
 

Distinguishing a rotating Kiselev black hole from a naked singularity using
the spin precession of a test gyroscope

Muhammad Rizwan,1,* Mubasher Jamil,1,† and Anzhong Wang2,‡
1Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences

and Technology (NUST), H-12 Islamabad, Pakistan
2GCAP-CASPER, Physics Department, Baylor University, Waco, Texas 76798-7316, USA,
and Institute for Advanced physics and Mathematics, Zhejiang University of Technology,

Hangzhou 310032, China

(Received 22 February 2018; published 9 July 2018)

We study the critical values of the quintessential and spin parameters, to distinguish a rotating Kiselev
black hole from a naked singularity. For any value of the dimensionless quintessential parameter
ωq ∈ ð−1;−1=3Þ, when increasing the value of the quintessential parameter α, the size of the event horizon
increases, whereas the size of the outer horizon decreases. We then study the spin precession of a test
gyroscope attached to a stationary observer in this spacetime. Using the spin precessions we differentiate
black holes from naked singularities. If the precession frequency becomes larger as an observer approaches
the central object in the quintessential field along any direction, then the spacetime is a black hole. A
spacetime will contain a naked singularity if the precession frequency remains finite everywhere except at
the singularity itself. Finally, we study the Lense-Thirring precession frequency for a rotating Kiselev black
hole and the geodetic precession for a Kiselev black hole.
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I. INTRODUCTION

Current research on observational measurements pre-
dicts the accelerating expansion of the Universe, which is
due to the presence of a state with negative pressure [1–3].
The negative pressure could be due to a cosmological
constant or a so-called “dark energy” [4]. This energy is
responsible for repulsive gravitational effects in the recent
Universe and usually it is modeled as an exotic fluid. The
fluid can be considered such that the state parameter ω is
the ratio of the fluid pressure p to its density ρ, that is,
ω ¼ p=ρ. The different dark energy models that have been
proposed include quintessence [5,6], phantom dark energy
[7,8], quintom [9,10], K essence [11], and others. The
difference between these models of dark energy is the value
of the parameter ωq.
To study the dynamics of the recent Universe we have to

consider repulsive gravitational effects caused by negative
pressure due to the presence of dark energy. Quintessence is
a candidate for dark energy, according to which the
dimensionless quintessential state parameter ωq is related
to the pressure p and energy density ρ of the quintessential
field through the equation of state of the quintessential
field, p ¼ ωqρ [5]. Furthermore, the range of the parameter

ωq is −1 < ωq < −1=3 [12–14]. If the quintessence matter
exists throughout the Universe, it can also be around a
black hole. A spherically symmetric static black hole in a
quintessential matter field, which is a generalization of
Schwarzschild and Schwarzschild–anti de Sitter (AdS)
black holes, is known as a Kiselev black hole (KBH)
[5]. A KBH and its charged version have been discussed in
different ways. The thermodynamics and phase transition
of a charged KBH were studied in Refs. [15–17]. The
strong gravitational lensing by a KBH and a charged KBH
were discussed in Refs. [18,19]. Recently, using Newman
and Janis’ technique [20] and its modification [21], the
rotational generalization of a KBH was given in Ref. [22].
The Kerr-Newman-AdS black hole solution in a quintes-
sential matter field was also obtained in Ref. [23].
Due to the rotation of the central object, spacetime

exhibits effects of the Lense-Thirring (LT) precession,
which causes the dragging of locally inertial frames along
the rotating spacetime [24–26]. Due to these effects,
gyroscopes attached to stationary observers in such a
spacetime precess with certain frequencies. In the weak-
field approximations the magnitude of the precession
frequency is proportional to the spin parameter of the
central object and decreases as the cube of the distance
from the central object [25,26]. The gyroscope also
precesses due to the spacetime curvature of the central
object, and this type of precession is known as geodetic
precession or de Sitter precession [27,28]. These two
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effects are predicted by Einstein’s theory of general
relativity. Gravity Probe B has been launched to test these
aspects of general relativity and to measure the precession
rate due to the LT and geodetic effects relative to the
Copernican system or the fixed star HR8703 (known as IM
Pegasi) of a test gyro due to the rotation of the Earth [29].
The geodetic precessions in a Schwarzschild black hole and
a KBH were studied in Refs. [30–32]. The LT precessions
in the strong gravitational fields of Kerr and Kerr-Taub-
NUT black holes were discussed in Ref. [33].
The existence of naked singularities during the gravita-

tional collapse of massive stars is a topic of great interest for
researchers in the fields of gravitational theory and rela-
tivistic astrophysics. The key question is how one can
differentiate whether the ultimate product in the life cycle
of a compact object under self-gravitational collapse is a
naked singularity or a black hole. Mathematically, a black
hole is solution of the Einstein field equations. A stationary
vacuum Kerr solution of the Einstein field equations is
characterized by two parameters, namely, the mass M and
angular momentum J of the central object. If the spin
parameter a (angular momentum per unit mass) satisfies the
condition M ≥ a, the Kerr solution represents a black hole
and the Kerr singularity is contained in the event horizon.
However, if M < a the event horizon disappears, repre-
senting a naked singularity. Recently, Chakraborty et al.
[34,35] gave the criteria based on the spin precession
frequency of a test gyroscope attached to both static and
stationary observers to differentiate black holes from naked
singularities. Using these criteria, the Kerr black hole and
naked singularities were discussed.
The aim of the present paper is to differentiate rotating

black holes in quintessential matter (rotating KBH) from a
naked singularity. A stationary rotating Kiselev solution of
Einstein’s field equations is characterized by four param-
eters: the black hole mass M, the spin parameter a, the
dimensionless quintessential parameterωq, and the quintes-
sential parameter representing the intensity of the quintes-
sence energy α. In this paper we will give the critical values
of the spin parameter ac and quintessential parameter αc to
differentiate a black hole from a naked singularity. Note
that the case with ωq ¼ −2=3 was already discussed [22].
We generalize the earlier work for general ωq and study the
critical values of the quintessential and spin parameters.
Then, we perform our analysis using the criteria of the spin
precession of a gyroscope in a rotating black hole in a
quintessential matter field (RKBH). We also study the
effects of quintessential energy on the LT precession
frequency for an RKBH and the geodetic precession of
a KBH.
The rest of the paper is organized as follows. In Sec. II

the RKBHs are discussed and critical values of the
quintessential and spin parameters are presented to differ-
entiate black holes from naked singularities. At the end of
Sec. II critical values of the quintessential parameter for a

