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The Birkhoff theorem is a well-known result in general relativity, and it is used in many applications.
However, its most general version, due to Bona, is almost unknown and presented in a form less accessible
to the relativist and cosmologist community. Moreover, many wield it mistakenly as a simple transposition
of Newton’s iron sphere theorem. In the present work, we propose a modern, dual null, presentation—
useful in many explorations, including black holes—of the theorem that renders accessible most of the
results of Bona’s version. In addition, we discuss the fluid contents admissible for the application of the
theorem, beyond a vacuum, and we demonstrate how the formalism greatly simplifies solving
the dynamical equations and allows one to express the solution as a power expansion in r. We present
a family of solutions that share the properties predicted by the Birkhoff theorem and discuss the existence
of trapped and antitrapped regions. The formalism manifestly shows how the type of region—trapped or
untrapped—determines the character of the Killing vector.
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I. INTRODUCTION

The Birkhoff theorem [1–4] states that the vacuum
spherically symmetric solutions are static and independent
of changes in the matter distribution sourcing the gravita-
tional field, provided the latter changes preserve the
spherical symmetry. It is often referred as the general
relativistic counterpart of Newton’s iron sphere theorem
[5,6], yet one should be wary that this is justified only when
one is dealing with the gravitational field in a vacuum
(where the case of a cosmological constant is included).
Indeed, as pointed out in Ref. [7], Birkhoff’s theorem is
commonly misinterpreted as determining only the gravi-
tational field inside a spherically symmetric matter distri-
bution by its enclosed mass, while the static thin spherical
shell surrounding a spherical central object initially pro-
posed by Ref. [8] demonstrates that the intermediate
vacuum region’s gravity depends also on the outer shell’s

mass. We may speculate that the similarity between the
field equations of general relativity (GR) in the case of
spherical symmetry and the Newtonian equations for a
central field induces this misunderstanding. However, this
equivocated procedure oversees the nonlinearity of GR,
which distinguishes it markedly from Newtonian gravity.
In popular textbooks such as Hobson and Lasenby [9],

the presentation of the theorem is, for short, that the
only vacuum solution with spherical symmetry is
Schwarzschild’s (although the original formulation was
that the only vacuum solution with spherical symmetry is
static [10]). Physically, the Birkhoff theorem implies that if
a spherically symmetric star undergoes strictly radial
pulsations, then it cannot propagate any disturbance into
the surrounding space [11]. This is obviously related to the
fact that the lowest multipolar radiation that propagates in
general relativity is quadrupole radiation.
In the present work, we consider the Birkhoff theorem

and discuss it from a formulation particularly fruitful for the
exploration of causal structures, in particular, of dynamical
black holes, based on the behavior of the expansion of null
congruences. This so-called dual null formalism is of great
interest, as it is particularly adequate and useful to deal with
dynamical black holes, and underlies many recent results
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regarding both the thermodynamics of black holes and
more general cosmological settings [13–18].
From an observational point of view, all the information

we get from the Universe reaches us through null paths
[19–21]. In fact, both electromagnetic radiation and the
recently detected gravitational waves [22,23] travel on null
congruences, and hence the dual null formalism, being
developed from the consideration of null vectors, presents
itself as a particularly appropriate tool to connect theoreti-
cal discussions and an understanding of the observable
Universe. Although a known result, the understanding of
the Birkhoff theorem can benefit from those modern tools.
We show in this work that the dual null formalism allows

us to extend the Birkhoff theorem to more general
geometric frameworks, such as planar or cylindrically
symmetric spacetimes, as well as ADS/CFT settings
[24–26]. Although the generalization of the Birkhoff
theorem to the latter geometrical cases has been previously
obtained in the literature—see Stephani et al. [27] and
references therein—this fact is widely ignored and was
derived in a different way in the present work. Moreover,
besides characterizing naturally the admissible matter
models that are compatible with the theorem, the dual null
formalism allows us to find all the solutions for sources that
can be expressed as a power series on r in a simple way.
Finally, the dual null formalism manifestly shows that the
character of the theorem’s additional Killing vector, time-
like or spacelike, naturally follows from the type of region
it applies, trapped or untrapped.
The outline of the present work is as follows. In Sec. II,

we briefly review the literature in connection with the
Birkhoff theorem. This will enable us to situate our work
with regard to the alternative approaches to its derivation as
well as to some of the efforts pursued in the literature to
generalize it. In Sec. III, we present the dual null formalism
used in this work and develop the new proof of the Birkhoff
theorem. In Sec. IV, we discuss the symmetry requirements
that are actually needed and obtain the most general
admissible matter models which are compatible with the
theorem. Finally, we give a brief discussion of our results
in Sec. VI.
A quick remark on the notation: In most instances, we

use the abstract index notation as in Wald’s textbook [28].
However, we swap to the intrinsic mathematical notation
(without indices) when it is convenient. The translation
from the two notations can be readily made by the use
of the base vectors and 1-forms. For a vector Va we
write Va ¼ Vμ∂μ ¼ ∂V and for a 1-form ωa ¼ ωμdxμ. If
ωa ¼ ∂af, for a scalar function f, then ω ¼ df ¼ ∂μf dxμ.

