0ÞBðxÞ:
In the Hartle-Hawking state, the Hadamard function takes the form

Gð1Þ
H ðx; x0Þ ¼

X
l;m

Z
∞

0

dω

�
coth

�
πω

κþ

�
ðffLωlmðxÞ; fL�ωlmðx0Þg þ ffRωlmðxÞ; fR�ωlmðx0ÞgÞ

þ 2csch

�
πω

κþ

�
ReðρupωlffRωlmðxÞ; fL�−ωlmðx0ÞgÞ

�
: ð4:2Þ

As mentioned above, from these Hadamard functions
one can obtain hΦ̂2i and hT̂μνi in the respective states.
Next, as we did in the last section (Sec. III) in the case of

the exterior region, we decompose f̃Lωl and f̃Rωl [related to
fLωlm and fRωlm through Eq. (2.5)] into a time-dependent part
and a radial function. In contrast to the exterior region, in
the interior the spacelike and timelike nature of the
coordinates t and r� is interchanged. As a result, in the
case of the interior we use the following decomposition:

f̃Lωlðr; tÞ ¼ eiωtψωlðrÞ; f̃Rωlðr; tÞ ¼ e−iωtψωlðrÞ ð4:3Þ
in terms of a single radial function and two different
time-dependent parts. The radial function ψωl satisfies
Eq. (3.12), and its boundary condition is easily determined
from Eqs. (2.12) and (2.13) to be

ψωlðrÞ ≅ e−iωr� ; r� → −∞: ð4:4Þ
Recall that r� → −∞ corresponds to r → rþ and that t
and r� are related to v and uint (in the interior region)
through Eq. (2.2).

Our main remaining task is to find the asymptotic
form of the radial function ψωl near the inner horizon.
Then, using Eqs. (4.1), (4.2), (2.5), and (4.3) we will get the
asymptotic behavior of hΦ̂2i and hT̂μνi near that horizon.

V. THE RADIAL FUNCTION IN THE INTERIOR
REGION OF THE BLACK HOLE

We now turn to the discussion of the radial function ψωl
in the interior region. Let us remind the reader that this
function satisfies Eq. (3.12) along with the boundary
condition given in Eq. (4.4). Our goal is to find its
asymptotic form near the inner horizon. For that, we divide
the interior region r− < r < rþ into three domains and use
different methods in order to get approximations for the
radial functions in these domains. By matching the three
expressions together we will be able to get the desired
asymptotic form near the inner horizon [corresponding to
the boundary condition in Eq. (4.4)]. As in Sec. III, we
work in terms of l̃ [defined in Eq. (3.15)] and take the
leading-order behavior in it. We assume that as in the case
of the Boulware state in the external region, the asymptotic
forms of the quantities we consider near the inner horizon
are determined by this large-l̃ limit (even though the
integrand structures of the two mode sums are different).
This assumption is consistent with numerical results that

4Note that if one only takes the coincidence limit, the result is a
formal mode-sum expression for hΦ̂2i and hT̂μνi. If, on the other
hand, one subtracts the corresponding counterterms in the
process, the result is the renormalized forms.
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will be published elsewhere [18]. Explicitly, we assume
that for each radial function l̃ satisfy

l̃ ≫ ωM;
rþ
M

: ð5:1Þ

A. Region I (r → r+ )

Here we consider the vicinity of the outer horizon. We
already looked at a similar limit in Sec. III, but there we
considered the exterior region and here we look at the
interior. The expansion of the potential given in Eq. (3.13)
remains the same, but since we are inside the BH, r < rþ,
the potential is now negative (instead of positive) and the
asymptotic form of the radial equation [given by Eq. (3.14)
for the case of the exterior region] becomes

ψ I
ωl;r�r� þ ½ω2 þ Cþðrþ − r−Þ exp ð−2κþrþÞ exp ð2κþr�Þ�
× ψ I

ωl ¼ 0: ð5:2Þ

We are looking for a solution that satisfies the boundary
condition given in Eq. (4.4). This solution, taken to leading
order in l̃, is given by

ψ I
ωlðrÞ ≅ l̃iω=κþe−iωrþΓð1 − iω=κþÞJ−iω=κþ

×

�
2l̃

�
rþ − r
rþ − r−

�
1=2
�
; ð5:3Þ

where JαðzÞ is a Bessel function of the first kind. Another
representation, which will turn out to be interesting below,
takes the form