KBH are given. The spin precession of a test gyroscope in
an RKBH is discussed in Sec. III, form which we obtain the
LT precession of a gyroscope in an RKBH and geodetic
precession in a KBH. In Sec. IV, using the key observations
of the spin precessions of test gyroscopes attached to
stationary observers in an RKBH, we differentiate black
holes from naked singularities. Section V is devoted to
some concluding remarks.

II. ROTATING KISELEV BLACK HOLES

The line element of a rotating Kiselev black hole can be
written as [22]

ds2 ¼ −
�
1 −

2Mrþ αr1−3ωq

Σ

�
dt2 þ Σ

Δ
dr2

− 2asin2θ

�
2Mrþ αr1−3ωq

Σ

�
dϕdtþ Σdθ2

þ sin2θ

�
r2 þ a2 þ a2sin2θ

�
2Mrþ αr1−3ωq

Σ

��
dϕ2;

ð1Þ

where

Δ ¼ r2 − 2Mrþ a2 − αr1−3ωq ; Σ ¼ r2 þ a2cos2θ:

The associated stress-energy tensor of the quintessential
field takes the form found in Ref. [22] with the quantities
ðϵ; pr; pθ; pϕÞ being given by

ϵ ¼ −pr ¼
αð1 − 3ωqÞr2−3ωq

8πΣ2
;

pθ ¼ pϕ ¼ αð−1þ 3ωqÞ½2r2 þ ð2 − 3ωqÞΣ�
16πΣ2

: ð2Þ

It should be noted that here M does not represent the total
mass (or total energy) of the spacetime. By evaluating the
Komar integrals, we will get the total mass MT interior to
the surface r ¼ r0, and the corresponding total angular
momentum JT of the RKBH, which are related to the mass
M and angular momentum J of the Kerr black hole via the
relations

MT ¼ M þ αr
−1−3ωq

0

�
r0
2
−
ðr20 þ a2Þ arctan ða=r0Þ

a

�
;

JT ¼ J þ αr
−1−3ωq

0

�
ar0 þ

r30
2a

−
ðr20 þ a2Þ arctanða=r0Þ

4a2

�
:

ð3Þ

In the absence of the quintessential matter, α ¼ 0, the line
element and other quantities reduce to those of a Kerr black
hole. To differentiate black holes from naked singularities,
in this section we express the black hole parameters and
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radial distance in units of the gravitational mass, a=M → a,
αM−1−3ωq → α, r=M → r, and suppose b ¼ 1–3ωq. Note
that the event horizon must be a null surface. Since an
RKBH is a stationary spacetime, the normal to the sta-
tionary surface must be proportional to ∂αr and such a
surface is null if gαβð∂αrÞð∂βrÞ ¼ grr ¼ 0. Thus, the event
horizons are the roots of

Δ ¼ r2 − 2rþ a2 − αrb ¼ 0: ð4Þ

The locations of the ergospheres are determined by the
roots of r2 þ a2 cos2 θ − 2r − αrb ¼ 0. The horizons and
ergospheres completely depend on the choice of the
black hole parameters. For example, if we choose
ωq ¼ −2=3, then Eq. (4) is a cubic equation and has three
different real, three identical real, or one real and two
complex roots, depending on whether the discriminant δ ¼
ð36 − 27αa2Þαa2 − 4a2 − 32αþ 4 is positive, zero, or
negative, respectively. Henceforth, the line element (1)
represents a black hole, an extremal black hole, or a naked
singularity, respectively.
Generalizing the method used for the case ωq ¼ −2=3 in

Ref. [22], we parametrize the spin parameter as a function
of r and α,

a2ðα; rÞ ¼ αrb − r2 þ 2r: ð5Þ

The spin parameter has extrema for α ¼ αe, given by

αeðrÞ ¼
2ðr − 1Þ
brb−1

: ð6Þ

The extremum of αe (denoted by αc) is located at
r ¼ ðb − 1Þ=ðb − 2Þ. So, the critical value of the quintes-
sential parameter (αc) and the corresponding spin param-
eter (ac) are given by

αc ¼
2ðb − 2Þb−2
bðb − 1Þb−1 ; acðαcÞ ¼

b − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − 2Þp : ð7Þ

In terms of ωq, Eq. (7) takes the form

αc ¼
2ð−1 − 3ωqÞ−1−3ωq

ð1 − 3ωqÞð−3ωqÞ−3ωq
; acðαcÞ ¼

−3ωqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ω2

q − 1
q :

ð8Þ

For ωq ¼ −2=3, we get αc ¼ 1=6 and acð1=6Þ ¼ 2=
ffiffiffi
3

p
[22]. The expression for the critical value of the quintes-
sential parameter αc given by Eq. (23) in Ref. [23] is
incorrect, because with their expression for ωq ¼ −1=2 the

critical value is
ffiffiffi
2

p
=5 (≈0.28284). But, if we choose α ¼

0.29 >
ffiffiffi
2

p
=5 and a ¼ 1.2, the spacetime (1) represents a

black hole with three horizons. On the other hand, with our
expression (8), for ωq ¼ −1=2, αc is equal to 8=15

ffiffiffi
3

p
(≈0.30792) and for any value of α > αc there does not exist
a spin parameter a for which Eq. (1) represents a black hole
spacetime. Thus, the corrected critical value of the quintes-
sential parameter is given by Eq. (8). The critical values αc
and ac versus ωq are shown in Fig. 1, which shows that as
ωq increases, both αc and ac increase. Further, when

ωq → −1, αc → 2=27, we find acðαcÞ → 3=2
ffiffiffi
2

p
, that is,

for small ωq both αc and ac are finite. On the other hand,
when ωq → −1=3, αc → 1, we have acðαcÞ → ∞, which
means that in the presence of the quintessential field with
ωq ≈ −1=3 and α ≈ 1 a highly spinning black hole is
formed.