II. GENERAL FORMULATIONS OF THE
BIRKHOFF THEOREM

A generalized and geometrically minded version of the
Birkhoff theorem was put forward by Goenner [29],
pointing out that the theorem relies on the existence of a

three-parameter group of (global) isometries with two-
dimensional non-null orbits and of an additional Killing
vector associated with a G4 group of motions [30]. The
Birkhoff theorem for spherically symmetric vacuum sol-
utions and the Taub theorem for plane-symmetric vacuum
solutions were both generalized to vacuum solutions with
conformal symmetries. In particular, it was proved that any
conformally spherically (respectively, plane-) symmetric
vacuum solution to the Einstein equations must be the
Schwarzschild (respectively, either Taub-Kasner or flat)
solution.
Upgraded versions of the theorem can be found in

Refs. [27,29,31,32], and the most evolved phrasing for
this geometric approach is due to Bona [33], for metrics
that are conformally reducible, that is, g ¼ Y2ĝ, where ĝ is
reducible as the metric of a direct product spacetime. Let

ds2 ¼ Y2ðxCÞðγABdxA dxB þ hαβdyα dyβÞ; ð1Þ

where hαβ and yα are a two-dimensional metric and a
coordinate system, respectively, on the two-dimensional
orbits O2 of G3. Analogously, γAB and xA the correspond-
ing metric and coordinates on V2, which is the orthogonal
submanifold to O2 according to g. Bona’s statement of the
Birkhoff theorem is

(i) Theorem [33].—Metrics with a groupG3 of motions
on non-null orbits O2 and with Ricci tensors of type
[(11)(1,1)] and [(111,1)] admit a group G4 provided
that dY ≠ 0,

emphasizing the requirement dY ≠ 0 and the appropriate
Segré types [33].
Other attempts at generalizing the Birkhoff theorem

can be found in the literature. Generalization to higher
dimensions was achieved by Bronnikov andMelnikov [34],
and a thorough discussion on the relationship between
manifold dimensionality and the existence of Birkhoff-like
theorems was made by Schmidt [35]. Goswami and Ellis
[36–38] have investigated the possibility of extending it by
analyzing whether the theorem remains approximately
true both for an approximately spherical vacuum solution
[36] and also for an approximately vacuum configuration
[37]. They resort to the analysis of perturbations with the
1þ 1þ 2 formalism developed by Clarkson [39]. The
difficulties associated with this pragmatic line of research
stem from the need to remain in the neighborhood of the
vacuum spherically symmetric models and, thus, of defin-
ing the conditions that guarantee the existence of such a
neighborhood.
Following a diverse path, Hernández-Pastora [40] pur-

sued an attempt to get a relationship between the spherical
symmetry and the multipole structure of the so-called
monopole solution.
The Birkhoff theorem was also investigated in connec-

tion with conformal rescaling [41], with the possibility of
extending it to modified theories of gravity [42–44], with
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different hypotheses, as in Ref. [45]—where the key
condition (for Bona) dY ≠ 0 is abandoned and the theorem
still applies under some additional conditions on the matter
sources—and with regard to many other features [46–49].

III. BIRKHOFF THEOREM IN DUAL
NULL FORMALISM

In this section, we briefly present the main tools of the
dual null formalism and apply them to prove and discuss
the necessary conditions for the validity of the Birkhoff
theorem. It is worth pointing out that the dual null
formalism is distinct from operating in null coordinates,
as it deals with optical scalars related to null congruences.
Such quantities are independent of coordinate choice and
can be analyzed in any coordinate set. Null coordinates are
useful in order to represent and compute more simply the
relevant quantities of the dual null formalism, and we take
advantage of this in the following.

A. Spherically symmetric spacetimes
and dual null formalism

In dual null coordinates, any spherically symmetric
metric can be parametrized as

ds2 ¼ −efðdu dvþ dv duÞ þ r2ðdθ2 þ sin2 θ dϕ2Þ; ð2Þ

where f ¼ fðu; vÞ, r ¼ rðu; vÞ, and we omit the tensor
product symbol⊗ for short. Metric (2) is of the form (1) for
Y ¼ rðu; vÞ, γABdxA dxB ¼ − ef

r2 du dv, and hαβdyα dyβ ¼
dθ2 þ sin2 θ dϕ2.
The coordinates in Eq. (2) are also a codimension-two

foliation of the spacetime. The orbits of the G3 group,
here the group of rotations in three dimensions, are two-
dimensional spheres corresponding to O2. Each two-
dimensional sphere is characterized by the pair ðu; vÞ that
are the coordinates on V2.
The null coordinates on V2 are not unique. Hence, by

making a coordinate change of the form ðu; vÞ → ðU;VÞ:

u → UðuÞ; v → VðvÞ; ð3Þ

with U0ðuÞ > 0 and V 0ðvÞ > 0 for all u, v, in order to not
reverse the orientation of the new coordinates. We obtain a
new pair of dual null coordinates:

ds2 ¼ −eFðU;VÞðdU dV þ dV dUÞ þ r2ðU;VÞdΩ2; ð4Þ

with

FðU;VÞ ¼ fðuðUÞ; vðVÞÞ − lnU0ðuðUÞÞ − lnV 0ðvðVÞÞ:
ð5Þ

Let ka be a null vector field orthogonal to the orbits
of the coordinates θ and ϕ everywhere in the spacetime.

