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We obtain a supersymmetric Kaluza-Klein black lens solution in Taub-NUT space in the five-
dimensional minimal ungauged supergravity. It is shown that the spacetime has a degenerate horizon with

the spatial cross section of the lens space topology L(n, 1) = $3/Z, and looks like the four-dimensional
Minkowski spacetime in the neighborhood of spatial infinity. In contrast to the horizon topology, from a

five-dimensional point of view, the spatial infinity has the topology of S> rather than the lens space, for
which this solution has an asymptotically flat limit. We discuss several properties of such a black lens, in
particular, the effect by the compactification of an extra dimension and some physical differences from the
asymptotically flat supersymmetric black lens, which has recently been found.

DOI: 10.1103/PhysRevD.98.024012

I. INTRODUCTION

Higher-dimensional black holes/rings and other extended
black objects have been considered to play essential roles in
the various contexts of the statistical counting of black-hole
entropy, the AdS/CFT correspondence, and the black-hole
production at an accelerator. In particular, physics of black
holes in five-dimensional Einstein-Maxwell-Chern-Simons
(EMCS) theory has recently been the subject of increased
attention, since the five-dimensional EMCS theory describes
the bosonic sector of five-dimensional minimal supergravity
as a low-energy limit of string theory as well as one of the
simplest theories of supersymmetry. So far, several types of
black-hole solutions in this theory have been found by using
the recent development of solution-generating techniques
[1-9], and they have been classified by its uniqueness
theorems [10-12]. However, it is evident that the construc-
tion of all black-hole solutions has not been achieved yet.

It is now evident that, even in vacuum Einstein theory,
there is a much richer variety of black-hole solutions
in higher dimensions. For instance, the topology theorem
[13-16] for stationary black holes, which is generalized to
five dimensions, allows the topology of the spatial cross
section of the event horizon to be either a sphere S°, a ring
S' x 2, or lens spaces L(p, ¢) under the assumptions of
asymptotic flatness and biaxisymmetry. Moreover, as for
supersymmetric solutions in five-dimensional minimal
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supergravity, it has recently been shown that under the
same symmetry assumptions, the horizon topology must be
one of $3, S! x S? or lens spaces L(p, 1), which rules out
L(p,q) (g # 1) [17]. As for both of the sphere $* and the
ring topology S' x S?, the corresponding exact solutions
have been found as stationary solutions to the five-dimen-
sional vacuum Einstein equations [18-21]. However, for
the lens space topologies L(p, q), they have not yet been
found, in spite of the efforts of some researchers to
construct them as a regular vacuum solution [22,23].

Recently, however, within the class of the supersym-
metric solutions in the bosonic sector of the five-
dimensional minimal ungauged supergravity, the first
regular black lens solution with asymptotic flatness has
been constructed by Kunduri and Lucietti [24] for the
horizon topology of L(2,1) = $3/Z,. Thereafter, this was
generalized to the supersymmetric solution with the hori-
zon of the more general lens space topologies L(p, 1) =
S3/7 »(p > 3) by the author of this paper and Nozawa [25].
How to construct these solutions is based on the well-
known work of the classification of supersymmetric sol-
utions by Gauntlett et al. [1]. Moreover, this has been
immediately extended to a multi-black lens solution [26]
and a cosmological black lens solution [27].

The assumption of asymptotic flatness is mainly related
to the context of a braneworld model, in which the size of
higher-dimensional black holes can become much smaller
than the size of extra dimensions. However, since our
visible world is thought to be macroscopically four dimen-
sional, extra dimensions must be compactified in some
sense. In this direction, it has been considered to be of great
interest to consider higher-dimensional Kaluza-Klein black
holes since they look like four-dimensional ones, at least,

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.024012&domain=pdf&date_stamp=2018-07-05
https://doi.org/10.1103/PhysRevD.98.024012
https://doi.org/10.1103/PhysRevD.98.024012
https://doi.org/10.1103/PhysRevD.98.024012
https://doi.org/10.1103/PhysRevD.98.024012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SHINYA TOMIZAWA

PHYS. REV. D 98, 024012 (2018)

at infinity, although they appear higher dimensional near
the horizon [28-36]. Such Kaluza-Klein solutions can be
expected to help us to get some insights into the major
open problem about how to compactify and stabilize extra
dimensions in string theory. The main purpose of this paper
is to construct a certain type of supersymmetric Kaluza-
Klein black lens solutions in five-dimensional minimal
supergravity, understanding the novel effect by the com-
pactification of an extra dimension and making it clear
what is essentially different from the asymptotic flat black
lens solutions.