A. Black holes, extremal black holes,
and naked singularities

In this subsection, we will discuss black holes, extremal
black holes, and naked singularities, represented by the line
element (1). The extrema of Δ can be obtained from the
condition

dΔ
dr

¼ 2ðr − 1Þ − αð1 − 3ωqÞr−3ωq ¼ 0: ð9Þ

FIG. 1. The figure shows that with increasing ωq the critical values of the quintessential αc and spin ac parameters increase. If
ωq → −1, we have αc → 2=27, acðαcÞ → 3=2

ffiffiffi
2

p
, and if ωq → −1=3, we have αc → 1 and acðαcÞ → ∞.
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For any value of ωq, Eq. (9) has two real roots denoted by
rmax and rmin. Let us denote the corresponding extreme
values of the spin parameter a by ac and āc, that is,

ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr

1−3ωq

min − r2min þ 2rmin

q
and

āc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr

1−3ωq
max − r2max þ 2rmax

q
: ð10Þ

Now, we first develop our discussion for values of ωq for
which Eq. (9) can be solved analytically, and then we
summarize the results for other values.

1. ωq = − 1=2

For ωq ¼ −1=2, Eq. (9) becomes

5

2
αr3=2 − 2rþ 2 ¼ 0 ð11Þ

and can be solve analytically. This equation has two real
positive roots for α ≤ αc ¼ 8=15

ffiffiffi
3

p
, given by

rmin ¼
�

4

15α
þ

ffiffiffi
3

p
ImðuÞ − ReðuÞ

�
2

and

rmax ¼
�

4

15α
þ 2ReðuÞ

�
2

; ð12Þ

with

u ¼ 1

15α

h
2
�
32 − 675α2 þ 15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð675α2 − 64Þ

q �i1=3
;

ð13Þ

where ReðuÞ and ImðuÞ represent the real and imaginary
parts of u, respectively. These values play an important role

in distinguishing black holes from naked singularities. Note
that for any value of α ≤ αc ¼ 8=15

ffiffiffi
3

p
, there are three real

positive roots of Eq. (11), r−, rþ, and rq, representing,
respectively, the inner, event, and outer horizons of the
black hole. These horizons and extrema of Δ given by
Eq. (12) satisfy the relation r− ≤ rmin ≤ rþ ≤ rmax ≤ rq.
From Fig. 2(a), one can see that for small α, rmax becomes
very large and hence we conclude that the quintessential
horizon rq is very large, while as α increases its size
decreases. On the other hand, as α increases, rmin increases
and hence the size of the event horizon increases, although
very slowly. Further, if one of the equalities holds—that is,
if either rmin or rmax becomes the horizon of the black
hole—Eq. (1) represents an extremal black hole.
The extremal black hole can be one of three types.
Type 1: The first type of extremal black hole exists when

rmin is the horizon of the black hole, for whichΔðrminÞ ¼ 0.
Here, the inner and event horizons merge into a single
horizon, that is, r− ¼ rþ.

1 For this type of black hole the
spin parameter satisfies the condition

ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr5=2min − r2min þ 2rmin

q
; ð14Þ

where rmin is given by Eq. (12). This case is shown by the
red dashed curve in Fig. 2(b).
Type 2: The second type of extremal black hole exists

when rmax is the horizon of the black hole, where
ΔðrmaxÞ ¼ 0. In this case, the event and outer horizons
merge into a single horizon, that is, rþ ¼ rq. This type of

(a) (b)

FIG. 2. (a) In this panel we plot rmin (red curve) and rmax (blue curve) against the parameter α, which shows that rmax decreases as α
increases, while rmin increases as α increases. The inset shows the variation on a smaller scale, from which we can see that rmin and rmax

coincide for αc ¼ 8=15
ffiffiffi
3

p
. (b) In this panel we plot Δ against r for α ¼ 0.29 and different values of a. The blue curve (plotted for

a ¼ 0.9) shows a black hole with three horizons r−, rþ, and rq. The extreme black hole of Type 1 (with a ¼ 1.258693), when r− ¼ rþ,
is represented by the dashed red curve. The extreme black hole of Type 2 (with a ¼ 0.782936), when rþ ¼ rq, is represented by the
dashed blue curve. The red curve represents a naked singularity (with a ¼ 1.3) with one horizon rq only.

1In Ref. [22] [cf. Eq. (40)], for the case with ωq ¼ −2=3, it was
claimed that the other extremum of Δ (rmax in our case) is the
outer horizon of the black hole. But this is not true in general and
rmax < rq as shown in Fig. 2(b).
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extremal black hole is formed when the rotation parameter
satisfies the condition

āc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr5=2max − r2max þ 2rmax

q
; ð15Þ

where rmax is given by Eq. (12). This case is shown by the
dashed blue curve in Fig. 2(b). In addition, in this case
r− < rmin. Note that the value of āc is defined only for
0.27216 < α < 0.30792 (this can be see from the red curve
in Fig. 3). So, this type of extremal black hole exists only
for these values of α.
Type 3: The third type of extremal black hole exists when

all three horizons merge into a single horizon. In this case,
we have rmin ¼ rmax, which is possible for