We define its expansion ΘðkÞ as the relative variation of the
area form on the orthogonal spheres when transported
along the integral curves of ka:

ΘðkÞ ¼
Lkðr2

ffiffiffiffiffiffiffiffiffiffi
det h

p Þ
r2

ffiffiffiffiffiffiffiffiffiffi
det h

p ¼ 2

r
ka∂ar; ð6Þ

where Lk is the Lie derivative with respect to ka. Using the
coordinate base vectors ∂u and ∂v, we define the two null
expansions related to our coordinates in Eq. (2):

ΘðuÞ ¼
2

r
∂ur; ΘðvÞ ¼

2

r
∂vr: ð7Þ

The null expansions transform under (3) as

ΘðuÞ → U0ðuÞΘðuÞ; ΘðvÞ → V 0ðvÞΘðvÞ: ð8Þ

We see that the value of the null expansions depends on
the coordinate choice, but their sign and the locus where
they vanish are not. Based on this, we may classify each
sphere in the spacetime as

(i) regular, normal or untrapped, if ΘuΘv < 0;
(ii) trapped or future trapped, if ΘuΘv > 0 and Θu < 0;
(iii) antitrapped or past trapped, if ΘuΘv > 0, and

Θu > 0; or
(iv) marginal, if ΘuΘv ¼ 0.
This classification has been an important tool in the

study of black hole physics, especially in the case of
dynamical solutions (see, for example, Refs. [13,50,51],
and references therein, for motivation and applications of
this formalism).
Let the basis forms related to the coordinates ðu; vÞ be

denoted du and dv. Since ΘðuÞdu is invariant under a
change of coordinates [52], we may build a 1-form Ka
called the mean curvature form as

Ka ¼ ΘðuÞ∂auþ ΘðvÞ∂av; ð9Þ

where ∂au and ∂av are the abstract index notation version
of du and dv, respectively.
With the aid of the mean curvature form, we are able to

express simply the null expansion respective to any null
vector field by just contracting it to Ka:

ΘðkÞ ¼ kaKa; ð10Þ

for any ka null and orthogonal to O2. We may also
generalize the definition for any vectors in V2, be it time-
or spacelike, by defining what we call the 2-expansion, in
order to distinguish it from the usual expansion defined as
the divergence of timelike vector fields, as was made in
Ref. [18] in order to deal with the separation between a
collapse and a cosmological expansion (see [53–63]) and as
a tool to define dynamical universal horizons in Ref. [64]
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(see [65–74]). Let be Xa any vector orthogonal to the orbits
O2; then its 2-expansion, denoted ΘðXÞ, is defined as

ΘðXÞ ¼ XaKa: ð11Þ

For the expansions of the null coordinate basis, the
Raychaudhuri equations are written as

LuΘðuÞ − ΘðuÞ∂uf þ
Θ2

ðuÞ
2

þ Ruu ¼ 0; ð12aÞ

LvΘðvÞ − ΘðvÞ∂vf þ
Θ2

ðvÞ
2

þ Rvv ¼ 0: ð12bÞ

The uv component of the Einstein tensor may be written
in terms of the null expansions as

Guv ¼ LvΘðuÞ þ ΘðuÞΘðvÞ þ
ef

r2
: ð13Þ

Note that, since ∂u and ∂v are coordinate base vectors, they
commute, and then LuΘðvÞ ¼ LvΘðuÞ.
Equations (12) and (13) together with Einstein’s

equation

Gab ¼ Tab ð14Þ

for a given energy-momentum tensor Tab capture the full
dynamics of the problem and completely determine a
spherically symmetric solution.

B. Properties of vacuum spacetimes

Until this point, the only hypothesis made on the
spacetime was spherical symmetry. In this section, we also
assume that it satisfies Einstein’s equation in a vacuum in
an open domain D, of the form D2 ×O2, where D is the
image under the coordinate map ðu; vÞ of an open domain
of R2. This domain D can be described as a spherical shell
with finite thickness that lasts for some finite time interval.
On D, Rab ¼ Gab ¼ 0. The full dynamics are deter-

mined in terms of the null expansions by the three
equations below:

LuΘðuÞ − ΘðuÞ∂uf þ
Θ2

ðuÞ
2

¼ 0; ð15aÞ

LvΘðvÞ − ΘðvÞ∂vf þ
Θ2

ðvÞ
2

¼ 0; ð15bÞ

LvΘðuÞ þ ΘðuÞΘðvÞ þ
ef

r2
¼ 0: ð15cÞ

Using Eqs. (15), we can deduce several general results valid
for vacuum solutions that we present in the following.

