PHYSICAL REVIEW D 98, 024014 (2018)

Editors' Suggestion

General Poincaré gauge theory: Hamiltonian structure
and particle spectrum

M. Blagojevi¢~ and B. Cvetkovi¢'
Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

® (Received 16 April 2018; published 9 July 2018)

Basic aspects of the Hamiltonian structure of the parity-violating Poincaré gauge theory are studied. We
found all possible primary constraints, identified the corresponding critical parameters, and constructed the
generic form of the canonical Hamiltonian. In addition to being important in their own right, these results
offer dynamical information that is essential for a proper understanding of the particle spectrum of the
theory, calculated in the weak field approximation around the Minkowski background.
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I. INTRODUCTION

Weyl’s idea of gauge invariance [1] turned out to be
a key principle underlying the dynamical structure
of all the fundamental physical interactions. Following
this idea and the subsequent works of Yang, Mills, and
Utiyama [2], Kibble and Sciama [3] formulated a new
theory of gravity, the Poincaré gauge theory (PG, aka PGT),
based on gauging the Poincaré group of spacetime sym-
metries. In PG, spacetime is characterized by a Riemann-
Cartan geometry, in which the torsion and curvature are
the field strengths associated with the translation and
Lorentz subgroups of the Poincaré group; for more details,
see [4-10].

Earlier investigations of PG were mostly focused on the
class of parity preserving Lagrangians quadratic in the field
strengths; see, for instance, Hayashi and Shirafuji [5] or
Obukhov [11]. We denote this class of models as PG™.
Sezgin and Niuwenhuizen [12] analyzed the particle
spectrum of PG™ in the weak field approximation around
the Minkowski background M,. Using the absence of
ghosts and tachyons as physical requirements, they found
a number of restrictions on the PG™ parameters that ensure
the propagating torsion modes to be well behaved.

General dynamical aspects of PG™, including the iden-
tification of its physical degrees of freedom (d.o.f.), are
most naturally understood in Dirac’s Hamiltonian approach
for constrained dynamical systems [13]. Blagojevi¢ and
Nikoli¢ [14,15] started a systematic Hamiltonian analysis
of PG™, focusing on its generic aspects. They identified a
subset of the primary constraints that are always present
(“sure” constraints, associated to the local Poincaré sym-
metry). Moreover, if certain critical parameters vanished,
they found additional primary constraints (“if-constraints”),
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constructed the total Hamiltonian, and discussed certain
aspects of the consistency procedure. Further advances in
this direction were made by Cheng et al. [16] and Chen
et al. [17], who found that the nonlinear nature of
constraints may drastically change the number of propa-
gating modes obtained in the linearized analysis. Yo and
Nester [18] made a detailed study of this phenomenon in
PG™, concluding that there are apparently only two good
propagating torsion modes. For an interesting application
of this result to cosmology, see Shie et al. [19].

There are no physical arguments that favor the con-
servation of parity in the gravitational interaction. Parity
violating models based on the general PG, with all possible
quadratic invariants in the Lagrangian, were considered
already in the 1980s [20], but the subject remained without
wider response. Recently, there has been increased interest
in a better understanding of both the basic structure and
various dynamical aspects of these models, including
cosmological applications and wave solutions [21-27].
In particular, one should mention the analysis of the particle
spectrum carried out by Karananas [25], who made a
suitable extension of the weak field approximation method
used earlier in PG™ [12] and applied it to the general PG.
According to his results, it seems that the set of good modes
that can coexist is significantly enlarged in comparison
to PG™.

The objective of the present work is to examine the
Hamiltonian structure of the general PG, based on the if-
constraint formalism [14,15,18], and use it to clarify the
physical content of its particle spectrum, calculated in the
weak field approximation around M,. In this regard, a
particularly important role is played by both the critical
parameters appearing in the analysis of the primary con-
straints, and the structure of the canonical Hamiltonian. By
comparing the properties of the particle spectrum to those
found in Ref. [25], we noted certain differences. On the
other side, elements of the Hamiltonian structure developed
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here can be a good starting point for studying the nonlinear
dynamics of PG.

The paper is organized as follows. In Sec. I, we give a
short account of the Lagrangian formalism for the general
PG. In Secs. III and IV, we find the canonical critical
parameters, identify the related if-constraints, and construct
the generic, “most dynamical” canonical Hamiltonian,
determined by the nonvanishing critical parameters.
Then, in Secs. V and VI, we derive the linearized gravi-
tational field equations and use them to identify the mass
eigenvalues of the torsion modes. The conditions for the
absence of ghosts and tachyons, as well as the reality
conditions of the mass eigenvalues, are examined in
Sec. VII. Essential features of the particle spectrum are
either tested by or derived from the Hamiltonian structure
of PG. In contrast to the results obtained in [25], we show
that the two spin-2 torsion modes cannot propagate
simultaneously. In Sec. VIII, we give a short summary
of our results, and six appendices contain useful technical
details, including an outline of the Hamiltonian formalism
describing the case of vanishing critical parameters.

Our conventions are as follows. The Latin indices
(i,],...) are the local Lorentz indices, the Greek indices
(4, v, ...) are the coordinate indices, and both run over
0,1,2,3; the orthonormal frame (tetrad) is b’ u» the inverse
‘ . I and n; =
(1,-1,-1,-1) and G = n;;b',b’,, are the metric compo-
nents in the local Lorentz and coordinate frame, respec-
tively; a totally antisymmetric tensor &;;;; is normalized to
€123 = +1, and the dual of an antisymmetric tensor X;;
is *X;;i = (1/2)e;"" X -

tetrad is h;#, the Lorentz connection is @'/

II. LAGRANGIAN FORMALISM

In this section, we give a short account of the Lagrangian
formalism for the general parity—violating PG. Basic
dynamical variables are the tetrad field b’ = b, dx* and
the antisymmetric spin connection ®" = @",dx* = —a/"
(1-forms), which represent the gauge potentials associated
with translations and Lorentz transformations, respectively.
The corresponding field strengths are the torsion and the
curvature (2-forms),

. . . 1 .
T := db? =+ C()lk A bk = ETZ;wdxﬂ A\ dx”,

RV == do' + o'y A 0" = ER’-’de" A dx”, (2.1)
which satisfy the Bianchi identities
VT = Ry A b, VR = 0. (2.2)

The underlying spacetime continuum is described by
Riemann-Cartan geometry [7-9].

A. Field equations

The PG dynamics is determined by a Lagrangian
L =Ly + Lg, where Ly, describes matter and its inter-
action with gravity, and L is the pure gravitational part. In
the framework of tensor calculus, the gravitational field
equations in vacuum are obtained by varying the action
I = [d*xLg(b',. Tijx. R;jx1) with respect to b, and o'/,
After introducing the covariant gravitational momenta

HY = aLG
ORY,,

OLg
HH = o . (2.33)
' or',, Y
and the associated energy-momentum and spin currents

_OLg
o',

E. M %

EV: =——
i t ij
Jw",

(2.3b)

the gravitational field equations take a compact form:

oL
(IST) &Y := _519_1‘6 =V,HM" —E =0, (2.4a)
"
oL
(2ND) Sl‘jy = - éleG = V”Hij"w - El'jy = 0 (24b)
"

The explicit expressions for the energy-momentum and
spin currents are given by

1
Ef = hiLg = T"Hy"™ =5 R iH .

E = —2H ;. (2.5)
In the presence of matter, the right-hand sides of (2.4a)
and (2.4b) contain the corresponding matter currents.

B. Quadratic PG models

We assume the Lagrangian density Ls to contain all
possible quadratic invariants, constructed out of the three
irreducible components of the torsion and the six irreduc-
ible components of the curvature (Appendix A). Relying on
the Lagrangian 4-form given in Ref. [27], one finds that the
corresponding Lagrangian density has the form L; = bLg,
where b := det(b’,) and

EG = —(aoR + 2A0) - (TloX
1S
+ E thk Z (an(”)Tijk _ an*(n)Tijk)v
n=1
| _
+ ZR”H Z (b " Rijis = bu*"Rjya)- (2.6)
n=1

Here, the irreducible components of the field strengths
are defined in Appendix A, the parity even and parity odd
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sectors are described by the parameters (a,,b,, Ay) and
(a,,b,), respectively, and the star symbol denotes the
duality operation with respect to the frame indices of the
field strengths. Another form of L, useful for comparison
with the literature, is given in Appendix B. Knowing L,
one finds that the covariant momentum densities (2.3a) can
be written in the form H,,,, = b'H,,,,, and H;j,,, = bH,jpp>
where

3
Himn =2 Z (an(n)Timn - &n*Timn)’

n=1

Hijmn = “Hijmn + Hijnns (2.7a)
and
LHijmn = _2a0<’1im’1jn - njmnin) + 2a08ijmn’
6
;'jmn =2 Z (bn(n Rz}mn b,*" lemﬂ) (27b)

C. On the choice of Lagrangian parameters

In the Lagrangian (2.6), the two parity sectors are
presented in a very symmetric way, but the set of three
identities (A3a) implies that not all of the parameters
(a,, b,) are independent. To resolve this issue, we choose
the conditions

le - 6_13, l_72 - l_74, B3 - 1_76, (28)
which reduce the number of Lagrangian parameters to
21 — 3 = 18. Note that the above conditions are not unique.