α ¼ αc ¼
8

15
ffiffiffi
3

p and ac ¼ āc ¼
3ffiffiffi
5

p : ð16Þ

This type of black hole is known as a super-extremal
black hole.
Finally, we conclude that for any value of α < αc and the

corresponding spin parameter a < ac, Eq. (1) can represent
a black hole with three different horizons. For any given
value of α with α < αc, the line element (1) represents an
extremal black hole of Type 1 or Type 2, depending on
whether the spin parameter a ¼ acðαÞ or a ¼ ācðαÞ. For
α ¼ αc and a ¼ acðαcÞ, the spacetimes of Eq. (1) represent
super-extremal black holes. For any other possibilities, the
spacetimes represent naked singularities. In Fig. 3, we plot
a ¼ ac (blue curve) and a ¼ āc (red curve) in the ðα; a2Þ
plane, which divide the whole plane into three different
regions. In Region I, Eq. (1) represents a black hole,
whereas in Regions II and III it represents a naked
singularity. For all points on the boundary of Regions I
and II, Eq. (1) represents an extremal black hole of Type 1,
and on the boundary of Regions II and III, Eq. (1)
represents an extremal black hole of Type 2.

2. When ωq = − 4=9

Again, for ωq ¼ −4=9, Eq. (9) can be solved analyti-
cally. In this case αc ≈ 0.404975 and for all α ≤ αc Eq. (9)
has two real positive roots,

rmin ¼
�

3

14α
þ v
2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

49α2
− v2 þ 54

343α3v

r �3

;

rmax ¼
�

3

14α
þ v
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

49α2
− v2 þ 54

343α3v

r �3

; ð17Þ

with

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

49α2
þ 22=3ð27þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
729 − 10976α3

p
Þ1=3

7α
þ 27=3

ð27þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
729 − 10976α3

p
Þ1=3

s
: ð18Þ

We then obtain the extreme values of the spin parameter
corresponding to these two solutions,

ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr7=3min − r2min þ 2rmin

q
and

āc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr7=3max − r2max þ 2rmax

q
; ð19Þ

where rmin and rmax are given by Eq. (17). From
Fig. 4(a), we can see that as α increases, rmin
increases and rmax decreases. Thus, due to the relation

r− ≤ rmin ≤ rþ ≤ rmax ≤ rq, in this case we can also
conclude that as α increases, the size of the event horizon
increases, while that of the outer horizon decreases. For
α < αc and a < ac, Eq. (1) represents a black hole with
three horizons [as shown by the blue curve in Fig. 4(b)].
For α < αc, and a ¼ ac or a ¼ āc, Eq. (1) represents an
extremal black hole of Type 1 or Type 2 [as shown by
the dashed red and the dashed blue curve in Fig. 4(b)].
Further, Fig. 5 shows that extremal black holes of Type
2 exist only for 0.375 < α < 0.404975. For any other
possibilities [that is, for any ðα; a2Þ in Regions II or III

FIG. 3. Region I represents black holes with three horizons.
The boundary of Regions I and II represents extremal black holes
of Type 1 and the boundary of Regions I and III represents
extremal black holes of Type 2. From the figure we can see that āc
is defined only for 0.272166 < α < 0.307920. Thus, Eq. (1)
represents extremal black holes of Type 2 only for these values of
α. For values of α and a at the point of intersection of these
curves, Eq. (1) represents super extremal black holes. For all
values of α and a2 in Regions II and III, Eq. (1) represents naked
singularities.
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of Fig. 5], the line element (1) represents a naked
singularity.
By numerical analysis we see that the behavior is the

same for all values of −1 < ωq < −1=3, that is, Eq. (1)
represents a black hole, provided that α ≤ αc and a ≤ ac.
By increasing α, the size of the quintessential horizon
decreases, while that of event horizon increases. Further,
the types of extremal black holes and the conditions for
some values of ωq are summarized in Tables I and II.2

III. SPIN PRECESSION OF A TEST
GYROSCOPE IN AN RKBH

In this section, we will discuss the spin precession
frequency of a test gyroscope attached to a stationary
observer in an RKBH. A stationary observer is an
observer who remains at fixed r and θ coordinates by
rotating around the black hole (with respect to observers
at infinity) in the same sense as the black hole’s rotation.
The 4-velocity of such an observer is ½uμ�¼utð1;0;0;ΩÞ,
where Ω ¼ dϕ=dt. Consider a test gyroscope attached to
a stationary observer moving along a Killing trajectory in
an RKBH (stationary spacetime). The RKBH spacetime
admits two Killing vectors: the time translation Killing
vector ∂t and the azimuthal Killing vector ∂ϕ. The vector
K ¼ ∂t þ Ω∂ϕ is also a Killing vector. The 1-form of
the general spin precession frequency can be expressed
as [36]

Ω̃p ¼ 1

2K2
� ðK̃ ∧ dK̃Þ; ð20Þ

where K̃ is the corresponding covector of K, � represents
the Hodge dual, and ∧ is the wedge product. Thus, the
spin precession frequency of a timelike stationary
observer with an angular velocity Ω with respect to a
fixed star in a stationary axisymmetric spacetime is given
by [34]

Ω⃗p ¼ εckl
2

ffiffiffiffiffiffi−gp ð1þ 2Ω g0c
g00

þΩ2 gcc
g00
Þ

×

��
g0c;k −

g0c
g00

g00;k

�
þ Ω

�
gcc;k −

gcc
g00

g00;k

�

þ Ω2

�
g0c
g00

gcc;k −
gcc
g00

g0c;k

��
∂l; ð21Þ

FIG. 5. Region I represents a black hole with three horizons.
The boundary of region I and II represents an extremal black hole
of Type 1 and the boundary of region I and II represents an
extremal black hole of Type 2. The figure shows that an extremal
black hole of Type 2 exists only for 0.375 < α < 0.404975. For
the values in regions II and III, the spacetime (1) represents a
naked singularity.