Proposition III.1.—Given the hypotheses above, there
exists a pair of dual null coordinates ðU;VÞ such that
jΘðUÞðU;VÞj ¼ jΘðVÞðU;VÞj in D.
Proof.—We can rewrite Eq. (15a) as

∂uΘðuÞ − ΘðuÞ∂uf þ
Θ2

ðuÞ
2

¼ 0 ⇒

r−1∂uðΘðuÞrÞ − ΘðuÞ∂uf ¼ 0 ⇒

∂uðΘðuÞrÞ
ΘðuÞr

¼ ∂uf ⇒

rΘðuÞ ¼ C1ðvÞef; ð16Þ

where C1ðvÞ is an arbitrary nonvanishing function that
comes from the integration in u. Repeating the same
procedure with Eq. (15b), we obtain

rΘðvÞ ¼ C2ðuÞef; ð17Þ

where C2ðuÞ is also an arbitrary function. For any functions
C1 and C2, we can make a gauge transformation ðu; vÞ →
ðU;VÞ of the form Eq. (3) with the choice

UðuÞ ¼
Z

u
jC2ðsÞjds;

VðvÞ ¼
Z

v
jC1ðsÞjds; ð18Þ

noting that U0ðuÞ, V 0ðvÞ > 0, for all u, v, in order to have a
well-behaved coordinate transformation. We obtain

rΘðUÞ ¼ jC2ðuÞjC1ðvÞef;
rΘðVÞ ¼ jC1ðvÞjC2ðuÞef: ð19Þ

Dividing Eqs. (19) by each other, we obtain the wished
result. □

This result shows that there exists one special set ðU;VÞ
of dual null coordinates in vacuum spherically symmetric
spacetimes for which the two null expansions have the
same absolute value at each event on D. Note that this
special set of dual null coordinates is unique up to a
constant rescaling.
The next proposition shows that this special pair of null

coordinates is useful to reduce the dynamical equations to
equations on only one independent coordinate.
Proposition III.2.—Let ΘðUÞþΘðVÞ ¼0 (ΘðUÞ−ΘðVÞ ¼0)

and the new coordinates χ� ¼ 1
2
ðU � VÞ. We denote with

∂� the derivatives with respect to χ�.
Then
(i) ∂þΘðUÞ ¼ ∂þΘðVÞ ¼ 0 (∂−ΘðUÞ ¼ ∂−ΘðVÞ ¼ 0).
(ii) ∂þrðU;VÞ ¼ 0 [∂−rðU;VÞ ¼ 0].
(iii) If ΘðUÞ ≠ 0, then ∂þf ¼ 0 (∂−f ¼ 0).
(iv) If ΘðUÞ þ ΘðVÞ ¼ 0 (ΘðUÞ − ΘðVÞ ¼ 0), then ∂þ (∂−)

is a Killing vector.
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Proof.—First, we remark that ∂� ¼ ∂U � ∂V .
(i) LetO ¼ ΘðUÞ ¼∓ ΘðVÞ. Since ∂U and ∂V commute,

we have

∂VΘðUÞ ¼ ∂UΘðVÞ ⇒

∂VO ¼ ∓∂UO ⇒ ð∂U � ∂VÞO ¼ 0; ð20Þ

where the sign choice depends directly on the choice
in ΘV � ΘU ¼ 0.

(ii) Consider the case ΘðUÞ þ ΘðVÞ ¼ 0, the other case
being similar. By Eq. (7),O ¼ ∂U ln r2 ¼ −∂V ln r2.
Considering that ∂þ commute with both ∂U and ∂V
and item (i), we have

0 ¼ ∂þ∂U ln r2 ¼ ∂U∂þ ln r2 ⇒ ∂þ ln r2 ¼ C1ðVÞ;
ð21Þ

0 ¼ ∂þ∂V ln r2 ¼ ∂V∂þ ln r2 ⇒ ∂þ ln r2 ¼ C2ðUÞ:
ð22Þ

Since C1ðVÞ ¼ C2ðUÞ, they are constant. We can
then write

ln r2 ¼ Cχþ þHðχ−Þ; ð23Þ

with H an arbitrary function and C an arbitrary
constant. Computing the expansions for U and V
using Eq. (23), we obtain

ΘðUÞ ¼
CþH0

2
¼ −

C −H0

2
¼ −ΘðVÞ ⇒ C ¼ 0;

ð24Þ

which implies that the null expansions do not
depend on χþ.