Further freedom in the choice of parameters follows from
the existence of three topological invariants. The Euler and
Pontryagin invariants are defined by the 4-forms

Ig:=RU A R™"¢

Ip = le VAN Ri (293)

mnij» J°
respectively, whereas the third invariant is based on the
Nieh-Yan identity,

Iy =T'AT;—Rj; AL ANbI =d(b' AT;). (2.9b)
These invariants produce vanishing contributions to the
field equations, which implies that not all of the Lagrangian
parameters are dynamically independent. Indeed, they can
be used to eliminate three more terms from the Lagrangian,
leaving us with the final number of 18 — 3 = 15 indepen-
dent parameters; see Ref. [23]; for more details. In this
paper, we use only the conditions in Eq. (2.8), allowing
thereby for an easier comparison to the literature.

For a clear understanding of the physical content of PG,
it is convenient to use dimensionless parameters (coupling
constants). The Lagrangian parameters in Eq. (2.6) are not

dimensionless, but the transition to their dimensionless
counterparts can be easily realized by suitable rescalings;
see, for instance, Ref. [27]. However, to make the general
exposition simpler and more compact, we find it useful to
keep the Lagrangian parameters in the form Eq. (2.6),
which corresponds to using the units ¢ = 7 = 2k = 1. The
true dimensionless parameters can be reintroduced later
whenever needed.

III. PRIMARY CONSTRAINTS

Hamiltonian structure is by itself a particularly important
aspect of PG as a gauge theory [13]. Moreover, it also offers
dynamical information that is essential for a proper under-
standing of the particle spectrum of PG.

We begin the subject by analyzing the primary con-
straints (PC) of PG. The canonical momenta (z;#,II;#)
associated to the basic Lagrangian variables (b',, ®",) are

dL
Tllﬂ == bH,’Oﬂ,
a(aoblu)

dL

H=——9
Y a(‘%‘””ﬂ)

- le'joﬂ.

(3.1)

Since the field strengths do not depend on the velocities
dyb'y and Jyw' ), the above relations define ten constraints
that are always present in the theory (“sure” PCs), regard-
less of the values of the coupling constants. They read

ﬂio zO,

I, jo ~ 0, (3.2)
and their existence is directly related to the local Poincaré
symmetry of PG.

Before we proceed, let us note that at each point of a
spatial hypersurface X,:x° = const, one can define the
unit timelike vector n, normal to X,. Then, any spacetime
vector V;, can be decomposed into a component V | along n
and a component V7 in the tangent space of (“parallel” to)
Yo; that is, V, =mnV, + Vi, where V, =nfV, and
n*Vi = 0 (Appendix C).

To find additional constraints that may appear in
Eq. (3.1), it is useful to define the parallel gravitational
momenta

g = 1brg = JHiy g (3.3a)

ﬁiﬂ‘c =1L %bre = JH;j 1 1 (3.3b)
such that Z;zn* =0, ILzn* =0, and J is defined by
b = NJ, with N = n;bk,. Depending on the values of
the coupling constants, these relations may produce addi-
tional constraints (primary “if-constraints”). In analogy to
the above orthogonal-parallel decomposition of a vector
V4, one can introduce a similar decomposition of the field
strengths,
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Titm =Tt + (T i + 1 Tizr) = Titm + T ikms
(3.4a)

Rijim = Rijtm + (miRij 1 + 1uRij21) = Rijim + Rijom-
(3.4b)

It is very useful for further analysis to know that the parallel
components Ty, := Tiz ;5 and R;j, = R,z 5 are indepen-
dent not only of the “velocities” T'; | , R;; | », but also of the
unphysical variables (by, w"(); for more details, see
Refs. [7,14,15].

A. Torsion sector

The torsion piece of the Lagrangian in Eq. (2.6) depends
on the velocities dyb’, only through T, ;. The linearity of
H, 7 in T and T allows us to rewrite Eq. (3.3a) in the form

i _
bix = 71 —H,; 11 (T) = H; 11 (T), (3.5)
where all possible velocity terms are moved to the right-
hand side. Now, we decompose this equation into irreduc-
ible parts with respect to the group of rotations in X,
(Appendix C):

~_k _ _
Sgp = % + @y T = —2a,TR (3.6a)
T 2 _ 1 o
bir= % 3 (a1 —ax)T" 55 + 3 (2a; + a2)e™"'T Lz
2 2 - mn
= 5(201 +a))T % +§ (@ —ay)er" T
(3.6b)
A AA”_C 2 1 nm
bri = 7 —g(al —a3)T 51 —g(al +2a3) e " T
2 2 ,
= —g(ﬁh +2a3) gL g(ch ar)ex" T 11,
(3.6¢)
Tar [ -
Tiz = Tk +a; €(imnT1'<)f T gﬂil_cgkmnTl_crhﬁ
- 2a,T; . (3.6d)

Here, the set (¢, ¢, . %p:z. 'é;1), defined by the scalar,
vector, antisymmetric, and traceless-symmetric parts of ¢z,
represents the set of all possible new constraints. The
mechanism by which these if-constraints become true
constraints is simply explained in the parity even case,
characterized by four critical parameters: a,, (2a; + a,),
(a; + 2a3), and a;. When some of these parameters vanish,
the corresponding velocity terms on the right-hand sides of

(3.6) also vanish, and consequently, the associated if-
constraints become true constraints. However, if none of
the critical parameters vanishes, there are no new
constraints.

The same mechanism works also in the general PG.
Whereas the critical parameters for 5¢ and “¢.; remain
the same as in PG™, a, and a,, the structure of the
if-constraints ¢ ; and “4¢.; is more complicated, as the
right-hand sides of Egs. (3.6b) and (3.6c) depend on two
velocities, Tz and T ;. To find the related critical
parameters, we first transform ¢, ; into the axial 3-vector
Apr = " "p ;i sO that Eq. (3.6¢) goes over into

= (3.7)

SSREE

_ _ 2 -
(@ —ay))T ) ;- 3 (ay +2a3)er" " Tz

Then, the set of equations involving (¢, z,"¢z) can be
written in the matrix form as

— 2 T -
(f“) = —A< o ) (3.8a)
(1 3 """ Tin 1
where
A_<2(11+(12 a, —ap >
2a; —a,) —(aj+2a3))
detA = —[(2a; + ay)(a;, + 2a3) +2(a, — a,)*]. (3.8b)

If the matrix A has two distinct eigenvalues, one can
construct the invertible matrix P that transforms A into a
diagonal form, D, := P~'AP. Then, Eq. (3.8a) implies

_ T -
¢]-< = _I<Z§Lk> :%DAP_1< __le ), (39)
bi 3 " "TinL

where the column ¢ represents two diagonalized if-
constraints, and the diagonal elements of D, are the critical
parameters,

ci(A) = % (trA +1/(trA)? — 4detA). (3.10)

More details on this construction can be found in
Appendix D. In general, the number of true constraints
in Eq. (3.9) is equal to the number of vanishing critical
parameters.
(1) The critical parameters of the torsion sector are a,,
c+(A), and a;.

B. Curvature sector

For the curvature sector, we use the linearity of 7’ Lk in
R and R to rewrite Eq. (3.3b) in the form
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o L

ijk J Hijl/}(R) = HI

l.jU-((R). (3.11)
The content of the object @,z is described by two three-
dimensional (3d) tensors, ®,;; = (@5, ®;;z). The irre-
ducible decomposition of ® ;; takes the form defined
in (C4):

I,
J

Sq)E

1
+ 64y +§(b4 —be)R +

1 -
= (by+be)R, | —E(bz —b3)e" " "Ry i -

+ (b1 - b4)TKj7< +

1. - -
=(by+b4)"R ;11 _E(bl —by)"(&"" Ryi5 17)-
(3.12¢)

The irreducible parts of @;;; = —®;;; are the pseudosca-
lar, the vector, and the traceless symmetric part; see (C5):

P
" = +12a,+ (b= b3)e" ™ R 5 — (b1 +2by +b3)R

—(by+b3)et ™ Ry —=2(by—b3)Ri1.  (3.13a)
I, _ o
P, = 7 (by = bs)R iz + 5 (by + bs)e" " "Ryf
= (by + bs)R; — (b, — bs)b" "Ritin (3.13b)
T, THU/_C T CTo— (D
(I)le’{ = J + (bl - bZ) RJ_] Hj]L ( )
= (b, +b)'R 171k (by — by)" (&R 1717)-
(3.13¢)

In Egs. (3.12) and (3.13), the underlined objects do not
contain velocities, R := R™";,; and R;; := R; ,—,j , the super-
script £ denotes symmetrlzanon and H,, 1Y in Eq. (3.13¢)

denotes the parity odd part of the covanant momentum,
v > 1 s, T
H;;J_ (R) = {Zgl?mn[(bl +2b, + bS)szrm‘z

+ (b, - BS)R,,”,,J}}.

Looking at the type of velocities appearing in the
above equations, one can see that the critical parameters
can be found by grouping these equations into suitably
chosen pairs.