(a) (b)

FIG. 4. (a) In this panel we plot rmin (red curve) and rmax (blue curve) against the parameter α which shows that rmax decreases as α
increases, while rmin increases as α increases. The inset shows the variation on a smaller scale, from which we can see that rmin and rmax
coincide for αc ¼ 0.404975. (b) In this panel we plot Δ against r for α ¼ 0.383 and different values of a. The blue curve (plotted for
α ¼ 1.2) shows a black hole with three horizons r−, rþ, and rq. The dashed red curve (plotted for a ¼ 1.41428) represents an extremal
black hole of Type 1 when r− ¼ rþ. The dashed blue curve (plotted for a ¼ 0.947639) represents an extremal black hole of Type 2 when
rþ ¼ rq. The red curve (plotted for a ¼ 1.5) represent a naked singularity with one horizon rq only.

2The values ᾱc in Table I also play an important role in a
Kiselev black hole. For any chosenωq, α ¼ ᾱc is the critical value
for a Kiselev black hole. The line element only represents a
Kiselev black hole for α ≤ ᾱc.
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where g is the determinant of the metric gμν and εckl is the Levi-Civita symbol. This expression is valid for observers
both inside and outside of the ergosphere for a restricted range of Ω, such that its velocity uν ¼ utð1; 0; 0;ΩÞ remains
timelike. Substituting the metric coefficients from Eq. (1) into Eq. (21), we get

Ω⃗p ¼ ðF ffiffiffiffi
Δ

p
cos θÞr̂þ ðH sin θÞθ̂

Σ3=2½Σ − ð2Mrþ αrbÞ þ 2Ωasin2θð2Mrþ αrbÞ −Ω2sin2θfðr2 þ a2ÞΣþ a2sin2θð2Mrþ αrbÞg� ; ð22Þ

with

F ¼ að2Mrþ αrbÞ − Ω
8
½8r4 þ 3a4 þ 8a2r2 þ 16a2Mrþ 4a2ð2Δ − a2Þ cos 2θ þ a4 cos 4θ�

þ Ω2a3sin4θð2Mrþ αrbÞ;

H ¼ a

�
Mðr2 − a2cos2θÞ þ α

2
rb−1fð2 − bÞr2 − ba2cos2θg

�
þ Ω½rðr4 þ a4cos4θ þ 2r2a2cos2θÞ − rðr2 þ a2cos2θÞð2Mrþ αrbÞ þ ðr2 þ a2 þ a2sin2θÞ

×

	
−Mr2 þ

�
M þ α

2
brb−1

�
a2cos2θ þ α

2
ðb − 2Þrbþ1


�
þ aΩ2sin2θ½r3ð2Mrþ αrbÞ þ ra2cos2θð2Mrþ αrbÞ

þMr4 þMr2a2 − ðr2 þ a2Þ
�
M þ α

2
brb−1

�
a2cos2θ −

α

2
ðr2 þ a2Þðb − 2Þrbþ1

�
; ð23Þ

where b ¼ 1–3ωq and r̂, θ̂ are the basis vectors in the
r and θ directions, respectively. Setting α ¼ 0 gives
the spin precession for a Kerr black hole [34]. In the
above expression for timelike observers, Ω has the
restriction

Ω−ðr; θÞ < Ωðr; θÞ < Ωþðr; θÞ; ð24Þ

where

Ω� ¼ a sin θð2Mαþ αrbÞ � Σ
ffiffiffiffi
Δ

p

sin θ½ðr2 þ a2ÞΣþ a2sin2θð2Mrþ αrbÞ� : ð25Þ

This expression shows that for an observer close to the
horizon as well as to the ring singularity ðr ¼ 0; θ ¼ π=2Þ,
Ωþ and Ω− coincide. Thus, no timelike observer can exist
at these points and the expression for Ω⃗p is not a valid
expression at these points, but it is still useful when
discussing precession in the limit of these points.

A. LT precession frequency

The precession frequency (Ω⃗p) given by Eq. (22) is the
general precession frequency of a gyroscope with angular
velocity Ω. The precession frequency includes effects due to
both spacetime rotation (LT precession) and curvature
(geodetic precession). If we set Ω¼0, then Ω⃗p reduces to
the LT precession (ΩLT) frequency of the gyroscope attached
to a static observer, who can exist only outside the ergo-
sphere. The expression for the LT precession frequency is

TABLE II. The conditions for different types of extremal black
holes.

Type Horizons Condition Range of α Condition of a

1 r− ¼ rþ ΔðrminÞ ¼ 0 α < αc a ¼ ac
2 rþ ¼ rq ΔðrmaxÞ ¼ 0 ᾱc < α < αc a ¼ āc
3 r− ¼ rþ ¼ rq rmin ¼ rmax α ¼ αc a ¼ aðαcÞ

TABLE I. Critical values of the quintessential parameter α and spin parameter a for different ωq.

ωq −4=9 −1=2 −5=9 −2=3 −7=9 −8=9

αc 0.404975 0.30792 0.244298 0.166667 0.121934 0.0934523
ᾱc 0.375 0.2721655269759 0.2051971136011 0.125 0.0806490313479 0.053963051556
aðαcÞ 1.51186 1.34164 1.25 1.1547 1.1068 1.07872
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Ω⃗LT ¼ a
½ð2Mrþ αrbÞ ffiffiffiffi

Δ
p

cos θ�r̂þ ½fMðr2 − a2cos2θÞ þ α
2
rb−1ðð2 − bÞr2 − ba2cos2θÞg sin θ�θ̂

ðr2 þ a2cos2θÞ3=2ðr2 − 2Mrþ a2cos2θ − αrbÞ : ð26Þ

We plot the vector field of the LT precession frequency (26) for black holes and naked singularities for different values of α [in
the Cartesian plane corresponding to ðr; θÞ] in the first and second rows of Fig. 6, respectively. It can be seen that for black
holes the LT precession frequency diverges if the observer approaches the ergosphere along any direction. However, outside
the ergosphere the frequency is finite everywhere. For naked singularities it is regular throughout the whole region except at
the ring singularity (r ¼ 0, θ ¼ π=2). This is because the denominator of Eq. (26) goes to zero at the ergospheres and ring
singularity. Further, for black holes the field lines at the pole precess in the same direction as the black hole rotation, while
those on the equatorial plane precess in the opposite sense as in the case of a linearized gravitation field [28]. The magnitude of
the LT precession frequency is