ψ I
ωlðrÞ ¼ pI

1F
IðrÞ þ pI

2F
I�ðrÞ; ð5:4Þ

where

FIðrÞ ¼ e−iπ=4

π
Kiω=κþ

�
−2il̃

�
rþ − r
rþ − r−

�
1=2
�
; ð5:5Þ

pI
1 ¼ e−i

π
4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe−

πω
2κþ ; ð5:6Þ

and

pI
2 ¼ ei

π
4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe

πω
2κþ : ð5:7Þ

B. Region II (The middle region)

Wewould now like to find the form of the radial function
in the region that is not asymptotically close to the outer (or
inner) horizon. This region is defined as the one in which
we can employ the WKB approximation to a good accuracy
in the following way. Defining

kðrÞ≡ ðω2 − VlðrÞÞ1=2

and using the fact that the scale of variation of the potential
VlðrÞ is given by the mass of the BH M, we see from the
radial equation (3.12) that the region (i.e., r values) in
which the (leading order) WKB method yields a good
approximation for the radial function is given by

kðrÞM ≫ 1: ð5:8Þ

Exploiting the fact that we only consider large-l̃modes [see
Eq. (5.1)], we can write the potential VlðrÞ [given in
Eq. (2.8)] to a leading order in l̃ in the following way:

VlðrÞ ≅
�
1 −

2M
r

þQ2

r2

�
l̃2

r2
¼ −

l̃2

r4
ðrþ − rÞðr − r−Þ:

ð5:9Þ

Note that the asymptotic form of the potential used in
Eqs. (3.14) and (5.2) can be obtained from this form in the
limit r → rþ (and the large-l̃ limit of Cþ). Another
consequence of Eq. (5.1) is that we can neglect ω in the
definition of kðrÞ, i.e.,

kðrÞ ≅ jVlðrÞj1=2 ≅
l̃
r2
½ðrþ − rÞðr − r−Þ�1=2: ð5:10Þ

Overall, we can rewrite Eq. (5.8) as follows:

l̃M
r2

½ðrþ − rÞðr − r−Þ�1=2 ≫ 1; ð5:11Þ

and define region II as the one in which Eq. (5.11) is
satisfied.
Since we are only interested in the leading order in l, in

this region we use the leading-order WKB form for the
radial function. We therefore define

ψ II
ωl ¼ k−1=2ðrÞ

�
aþ exp

�
i
Z

kðrÞdr�
�

þ a− exp

�
−i
Z

kðrÞdr�
��

; ð5:12Þ

where the coefficients aþ and a− are determined by
matching ΨII

ωl and ΨI
ωl (see below). The integral over

kðrÞ is readily calculated using Eq. (5.10), and we get

Z
kðrÞdr� ¼ −l̃ arctan

�
r −M

½ðrþ − rÞðr − r−Þ�1=2
�
:

As a result, we have
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ψ II
ωl ¼

rffiffĩ
l

p ½ðrþ − rÞðr − r−Þ�−1=4
�
aþ exp

�
−il̃ arctan

�
r −M

½ðrþ − rÞðr − r−Þ�1=2
��

þ a− exp
�
il̃ arctan

�
r −M

½ðrþ − rÞðr − r−Þ�1=2
���

: ð5:13Þ

We can now look at the limit r� → −∞ of ψ II
ωl and

compare it with the limit r� → ∞ of ψ I
ωl. The two

expressions thus obtained should yield the same result
for ψωl (in this overlapping region) and serve as a way to
obtain aþ and a−. Matching the two expressions, we get
(see the Appendix for more details)

aþ ¼
�
κþ
2π

�
1=2

il̃−1ei
π
4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe−

πω
2κþ

ð5:14Þ
and

a− ¼
�
κþ
2π

�
1=2

ð−iÞl̃eiπ4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe
πω
2κþ :

ð5:15Þ
An interesting observation is that each exponential term

in ψ II
ωl corresponds in the limit r� → −∞ (discussed above)

to one of the Bessel functionsKαðzÞ in the representation of
ψ I
ωl given in Eq. (5.4) (when taken in the limit r� → ∞). In

other words, in the overlapping region each Bessel function
term turns into an exponent term.

C. Region III (r → r− )
As in region I, we can find from the asymptotic form of

the potential (now near r−) the corresponding asymptotic
form of the radial equation. Then, by finding a solution that
matches to ψ II

ωl in the overlap between regions II and III, we
would obtain ψ III

ωl, which is the asymptotic form of the
radial function ψωl near r− and the desired result of this
section.
Expanding the potential near r− (as was done in Sec. VA

and in Sec. III near rþ), we get the following asymptotic
form of the radial equation:

ψ III
ωl;r�r� þ ½ω2 − C−ðrþ − r−Þ exp ð2κ−r−Þ exp ð−2κ−r�Þ�
× ψ III

ωl ¼ 0; ð5:16Þ
where

C− ¼ −
rþ − r−

r4−

�
l2 þ lþ 1 −

rþ
r−

�

has the following leading behavior at large l (or l̃):