It is mathematically well known that the lens spaces
L(p, q) (where p and g are coprime integers) are quotients
of $3 by Z/ p action, which can be regarded as an S' fiber
bundle over an SZ. In particular, the regular metric on the
lens space L(p, 1) = $°/Z,, is simply written as

a2 = L (v 0dd) + R2(d6® + sin20dd?
s?=— 17—§—cos ) + R3(d6” +sin’0d¢p”) |,

4
(1)

where 0 <y <4z, 0<¢ <2z, 0<O <z, and R,/2,
R,/2 are the radii of the S' and S?, respectively. When
p = 1, this reduces to the metric on an S* written in terms
of the Euler angles, which is often referred to as round $*
for Ry = R, and squashed S° for R| # R,. An asymptoti-
cally flat black lens spacetime [24,25] has the spatial
infinity of a round S, where the ratio R,/R, is 1. In this
paper, we would like to consider an asymptotically Kaluza-
Klein black lens spacetime with the spatial infinity of a
squashed S® [p = 1 in Eq. (1)] and a horizon of the lens
space L(n, 1) [p = nin Eq. (1)], where the size of an S! is
much smaller than that of an S? (i.e., R, /R, — 0) at infinity
and R; and R, are finite on the horizon. Therefore, we
will impose the appropriate boundary conditions on the
parameters included in the supersymmetric solutions on the
Taub-NUT space.

This paper is organized as follows. In Sec. II, we give the
supersymmetric black lens solutions with bubbles in Taub-
NUT space in the five-dimensional minimal ungauged
supergravity. In Sec. III, we impose the boundary con-
ditions so that the spacetime is asymptotically Kaluza-
Klein spacetime and has no closed timelike curves (CTCs)
appear around the horizon, no conical nor curvature
singularities in the domain of outer communications, and
no orbifold singularities nor Dirac-Misner strings on the
axis. In Sec. IV, we discuss some physical properties of
such a black lens. In Sec. V, we devote ourselves to the
summary and discussion on our results.

II. SOLUTION

We consider supersymmetric solutions in the five-
dimensional minimal ungauged supergravity, the bosonic
Lagrangian of which consists of the Einstein-Maxwell
theory with a Chern-Simons term and takes the form [1]

8
L=Rx1-2FANxF———=AAFAF, (2)

3V3

where F' = dA is the Maxwell field. The local metric and
the gauge potential 1-form of a supersymmetric Kaluzua-
Klein black lens solution in this theory have the form

ds* = —fX(dt + w)* + f~'ds};. (3)
V3 K
A:7 f(dt+w)—ﬁ(dy/+)()—§, (4)

where ds3, is the metric on the Gibbons-Hawking
space [37],

dst, = H ' (dy + y)* + Hdx'dx', dy = xdH,  (5)
where {x'} = (x,y,z)(i =1,2,3) are Cartesian coordi-
nates on [E3. The triholomorphic Killing vector 9/dy
continues a symmetry generator for the five-dimensional
metric g,, and the gauge field A,, Furthermore, every
bosonic element can be obtained as [1]

f'=H'K*+L, (6)

o =o,(dy +x) + o, (7)

— HKY 4 SHOKL + M 8
®, = + 5 + M, (8)

3
#di) = HdM — MdH + 3 (KdL — LdK), ~ (9)

dé = — % dK. (10)

Following Refs. [24,25], we consider the following class
of harmonic functions:

n h n n 1

H=nh L= —— —, 11
0+;m 0t (11)

" m
M = — 12
m0+;r,’ (12)
K:Iqﬁiﬁ, (13)