ΩLT ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Mrþ αrbÞ2jΔjcos2θ þ ðMðr2 − a2cos2θÞ þ α

2
rb−1fð2 − bÞr2 − ba2cos2θgÞ2sin2θ

q
ðr2 þ a2cos2θÞ3=2jr2 þ a2cos2θ − 2Mr − αrbj : ð27Þ

The LT precession frequency for a Kerr black hole has already been obtained for α ¼ 0 [35]. The magnitude of the LT
precession frequency for different values of ωq is plotted in Fig. 7(a). The LT precession frequency for black holes
(ωq ¼ −4=9) diverges at the ergosphere, and for naked singularities (ωq ¼ −2=3, ωq ¼ −5=9, ωq ¼ −1=2) it remains finite.
Further, from Fig. 7(b) we can see that for fixed α, ωq, and a, for naked singularities ΩLT increases with increasing angle and
has a peak. The peak increases with increasing angle, and due to the ergosphere in the naked singularity case it blows up, as in
the case of a Kerr black hole [35].

(a) (b) (c)

(d) (e) (f)

FIG. 6. The vector field of the LT precession frequency [24] for black holes (a)–(c) and naked singularities (d)–(f) for different values
of α [in the Cartesian plane corresponding to ðr; θÞ]. The field lines show that for a black hole the vector field is only defined outside the
ergosphere, while for a naked singularity it is finite up to the ring singularity.
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B. Geodetic precession

If we set the spin parameter a ¼ 0 in the line element (1), it reduces to a KBH [5], in which the LT precession frequency
vanishes. However, for a ¼ 0 the precession frequency (22) is nonzero. This precession is due to the curvature of the
spacetime and is known as geodetic precession. It is given by

Ω⃗pja¼0 ¼ Ω
½−ðr2 − 2Mr − αrbÞ cos θ�r̂þ ½ðr − 3M þ α

2
ðb − 4Þrb−1Þ sin θ�θ̂

r − ð2M þ αrb−1Þ − r3Ω2sin2θ
: ð28Þ

As the KBH spacetime is spherically symmetric, the
geodetic frequency is the same over the spherical surface
around the black hole, so without loss of generality we can
set θ ¼ π=2. In the equatorial plane for any circular orbit
of radius r the angular frequency Ω of an observer is equal
to its Kepler frequency ΩKep, that is, Ω ¼ ΩKep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M
r3 þ α

2
ð2 − bÞrb−4

q
, and the magnitude of Eq. (28) is

given by

Ωpja¼0;Ω¼ΩKep
¼ Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3

þ α

2
ð2 − bÞrb−4

r
: ð29Þ

The above expression is the precession frequency in the
Copernican frame, computed with respect to the proper
time τ. The proper time τ, measured in the Copernican
frame, is related to the coordinate time t via

(a) (b)

FIG. 7. (a) The magnitude of the LT precession frequencyΩLT (inM−1) versus r (inM). The figure shows that for fixed θ, α, and a, the
LT precession frequency remains finite for naked singularities with ωq ¼ −2=3, −5=9, −1=2, while it blows up for black holes with
ωq ¼ −4=9 as the observer reaches the ergosphere. Further, for a naked singularity, as ωq increases the magnitude of ΩLT increases.
(b) In this panel we plot the magnitude of ΩLT for a naked singularity, which shows that it is regular throughout the region.

FIG. 8. (a) In this panel we plot the geodetic precession Ωgeodetic versus r for M ¼ 1 and ωq ¼ −8=9. The figure shows that as α
increases, the magnitude of Ωgeodetic in a circular orbit decreases. (b) In this panel we plot the geodetic precession against r for α ¼ 0.05
and different values of ωq, which shows that as ωq increases, Ωgeodetic in a fixed orbit increases. Further, for fixed ωq and α, the geodetic
precession decreases as the radius of the circular orbit increases.
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dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
r

þ α

2
ðb − 4Þrb−2

r
dt;

and we can obtain the geodetic precession frequency in the coordinate basis as

Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M
r3

þ α

2
ð2 − bÞrb−4

��
1 −

3M
r

þ α

2
ðb − 4Þrb−2

�s
:

In terms of ωq, the geodetic precession frequency3 is [32]

Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M
r3

þ α

2
ð1þ 3ωqÞr−3ð1þωqÞ

��
1 −

3M
r

−
3α

2
ð1þ ωqÞr−ð1þ3ωqÞ

�s
: ð30Þ

Now, after a complete revolution of the observer around the black hole, the frequency associated with the change in the
angle of the spin vector is given by

Ωgeodetic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3

þ α

2
ð1þ 3ωqÞr−3ð1þωqÞ

r �
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
r

−
3α

2
ð1þ ωqÞr−ð1þ3ωqÞ

r �
: ð31Þ

For α ¼ 0, we obtain the geodetic precession of a
Schwarzschild black hole [30,31]. The geodetic precession
frequency is plotted in Fig. 8, which shows that for fixed
ωq, as α increases the magnitude of the geodetic precession
in a circular orbit decreases [see Fig. 8(a)], whereas for
fixed α, as ωq increases the magnitude increases. In
addition, for fixed ωq and α, the geodetic precession
decreases as the radius of the circular orbit increases
[see Fig. 8(b)].