C− ≅ −
2κ−
r2−

l̃2:

This equation is analogous to Eq. (3.16) (but note that C− is
negative while Cþ is positive).
The general solution (to leading order in l̃) to Eq. (5.16)

can be written as

ψ III
ωl ¼ pIII

1 FIIIðrÞ þ pIII
2 FIII�ðrÞ; ð5:17Þ

where

FIIIðrÞ ¼ e−iπ=4

π
Kiω=κ−

�
−2il̃

�
r − r−
rþ − r−

�
1=2
�
: ð5:18Þ

As stated above, the coefficients pIII
1 and pIII

2 are determined
by matching ψ III

ωl in the limit r� → −∞ with ψ II
ωl in the limit

r� → ∞. The result is (see Appendix for more details)

pIII
1 ¼ r−

rþ
ð−1Þl̃e−i3π4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe

πω
2κþ ð5:19Þ

and

pIII
2 ¼ r−

rþ
ð−1Þl̃e−iπ4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe−

πω
2κþ : ð5:20Þ

Analogous to the observation made at the end of the last
subsection, here also an exponential term in ψ II

ωl turns in the
overlapping region (between regions II and III) into a
Bessel function term in ψ III

ωl.
An alternative way to write ψ III

ωl in terms of a different
kind of Bessel function is as follows:

ψ III
ωl ¼ ThðrÞ þ Rh�ðrÞ;

where

hðrÞ ¼ l̃−iω=κ−e−iωr−Γð1þ iω=κ−ÞJiω=κ−
�
2l̃

�
r − r−
rþ − r−

�
1=2
�
;

T ¼ ð−1Þl̃−1=2
�
r−
rþ

�
l̃iωðκ

−1
þ þκ−1− Þe−iωðrþ−r−Þ

Γð1 − iω=κþÞ
Γð1þ iω=κ−Þ

sinh ½1
2
πωðκ−1þ þ κ−1− Þ�

sinh ðπω=κ−Þ
; ð5:21Þ
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and

R ¼ ð−1Þl̃þ1=2

�
r−
rþ

�
l̃iωðκ

−1
þ −κ−1− Þe−iωðrþþr−Þ Γð1 − iω=κþÞ

Γð1 − iω=κ−Þ
sinh ½1

2
πωðκ−1þ − κ−1− Þ�

sinh ðπω=κ−Þ
: ð5:22Þ

The advantage of this form is that the function hðrÞ satisfies

hðr�Þ ≅ e−iωr� ; r� → ∞;

when viewed as a function of r�. As a result, we have

ψ III
ωl ≅ Te−iωr� þ Reiωr� ; r� → ∞: ð5:23Þ

Therefore, if we recall that the “initial condition” is given
by Eq. (4.4), we see that we can regard R and T as reflection
and transmission coefficients inside the BH, respectively.

D. The Wronskian

A nontrivial check for the above expressions for ψωl in
the different regions is the computation of the correspond-
ing Wronskians. The Wronskian of Eq. (3.12) is conserved,
and therefore we expect the Wronskians calculated with
respect to ψ I

ωl, ψ
II
ωl, and ψ III

ωl to be the same. In region I, we
have [using the asymptotic form given in Eq. (4.4)]

W ¼ 2iImðψ I
ωl;r�ψ

I�
ωlÞ ¼ −2iω:

In region II, we can use the general form given in Eq. (5.12)
[or the explicit form of Eq. (5.13)] and get

W ¼ 2iImðψ II
ωl;r�ψ

II�
ωl Þ ¼ 2iðjaþj2 − ja−j2Þ:

When substituting aþ and a− from Eqs. (5.14) and (5.15),
we indeed obtain the same result as in region I.
Similarly, in region III we can easily calculate the

Wronskian using the asymptotic form given in
Eq. (5.23). We find

W ¼ 2iImðψ III
ωl;r�ψ

III�
ωl Þ ¼ −2iωðjTj2 − jRj2Þ;

and again after the substitution of T and R from Eqs. (5.21)
and (5.22), we get the same result as in regions I and II.

VI. ASYMPTOTIC BEHAVIOR OF hΦ̂2iren AND
hT̂μνiren NEAR THE INNER HORIZON

Now we have all the ingredients that we need in order to
calculate the leading asymptotic behavior of hΦ̂2iren and
hT̂μνiren near the inner horizon. We first start from analyz-
ing hΦ̂2iren and then move to hT̂μνiren.