=1 Ti

n ll
L=1ly+) - (14)

i=1"i

Here, r;:=|r—ri|=+/(x=x)>+ (O -v)*+ (z—2)%
where (x;,y;,7;) are constants.
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The 1-forms (y, £, @) are obtained as

X = i hiw;, (15)
i=1

‘:: _iki&)iv (16)
i=1

n

3
)

ij=1(i#j
n 3 ~

-y moh; + 5 lok; = hom; )@ (17)
i=1

where 1-forms @; and @;; (i # j) on E3 are defined by
(cf. Ref. [38]),

r—r)-(r—r;
by =70 )
iy

(i = 1) x r =57

2k, (18)
|(r = 1) x (r =5
. 2=z (x—x;)dy = (y — y;)dx
i 2 2 (19)
rio (x=x)*+(—-yi)
where ¢;; =—c;; are constants and zj =z, —z;.

Throughout this paper, we set x; = y; =0 for all i (in
this case, xd/0y — yd/0x is another Killing field) and
assume z; < z; for i < j. In this case, @ and @; can be
written in spherical coordinates by x = rsinfcos @,
y =sinfsin¢,z = rcos@ as

Cb: [ i <h,mj+%k,lj) r2_<Zi+Zj)rCOS9+ZiZj
= 1(%)) ity

d 3 0z
-y (moh,» 2 0ok — hom,-) resv=z
P 2 r;

with the constant ¢' and Zji =25 = 2
It should be noted that there exists a gauge freedom of
redefining harmonic functions [39]

K - K+ aH, L > L —2aK — a*H,

3 3 1
M—)M—EQL+EGZK+§CI3H, (21)

'"We have put ¢ == 3

ity (him; + 3 kil) 22

where a is a constant. Under the transformation (21), the
constant term k; in K changes as ky — ko + ahy. In an
appropriate choice of a, one can put

In the limit of Ay — 0, this solution reduces to the
asymptotically flat black lenses [25] (in the appropriate
choice of the parameters), the Breckenridge-Myers-Peet-
Vafa (BMPV) black hole [40] with the horizon of spherical
topology for n = 1, and the supersymmetric black lens with
the horizon of the lens space topology L(2,1) = $3/Z, of
Kunduri and Lucietti [24] for n = 2.

III. BOUNDARY CONDITIONS

To obtain a supersymmetric Kaluza-Klein black lens
solution of physical interest, we impose boundary con-
ditions at spacetime boundaries, at infinity » — oo, on the
horizon r = ry, at the pointsr = r;(i = 2, ..., n), and on the
zaxis x = y = 0in E? of the Gibbons-Hawking base space:

(1) (1) At infinity r — oo, the extra dimension of the
spacetime is compactified so that the size of the
fifth dimension is much smaller than that of the other
spatial dimensions. Hence, the spacetime can be
asymptotically approximated as an S' fiber bundle
over four-dimensional Minkowski spacetime. More-
over, we make an additional assumption that spatial
infinity is topologically S* so that the obtained
solution can have a limit at an asymptotically flat
solution.

(i) (ii) At the horizon r = r;, the surface should be a
smooth degenerate null surface of which the spatial
cross section has a topology of the lens space
L(n1)=S7,.

(iil) (iii) Atthe (n — 1) pointsr = r;(i = 2, ..., n), where
each harmonic function diverges, the metric behaves
like the origin of the Minkowski spacetime.

(iv) (iv) On the z axis in E? of the Gibbons-Hawking
base space, there exist no Dirac-Misner strings nor
orbifold singularities.

Furthermore, under these boundary conditions, the space-
time is required to allow neither CTCs nor (conical and
curvature) singularities.