(iii) Adding Eq. (15a) and minus (15b) and writing the
expansion in terms of O, we obtain

ð∂U � ∂VÞO −Oð∂U � ∂VÞf ¼ 0: ð25Þ

If ΘU � ΘV , the first term vanishes by item (i).
Therefore, if O ≠ 0, then

ð∂U � ∂VÞf ¼ 0: ð26Þ

(iv) We denote by χa� ¼ ∂xa
∂χ� the components of ∂� in the

coordinates system xa. Then

Lχ�gab ¼ χc�∂cgab þ gac∂bχ
c
� þ gcb∂aχ

c
�

¼ ∂�gab ¼ 0; ð27Þ

as the functions in the metric components, namely,
fðU;VÞ and rðU;VÞ, do not depend on χ�. □

In the next proposition, we relate the classification of the
spacetime region with the character of the Killing field.

Proposition III.3.—If
(i) ΘðUÞ ¼ −ΘðVÞ ≠ 0, ∂þ is a timelike Killing vector

field;
(ii) ΘðUÞ ¼ ΘðVÞ ≠ 0, ∂− is a spacelike Killing vector

field.
Proof.—
(i) From Proposition III.2, in this case ∂þ ¼ ∂U þ ∂V is

a Killing vector field. Then

gabχaþχbþ ¼ −2ef < 0: ð28Þ

(ii) Analogously,

gabχa−χb− ¼ 2ef > 0: ð29Þ

□

Propositions III.2 and III.3 imply that spherically sym-
metric vacuum spacetimes are also static [75], provided
the region is regular or untrapped, that is, the null
expansions have opposite sign. Case (ii) shows that in
trapped regions, where both null expansions have the
same sign, an additional Killing vector field still exists,
but it is spacelike and the region is not static but spatially
homogeneous.
Our construction also shows that the Killing field is

always orthogonal to the orbits O2 and the isometry it
generates commutes with the O2 rotations.

IV. BEYOND VACUUM AND
SPHERICAL SYMMETRY

We used the dual formalism under the hypothesis that the
spacetime is spherically symmetric such that we used a
codimension-two foliation of the spacetime using the
spheres corresponding to the orbits of the action of
SO(3). We also assumed that it was a vacuum solution.
Since Bona proved the Birkhoff theorem under weaker

hypotheses [33], in this section we explore better the
conditions necessary in order to prove it under our
formalism.
In the proofs above, the only relevant equations were

the Raychaudhuri equation for the null congruences. If
we can weaken the hypotheses while keeping Eqs. (15a)
and (15b) unchanged, we will obtain a stronger version
of our result.

A. Discussing the symmetry condition

The consequence of spherical symmetry in Raychaudhuri
equations is the fact that the shear and vorticity of the null
congruences must vanish, which implies that the evolution of
the expansions depends only on themselves.
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In order to guarantee the vanishing of the shear and
vorticity of null congruences, we can replace spherical
symmetry by any maximal symmetry for two-dimensional
manifolds. Therefore, we may replace the hypothesis of
spherical symmetry with the statement that hαβ must have
constant curvature, which includes planar and hyperbolic
symmetries on hαβ. The most general line element that
preserves our equations is

ds2 ¼ −efðu;vÞðdu dvþ dv duÞ þ r2ðu; vÞhαβdyα dyβ; ð30Þ

where

hαβdyα dyβ ¼ dθ2 þ S2ϵðθÞdϕ2; ð31Þ

where θ ∈ ð0;∞Þ and
(i) S1ðθÞ ¼ sin θ, for spherical symmetry;
(ii) S0ðθÞ ¼ θ, for planar symmetry; and
(iii) S−1ðθÞ ¼ sinh θ, for hyperbolic symmetry.
This change leaves Eqs. (12a) and (12b) invariant, while

Eq. (13) becomes

Guv ¼ LvΘu þ ΘuΘv þ
ϵef

r2
; ð32Þ

where ϵ take the values 1, 0, or −1, corresponding to the
spherical, planar, or hyperbolic symmetry, respectively.
This is equivalent to Bona’s wording in terms of the G3

group of symmetry with two-dimensional orbits O2, with
the difference that in Bona’s paper [33] the only exigence
on O2 is that it is non-null. In our case, since we use a dual
null basis on V2, O2 must be spacelike. If the orbits O2 are
Lorentzian, the orthogonal vector space to the orbits is
spacelike; therefore, the optical focusing equations we are
using cannot be applied. In this sense, our formalism is less
general than Bona’s.
We could use a formalism similar to prove the Birkhoff

theorem in that case, by using the corresponding focusing
equations for spacelike geodesics. However, as spacelike
geodesics are much less interesting under the physical point
of view than the null cones, and one of the objectives of this
work is to discuss the physical meaning of the hypotheses
of the Birkhoff theorem, we will not pursue in this
direction.