A. hΦ̂2iren
Let us begin by considering the Hartle-Hawking state. In

order to find hΦ̂2iH;ren, we use the renormalization method
described in Sec. II B; see Eq. (2.16). For that, we first need

to find Gð1Þ
H ðx; x0Þ,5 conveniently expressed in Eq. (4.2) in

terms of the inner Eddington-Finkelstein modes fLωlmðxÞ
and fRωlmðxÞ. As mentioned in Sec. II B, we take the
separation between the two points x and x0 to be in the t
direction. Specifically, we choose x ¼ ðt; r; θ;φÞ and
x0 ¼ ðtþ ε; r; θ;φÞ. Then, substituting ψ III

ωlðrÞ given by
Eq. (5.17) into Eq. (4.3), and the resulting f̃Lωlðt; rÞ and
f̃Rωlðt; rÞ into Eq. (2.5), we obtain the inner Eddington-
Finkelstein modes fLωlmðxÞ and fRωlmðxÞ near the inner
horizon (i.e., in region III). Next, we substitute these modes
[along with the expression for ρupωl we found in Eq. (3.17)]
into Eq. (4.2) and get

Gð1Þ
H ðx; x0Þ ≅ 8π

κ−

Z
∞

0

dω cos ðωεÞ
X
l;m

jClmj2jFIIIðrÞj2;

r → r−;

where FIIIðrÞ is given by Eq. (5.18) and Clm by Eq. (2.6).
As in Sec. III, we take advantage of the fact that the leading
contribution comes from large-l values and switch the
summation over l with an integral. After we substitute
for Clm using Eq. (2.6) and perform the summation overm,
we find

Gð1Þ
H ðx; x0Þ ≅ 2

πðrþ − r−Þ
Z

∞

0

dωcos ðωεÞ
Z

∞

0

jFIIIðrÞj2l̃dl̃;

r→ r−: ð6:1Þ

The integral over l̃ in this expression is divergent. In order
to find its correct value, we proceed as follows. We start by
writing it in the form

5Instead of the two-point function hΦ̂ðxÞΦ̂ðx0Þi that appears in
Eq. (2.16), we here use the Hadamard function Gð1Þ

HHðx; x0Þ.
Therefore, we need to include an extra factor of 1=2 in front of
Gð1Þ

HHðx; x0Þ in Eq. (2.16).
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I0 ≡
Z

∞

0

jFIIIðrÞj2l̃dl̃ ¼ π−2
Z

∞

0

Kiω=κ−

�
−2il̃

�
r − r−
rþ − r−

�
1=2
�
Kiω=κ−

�
2il̃

�
r − r−
rþ − r−

�
1=2
�
l̃dl̃

≡ π−2
Z

∞

0

Kνð−μl̃ÞKνðμl̃Þl̃dl̃;

where we used the fact that ½KicðidÞ�� ¼ Kicð−idÞ for
c; d ∈ R, and defined

μ≡ 2i

�
r − r−
rþ − r−

�
1=2

; ν≡ iω=κ−:

Next, we regulate this integral by adding a small, real, and
positive δ to the arguments of the Bessel functions, and get

I0 ¼ π−2
Z

∞

0

Kνð−μl̃ÞKνðμl̃Þl̃dl̃ → Iδ

≡ π−2
Z

∞

0

Kν½ð−μþ δÞl̃�Kν½ðμþ δÞl̃�l̃dl̃:

We can now use the formula

Z
∞

0

KνðaxÞKνðbxÞxdx ¼ πðabÞ−νða2ν − b2νÞ
2 sin ðπνÞða2 − b2Þ ;

valid for

jReðνÞj < 1; Reðaþ bÞ > 0;

and obtain

Iδ ¼
ð−μ2 þ δ2Þ−ν½ð−μþ δÞ2ν − ðμþ δÞ2ν�
2π sin ðπνÞ½ð−μþ δÞ2 − ðμþ δÞ2� :

Expanding Iδ in powers of δ and substituting the expres-
sions for μ and ν, we have

Iδ ¼
1

8πδ

�
r − r−
rþ − r−

�
−1=2

−
ω

8πκ−

�
r − r−
rþ − r−

�
−1

coth
�
πω

κ−

�
þOðδÞ:

We see that the divergent (as δ → 0) term in Iδ is
independent of ω and thus does not contribute to

Gð1Þ
H ðx; x0Þ when substituted in Eq. (6.1) (this term is a

“blind spot” in the language of [33]). As a result, we can
remove this term and then take the limit δ → 0. The
resulting regularized integral over l̃ is