1. Spin-0 pair

Consider first Eqs. (3.12a) and (3.13a), which contain
the same set of velocities, R | and e"R; .. | . They can
be written in the matrix form as

S(I) R
( )—BO( o ) (3.14a)
P(I) gkman_crhﬁJ_
where
< by + bg —%(l—’z—l_’ﬁ)
BO = ~ _
—2(by —b3)  —(by + bs3)
detBO = —(b4 + b6)<b2 + b3) - (52 - 53)2. (314]3)

In analogy to what we found in the previous subsection, the
critical parameters are the eigenvalues of By, c(B,), and
the related column of the if-constraints reads

5o Ry,
OCI)==P_1< )ZDP_1< _ ), 3.15
0 P(I) 0fo gkmnR/},ﬂfu_ ( )

where P, is the matrix that diagonalizes By, D, =
Py'ByPy.

2. Spin-1 pair

Similarly, after transforming “®,;; into Ady =
™" ® | ;5. Eq. (3.12b) becomes

(1_72 - BS)RU_,

and the matrix form of Eqs. (3.16) and (3.13b) reads

®; = (by + bs)e;™ "R ;515 + (3.16)

AD; 7ﬁmR mLi
(V > :BI(S Lt > (3.17a)
@, Riy
where
( by + bs EZ—ES>
B, = - - ,
—(by = bs) by +bs
det B, = (by + bs)(b; + bs) + (b, — bs)>.  (3.17b)

As before, the critical parameters are c(B;), and the
if-constraints are determined by the matrix P; that
diagonalizes B,

D, &""R Li1s
I, = P;’( > —D1P1‘1< e > (3.18)
Vo, R
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3. Spin-2 pair

To find the critical parameters in the spin-2 sector,
it is convenient to replace TCIDij,; with the expression
T® ;== T(em"®, 7). Indeed, T®,; refers to the same set
of velocities that appears in Eq. (3.12¢),

Tq)il_c = (bl + bz)T(girhﬁRmﬁJ_l}) + 2(1_71 - 1_72>TRJ_U_127
(3.19)

which allows Egs. (3.12c) and (3.19) to be written in the
matrix form

T - TR _ . -
( ) ”") - 32<T A ) (3.20a)
q)jl'c (sjmnRrhhll_c)
where
< by + by _%(51—52)>
B2 = _ _ ,
2(by = b,) by + b,

det32 = (b1 + bz)(bl =+ b4) =+ (B] - Bz)z. (320b)

Hence, the critical parameters are c..(B,), and the column
of if-constraints has the form

T, T
_ ‘DL;I} _ RL]LE
R P21< . ) B szzl(% iR ->)'
Tk 7 mi Lk
(3.21)

(i1) The critical parameters in the curvature sector are
ci(By), c+(By), and c.(By).

C. Critical parameters and if-constraints

Since the if-constraints belong to irreducible represen-
tations of 3d rotations, they are characterized by a specific
spin content. Their structure is best understood by grouping
them into pairs with definite spin, as shown in Table I. In
this classification, the parity eigenvalues are absent since
parity is not conserved.

The generic set of the critical parameters c.(F), F = A,
By, B;, B,, is defined provided the parity odd parameters in
F do not vanish; see Appendix D. Hence, the limit of the
final expressions c.. (F) when these parameters tend to zero
is not well defined. However, since in that case F is already
diagonal, one can identify c directly from F.

TABLE 1. Critical parameters and if-constraints.

Spin Critical parameters If-constraints
0 as, ¢+ (By) 5, ("),

1 c(A),cx(By) ()= ('Pp)
2 ay, ¢+ (By) "hirs CPip)x

The total number of the primary if-constraints is
10 x 3 =30, the same as the number of the parallel
canonical momenta (3.3). The if-constraints and the asso-
ciated critical parameters have a decisive influence on the
structure of the canonical Hamiltonian.

IV. HAMILTONIAN

The procedure for constructing the canonical (and total)
Hamiltonian in PG™' is well known [7,14,15,18], but its
extension to PG, although in principle straightforward, is
technically rather complicated.

Starting with the standard definition of the canonical
Hamiltonian density,

. 1 .
HC — ﬂ:iaa()bl(l + Eniqiaaowl]a - b[,, (41)

one can rewrite it in the Dirac-ADM form,
o 1 ij a
HC:NHJ_ + N Ha—ia)]oHij-f—aaD s (42)

where N and N? are the lapse and shift functions (see
Appendix C), and

Hij = 2]T[iabj]a + VaHij“,

. 1 .
Hy =7/ Tl oy + Eﬂijﬂlea/} — b Vi,

: 1 T
HL = ﬂileJJ_( + EHl-ij”U; - JE - nkvﬁﬂkﬂ,

D* = biym® + %w"/oﬂiﬂ. (4.3)
Since H | is the only term that depends on the form of the
Lagrangian, explicit construction of the whole H,. reduces
just to the construction of its dynamical piece H . In this
process, we focus our attention on the “most dynamical”
case when all the critical parameters are nonvanishing
(that is, when none of the if-constraints becomes a true
constraint). Such an assumption is sufficient for our study
of the particle spectrum of PG. Extension of the formalism
to include vanishing critical parameters is outlined in
Appendix D.

A. Torsion sector

Isolating the torsion contribution to Ls, one finds the
corresponding part of H |,

1 - _
Hi = §¢u_]‘<Tu'k - J‘CT2 - I’lkVﬁﬂ'kﬁ, (448)

where L2 = £42(T) does not contain velocities. In order
to express the velocities in terms of the phase-space
variables, we decompose the first term into four irreducible
parts:
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iz 1 , _
b i T = T + §A¢751n’me”L

S| .
+ T "TH + §S¢T,-dk. (4.4b)

If ay, a, # 0, the velocities from the last two terms can be
directly eliminated using Egs. (3.6a) and (3.6d),

1 z - 1 1 o7
Ysiom ko Ty Trilk _ S4S T Ttk
3 T "+ "' T 6, ¢¢+2a1 ¢t (4.5a)

Continuing with the first two terms in (4.4b), we note that
for detA # 0, one can use the relation A~!' x (3.8a) to
eliminate the velocities. Introducing the notation
@i = (¢ 1.%1)7, the result takes a compact matrix form,

1A T+ 3 T,k
<¢ﬂ<’ 2 ¢7<> (8/}mﬁTﬁml> :2detA€0’_<T¢ ’
2a, + a
T e ( _1 ) 2
ay—a, —(a;+2a;3)/2

ap—a

1
), detT:EdetA.

(4.5b)
Hence, the resulting form of H” reads
r_L,n 7 Ky o
HJ_ = §J¢T —JCTZ —n V/ﬂl'k s
B 1= S+ =T T =TT (4.6)
"™ 6a, 2a; * 2detA "k T '

B. Curvature sector

In a similar manner, one finds the curvature contribution
to H:

1

R _ _pijlk a i it — mik _
HL_Z(DiijU —JLpg = agR™" 55 + age™ " R 57 ks

(4.7a)
where Lz = L2 (R) does not contain velocities, and
‘Diﬂ}RijM — %S(I)RLJ_ _ Aq)]_cgl?m ﬁRJ_r'nJ_r'z + 2Tq)Lj I_{TRL]LIE’
e, 1 R7F + VIR F
- ET(D”_CT(eiﬁmRmm_/‘c) (4.7b)

Summing up the scalar and pseudoscalar term from the
expression (4.7b) and using the relation By' x (3.14a) to
eliminate the velocities, one obtains

2 1 - 1

ZSOR —PPpe._-RITkL — OpT R, O

3 PRt e S det B, 0o
—4(b b 2(b, — b

R, = ( (b2 + bs) 2(b 3)>, detRy = 4 det By,
2(by — bs) by + b

(4.8)

where V" := (S0, P®).
Similarly, the sum of the axial vector and vector term,
combined with Bj! x (3.17a), yields

— _ 1 _
—Ap gkmap VO'R., — _J—(l)q)_TR (1)q)l
%€ J_mJ_n+ L detBl 1\ s
by+b —(by— b
1= < i‘ _5 ( 2 5>>, detRl = —detBl,
—(by = bs) —(by+ bs)

(4.9)

where (V@I = (4d,, Vd,).
Finally, using B;' x (3.20a), the sum of the two tensor
terms is given by

IR _
2TcI)le_cTlelk _ 5T(I)lkT<€7m1 RﬁthJ_c)
1

=J
4det82

R, — <4(b1 +by)
P \2(by - b))

(Z)q)T_ R (2)@77(

2(by — b
(bs = 1) ) detR, = —4 det B,,
—(b1 + by)
(4.10)

2l = (T - Td. -
where @07 = (T® ;. Td;p).

Summing up the above three contributions, one obtains
the expression for HX as

1 _ - o
Hi = ZJCDIZQ —JLg(R) = agR™ 55 + aoe™ " R 7,57
1 1
2 = O)pTR, O — MPTR, (D!
k™ 6 det B, 0 detB, !
+ 0 5 @I R, D'k (4.11)

The complete expression H; = HT + H¥ will be used
in Sec. VII to formulate the conditions for the positivity of
energy of the isolated spin modes.

C. Consistency conditions

The complete canonical Hamiltonian of PG, with
H, = HT + HE, is calculated by assuming that none of
the critical parameters is vanishing. In the next step, one
can construct the total Hamiltonian that generates the
temporal evolution of dynamical variables. Since the only
primary constraints are the sure constraints (3.2), the total
Hamiltonian is given by
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. 1 ..
HT = HC + Mlﬂ'io + Eu’-’H-O

ij (4.12)

where u' and u'/ are canonical multipliers.