A. Infinity

For r — oo, the metric functions f and w, behave,
respectively, as

'li 3l iki + im;
f_lzlo_FZTlv a)wzmo_‘_M. (23)
The 1-forms @ and y behave, respectively, as
x ~cosf@dgp, (24)
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h kil
w = my <d1// + hcos 9d¢> -3 <m0hi +%lok,~ - hom,~> cos de + < S ham; + 5kl | >d¢. (25)

i

Therefore, the metric can be approximated as

d5® = 132 [dt 4 mofay + cos0dp) — 3" (moh, + 2 ok, — hom; ) cosoag + (3 "2kl
="h Moldy ¢ moh; + 5 loki = hom;

i

L) S

o]

Vi)

2
+ 1 [hal <dl// + ) h;cos 9d¢> + ho{dr? 4+ r*(d6* + sin29d¢2)}} . (26)

The boundary condition (i) at infinity demands the param-
eters satisfy

lo=1, (27)

> (m()hi + % lok; = ho’":’) =0, (28)

c=—-) —= 29
Z Zjj ( )
i.j(i#)) J

In the choice of these parameters, for r — oo, the metric
asymptotically becomes

ds? ~ —[dt + my(dy + cos 0de))?
+ holdr? + r2(d6? + sin20dg?)]
+ ha%(l// + cos Od¢)? (30)

—[dt+my(dy +cosOde)|* + dr?

+72(d6? +sin20d?) + (dw+ hycosOdg) . (31)
where we have defined 7 = h(%)r and w = ha%y/. Because of
the presence of the cross term —m(dy + cos Od¢)dt, this
does not seem to satisfy boundary condition (i), but this is
because the asymptotic form is not at the rest frame.
Therefore, to move to the rest frame, let us define the
coordinates (7,w) by

1
— W+h2mof
t=/1—hymlt, W= 32
1= honi = @

In terms of these new coordinates, the asymptotic metric
can be rewritten as

ds? ~ —dt* + dr* + 7 (d6* + sin*0dg)?
+ (div + hy cos ). (33)

I
This is the metric of an S' fiber bundle over Minkowski
spacetime, where the radius of S?> becomes infinite but
that of S' remains finite. The avoidance of conical
singularities requires the range of angles to be
0<0<7 0<¢ <2z and 0 <y < 4z with the identi-
fication ¢ ~ ¢ + 27 and w ~w + 4z, under which as-
sumptions the spatial infinity is topologically an S° rather
than a lens space. Fromw ~w + 2aR;, w ~w + 27R5, we
can observe that the radius of the Kaluza-Klein circle R5
at infinity is

[, 2¢/1 = hym}
RS = 1- hom%Rk = Ton/lo (34)
0

In the limit Ay — 0, the Kaluza-Klein circle Rs,
namely, the size of an extra dimension becomes infinite,
which corresponds to the asymptotically flat black
lens [24,25].

B. Horizon r=r,

Now, we see that the point source r = r; corresponds to a
degenerate Killing horizon of which the topology of the
spatial cross section is the lens space of L(n, 1) = $3/Z,,.
Since, without loss of generality, we can choose the point
source ry as the origin of [E2 in the Gibbons-Hawking base
space, we consider here only the geometry near the origin

r = 0. Around this point, the functions f~! and w,, are
expanded as
I= Nk%/hl +1 L
e,
k3/h3 + 3k 1, /2
w, ISRk g

r

where we have defined the constants ¢} and ¢/, by

=1y — h2k2+zh2 [2h ki k; — K3h; + B3],

i#1 | zl‘
(36)
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3 2hok? 1
ch = mg + 55 (hikyly — hoki 1)) — =5+ + Z [~ (4k7 + 3k Ly )by + 3hy (2k% + by 1y)k; + 3hiky 1 + 2him).

Zh% h:; i1 2h?|zlll
(37)
The 1-forms @ and y behave, respectively, as
3 3 —cosf 3 1Z;
&= [Z<nmj + 2kl ——kj11> ) (—mj +—kizj) Lzt
i 2 2 lal i) 20 lanzalz
3 3 —Zil
— | mon + < lpk; — homy | cos 0 — —mgy + = lok; — hom; +cld 38
(0 5 foki 01> ;( 0T 5t 0>|Z1_1| ]fﬁ (38)
|

and we can confirm that the divergences of g,, and g,,, can be

eliminated and the metric is analytic at r = 0, where the

¥ =@ + Zhiﬂbi ~ (n cos 6+ Z ?1|>d¢ (39) constants Ay, A, and B, are defined by
i#1 i#l 1%