½I0�reg ¼ −
ω

8πκ−

�
r − r−
rþ − r−

�
−1

coth

�
πω

κ−

�
;

and after substituting it into Eq. (6.1), we get

Gð1Þ
H ðx; x0Þ ≅ 2

πðrþ − r−Þ
Z

∞

0

dω cos ðωεÞ½I0�reg

¼ −
1

4π2κ−ðr − r−Þ
Z

∞

0

ω coth

�
πω

κ−

�
× cos ðωεÞdω; r → r−: ð6:2Þ

We can now move on to consider the second term in
the right-hand side of Eq. (2.16), the DeWitt-Schwinger
counterterm GDSðx; x0Þ. We have a massless (m ¼ 0),
minimally coupled (ξ ¼ 0) scalar field in Reissner-
Nordström spacetime (R ¼ 0). Therefore, substituting
m ¼ ξ ¼ R ¼ 0 in Eq. (2.17), we get

GDSðx; x0Þ ¼
1

8π2σ
þ 1

96π2
Rμν

σ;μσ;ν

σ
:

Now, recall that σ is the biscalar of geodetic separation
and that we took the points x and x0 to be separated
along the t direction: x ¼ ðt; r; θ;φÞ and x0 ¼ ðtþ ε;
r; θ;φÞ. Then, we can look at the (shortest) geodesic
that connects x and x0 and expand it in powers of ε.
For a general metric function fðrÞ [i.e., ð1 − 2M=rþ
Q2=r2Þ → fðrÞ], we get the following expansion of
GDSðx; x0Þ in powers of ε:

GDSðx; x0Þ ¼ −
1

4π2fðrÞ ε
−2 þ f0ðrÞ2

192π2fðrÞ −
1

48π2fðrÞR00

þOðε2Þ;

and for the Reissner-Nordström metric, fðrÞ ¼ ð1 − 2M=
rþQ2=r2Þ, we obtain near r ¼ r− [henceforth, we
remove the Oðε2Þ terms]

GDSðx; x0Þ ≅
1

8π2κ−ðr− r−Þ
ε−2 −

κ−
96π2ðr− r−Þ

; r→ r−:

Using

ε−2 ¼ −
Z

∞

0

ω cos ðωεÞdω;

we can also write

GDSðx; x0Þ ≅ −
1

8π2κ−ðr − r−Þ
Z

∞

0

ω cos ðωεÞdω

−
κ−

96π2ðr − r−Þ
; r → r−: ð6:3Þ
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Now, we can finally find the leading behavior of hΦ̂2iH;ren near r ¼ r−. Substituting Eqs. (6.2) and (6.3) into (2.16),
we get

hΦ̂2ðxÞiH;ren ¼ lim
x0→x

½hΦ̂ðxÞΦ̂ðx0ÞiH −GDSðx; x0Þ� ¼ lim
x0→x

�
1

2
Gð1Þ

H ðx; x0Þ −GDSðx; x0Þ
�

≅ −
1

8π2κ−ðr − r−Þ
Z

∞

0

ω

�
coth

�
πω

κ−

�
− 1

�
dωþ κ−

96π2ðr − r−Þ
¼ 0; r → r−: ð6:4Þ

Note that in the second line the limit ε → 0 was taken
before the integration was carried out. Of course, we could
have performed the integration first (using the Abel-
summation integral; see [30]) and only then take the
ε → 0 limit and get the same result. We obtained that
the coefficient of the expected leading divergence
[∝ ðr − r−Þ−1] of hΦ̂2iH;ren near the inner horizon vanishes.
As a result, according to this analysis hΦ̂2iH;ren may have a
weaker divergence, such as ∝ log ðr − r−Þ, or it may be
regular. This is consistent with new numerical results [18]
showing that hΦ̂2iH;ren approaches a finite value at the inner
horizon and is therefore regular.
As for the Unruh state, we obtain from subtracting

Eqs. (4.2) and (4.1) that

Gð1Þ
H ðx; x0Þ −Gð1Þ

U ðx; x0Þ

¼
Z

∞

0

dω
X
l;m

jτupωlj2
�
coth

�
πω

κþ

�
− 1

�
ffRωlmðxÞ; fR�ωlmðx0Þg:

Then, from Eq. (2.16) we get

hΦ̂2ðxÞiH;ren − hΦ̂2ðxÞiU;ren

¼
Z

∞

0

dω
X
l;m

jτupωlj2
�
coth

�
πω

κþ

�
− 1

�
jfRωlmðxÞj2:

This quantity does not contribute at the leading order, since
its dominant part comes from small ω and large l values,
and is highly suppressed by τupωl in this domain. Therefore,
the leading divergence of hΦ̂2iU;ren will be the same as that
of hΦ̂2iH;ren, which is vanishing. This again matches the
numerical results [18].