By construction, the components H;;, H,, and H ; of the
canonical Hamiltonian do not depend on the unphysical
variables b, and ®",. Hence, by demanding that the
primary constraints be preserved during the time evolution,
one finds the set of secondary constraints,

Hy~0.  (4.13)

General arguments, based on the existence of local
Poincaré invariance, show that these constraints are first
class [13]; see also [28]. Hence, the Dirac consistency
algorithm is completed at the level of the secondary
constraints (4.13).

The present PG model has N; =20 first-class con-
straints and N, = 0 second-class constraints. Since the
number of the Lagrangian variables is N = 40 (16 tetrad,
plus 24 connection components), the number of the
Lagrangian d.o.f. is N* = (2N —2N,; —N,)/2=20. They
are the same as those found in the weak field approximation
of PG: 2 massless spin-2 modes and 18 massive torsion
modes (two spin-0, six spin-1, and ten spin-2 modes).
However, we shall show that not all of these d.o.f. are
physically acceptable, in contrast to earlier expectations
[25]. To do that, we will first calculate the mass eigenvalues
m? (J) for the torsion modes with spin J =0, 1, 2.

V. LINEARIZED FIELD EQUATIONS

In this section, we start our analysis of the particle
spectrum of PG by deriving the weak field approximation
of the gravitational field equations (2.4) around the
Minkowski background M,; for consistency, we assume
Ao = 0. Such an approximation is based on the following
weak field expansion of the basic dynamical variables,

b',=68,+b',+ 0,, w’, =a¥,+ 0,.

To simplify the notation, we omit writing the tilde sign and
the symbol O,, with an implicit understanding of their
effects. Furthermore, we find it technically convenient to
use the following abbreviations:

=
Il

2
|

=

B,=b,—-by,

B, =b,—b,.

(5.1)

hN]
3
Il
Qi
S
|
Qi

A. First field equation

In the first field equation (2.4a), the covariant momentum
associated to torsion has the form

2
Himn = 2a1Timn + §A2 (nimvn - ninvm) + 2A38imnl~'417

2
- 5 A2€imns Ve

+ 2A3 (nimAn - ninAm)7

—a Tirsgrsmn
(5.2)

where @, = a; yields A, = A;. Then, after calculating the
linearized form of E;*,

E# =2a¢G*; = ao(Ryie™™ + hi*X)
— 2ayG¥; — 2a,X 1,
the linearized (1ST) takes the form
Ein = 0" Hipmn — 2a0G,; + 200X,
= =2a,0"Tjppm + §A2(aivn = in0V)
—2A5¢8, O A* + %Aﬁinmka’”vk

+ 2A2<8i“4n - ’/IinaA) - 2a()(;ni

+2(ag - a)X;, =0, (53)
where we used (E3), and 9V = 9,V', 0A = 0,A".

B. Second field equation

Using the formulas obtained in the weak field approxi-
mation,

vﬂLHij/”l — ZaO(T”,-j - 5:1Vj + 57]}[)
- a()gijm(ans - 5;lvs + 5?Vr)7
4
2H i = ~3 (2a; + ax)nuiVy + 2(a; + 2a3)€;ju Al
4

- §A28ijnkvk - 4A3’1n[ivn]ﬁ (5.4)
the linearized form of (2ND) reads
Eijn = O"Hijppy + 2a0(T";; = 87V} + 87V;)
- aogijrs(ans =0V + 5?Vr) + 2H[z’j]n =0.
(5.5a)

Using the double duality relations for the curvature, see
Appendix C in Ref. [29], the term 0"H;;,,, is found to have
the form
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0"H;,

ijmn

1
- (b2 + bl)am(’/lirqus - njrlPiS)grsmn + _BSEijmnamX

6

AR
+ (b + b1)[(0;®), = 1y 0" ®),) — (i < j)] + 536(’71'”55 —1in0;)R

+ BS[(alR[]n] - ”inamk[jm]) - (l <> ])} - BSam(”irR[js] - ﬂjrk[is])ersmn

_ A
+ (by = b)[(0;¥ )y = 1:n0"¥y) = (i <> j)] + = B3(nj0; — 1ix0;)X

VI. PARTICLE SPECTRUM

The particle spectrum of PG contains important infor-
mation of its physical content. Recently, Karananas [25]
made a detailed analysis of this problem by extending the
spin-projection operator formalism, used earlier in the
context of PG™ [12], and applying it to study the PG field
excitations around the Minkowski background. His work
resulted in the mass formulas for the spin-0, spin-1, and
spin-2 massive torsion modes, together with the related
restrictions on the parameter space, stemming from the
requirements for the absence of ghosts and tachyons.

In this section, we study the same problem by analyzing
the linearized field equations along the lines presented in
[5]. The obtained results are tested by verifying their
compatibility with the expressions for the critical param-
eters found in the canonical analysis, whereas the absence
of ghosts and tachyons is studied in the next section.

A. Spin-0 modes
The spin-0 sector is determined by the traces of the
field equations &;,, '€ jns and OF(*E),y,, where *Ey, =
(1/2)e" E;jy is the dual of &,
— a0V —3a,0A + agR + apX = 0,
(by + bg)OR + (by — by)OX + 4(2ay + a,)0V
+12(a, — ay)0A =0,
(by + b3)OX — (b3 — by)OR — 12(ay + 2a3)0A
+ 8(ay — ag)oV = 0. (6.1)

With X = 30A, the first equation can be used to express R
in terms of 0V and 0.A, whereupon the remaining two
equations are written in the matrix form as

(K()D + 4610N0)U = O, (623)

_ (az(b4+b6) —300(1_72—1_73)—3(50—52)(b4+b6)>
ay(by—b3) 3ag(by+bs)—3(ag—ay)(by—b3) /)

e (e o). 0= (32)

(6.2b)

_ ) |
- (b4 - bl)am(nirq)js - njrcDis)g”mn - 7B6£ijmnamR'

6
5.5b
: (5.5b)
|
The determinants of K, and N are given by
det Ko = 3agas[(by + b)(by + b3) + (by = b3)?],
detNO = —3[(2610 + 612)((1() + 2(13) + 2(6_10 - 6_12)2}.
(6.2c)

For det K, # 0, one can multiply (6.2a) by K, and obtain
the Klein-Gordon equation for the massive spin-0 torsion
modes,

(O+ My)U =0, My = 4agK;'Ny.  (6.3)
The masses of these modes are given by the eigenvalues of
the mass matrix M,

m%(0) = % <trM0 + \/(trM0)2 - 4(detM0)>

- 200
a det KO

<trf0 + \/(trf0)2 - 4detf0), (6.4a)

where f = (detK()Ky' Ny, and

trfo = 3ag(2ag + ay) (by + by) — 12ag(ag — a,) (b, — bs3)
—3as(ag + 2a3) + 2(ag — @,)*](bs + bs).

detfo = (det Ko)(detNo) (64b)
It is interesting to note that det Ky is proportional to the
product of two critical parameters, a, and det B, character-
izing the spin-O sector of the set of if-constraints (see
Table I). Hence, when the critical parameters vanish, we
have detK, =0, the mass eigenvalues (6.4) become
infinite, and consequently, the spin-0 modes do not
propagate. In the linear regime, this mechanism provides
a Lagrangian description of the dynamical role of if-
constraints.

As a further test of our mass formula (6.4), we calculated
its form in the parity-even sector (a,a,,b,) =0, and
found the well-known result for the spin-0F torsion modes:

B 4ay(2ag + a,) )

B _4((10 + 2a3)
ar(by +bg) m-(0) =

m(0) (br+0y)
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B. Spin-1 modes

To understand the linearized dynamics of the spin-1 sector, it is convenient to start with the antisymmetric part of (1ST),
&|ij> and its dual, *&;;. Taking derivatives of these equations yields

1 - A -

g (2(11 + (lz)(DVJ - 313]/) + A3(D.A] - ajaA> + 2A081R[U] + 2A061X[U] = Oa
2 - . A

(a1 +2a3)(0A; = 0;04) =2 ALV = 0;0V) = 2400 Xy + 2400'Ryyj = 0.