B. Discussing the vacuum condition

The vacuum condition has the only effect of making
Raychaudhuri equations homogeneous, since Ruu ¼
Rvv ¼ 0.
Therefore, we should determine the broadest class

of energy-momentum tensors—or, equivalently, Ricci
tensors—that produces the same result.
Since ∂u ≡ ua∂a and ∂v ≡ va∂a are null, the vanishing

of the uu component of the Ricci tensor is equivalent to
Rb
aua ¼ λuðu; vÞub and analogously to ∂v. Therefore, ∂u

and ∂v are two null eigenvectors of the Ricci tensor. Since
guv ¼ uava ¼ −ef ≠ 0, their respective eigenvalues λu and
λv coincide:

λvðvbubÞ ¼ ðRb
avaÞub

¼ ðRb
auaÞvb ¼ λuubvb: ð33Þ

If the two null basis vectors are eigenvectors with the
same eigenvalue, we have that ∂u � ∂v also are eigenvec-
tors with λu as their eigenvalue. This shows that the
condition of vanishing Ruu and Rvv is equivalent to
imposing that the Ricci tensor have a timelike and a
spacelike eigenvector in V2, with the same eigenvalue.
As the induced metric in the symmetric orbits is of

constant curvature, this implies that the restriction of Rab to
the subspace tangent to the orbits is proportional to the
metric itself, that is,

RAB ¼ Rðu; vÞgAB; ð34Þ

for A, B ∈ fθ;ϕg. This implies that the Ricci tensor has two
linearly independent eigenvectors wa and za, with the same
eigenvalue. The space spanned by wa and za is orthogonal
to ∂u and ∂v, therefore tangent to the orbits of the angular
coordinates. This means we have Ruu ¼ Rvv for Ricci
tensors of the Segre type [(1,1)(11)] (two pairs of double
eigenvalues) or [(111,1)] (one quadruple eigenvalue). This
is the same hypothesis for the Ricci tensor used in the
generalized version by Bona.

C. Admissible matter models

By Einstein’s equations, the Segre type of the Ricci
tensor corresponds to the Segre type of the energy-
momentum tensor. Therefore, it is worth determining the
most general matter model that satisfies the requirements
for the application of the Birkhoff theorem.
The most general Tab with two pairs of double eigen-

vectors and presenting the symmetry requirements may be
written as

Tab ¼ λ1r2γab þ λ2r2hab ⇒

Tab ¼ λ1ð−2ef∂ðau∂bÞvÞ þ λ2ðr2habÞ: ð35Þ

Defining a new basis

na ¼ e−f=2

2
½ua þ va�;

ea ¼ e−f=2

2
½ua − va�; ð36Þ

which satisfy

nana ¼ −1; eaea ¼ 1; ð37Þ
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we have

Tabnanb ¼ −λ1; Tabeaeb ¼ λ1; ð38Þ

which leads to

Tab ¼ −λ1nanb þ λ1eaeb þ λ2r2hab: ð39Þ
We may interpret Eq. (39) as the energy-momentum

tensor of a fluid with energy density −λ1 and anisotropic
pressure, with value λ1 in the direction orthogonal to the
orbits O2 and value λ2 tangent to it. If we apply the weak
energy condition, then λ1 < 0, which means that the fluid
must have negative pressure in the ea direction.
An important feature of the energy-momentum tensor in

(39) is that the flow velocity na is not uniquely defined, as a
boost transformation of the form

n0a ¼ coshωna þ sinhωea;

e0a ¼ coshωea þ sinhωna ð40Þ
for arbitrary ω preserves its form. This means that there
exists a one-parameter family of observers, with different
velocities, that are “comoving” to the fluid. This is a
vacuumlike property, and in Ref. [45] this kind of fluid is
called a Dminikova vacuum, or D vacuum.
A particularly simple realization of matter of this form

corresponds to λ1 ¼ λ2 ¼ −Λ, where the energy-momen-
tum tensor correspond to a cosmological constant (in this
case, the Segre type is [(1,111)]).
Another case of interest is the presence of a non-null

electromagnetic field Fab. In the absence of charges
and radiation [76], the energy-momentum tensor may be
written as

Tab ¼
1

2
ðE2 þ B2Þ½nanb − eaeb þ r2hab�; ð41Þ

which corresponds to a Segre type [(1,1)(11)], for λ2 ¼
−λ1 ¼ E2þB2

2
.

We see that the most known cases where the Birkhoff
theorem is usually applied in the literature are quite
particular, as they correspond to λ1 ¼ �λ2. In the next
section, we will solve Einstein’s equation for a general
matter model satisfying the above conditions.
In general, we may represent an energy-momentum

tensor of the Segre types required as

Tab ¼ λ1gab þ ðλ2 − λ1Þr−2hab: ð42Þ
The energy-momentum conservation is written

0 ¼ ∇aTab ¼ gab∂aλ1 þ r−2hab∂aðλ2 − λ1Þ
þ ðλ2 − λ1Þ∇aðr−2habÞ: ð43Þ

If λ2 ¼ λ1, this implies ∂aλ1 ¼ 0, which means that the
eigenvalue must be constant, as is well known for the

cosmological constant. Therefore, λ2 ≠ λ1 is necessary in
order to obtain models with varying λ1. We will see in the
next section that only λ1 appears directly in Einstein’s
equations, but λ2 affects implicitly the solution, as it is
related to λ1 according to Eq. (43).
A thorough presentation of the field Lagrangians that

produce this type of energy-momentum tensors can be
found in Ref. [32]. Another important remark concerns the
interpretation of the results in terms of matter models: This
analysis is equally valid for extra terms in Einstein
equations provided by modified gravity theories.