B. hT̂μνiren
The same argument that appears at the end of the

previous subsection for Φ̂2 applies to T̂μν as well; hence
the leading divergence of the stress-energy tensor should be
the same for both the Unruh and Hartle-Hawking states. As
in the previous subsection, we choose to calculate the
expectation value in the Hartle-Hawking state (because
the mode-sum expressions are less complicated). We follow
the renormalization prescription mentioned in Sec. II B.

Instead of calculating each of the components of
hT̂μνiH;ren independently, we can use the conservation of
stress energy and Eq. (2.20) in order to relate the various
components, ending up with only one independent
component. To see this, note that we found that the
“leading divergence” of hΦ̂2iH;ren near the inner horizon
is ∝ ðr − r−Þ−1 [see, for example, Eq. (6.2) or (6.4)] and
that the corresponding coefficient vanishes. As a result, we
expect the leading divergence of hT̂μνiH;ren to be ∝
ðr − r−Þ−2 with a potentially nonvanishing coefficient
[similar to hT̂μνiB;ren in the exterior region near r ¼ rþ;
see Eq. (3.18)]. Recalling that we have a spherical
symmetry, we can therefore write

hT̂μ
νiH;ren ≅ ðr − r−Þ−2

0
BBB@

ct 0 0 0

0 cr 0 0

0 0 cθ 0

0 0 0 cθ

1
CCCA; r → r−:

ð6:5Þ

In order to use the conservation of energy and momentum,
we quote the following formula:

Aμ
ν;μ ¼ 1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi

−g
p

Aμ
νÞ;μ −

1

2
gμσ;νAμσ;

valid for a general rank-2 symmetric tensor Aμ
ν. Applying it

to the conservation equation

hT̂μ
ν;μiH;ren ¼ 0

and choosing ν ¼ r, we get at leading order

0 ¼ hT̂μ
r;μiH;ren ≅ hT̂r

r;riH;ren −
1

2
gtt;rhT̂ttiH;ren

−
1

2
grr;rhT̂rriH;ren ≅ −

1

2
ðr − r−Þ−3ðct þ 3crÞ;

r → r−;

hence

ct þ 3cr ¼ 0: ð6:6Þ
Next, we would like to use Eq. (2.20). Since Tanomaly is a

local, geometric quantity built from curvature scalars [see
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Eq. (2.19)], it is regular at the inner horizon. Moreover,
since the divergence (if any) of hΦ̂2iH;ren at r ¼ r− is
weaker than ∝ ðr − r−Þ−1, the divergence of □hΦ̂2iH;ren is
weaker than ∝ ðr − r−Þ−2.6 Therefore, according to
Eq. (2.20), the trace of the stress-energy tensor vanishes
at leading order [∝ ðr − r−Þ−2] and we have from Eq. (6.5)

ct þ cr þ 2cθ ¼ 0: ð6:7Þ

Combining Eqs. (6.6) and (6.7), we obtain

cr ¼ cθ ¼ −
1

3
ct: ð6:8Þ

As mentioned above, we see that there is only one
independent component of hT̂μνiH;ren at leading order.
We choose to calculate hT̂ttiH;ren. Now, since the trace
hT̂μ

μiH;ren does not contribute at leading order, it is enough
to calculate hfΦ̂;tðxÞΦ̂;tðx0ÞgiH instead of the whole
expression for hT̂ttðx; x0ÞiH.7 As before, we take the
splitting to be in the t direction and choose x ¼
ðt; r; θ;φÞ and x0 ¼ ðtþ ε; r; θ;φÞ. It is easy to see that
the mode-sum expression for this quantity is the same as

that ofGð1Þ
H ðx; x0Þ, given in Eq. (6.2), up to an extra factor of

ω2 in the integrand. Thus, we have

hT̂ttðx; x0ÞiH ≅
1

2
hfΦ̂;tðxÞ; Φ̂;tðx0ÞgiH ≅ −

1

8π2κ−ðr − r−Þ
Z

∞

0

ω3 coth
�
πω

κ−

�
cos ðωεÞdω; r → r−: ð6:9Þ

In [33], the general form of the counterterm CDS
μν in terms of Christensen’s original one [35] was found, and its expansion

in powers of ε (the t-splitting parameter) was explicitly obtained for a massless, minimally coupled scalar field in
Schwarzschild spacetime. The extension of this result to Reissner-Nordström spacetime is given by8

CDS
μν ðx; x0Þ ¼

Z
∞

0

�
aμνω3 þ bμνωþ cμν lnðωÞ þ dμν

1

ωþ μe−γ

�
cos ðωεÞdωþ eμν; ð6:10Þ

where the coefficients btt, ctt, and dtt do not contribute at
leading order and

att ≅ −
1

8π2κ−ðr − r−Þ
; r → r−;

ett ≅ −
κ3−

960π2ðr − r−Þ
; r → r−:

Substituting the expressions we obtained for the counter-
term and the (split) stress-energy tensor [given by Eqs. (6.9)
and (6.10)] into Eq. (2.18) and taking the limit ε → 0,
we get

hT̂ttiH;ren ≅ −
1

8π2κ−ðr − r−Þ
Z

∞

0

�
coth

�
πω

κ−

�
− 1

�
ω3dω

þ κ3−
960π2ðr − r−Þ

¼ 0; r → r−:

Using Eq. (6.8), we find that the coefficient of the expected
leading divergence of all the components of hT̂μνiH;ren near

the inner horizon vanishes. As mentioned above, the same
applies to hT̂μνiU;ren.

VII. DISCUSSION

In this work we considered a massless, minimally coupled
quantum scalar field on a RN black hole background and
studied the asymptotic behavior of hΦ̂2iren and hT̂μνiren near
the inner and outer horizons in quantum states in which they
are expected to diverge. Our strategy was to analyze the
modes of the scalar field near the horizons, where analytic
expressions can be obtained. Then, using expressions for
these expectation values as mode sums of these modes, we
obtained their leading asymptotic behavior near the horizons.
In this calculation we made the assumption that this
asymptotic behavior is determined by the large-l limit of
the modes, and we found agreement with [16–18].
In Sec. III, we used this analytical approach to obtain the

known divergence of hΦ̂2iren and hT̂μνiren, evaluated in the
Boulware state, at the event horizon. We derived new and
explicit analytic expressions for the asymptotic forms of
these expectation values, which correspond to the numeri-
cal results obtained in Refs. [16,17].
Then, in the rest of the paper, we applied our approach to

the calculation of the asymptotic behavior of hΦ̂2iren and
hT̂μνiren, evaluated in Unruh and Hartle-Hawking states,
near the inner (Cauchy) horizon. We found that the
coefficient of this “leading” divergence vanishes, and

6For example, if hΦ̂2iH;ren ∝ log ðr − r−Þ, then □hΦ̂2iH;ren is
regular at r ¼ r−.

8I thank A. Levi for providing this counterterm for me.

7Notice that, as discussed in Sec. II B 1, all the derivatives in
the expression for the stress-energy tensor are taken at the same
point x, and the bivector of parallel transport is absent (it appears
in the counterterm instead).

QUANTUM EFFECTS NEAR THE CAUCHY HORIZON OF A … PHYS. REV. D 98, 024025 (2018)

024025-15



therefore the divergence, if it occurs, is weaker than
expected a priori. These a priori expectations may origi-
nate from various different directions. First, by examining
the expressions for the counterterms or the mode sums near
the inner horizon [see, for example, Eq. (6.3)], we might
expect these strong divergences. For example, in the case of
hΦ̂2iren, this yields a ∝ ðr − r−Þ−1 divergence. Second,
these strong divergences exactly correspond to the ones
found in Sec. III in the case of the Boulware state and the
outer (event) horizon. One may expect that this is a general
behavior of these kinds of expectation values near horizons.
Finally, the same strong divergences were obtained in
Ref. [19] for a conformally (rather than minimally) coupled
scalar field, but under a certain approximation that was
carried out. Our goal was thus to calculate the leading
asymptotic forms of hΦ̂2iren and hT̂μνiren near the inner
horizon without recourse to the approximation methods
used before and for a minimally coupled scalar field.
In the case of the Unruh state (describing an evaporating

BH), it was shown in Ref. [13] that the RSET has to diverge
on at least one of the inner horizons (in the RN case).
Therefore, our findings show that this divergence is weaker
than might be expected a priori. This, in turn, opens the
door for a scenario in which the resulting modification of
the metric is finite.
In order to obtain the exact asymptotic form near the

horizon (and not only the leading-order one), numerical
calculation and mode sum of the modes should be employed.

This study will be published in a subsequent paper and its
results match the ones obtained in this article [18].
It will be interesting to apply our analytical approach to

the calculation of the asymptotic form of the RSET of a
conformally coupled scalar field and to test whether the
approximate results of [19] are valid near the inner horizon.
Furthermore, an extension to a more realistic model, such
as to a Kerr black hole background or a quantum electro-
magnetic field instead of a scalar one, will add an important
contribution to the picture.
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APPENDIX THE RADIAL FUNCTION IN THE
INTERNAL REGION OF THE BLACK HOLE

In this appendix we derive the expressions (5.14), (5.15),
(5.19), and (5.20) for the coefficients in the definitions of
ψ II
ωl and ψ III

ωl. The strategy is to take the r� → �∞ limit of
ψ II
ωl and compare it with the limits of ψ I