Then, the solutions for 8”’ﬁ[mi] and 9" X, are found to be given in the matrix form as

2<_8mk[’"”> — G(OU, - 9,(0U)), U, = (V"> gi= A2+ A2
0" X il Y ’ l Ai) ’ ’

1 ( $[A0(2a; + az) —=2A0A;]  [AgA; + Ag(ay + 2a3)] )

9\ -1[Ap(2a; + ar) + 240A;]  —[A¢A; — Ag(a; + 2a3)]

(6.5)

Next, consider the trace of (2ND), n/*&; k> and of its dual, Wk, jk- Using the identities (E4), these trace components
take the form

N - - 1 1 - -
—_ 2(b4 ‘I‘ b5)8mR[m,~] + 2(172 - bs)amX[mi] + 5 (b4 + b6)81R - 5 (bz - b3)a,X

+ 2(2(10 + az)Vl- - 6(&0 - &Q)A,- = O, (663)
—4(by = bs)0"R i) — 4(by + b3)0" X + (by — b3)O:R + (by + b3)0;X
- 8(6_10 - C_lz)vi - 12(610 + 2613)./4,' = 0 (66b)

Using the expressions for "R imi) and 0" X,,;) found in (6.5), and the expression for R determined by the trace of (1ST),
Egs. (6.6) multiplied by —2¢g can be written in the matrix form as

(K0 —4gN\)U; + (L, — K)0;(9U) =0, (6.7a)
where

by+b by,—b
K, =B\(yG), B ==—2( 40 2 )
2(by — bs) =2(by + bs)
le < (2615)4‘0_2) —3(6_10—6_12> )’ Ui: (Vl-)’
—4(610 — az) —6(610 + 2613) Ai
g

1 0
L, =—— Ky = —4gN,M:". 6.7b
1 a0<0 2) 0 giN1My ( )

The determinants of K| and N, are given by

8
detKl = gQ(d@tA)(detBl),

detN1 = —6[(610 + 2613)(2610 + az) + 2(6_10 - 6_12)2]. (67C)

When det K| # 0, one can multiply Eq. (6.7a) by K7! and obtain the matrix Klein-Gordon equation for the massive spin-1
torsion modes,
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(D+M1)f]t:0v Ml = _4gK1_1N1’
f]i = U,'+M5131U7 8’17,-20 (68)
The eigenvalues of the mass matrix M, are given by
()= ok (trfl £/ (1rfy)? 4detf1>, (6.92)
where f = (detK;)K{'N, and
detfl = (detNl)(detKl),
tefy = 4(by + bs)[(2ag + ay)[(ao — ay)(ay + 2a3) — (ao — @,)*] + 2(ag — ay)(ag — a,)°
+4(by + bs)[(ag + 2a3)[(ao — ay)(2ay + ay) = 2(ag — a,)*] + 2(ag — ay)(a — a,)?|
+ 8(by — bs)[—(2ag + a3)(ag + 2a3)(ag — ay) + 2[(ag — a\)* + (ag — a,)*|(ap — @)
—2(ap - a,)(ap — ay)’]- (6.9b)

The determinant of K is the product of two critical
parameters associated to the spin-1 sector (see Table I).
A discussion of what happens when at least one of these
parameters vanishes is given in Appendix D.

In the parity even sector, our mass formula (6.9) yields
the familiar result for the spin-1* torsion modes:

6(ag — ay)(ap + 2as)
(ay +2a3)(by + bs)

)
m2(1) = 6(ap — a1)(2ag + a,)
- (2a; + ay)(by + bs) -

m% (1) =

C. Spin-2 modes

Although, in principle, the analysis of the spin-2 sector is
not much more complicated than the one for the spin-1
case, the fact that there are lots of variables makes the
general procedure rather complex and difficult to follow. In
Ref. [27], the mass eigenvalues of the spin-2 torsion modes
were found by studying a class of exact wave solutions,
defined by an ansatz that creates only the tensorial
irreducible part of the torsion, whereas the vector and
axial vector parts vanish. This motivates us to simplify the
present discussion by considering a dynamical system with
vanishing spin-0 and spin-1 modes, V; =0 and A; = 0.
The physical content of such a system is described solely
by the spin-2 tensor ;5 (Appendix A). Such a technical
simplification does not influence the final result for the
spin-2 mass eigenvalues.

The adopted assumptions have two additional conse-
quences: X = 0, which follows from X = 30.A4; and R = 0,
which follows from the trace of (1ST). To analyse the
spin-2 sector, we need the symmetrized version of (1ST),

—a1®,-k - ao(I),-k + Aoql,‘k = 0, (610)

|
where O := 0" tj1,, = O"T (jjo)m» as follows from the def-

inition (A1) of t;,,. Moreover, we also need two equations
that follow from (2ND), 9"&,,,ir), and 0" (*E) ()

(b1 + by)[O@; — 20;0" @y | + By [P — 200" ¥ )]
- 2A0®ik — 2A0‘Pik = 0, (61 ]a)

(by + by)[O% — 20:0™ )]
- 2A0®ik + 2A0Tik — 0

— B,[O0®;; — 28(iamq)k)m]
(6.11b)

Since ®;;, has a nontrivial Riemannian part associated to the
massless graviton, a proper description of the torsion spin-2
modes is obtained by using Eq. (6.10) to eliminate ®;; from
Egs. (6.11):

(by + by)O(=a1Oy + Ag¥ii) + aoB00¥
—2a(A®y + Ag¥y) = 0, (6.12a)
ag(by + by) 0¥y — By0(—a, Oy + AWy
—2ay(A¢®y — Ag¥y) = 0. (6.12b)

These equations can be compactly represented in the matrix
form as
(Kzl:‘ +2610N2)Uik = 0, (613)

where

2::

< ay(by + by)
—01(1_72 - 1_71)

Ay A
N, = (_o 0 >
Ay —Ap

—Ao(by + by) — ag(by — by) >
Ag(by = by) — ag(by + by)

0;
Ui = < k>~
Yi
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For det K, # 0, Eq. (6.13) is equivalent to

(l:l + MZ)UI'/( - O, M2 = 200K51N2, (614)
where M, is the mass matrix of the spin-2 torsion mode.

The matrices K, and N, are of the same form as
those found in Ref. [27], Eq. (4.50), up to inessential
differences in conventions. Hence, the mass eigenvalues
are also the same. Expressed in terms of the matrix

f2 = (detK,)K5'N,, they are given by

mi(2) =2 e <trf2 £/ (irf2)? — 4det f2>, (6.152)
where
det f, = (detK,)(detN,),
trfy = —ag(ag — a1)(by + ba) — 2ao(ao — )(1_7 - b))
+ [~ay(ag — a) + (ao — a,)’](by + by).
(6.15b)

As expected, the determinant of K, is proportional to the
product of the critical parameters given in the third line of
Table I,

detK2 = —aoaldeth, detN2 = —(A%+A(2)) (616)
In the parity-even sector, the above formulas produce the

well-known result,

2 2ap(ay — ay)

m _ 2(ag — ay)
* ay(by + by) '

2(9) —
m(2) == T,

The above procedure can be extended to the case
with nonvanishing spin-0 and spin-1 terms. After a
straightforward but rather clumsy calculation, we found
that the new terms do not influence the mass eigenvalues,
they only modify the spin-2 state U;;. A compact form of
the result reads

Uik_)fjik
_ 1
= Z|:U,k - Ga(,»Uk) +§H(M518i8kU+nikU)] ,
(6.17a)
where
1 /- A _ D,
2= (3 ) o= (an)
a 0 ay lPl'k
1 [fa, 3(a,—a
H :—( 2 3@ °)>. (6.17b)
apg \ 0 —2ay

The role of Z is to replace ®;; in U, by its form obtained
from the symmetrized (1ST). The spin-2 nature of U;; is
ensured by the properties 0'U;, = 0, n’*U; = 0. In fact,
these properties are sufficient to completely determine U ;.

D. Comparison with Karananas’ mass formulas

Our mass formulas are found to be consistent with the
expressions for the canonical critical parameters, displayed
in Table I. A more detailed test can be conducted by
comparing them to the recent calculations of Karananas
[25]. The first step in this direction is to compare the
Lagrangian (5) in Ref. [25] with our expression (BI).
Although the procedure is straightforward, a number of
misprints found in Ref. [25] complicate the process.
Nevertheless, we established the following correspondence
between the related parameters:

ag = 4, ag=AN=0,

a; =A+1, a, =2(=A+t3),
az = (=1+1,)/2,

a, = —2ts, ay = Gy = —1y,
by =4(r) —r3), by = 4rs,

by = 4(ry —13), by =4(r; = r3 +14),
bs =4(r3 +rs). bs = 4(ry — 13+ 3ry),
l_72:l_74:r7+r8,
—4rg + 17 + 13,

B] = 7'7—3}"8,

53256: 1_75:—3r7+r3. (618)
The remaining part of the comparison is rather simple. By
substituting the above expressions into Egs. (6.4) and (6.9),
one finds that the resulting mass eigenvalues for the spin-0
and spin-1 torsion modes exactly reproduce the respective
result that Karananas gives in his Appendix A. Moreover,
we also found that, with the exception of minor differences,
our mass formula (6.15) for the spin-2 modes is in agree-
ment with his result (A.3.5); see also subsection IV.E in
Ref. [27]. Although the difference is small, it might be
responsible for more serious discrepancies in the physical
properties of the spin-2 modes, found in the next section.

VII. PHYSICAL RESTRICTIONS ON THE
SPACE OF PARAMETERS

In this section, we study the physical requirements of
the absence of ghosts (E > 0), the absence of tachyons
(m?> > 0), and the reality (m> real) in the spectrum of
torsion modes. Our approach is based on the Hamiltonian
analysis developed in Secs. III and IV, subject to the
assumption that all the critical parameters are nonvanish-
ing, or equivalently, that all the torsion modes are propa-
gating. In what follows, we shall examine whether such an
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assumption is compatible with the adopted physical
requirements.