D. Summarizing our results

We conclude this section by stating the generalized
version of the Birkhoff theorem in our language.
Theorem IV.1.—Let g be a metric tensor of a spacetime

that admits a codimension-two foliation of the form
Eq. (30) where h is two-dimensional Riemannian metric
tensor, induced on the two-dimensional spacelike leaves of
the foliation.
If h has constant curvature,Θu ≠ 0, as defined in Eq. (7),

and the energy-momentum tensor has the form given in
Eq. (39), then g has an additional isometry generated by a
Killing vector χ orthogonal to the leaves of the foliation.
In addition, if the spacetime region considered is regular,

then χ is timelike and the metric is static. If the spacetime
region is trapped or antitrapped, then χ is spacelike and the
metric is homogeneous.

V. SOLVING THE EQUATIONS

In this section, we aim to determine the solutions that
satisfy the theorem, by using the tools we have already
prepared. We have to consider two types of solutions: those
for regular or untrapped regions, where ΘU þ ΘV ¼ 0, and
those for trapped regions, corresponding to ΘU − ΘV ¼ 0.

A. Regular regions

With no loss of generality, we assume O ¼ ΘU > 0
and ΘV ¼ −O < 0.
It is useful to remark that in this case ∂þr ¼ 0, which

means that the vectors ∂þ and ∂r are orthogonal, which
implies that ∂− is proportional to ∂r. Indeed, it is straight-
forward to verify that

O ¼ 1

r
∂−r ⇒ ∂− ¼ rO∂r; ð44Þ

wherever ∂−r ≠ 0.
We must revisit Eq. (19) and note that, by redefining f

using the transformation in Eq. (5), all the functions on
the right-hand side are in the exponential term. Since
the coordinates U and V are unique up to a rescaling
transformation, we can set the proportionality constant as 2,
and then
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rO ¼ 2ef; ð45Þ

which allows us to write the line element as

ds2 ¼ −
rO
2

ðdU dV þ dV dUÞ þ r2hαβdxα dxβ: ð46Þ

Also, according to Proposition III.2, no metric compo-
nent depends on χþ, and its basis vector is orthogonal to ∂r,
which makes the pair of coordinates ðχþ; rÞ a natural choice
to describe the solution. Using Eq. (6) and the definition of
χþ, we obtain

dr ¼ rO
2

ðdU − dVÞ;

dχþ ¼ 1

2
ðdU þ dVÞ; ð47Þ

which leads to

ds2 ¼ −rOdχþ2 þ dr2

rO
þ r2hαβdxα dxβ: ð48Þ

Now, we have only to solve the equations for OðrÞ.
Considering a matter model of the form Eq. (39), applying
the Einstein equations Eq. (14) to Eq. (13), and considering
Eq. (45), we have

1

2
ð∂VΘU þ ∂UΘVÞ þ ΘUΘV þ ϵ

ef

r2
¼ −λ1ef ⇒

1

2
ð∂V − ∂UÞO −O2 þO

2

�
ϵ

r
þ λ1r

�
¼ 0 ⇒

−
1

2
∂−O −O2 þO

2

�
ϵ

r
þ λ1r

�
¼ 0: ð49Þ

Using Eq. (44), we are able to write a differential
equation with respect to r:

r∂rOþ 2O ¼
�
ϵ

r
þ λ1ðrÞr

�
⇒

∂rðr2OÞ ¼ ðϵþ λ1ðrÞr2Þ ⇒

rO ¼ ϵþ b
r
þ 1

r

Z
r
λ1ðsÞs2 ds: ð50Þ

In order to gain a better insight on our family of
solutions, we consider the case where λ1ðrÞ admits a
representation as a sum or a series of powers of r, provided
it is uniformly convergent on D:

λ1ðrÞ ¼ −
X
i

ciri: ð51Þ

Then, we can integrate it term by term and find

rO ¼ ϵþ b
r
−
c−3 ln r

r
−
X
i≠−3

ciriþ2

iþ 3
: ð52Þ

The most common sources studied in black hole physics
are particular cases of our model. The cosmological
constant is equivalent to c0 ¼ Λ, the electrostatic central
field to c−4 ¼ q2. We also see that in this case the solutions
behave “linearly”: The addition of sources, provided
they satisfy the requirements of the Birkhoff theorem,
corresponds to the addition of a respective term in the
solution. It is worth noticing that, in the Newtonian limit,
rO ∼ 1þ 2Φ, where Φ is the potential and Eq. (50) is the
relativistic analog of the Poisson equation. As in the
Newtonian case, the solution (52) must satisfy boundary
conditions at the innermost and outermost radius of the
domain D, including r → 0 and r → ∞ as possible cases.
However, as explicitly shown in Ref. [7], the boundary
conditions at the outermost radius may affect physics in D,
in opposition to the result of Newtonian gravity.
Another fact of interest is that all those solutions are

of Petrov type D, meaning that the geometry corresponds
only to the Coulombian part of the gravitational field.
This is expected, since the high degree of symmetry of
those solutions eliminates any form of gravitational radi-
ation term.
For the spherical solutions, we are able to compute the