_1 20 3 3 2
In terms of new coordinates (v,y’) defined by Ao = 2 \/3klll + Al — dmy 2k + 3kl + ki),

(41)
Ay A
dv = dt — <—§+—1>dr,
r r
i B 2k3 + 3h 2h?
dy' = dy + 3" S dp—ar, (40) AgBo = ZR Kl 2y
i#1 |le| r 2
|
4AOA1 = 3]{%10[1 + 6hllol% + 2]’[01:; - 4k?m0 - 4]’[%1’)’!0”’!1 - 4]’!0]’111’)’!% - 6k1 (hlllm() + hlloml + hollml)
1
+ ZH [(3ky 2 = 12k3my — 6hy1ymy )k; 4 3(k31y + 2h 12 — 2k kym,y)]
i#1 1%
Hence, it turns out that the point r = r; corresponds to
the Killing horizon for the supersymmetric Killing field 2(3K2+4nl,) —4m, (2k3 +3nk, I, +n’m
V = 0/dv. Moreover, after putting (v,r) — (v/e,er), R}:= 13K ) 11(34 . o 1). (46)
taking the limit of € — 0, we can obtain the near-horizon 1
eometr
8 Y This metric is locally isometric to the near-horizon geom-
% etry of the BMPV black hole [41]. To eliminate CTCs
ds%H = a4 dy' + ncosOdg around the horizon, we must require
2k (2k3 + 3nly) + 4n’*m 2
e R;‘ng ~rdy R2>0 (47)
+ R3(d6? + sin’0d¢?) and
4r? 4
v - dvdr, (44)
R2R} R,

R: > 0. (48)
where we have defined

The spatial cross section of the event horizon can be

2. 12
Ry = ki + nly, (45)  extracted by v = const and r = 0 in (44),

024012-5



SHINYA TOMIZAWA

PHYS. REV. D 98, 024012 (2018)

R22

ds} = i

d
< V1 cos qub) + R3(d6P + sin20dg?).
(49)
which is the squashed metric of the lens space S*/Z,,.

C. Points r=r; (n=2,...,n)

The metric of the Gibbons-Hawking space has apparent
divergences at the points r = r; (n = 2, ..., n), but it can be
shown that they correspond to coordinate singularities
under the appropriate parameter setting. We impose the
boundary conditions so that each pointr =r; (n =2, ..., n)
behaves like the smooth origin of Minkowski spacetime.
Let us choose the coordinates r = (x,y,z) on E> in the
Gibbons-Hawking space so that the ith point r; (i # 1)
becomes the origin of E* (i.e., r — r —r;), near which
point, the functions f~! and w,, behave, respectively, as

IS
h_12+2_h,klll —l—mi

l—|—h N
,, =~

f_l -+, + sy, (50)

r

where the constants ¢; and ¢, are defined by

—hok
C11=lo+ 0 +Z/’l2

(=K2h; + 2h;kik; + 121),

|2l
(51)
1
Cy =My + 2h ( 4h0k3 + 3h2k lo - 3]’10]’[ k l )
1
[ (43 + 3kl R,
+22h3‘2,|[ ( l+ 1 ll) ]
J(#i) /
+ 3,(2K2 + L)k + 3h2k;L; + 2h3m). (52)

K /h2 +3kil/h; +m,»/h2

x=(hjcosO@+y))dp, o~

K2/h. +1. -2 SIh? 432k,
dS22—<’/ 1+1+Cl> |:dt—|—(l i 2
r r

The 1-forms y and & are approximated as

(@)cosO@+d))dp,  (53)

where

X0) = —Z (54)

. 3 ZjiZki
a)(0> = (hkm +—kkl) T
kj(;ﬁ P2 il
Zji
+ Z (moh + = k lo l’lom]> + C, (55)
i) i
N 3
) Ji
3
— moh,- + zkilo — hom,- . (56)

Therefore, the asymptotic behavior of the metric around
this point can be written as

){dl//+(/’l o8O+ y(0))dp} + (1) cos @ + @) )dep ’