Our general strategy is the following. The conditions of
the positivity of energy can be read from the dynamical
component H’j of the canonical Hamiltonian; see
Eq. (4.11). By introducing the matrices

1
F, =
77 det B,

R, J=0,1,2,

these conditions can be expressed by demanding that the
eigenvalues of F; be positive. Using the general formula
for the eigenvalues of a 2 x 2 matrix [see (3.9)], one can
express these conditions in a more practical form as

E]>0: detFJ>O,trF]>O (71)
The absence of tachyons is effectively described by the
conditions of positivity of the eigenvalues m?%.(J) of the
mass matrices M :

mi(J) >0: detM; > 0,tcM; > 0. (7.2)
Moreover, the presence of square roots in the mass
eigenvalues requires to check their reality:

m%(J)real: (&rM,)* —4detM; > 0. (7.3)

By applying these general physical criteria to the specific
spin-J sectors, one obtains a set of restrictions on the
original Lagrangian parameters. An important goal of our
analysis is to clarify the issue of their mutual (in)consis-

tency. We shall always use aq > 0, the condition that
ensures the correct limit to GR.

A. Spin-0 sector

1. Positivity of energy
The energy of the spin-0 modes is positive if the
eigenvalues of the matrix F, = R,/ det B, are positive.
Since detRy, = 4detB,, the first condition detF, > 0
implies that det B, > 0, or, equivalently,

(b2 + b3)(b4 + b6) + ([_92 - [_93)2 <0, (74&)

Then, the second condition takes the form tr Ry > 0. In
combination with Eq. (7.4b), it yields the relations
b, + by <0, by + b > 0, (7.5)
which coincide with those appearing in PG". The inde-
pendent conditions are the condition Eq. (7.4a) and, for
instance, the first one in Eq. (7.5),

(by + b3)(by + b) + (by = b3)* <0, by + b3 < 0.

(7.6)

These two conditions coincide with the first two relations
found in Eq. (48) of Ref. [25] (the third relation is
redundant).

2. Positivity of m?(0)

The mass matrix M, of the spin-0 torsion modes has the
form (6.3),

1
My/4ay = K5'No = —— fo.

det Ko det K() = —3a0a2 det B().

(7.7)

The positivity of its eigenvalues is expressed by the
conditions det My > 0 and trM, > 0:

SZ:ZE > dak, o> 0 (7.8)

Since det By > 0, they take the form
a, detN, < 0, (7.9a)
artrfy < 0. (7.9b)

As shown in Appendix F, these general conditions can be
transformed into an unexpectedly simple form, in which the
parameters (b,b,) are completely absent:

a[(2ay + ay)(ag + 2a3) + 2(ag — a,)*] > 0,

a2(2a0 + Clz) > 0 (710)

Returning to the parameters introduced in Eq. (6.18), this
result takes the form

(t; = A) (213 + 17) > 0, (t; =)tz > 0.

The first formula is equivalent to Karananas’s result [25],
but the second one is different.

B. Spin-1 sector

1. Positivity of energy
Starting with F,:=R;/detB; and using detR, =
—det By, the first condition for the positivity of energy,
det F; > 0, reads

det By = (b, + bs)(by + bs) + (b, — bs)?> <0, (7.11a)
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The second condition, written as trR; < 0 and combined
with Eq. (7.11b), yields

bz =+ b5 > O, b4 + bs < O, (712)

which is the PG™ result. As the two independent con-
ditions, we choose

(b + bs)(by + bs) + (by = bs)* <0, by +bs <0.

(7.13)

Again, there is a complete agreement with the first two
relations in Eq. (49) of [25], whereas the third relation is
redundant.

2. Positivity of m% (1)

To make the technical exposition more compact, we
introduce the following notation:

U3 = ag/2 + as,
ky =2a, + a,, ky=a;/2+ as.
detA = —2[kyk3 + (a; — @)%,
det Ny = —12[uous + (ao — @,)?).

Ha = 2ay + ay,

The mass matrix of the spin-1 torsion modes was found in
subsection VIB,

4g

My = —49KTN ==k,

fr.

det K, — g g(det A)(det B, ), (7.14)

with g = A% + A(Q). The positivity of the mass eigenvalues is
expressed by the requirements

detN1
det K,

trf, < 0. (7.15)

detKl

Since det B; < 0, these conditions are equivalent to

(detA)(detN;) <0, (7.16a)

(detA)trf, > 0. (7.16b)
The expression for trf; is given in subsection VI B; see also
Appendix F.

A simple inspection of Eq. (7.16a) shows that it can be
realized by detA < 0, det N; > 0, or vice versa, whereas,
as shown in Appendix F, Eq. (7.16b) can be replaced by
a much simpler expression. The resulting conditions,
equivalent to Eq. (7.16), are defined in (F7):

(i) kokz + (@; — ay)* <0, popiz + (ag — @y)* > 0,
pskaAg = 2p3A7 + Ag(@ — a,)* < 0,

(ii) koks + (@ — ay)* > 0, popiz + (ag — @y)* <0,
p3kaAg = 2u3AG + Ag(@g — @y)* > 0. (7.17)

As before, they do not depend on the parameters (b,, b,,).

Going over to the parameters defined in Eq. (6.18), the

relations (i) read

(f] + tz)(tl + t3) + ([4 — 2t5)2 < O,

1r(13 +42) + 1, (213 + 17) > 0.

Lty + 15 > 0,

The first two inequalities in the set (i) coincide with those
found in Ref. [25]; the third one is a bit different, but the
whole complementary set (ii) is missing.

C. Spin-2 sector

1. Positivity of energy
The first condition for the positivity of the eigenvalues
of F, = R,/ detB,, detF, > 0, combined with detR, =
—4 det B,, takes the form

det32 = (bl + bz)(bl —+ b4) =+ (52 — 51)2 < O, (7183)

The second condition combined with Eq. (7.18b) yields
relations that are also valid in PG,

by +b, <0, by + by > 0. (7.19)
The two independent conditions are
(by 4 by)(by + by) + (by = by)* <0, by + by <0.
(7.20)

Comparing these conditions to the first two relations in
Eq. (50) of Ref. [25], one finds a complete agreement (the
third relation is redundant).

2. Positivity of m? (2)

The mass matrix for the spin-2 modes is found in
subsection VIC:

2610
det Kz

M, =2agK;'N, = fa

detK2 = —dapa, deth,
detNy = —[(ag — a;)* + (ap — @,)?].

The positivity of the mass eigenvalues is expressed by the
requirements
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det N2 < 2610
det K2 ’ det K2

trf, > 0. (7.21)

The condition det N, < 0 implies det K, < 0, whereupon,
relying on det B, < 0, one obtains

a; <0, (7.22a)

trf, <O, (7.22b)

where trf, is calculated in subsection VIC.

3. Is the spin-2 sector free of ghosts and tachyons?

Let us recall that in PG™, the conditions a; < 0 and b; +
b, <0 imply trf, > 0, so that one of the two spin-2*
modes is always a tachyon, as is well known. In what
follows, we will prove, somewhat unexpectedly, that the
same conclusion also holds in the general PG.

To show this, we rewrite trf, in a compact notation as

trfy = ay(by + by) + Pr(bs — by) + 72(by + by),

@ <0, (7.23a)

where the coefficients @,, f, and y, can be read from
Eq. (6.15b),

ay = —ag(ap — ay), B2 = =2ag(ag — a,)?,

2 = —ay(ag — ay) + (ap — a)*,

and a, < follows from Eq. (7.22a). Since b; + b4 > 0, one
finds

tI‘fZ bl + b2 Ez - El
=a + + 72
by + by by + b, ﬁ2b1+b4 72

(7.23b)

Having in mind the first relation in Eq. (7.20), written as

by + by

_by—b
b+ by’

+x2 <0, X:

we find it useful to rewrite Eq. (7.23b) in an equivalent
form,

tl'f2 — <b1 + b2
b, +b, *\b, +b,
Fy(x) = —apx? + fox + 7.

+ x2> + F>(x),
(7.23¢)

A critical argument in our analysis comes from the
observation that the discriminant of the quadratic function
Fy(x), Ay = B3 + dayy,, is automatically negative,

A, = daga,[(ay — a,)* + (ag — a;)?

= —4(10611 detN2 < 0. (724)

Next, since a, < 0 (the parabola F, opens upward) and
As/a, > 0 (minimum of F, is positive), it follows that
F,(x) > 0 for any x. Hence, using Eq. (7.20), one obtains
the result

trf2 > (bl —+ b4)F2(X) > 0, (725)
which contradicts to (7.22b). Thus,

S2. The two no-tachyon conditions in Egs. (7.22a) and
(7.22b) are mutually exclusive; hence, the two spin-2
torsion modes cannot be simultaneously physical.

Such a conclusion is not in agreement with the result found
by Karananas [25].

4. No-ghost conditions: spin-2 versus spin-1 sector

The no-ghost conditions for spin-1 and spin-2 sectors are
in contradiction to each other. Indeed, Eq. (7.12) implies
that b, > b,, whereas Eq. (7.19) implies that b, > b,.
Hence, only one of these two sectors can be physical. The
result is in agreement with the Corrigendum in [25].

D. Reality conditions

The structure of the general reality conditions in
Eq. (7.3) looks rather cuambersome. However, after replac-
ing [trfol, |trfy], and |trf,| with their minimal values,
calculated from the inequalities (F3), (F6), and (7.25),
respectively, the reality conditions in Eq. (7.3) transform
into

spin0: (by + bg)?a, det Ny + 12ay(2ay + a,)* det By < 0,

spin1: g(b, + bs)*(detA)(detN,) —24a3 detB; <0,

spin2: (b; + by)*a; det N, + 4ay(ag — a; )? det B, > 0;
(7.26)

see Sec. VI and Appendix F. These formulas are much
simpler than Eq. (7.3), but they represent only sufficient
conditions for the reality of the corresponding mass
eigenvalues.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we investigated generic aspects of the
Hamiltonian structure of the general parity-violating PG,
and used them to study the torsion particle spectrum [30].