ωl and ψ III
ωl

corresponding to the overlapping regions with ψ II
ωl. We

begin with the expression for ψ II
ωl given in Eq. (5.13), which

we reproduce here for convenience,

ψ II
ωl ¼

rffiffĩ
l

p ½ðrþ − rÞðr − r−Þ�−1=4
�
aþ exp

�
−il̃ arctan

�
r −M

½ðrþ − rÞðr − r−Þ�1=2
��

þ a− exp

�
il̃ arctan

�
r −M

½ðrþ − rÞðr − r−Þ�1=2
���

:

In order to obtain ψ II
ωl at the limits r → r�, we first consider the exponents at these limits,

arctan

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrþ − rÞðr − r−Þ

p �
¼
( π

2
− 2ð rþ−r

rþ−r−
Þ1=2 þO½ðrþ − rÞ3=2�; r → rþ

− π
2
þ 2ð r−r−

rþ−r−
Þ1=2 þO½ðr − r−Þ3=2�; r → r−

;

from which we get

ψ II
ωl ≅

rþffiffĩ
l

p ½ðrþ − rÞðrþ − r−Þ�−1=4
�
aþð−iÞl̃ exp

�
2il̃

�
rþ − r
rþ − r−

�
1=2
�

þ a−il̃ exp

�
−2il̃

�
rþ − r
rþ − r−

�
1=2
��

; r → rþ; ðA1Þ

and

ψ II
ωl ≅

r−ffiffĩ
l

p ½ðrþ − r−Þðr − r−Þ�−1=4
�
aþil̃ exp

�
−2il̃

�
r − r−
rþ − r−

�
1=2
�

þ a−ð−iÞl̃ exp
�
2il̃

�
r − r−
rþ − r−

�
1=2
��

; r → r−: ðA2Þ
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Next, to get ψ I
ωl and ψ

III
ωl in the overlapping regions, we take the r → −∞ limit of ψ I

ωl and the r → ∞ limit of ψ III
ωl. Using

the following asymptotic form of the Bessel K function,

KcðyÞ ≅
ffiffiffiffiffi
π

2y

r
exp ð−yÞ; y → ∞;

valid for any complex number c, we can find the desired asymptotic forms of FIðrÞ and FIIIðrÞ given in Eqs. (5.5)
and (5.18),

FIðrÞ ≅ 1

2
ffiffiffiffiffi
πl̃

p
�
rþ − r
rþ − r−

�
−1=4

exp

�
2il̃

�
rþ − r
rþ − r−

�
1=2
�
; r → −∞;

FIIIðrÞ ≅ 1

2
ffiffiffiffiffi
πl̃

p
�

r − r−
rþ − r−

�
−1=4

exp

�
2il̃

�
r − r−
rþ − r−

�
1=2
�
; r → ∞:

Substituting these expressions in (5.4) and (5.17), we obtain

ψ I
ωlðrÞ ≅

1

2
ffiffiffiffiffi
πl̃

p
�
rþ − r
rþ − r−

�
−1=4

�
pI
1 exp

�
2il̃

�
rþ − r
rþ − r−

�
1=2
�
þ pI

2 exp

�
−2il̃

�
rþ − r
rþ − r−

�
1=2
��

; r → −∞; ðA3Þ

and

ψ III
ωl ≅

1

2
ffiffiffiffiffi
πl̃

p
�

r − r−
rþ − r−

�
−1=4

�
pIII
1 exp

�
2il̃

�
r − r−
rþ − r−

�
1=2
�
þ pIII

2 exp

�
−2il̃

�
r − r−
rþ − r−

�
1=2
��

; r → ∞: ðA4Þ

We can now compare (A1) with (A3), and (A2) with (A4). We find

aþ ¼
�
κþ
2π

�
1=2

il̃pI
1 ¼

�
κþ
2π

�
1=2

il̃−1ei
π
4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe−

πω
2κþ ;

a− ¼
�
κþ
2π

�
1=2

ð−iÞl̃pI
2 ¼

�
κþ
2π

�
1=2

ð−iÞl̃eiπ4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe
πω
2κþ ;

pIII
1 ¼

�
κ−
2π

�
−1=2

ð−iÞl̃a− ¼ r−
rþ

ð−1Þl̃e−i3π4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe
πω
2κþ ;

pIII
2 ¼

�
κ−
2π

�
−1=2

il̃aþ ¼ r−
rþ

ð−1Þl̃e−iπ4 l̃iω=κþe−iωrþΓð1 − iω=κþÞe−
πω
2κþ ;

which are the expressions given in Eqs. (5.14), (5.15), (5.19), and (5.20).
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