Misner-Sharp mass [50] of the general solution as

M ¼ r
2
ð1 − gab∂ar∂brÞ: ð53Þ

From the line element in Eq. (48), we have
gab∂ar∂br¼rO. Using the general solution Eq. (52), we
have

M ¼ 1

2

�
−bþ c−3 ln rþ

X
i≠−3

ciriþ3

iþ 3

�
; ð54Þ

which allows us to identify that the integration constant
b ¼ −2m, where m is the central mass, as it is the
component of the total Misner-Sharp mass which is
independent of the radius and corresponds to the
Schwarzschild mass in the absence of sources. The other
terms give the energy contribution of each kind of source.

B. Trapped and antitrapped regions

Those regions correspond to ΘU ¼ ΘV ¼ O. Trapped
regions present O < 0, and antitrapped regions have
O > 0. We follow the changes in the equations we
presented for regular regions. In this case ∂−r ¼ 0, and
then we replace Eq. (44) by

1

r
∂þr ¼ O ⇒ ∂þ ¼ rO∂r: ð55Þ

Equation (45) becomes

rO ¼ �2ef; ð56Þ
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because we need to include the case whereO < 0. The line
element in Eq. (46) becomes

ds2 ¼ −
rjOj
2

ðdU dV þ dV dUÞ þ r2hαβdyα dyβ: ð57Þ

We replace Eqs. (47) by

dr ¼ rO
2

ðdU þ dVÞ;

dχþ ¼ 1

2
ðdU − dVÞ: ð58Þ

The line element in the coordinates ðχ−; rÞ is given by

ds2 ¼ rjOjdχ−2 − dr2

rjOj þ r2hαβdyα dyβ: ð59Þ

We notice that, in trapped regions, the coordinate r is
timelike and the corresponding metric element is negative,
as expected from Proposition III.3 along with the fact
that ∂−r ¼ 0.
Equation (49) becomes

1

2
∂þOþO2 �O

2

�
ϵ

r
þ λ1r

�
¼ 0; ð60Þ

where the þ sign correspond to antitrapped regions and
the − sign to trapped regions. Changing the χþ coordinate
to r, using Eq. (55), we obtain

1

2
r∂rOþO�

�
ϵ

r
þ λ1r

�
¼ 0;⇒

rO ¼∓
�
ϵþ b

r
þ 1

r

Z
r
λ1ðsÞs2 ds

�
: ð61Þ

Therefore, the only difference in the case of trapped and
antitrapped regions lies in the character of the Killing
vector and of the r coordinate. The absolute value of the
metric components coincide.
Notice that the metric solutions we found fail to cover the

marginal surfaces that correspond to O ¼ 0. The three-
dimensional locus defined by the marginal surfaces is an
apparent (or trapping) horizon [13], which is the boundary
between trapped and untrapped regions. While our choice
of coordinates ðχ�; rÞ makes use of the symmetry of the
problem in order to simplify its resolution, the metrics in
Eqs. (48) and (59) have the Schwarzschild form in usual
coordinates, and the marginal surfaces correspond to
coordinate singularities. A coordinate system that covers
both sides of those marginal surfaces is easily built by

known methods as, for instance, the definition of an
Eddington-Finkelstein-like system of coordinates. This
analysis leads to the known fact that the Killing field is
null on a marginal surface.

VI. CONCLUSION

We have shown how to obtain the Birkhoff theorem from
the dual null formalism, naturally relating the result with
the type of region considered, if regular or trapped. Only in
a regular region does the theorem lead to static solutions.
The formalism has also enabled us to prove a very

general version of the Birkhoff theorem, coming short of
being completely general in that we did not consider
symmetries with timelike orbits as done by Bona [33].
However, we have obtained general matter sources for
which the theorem is valid, and thus, with the aid of dual
null formalism, we found all the solutions for sources that
can be expressed as a power series on r.
The Birkhoff theorem is much invoked in the literature in

relation to the idea that, given a spherically symmetric
distribution of matter, the gravitational physics at some
given value of the radial coordinate depends only on the
overall mass of the distribution inside that radius. This is, of
course, not true, in general, and a clear counterexample is
provided by the well-known Lemaître-Tolman-Bondi dust
solution [77], in which the gravitational physics, at some
spherical shell, depends not only on the integrated Misner-
Sharp mass but also on an energy parameter that weights
the spatial curvatures and the initial energy conditions.
Other misuses have been discussed in Ref. [7]. We thus
believe that the present work is transparent and useful in
making it absolutely clear what is the scope of applicability
of the Birkhoff theorem in general relativity and also as a
guide for the investigation of analogous results in modified
gravity theories.
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