Making use of Dirac’s Hamiltonian approach, we iden-
tified the set of all if-constraints, the expressions that
become true constraints if the corresponding critical
parameters c, vanish. Both the if-constraints and the
associated critical parameters have a crucial influence on
the PG dynamics. Then, we constructed the generic form of
the canonical Hamiltonian 'H ., determined by taking all the
critical parameters to be nonvanishing. An extension of the
procedure to allow for a proper treatment of the vanishing
critical parameters is outlined in Appendix D.
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Apart from being important by itself, the Hamiltonian
structure introduced here turns out to be intrinsically related
to the particle spectrum of PG. To examine that subject, we
first calculated the mass eigenvalues m%.(J) of the torsion
modes with spin J = 0, 1, and 2, relying on the weak field
approximation of the gravitational field equations around
M,. As a test of the results, we verified that m3 (J) are
proportional to the inverse critical parameters 1/c,. As a
consequence, whenever some of ¢, vanish, the correspond-
ing values of m?% (J) become infinite, thereby preventing the
associated torsion modes from propagating. This is consis-
tent with the canonical effects of the vanishing critical
parameters in PG* (in the weak field approximation). A

|

Spin0: (b + b3)(by + be) + (by — b3)? < 0,

a[(2a0 + ax)(ag/2 + a3) + (@ — )’ <0,

Spin 1: (by + bs)(by + bs) + (b, — bs)*> < 0,

(i) 2a; + ax)(a/2 + a3) + (@, — a,)* < 0,

comparison of our mass formulas to those found by

Karananas [25] leads to the following conclusions:

(kI)For the spin-0 and spin-1 torsion modes, our results
confirm those of Karananas.

(k2)For the spin-2 modes, there are certain differences,
noted already in Ref. [27].

The absence of ghosts (positivity of energy) in the
particle spectrum is ensured by demanding the positivity
of the specific spin-J terms in the canonical Hamiltonian,
whereas the conditions for the absence of tachyons are
defined by the requirement m?% (J) > 0. A detailed analysis
shows that these requirements can be formulated as
follows:

by + by <0,
a>(2ag + a,) > 0.
by + bs <0,

(2a + az)(ao/2 + a3) + (ag — a)* > 0,

(ag — ay)[(ag/2 + a3)(2a; + ay) + (Gg — @)?] — 2(ag/2 + a3)(ag — a;)* < 0;

(ii) an alternative set of conditions, obtained by (i) — (—1) x (i).

Sp1n2 (b1 +b2)(b1 +b4) + (1_72 _1_71)2 <0,

the conditions for the absence of tachyons are mutually exclusive.

The results for the absence of ghosts (first line in each spin
sector) are identical to those of Karananas, whereas the
formulas describing the absence of tachyons show a
number of less or more serious differences. In particular,
the whole set of conditions (ii) in the spin-1 sector is
missing in Karananas’s analysis, but the most important
difference is found in the spin-2 sector, where the two
conditions for the absence of tachyons are in contradiction
to each other, in contrast to Karananas’s conclusion.

The presence of square roots in the expressions for the
mass eigenvalues m2 (J) requires us to verify their reality.
A sufficient form of the reality conditions, compactly
presented at the end of Sec. VII, is much simpler than
their general form.

In conclusion, our analysis clarifies the structure of the
particle spectrum of the general PG by improving the results
found by Karananas, in particular the status of the spin-2
sector. On the other hand, elements of the Hamiltonian
structure introduced here, including its extension to the case
of vanishing critical parameters outlined in Appendix D, are
a good starting point for further investigation of the full
nonlinear dynamics of PG.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

The torsion tensor has three irreducible pieces:

1
(2)Timn = 3 (nimvn - Wian)’
(3)Timn = gimnkAkv

4

(I)Timn =Tipn — (2)Timn - <3)Timn = gti[mn]’ (Ala)
where
k 1 rst
Vn =T kn> Ak = gekrstTA ’
1 1
Limn *= T(im)n +§’7n([vm) - g”]imvn‘ (Alb)

The Riemann-Cartan curvature tensor can be decomposed
into six irreducible pieces:
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1
(2>Rijmn = ) ("ikl}’jl - ﬂqik‘{lil)gklmm

(3>Rijmn = EXSijmm
@ !
Rijmn = E(”imq)jn - njmq)in) - (m <~ l’l),
. 1 ~ ~
(S)le = E(ﬂsz[jn] - nij[m]) - (m g Vl),
1
(6>Rijmn = ER(nimr]jn - njinnim)’
6
(1>Rijmn = Rijmn - Z <a)Rijmn’ (Aza)
a=2
where
Rim = Ricim = Rinmnv R:= Ricmmv
1 kmn n
Xij = ERikmng Jj X=X n»
, 1 1
q)ij = Rlc<ij) - Zl’]ljR, \Plj = X(’]) - ZI’[UX (AZb)

The above definitions are the tensor counterparts of the
corresponding formulas given in terms of the differential
forms; see [27,29]. They imply the following relations
characterizing the parity-odd sector:

Tijk*(Z)Tijk —_ Tijk* (3)Tijk ,

Rijkl*(Z)Rijkl _ Rijkl*(4)Rijkl7

Rijkl*(3)Rijkl _ Rijkl*(6)Rijkl’ (A3a)
and also
Tijk*(l)Tijk _ (I)Tijk*(l)Tijk’
Rijkl*(l)Rijkl _ (I)Rijkl*(l)Rijkl’
Rijkl*(S)Rijkl _ (S)Rijkl*(S)Rijkl' (A3b)

APPENDIX B: ALTERNATIVE FORM OF
THE LAGRANGIAN

In this appendix, we rewrite our Lagrangian (2.6) in an
equivalent form that allows an easier comparison to the
literature [22,25]:

‘CG = —((loR + 2A0 + EloX) + ;CTZ + LRZ,
L2 =TT + hyT™ T, + b3V, V"

—+ gmnkl (ljl4TimnTik[ + lleTmniTkli)’ (Bla)

1 y y
Ly = B (FIRV™ R jmn + [2RI™ Ripyju + [3RT™ R i
+ f4Ric™Ric;, + fsRic™Ric,,; + f¢R?)
1 _ - y
+ Es”’”kl (f7RmniiR + f3RijmnRY 1y
+ foR iR + F1oRmnii RV ). (B1b)

The parameters (h,, h,) and (f,, f,) can be expressed in
terms of the “irreducible” parameters appearing in
Eq. (2.6), as follows:

1 1

h Ig(2a1+a3)v h2:§(a1—a3),
1
hy = —§(01 - ay),
]7],4 ::—ﬂ(4é1+é2+é3), }_15 _——(26_11—6_12—@3),
(B2a)

and

1 1
fri=g5(2bi43bytby),  fr=2(bi=bs),

1 1
/3 :=E(2b1—3b2—|—b3), f4==—§(b1+b2_b4_b5)’

1 1
fs :=—§(b1—b2—b4—‘rb5), S ::E(2b1_3b4+b6>7

R ; |
fr1=5, @by =bs=bs).  fy:=—1c(bi+byt byt bs),

5 L
For==1e(bi=by=by+bs).  Fio=—g(bi=bs).
(B2b)

Relying on the existence of three topological invariants
(2.9), Karananas [25] imposed three conditions on the
Lagrangian parameters in (B1): ag, f¢, fzs = 0.

APPENDIX C: (3+1) DECOMPOSITION
OF SPACETIME

The dynamical content of canonical constraints is greatly
clarified by using a decomposition of tensor fields with
respect to the subgroup of 3d rotations in the spatial
hypersurface %: x* = const.

Let e, be a basis of three coordinate tangent vectors in
%, €, = O4(a=1,2,3), and n the unit normal to X,
ne = h%/ \/gW. The four vectors (n, e,) define the
so-called ADM basis of tangent vectors in spacetime.
The decomposition of the vector e, in the ADM basis is
given by
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ey = Nn + N%,, (Cla)
where N and N“, known as the lapse and shift functions,
respectively, are linear in b*:

N = egn = nkbko = 1/ 900,

N¢ = eoeﬁ?sg/?a — hl}(lbko — _90(1/900‘ (Clb)
Introducing the projectors on n and e,, given respec-
tively by
(POL=mnl, (P} = 8 —men,
one can express a spacetime vector V; in terms of its
orthogonal (to %) and “parallel” (living in the tangent
space of X,;) components:
Vk = I’lkVL + V]'{, (C2)
where V| = n*V and Vj := V; — n,V . Here, we use a
convention that a bar over an index k denotes its parallel
projection, so that n*V; vanishes. The objects V| and V;
are respectively a scalar and a vector with respect to 3d
rotations in .
Consider now a second-rank tensor, X ;. Its orthogonal-
parallel decomposition reads
Xip =nX g +nmXy) +mXy + X (C3)
Here, X | is a vector and X, | a scalar with respect to 3d

rotations, whereas the irreducible parts of X;; are its trace,
antisymmetric, and traceless symmetric parts:

p 1 _
W= X% W= Xy Xap= Xon = 302X s
1
Xir = Xz + Xz + 3 X (C4a)
As a consequence,
. 1
XY =X Yo + X Vi + 5 XY (C4b)