IV. DISTINGUISHING RKBHs FROM NAKED
SINGULARITIES USING THE PRECESSION

OF A TEST GYROSCOPE

In this section, using the precession frequency of a test
gyroscope attached to a stationary observer, we will
differentiate RKBHs from naked singularities. The expres-
sion for the precession frequency is given in Eq. (22). For
timelike stationary observers the angular velocity has the
restricted range (24). The angular velocityΩ in terms ofΩ�
can be written as

Ω ¼ kΩþ þ ð1 − kÞΩ−; ð32Þ

where 0 < k < 1 and Ω� is defined by Eq. (25). Using
Eq. (24) in Eq. (32) yields

Ω ¼ a sin θð2Mrþ αrbÞ − ð1 − 2kÞΣ ffiffiffiffi
Δ

p

sin θ½ðr2 þ a2ÞΣþ a2sin2θð2Mrþ αrbÞ� : ð33Þ

For k ¼ 1=2, the angular velocity becomes

Ω ¼ a sin θð2Mrþ αrbÞ
sin θ½ðr2 þ a2ÞΣþ a2sin2θð2Mrþ αrbÞ� ¼ −

gtϕ
gϕϕ

:

ð34Þ

An observer with this angular velocity is called a zero-
angular-momentum observer (ZAMO). The precession
frequency of a gyroscope attached to a ZAMO in the
Kerr black hole spacetime behaves differently than that of
gyroscopes attached to other observers with angular veloc-
ities different than that of a ZAMO [34]. These gyros are
nonrotating with respect to the local geometry and sta-
tionary observers regard both þϕ and −ϕ [37,38]. Thus, it
is interesting to study how the precession frequency of a
gyroscope attached to a ZAMO behaves in a Kerr black
hole surrounded by a quintessential matter field. Using
Eq. (33) in Eq. (22), we obtain the precession frequency in
terms of the parameter k as

Ω⃗p ¼ ðr2 þ a2ÞΣþ a2sin2θð2Mrþ αrbÞ
4kð1 − kÞρ7Δ

× ½ðF
ffiffiffiffi
Δ

p
cos θÞr̂þ ðH sin θÞθ̂�; ð35Þ

where F and H are defined by Eq. (23). Finally, the
magnitude of precession frequency is given as

Ωp ¼ ðr2 þ a2ÞΣþ a2sin2θð2Mrþ αrbÞ
4kð1 − kÞρ7jΔj

× ½F2jΔjcos2θ þH2sin2θ�1=2: ð36Þ
3It should be noted that the geodetic precession frequency

obtained in Ref. [32] has a factor of 2 error.
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The denominator of the above equation vanishes at the ring
singularity and horizons of the black hole. Also from
Eq. (35), we can see that the numerator of the radial part of
Ω⃗p goes to zero as the observer approaches the horizons.
So, we will study spin precessions when the observer
reaches the horizon along different directions with different
k, a, ωq, and α in detail. The magnitude of the precession
frequency (36) versus r is plotted for black holes in the left
column and for naked singularities in the right column of

Fig. 9, for k ¼ 0.1, 0.5, 0.9 in the first, second, and third
rows, respectively.
For black holes with a ¼ 0.7, α ¼ 0.1, ωq ¼ −5=9, the

precession frequency for k ¼ 0.1 and k ¼ 0.9 blows up
when the observer approaches the horizon along any given
direction [see Figs. 9(a) and 9(e)]. On the other hand, in the
case of naked singularities with a ¼ 1.3, ωq ¼ −5=9,
α ¼ 0.1, it can be seen from the right column of Fig. 9
that the precession frequency for all k ¼ 0.1, 0.5, 0.9

(a) (b)

(c) (d)

(e) (f)

FIG. 9. In this figure we plot the magnitude of the spin precession frequency Ωp (in M−1) versus r (in M) for black holes in the left
column and for naked singularities in the right column. For black holes we take a ¼ 0.7, α ¼ 0.1, ωq ¼ −5=9 and for naked singularities
we take a ¼ 1.3, α ¼ 0.1, ωq ¼ −5=9 and k ¼ 0.1, 0.5, 0.9 in the first, second, and third rows, respectively. For black holes the
precession frequency Ωp diverges for all k ¼ 0.1, 0.5, 0.9 as the observer approaches the event horizon along any direction (except
θ ¼ π=2 for k ¼ 0.5), whereas for naked singularities it remains finite along all directions except at the ring singularity
(r ¼ 0, θ ¼ π=2).
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remains finite up to r ¼ 0 along all directions except
θ ¼ π=2. Near r ¼ 0, θ ¼ π=2, the frequency diverges
because of the ring singularity, as in the case of a Kerr black
hole [34]. However, for a ZAMO (k ¼ 0.5) the precession
frequency in an RKBH behaves differently than that in a
Kerr black hole. For a ZAMO, the precession frequency in
a Kerr black hole remains finite as the observer approaches
the horizon [34], but for an RKBH it diverges along all
directions except θ ¼ π=2 [see Fig. 9(c)].
For k ¼ 0.5, by inserting Eq. (34) into Eq. (23) we get

Fjk¼0.5 ¼
a3ð2Mrþ αrbÞ

8A2
½8að2Mrþ αrbÞ2sin4θ

þ Afa2 − 8Mrþ 4r2 þ 4αrb − a2 cos 4θ

þ 4ð2Mr − r2 þ αrbÞ cos 2θg�; ð37Þ

Hjk¼0.5

¼ −aΔΣ2

4rA2
½2Mrfa4 − 3a2r2 − 6r4 þ a2ða2 − r2Þ cos 2θg

þ αrbfba4 þ 3ðb − 2Þa2r2 þ 2ðb − 4Þr4
þ a2fa2bþ r2ðb − 2Þg cos 2θg�; ð38Þ

where

A ¼ ðr2 þ a2ÞΣþ a2sin2θð2Mrþ αrbÞ:

It is clear from Eqs. (37) and (38) that, as for all other values
of k, for k ¼ 0.5 near the horizon the angular component of
the precession frequency (35) remains finite but its radial
component blows up. However, along θ ¼ π=2, the radial
component is zero and thus along this direction near the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 10. The magnitude of the precession frequency Ωp (in M−1) versus r (in M) for different parameters. The figure shows that for
black holes Ωp diverges near the black hole horizon, while for naked singularities it remains finite.
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horizon the precession frequency is finite. On the other
hand, for a Kerr black hole, we have

Fjk¼0.5;α¼0 ¼
2Mra3ΔΣ2sin2θ

ðr2 þ a2ÞΣþ 2Mra2sin2θÞ2 ; ð39Þ

Hjk¼0.5;α¼0

¼ −
aMΔΣ2½a4 − 3a2r2 − 6r4 þ a2ða2 − r2Þ cos 2θ�

2ðr2 þ a2ÞΣþ 2Mra2sin2θÞ2 :

ð40Þ

From Eq. (36), we can see that in this case the precession
frequency remains finite when the observer approaches the
black hole along any given direction [34]. The gyroscopes
attached to all of the stationary observers (including the
ZAMO) in the RKBH behave in the same manner, and the
peculiar behavior of the ZAMOs in the Kerr spacetime is
avoided.
In Fig. 10, we further illustrate the behavior of the

precession frequency for other values of the parameters a,
ωq, and α. In the first, second, and third rows of the figure,
Ωp versus r is plotted for different values of ωq, α, and a.
It can be seen from the first row that for black holes
(ωq ¼ −8=9, −7=9, −2=3) and for all observers (k ¼ 0.1,
0.5, 0.9) Ωp diverges near the horizon. On the other hand,
for naked singularities (ωq ¼ −7=20, −1=2, −5=9) and for
all observers (k ¼ 0.1, 0.5, 0.9) Ωp remains finite. In the
second row, the behavior of Ωp for different values of α
shows that for all stationary observers (k ¼ 0.1, 0.5, 0.9) in
the black hole spacetimes (α ¼ 0.18, 0.21, 0.24) Ωp

diverges near the horizon, but in the naked singularity
spacetimes (α ¼ 0.06, 0.12, 0.15) it remains finite in the
whole region. In can also be seen that the same behavior is
also present for different values of a. That is, for all
observers (k ¼ 0.1, 0.5, 0.9), the frequency diverges for
black holes (a ¼ 0.90, 0.95, 1.0), whereas it remains finite
for naked singularities.
Finally, using the spin precession, we can differentiate

RKBHs from naked singularities. Consider gyroscopes
attached to stationary observers with nonzero azimuthal
components (Ω) of their four-velocities. These observers
move along circles at constant r and θ, with a constant
angular velocity Ω. We can find the range of Ω such that
their velocities are timelike. In this restricted range, we can
define Ω in terms of the parameter k. Consider observers
moving along two different directions θ1 and θ2. From the
precession frequency Ωp of the stationary observers mov-
ing in circular orbits, we conclude that (i) if Ωp becomes
arbitrarily large as an observer approaches the central
object in the quintessential field along both θ1 and θ2,
then the spacetime is a black hole, and (ii) if Ωp becomes
arbitrarily large as an observer approaches the central
object for at most one of the two directions, the spacetime

will be a naked singularity. For black holes, Ωp becomes
arbitrarily large when an observer approaches the event
horizon, which covers the black hole singularity in all
directions; therefore, observers approaching the black hole
from all directions will see a divergence. However, for
naked singularities, this divergence appears only along the
ring singularity (r ¼ 0, θ ¼ π=2); therefore, only observers
along this direction will see the divergence.

V. CONCLUSIONS

In this paper, we presented critical values of the
quintessential and spin parameters (αc and ac) to distin-
guish RKBHs from naked singularities. These values are
directly proportional to the dimensionless parameter ωq,
which has the range −1 < ωq < −1=3. We have shown
that, if ωq → −1, αc → 2=27, then black holes can form for
very small α, and if ωq → −1=3, αc → 1 with ac → ∞, a
highly spinning black hole can form. Further, for all
−1 < ωq < −1=3, the black holes have three, inner, event
and outer horizons. We also studied extremal black holes
and found the bounds of the horizons. For all ωq, as α
increases the size of the event horizon increases, while the
size of the outer horizon decreases. We then studied the
critical value of the quintessential parameter āc for a KBH
and found the radius of the extremal black holes. Similar to
an RKBH, in the case of a KBH, as α increases the size of
the event horizon increases, whereas the size of the outer
horizon decreases.
We also studied the spin precession frequency of a test

gyroscope attached to a timelike stationary observer in the
RKBH spacetime. For timelike stationary observers with
angular velocityΩ with respect to a fixed star, we found the
restricted ranges of Ω. From the precession frequency for
static observers (Ω ¼ 0), we obtained the LT precession
frequency. For an RKBH, the LT precession frequency
diverges as the observer approaches the ergosphere along
any direction. On the other hand, for naked singularities it
remains finite throughout the whole region except at the
ring singularity. From the general precession frequency we
then obtained the geodetic precession for observers in a
KBH. The magnitude of the geodetic precession frequency
in a fixed circular orbit for a fixed ωq decreases as α
increases, whereas for a fixed α it increases with increas-
ing ωq.
Using the spin precession frequency, we differentiated

black holes from naked singularities. The range of the
angular velocity of a stationary observer can be para-
metrized by k. For k ¼ 0.5, the observer is called a
ZAMO. If the precession frequency of test gyroscopes
attached to stationary observers moving along two differ-
ent directions diverge as the observers approach the
central object, then the spacetime is a black hole. If the
precession frequency along most of the directions remains
finite, then the spacetime is a naked singularity. This is
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because for black holes the precession frequency diverges
as the observer approaches the horizon along all direc-
tions, while for naked singularities this divergence
appears only when the observer reaches the center of
the spacetime along θ ¼ π=2.
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