3

Now, it is straightforward to extend these considerations
to any tensor. As a particularly interesting example, we
consider the spacetime tensor X;; = —Xy, which is
decomposed into the set of spatial tensors (X,;,,X L7k
X371, X:77)- The irreducible parts of X;;; = —X;;; are
the pseudoscalar, the vector, and the traceless symmetric
tensor, respectively:

(C5a)

The tensor part satisfies the cyclic identity "X,z + "Xz,; +

TXj,-(7 = 0. The epsilon tensor &;;; is defined by &;; =

(C5b)

APPENDIX D: GENERAL CONSTRUCTION
OF 'H,

In this appendix, we discuss the general structure of H |,
including the case when some of the critical parameters
vanish. In a simplified but self-evident notation, the
relations that define critical parameters have the following
typical form (see Sec. III):

@ =FV, (D1)

where

() (D) ()

Here, ¢ represents the if-constraints, V are the correspond-
ing velocities, and F is the matrix with eigenvalues c, ¢,.
Since F is chosen to represent A, By, B; or B,, the
parameter ¢ is proportional to b, ¢ = kb. If b =0, the
matrix F is already diagonal, and the construction of H | is
quite simple. When b # 0, which is typical for the parity-
violating PG, the matrix F needs first to be diagonalized.
The diagonal form D of F is constructed as

1 b b
D=P'FP, P:= ,
a—cy a—cCy
C1 O
D = ,
0 CH

where P is invertible provided det P = b(c, — ¢;) # 0, and

(D2)

Pl 1 (a—c2 l_))

Left multiplication of (D1) by P! yields

¢ =DV, (D3a)
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where ¢’ :== P~ and V' := P~'V, or, equivalently,

¢, =V, @, =, V). (D3b)
To construct the related F-part of H, note that its
typical form reads

0
HI =" QV=¢"(PTQP)V',  Q:= <QI );
0 g

(D4)

see Sec. IV. Further discussion depends on the specific
values of ¢; and c;.

(1) When ¢, ¢, # 0, Eq. (D1) implies V = F~!¢, and
HE = T QF ¢ coincides with the result found in Sec. IV.
(2) The case ¢; = ¢, = 0 is rather trivial: both if-constraints
¢, become true constraints that appear in the total
Hamiltonian, but # = 0. (3) Finally, when only one critical
parameter vanishes (which requires det F = 0), say ¢, = 0,
then ¢, = 0 (a new constraint), V), remains undetermined,
and ¢} = ¢ V. Hence, Eq. (D4) implies that

_ 1
HY = (b*q) + d*qy)

o (@) + ¢ (b*q) — adqy) V5.

(Ds)

The result can be also expressed in terms of the original if-
constraints ¢, by noting that ¢y, = 0 implies ¢ = —¢, /b.
The factor 1/¢, in the first term shows a typical dependence
on the critical parameters, known from PG", whereas the
second term, linear in the undetermined velocity V7, can be
absorbed into the total Hamiltonian; see [14,15,23]. The
presence of an extra constraint ¢/ requires us to complete the
whole consistency procedure.

In the context of the weak field approximation, the form
of HY in Eq. (D5) determines the no-ghost conditions for
the case (3):

detF =ad-bec =0, ocy > 0, (D6)
where o is the sign of (b*>q, + d*>q,) and ¢, = a + d.

Now, we have a comment on kind of “non-analiticity” of
the above results. Since the assumption b # 0 ensures the
regularity of the matrix P, the diagonal matrix D in
Eq. (D2) has no valid limit for b — 0. Hence, the
expressions for ¢, when b =0 cannot be obtained by
taking the limit » — O of the generic result. However, since
the matrix F for b = 0 is already diagonal, the critical
parameters ¢, can be obtained directly from F. The same
conclusion also holds for the form of HY.

APPENDIX E: LINEARIZED BIANCHI
IDENTITIES

In Secs. V and VI, many technical simplifications were
obtained with the help of the linearized Bianchi identities,

‘c’#yﬂ/)R ijl/ip =0, Sﬂyﬂp au Ti/l/) = 8””/)R i (El )

vAp>

and their consequences. In particular, the first identity
implies that

ale'k - O, aiGik - 0, (E2)

where Gj; == Ricy — (1/2)n;R, and the second identity
yields
. 1 .
X! = _Egjkm”akTimm X =30A,
MR = 2X" — 81X,
ZRiC[mn] = —8kamn + Za[mvn]. (E3)

As a consequence,

o 1 1
8 (I)im :8 R[lm]+181Rv a lpim :a X[m,]—za,x

(E4)

APPENDIX F: SIMPLIFIED CONDITIONS FOR
THE ABSENCE OF TACHYONS

In this appendix, we derive a simplified form of the
conditions (7.9) and (7.16), describing the absence of
tachyons in the spin-0 and spin-1 sectors, respectively;
the spin-2 sector is discussed in subsection VII C.

1. Spin-0 sector

The expression for tr f, found in subsection VI A, can be
represented in a suitable form as

1 _ _
gtrfo = ay(by + b3) + Po(by — b3) + yo(bs + bs),

(Fla)
where

Po = 4ayg(a, — ay),

vo = —lax(ag + 2a3) + 2(ag — a,)?].

ay = ap(2ap + ay),

After dividing this equation by (b4 + bg) > 0, one obtains
by — by
by + bg

trfo — b2+b3
3(by+bg) by + bg

+ Yo-

By noting that the first relation in Eq. (7.6) can be written as
by — by

by, + by » B
by + bg’

+x
by + bg

<0, X:

we find it useful to rewrite Eq. (Fla) in the form

tI'fO b2+b3 2>
=aq +x° ) + Fo(x),
3(by + bg) 0<b4+b6 o(%)

FO(X) = —aox2 + /}()X +70-

(F1b)
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Further analysis is based on an important property of the
quadratic function Fy(x), based on Eq. (7.9a); its discrimi-
nant, Ay = 2 + dagy,, is always negative,

Ay = —4agay[(2ag + as)(ag + 2a3) + 2(ay — a»)?]
= (4/3)aga, det Ny < 0. (F2)

Similar considerations applied to astrf, modify
Eq. (F1b) by an overall multiplicative factor a,. To simplify
the discussion, we introduce a suitable notation: aj, := a,ag
and Fj(x) := ayFy(x). Note that the discriminant A’ of the
new function Fi,(x) remains negative. Now, we are ready to
prove the following statement:

S0. Given Ay <0, the condition aj= ayay >0 is

equivalent to a,trf, < 0.

To prove this equivalence, we start by assuming a;, > 0,

which implies

aztrfo < 3(b4 —+ b6)F6(X) <F3)

Moreover, the parabola F{j(x) opens downward, and
Ay/a < 0 (negative at vertex) ensures that Fj(x) <0
for any x. Hence, a,trf, < 0, what was to be shown.

The reverse statement a,trf;, <0 = a; >0 can be
easily proven by reductio ad absurdum, that is, by showing
that af, < 0 implies a,trf, > 0, which is a contradiction.

The statement SO allows us to replace Eq. (7.9b) with the
much simpler condition a, > 0.

2. Spin-1 sector

For the spin-1 sector, we first rewrite trf; in the form
1 - -
Jifr= ay(by + bs) + p1(by = bs) +y1(by + bs),
(F4a)
where
a1 = 2u3kyAg — 43 AG + 2A0(ag — @5)%,

Br = —AuapsAg + HAG + AF) (ag — ay) — 4Ag(ag — ay)?,
71 5= 2A0paks — prAf + 240 (ag — ).

After dividing by (b, + bs) > 0, one can rewrite Eq. (F4a)
in a suitable form

1 by + bs )
Wby 7 by 1= <b2 h, 7Y ) TR,
b, — bs
F = — 2 _|_ + s = . F4b
1(x) X"+ pix+ 1 X by + bs ( )

As a consequence of Eq. (7.16a), the discriminant A; of the
quadratic function F;(x) is automatically negative,

Ay = 16(A] + Af) [uops + (ag — @2)?][kaks + (@) — @,)?]
. 2
3

(A3 + A2)(det N, )(detA) < 0. (F5)

To relate our considerations to the properties of
(detA)trf, we multiply Eq. (F4b) by det A, and introduce
a suitable notation «} := (detA)a; and F(x) := (detA)x
F(x). The new discriminant A/ is also negative. Now, one
can prove the following statement:

S1. For A; <0, the condition o] = (detA)a; <0 is

equivalent to (detA)trf; > 0.

The proof goes as follows. Starting with o] < 0, one

obtains

(detA)tef, > 4(by + bs)F, (x). (F6)

Then, by noting that the parabola opens upward (o < 0)
and A|/a) >0 (positive at vertex), one concludes that
F'(x) > 0. Hence, (detA)trf; > 0.

As before, the reverse statement (detA)trf; >0 =
@, <0 can be proven by showing that o} > 0 leads to
(detA)trf; < 0, which is a contradiction.

The condition A; < 0, combined with (detA)a; < 0,
can be realized in two ways:

(i) detA > 0,detN; < 0,a; <O.
(i) detA < 0,detN; > 0,a; > 0. (F7)
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