+ (L/ hr"“" +c >h— [{dw+ (h;cos0 +x o )d¢}2+h2< +do* + sm26’d¢2>} (57)

First, to remove the divergences in the functions f~!
and w,,, the following conditions must be imposed on the
parameters (k;, [;, m;),

k2

li==5" (58)
ki

mi =53 (59)

which gives

[
LU
n 2

= 0, Cyr = _ht&)(l) (60)

Introducing the new coordinates (p,y’,¢’) b

p=2Vheir, W =ytxop. ¢ =¢. (61

we can obtain the metric near r = r;, which is given by
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ds* ~ —c72d[t + ey’ + 0 @')* + dp?
% [(dw' + h;cos0dd')? + dO> + sin*0d¢'],
(62)

where to ensure that the metric has the Lorentzian signature
we have imposed

hicy > 0, i=2,...,n. (63)
Next, as explained in detail in Ref. [25], to remove the

causal violation around each r;, we must impose that at
r=r,(i=2,...,n)

Cy) = 0, (64)

As shown below, the so-called bubble equations (64) auto-
matically guarantee é)(0> =0 forall i =2, ..., n, Therefore,
each point r =r;(i = 2,...,n) corresponds merely to the
coordinate singularities like the origin of the Minkowski
spacetime. Thus, we have shown that the points r =r;
(i =2,...,n) describe the timelike and regular points.

Finally, we prove @) =0 holds at each r =r; for
i=2,...,n. It can be shown from (58) and (59) that the
bubble equations (64) can be written as

3 3
0 = mo =Skl + hom; + Z o 32K + 203y =5 (kily + ks + Kilghy) + m |
3 k3 3k k? =31 k; 4+ 2 ki —k;)3
:mo—iki+h0mi_nl+ 1,2 1K + m1+ Z(}Z ) (66)
21 25j(#i) |2l
Furthermore, the summation of (66) for i =2, ..., n gives
nk? + 3k k3 =31k, +2m ky — k)3
O Z{mo——k —|—h0m J 17 17 ! M]
2<j 221 2<k(#) e
3 nk3 + 3k, k2 3likj + 2m1
<J 2<j J

where the last term in the first line vanishes by the antisymmetry for k and j. From Egs. (58) and (59), &) is

written as
R 3 ZjiZki 3 Zji
Cl)(()) = Z hkmj+_kklj 74’2 m()//lj+—kilo—h0mi

T 2 ’ |Z','Zk,‘|Z‘k — 2 ’ |Z‘i|

k. j k. j#ik#]) J Y J(#) J
_ z nkjf —Zh?ml _3hjk1k2 3h k;l, Zji. hkk? —3hjkkkf ZjiTki m —|—§l e
o5 2h%z;, |z;il L 2%z ziizud 0Tt T
i) J%i T gk jk i k) 7t !
3 3 2 2 3 2
n Z < o +2 k hom) Zji nk; —2h;my —3h;k ki —3h3lk; B Z hik; = 3hjkk; (68)
J

2<j(#i) 12jil 2<j Zh?Zﬂ 2<k,j(k#j) Zh?Zkf

The third, fifth, and sixth terms of the right-hand side of (68) are combined into
3 nk3 —2h3my — 3h;k k3 = 3021, k; hik = 3k k?
_<nm0+—kllo—h0ml>_z J i 21 1% jiki Z %
2 2<) 2hjzj1 2<k.j(k#)) 2152
3 3 (ky — k)3
_<nm0 +§kllO - I’lol’fll) + 2Z(Wlo —Ekjl() + hOmj> + Z ' s 4Zk']
<J 2<k.j(k+)) J
ky — k;)?
_ Z ( k j) ’ (69)

r<itl) Yok
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where we have used Eq. (67) for the second term in the first line and Eq. (28) for the last equality. Next, the
summation of the first, second, and fourth terms on the right-hand side of (68) reduces to

-y S 5 (o g o) 2
2<j(#) ssibirpinsy 2 il 50 2

" 3 nk3 + 3k k> = 3kl; +2m kp,—k;)? 7
=Zi{<—mo+ kj = hom; + — L 1>+ > (il Z’“]
2<j#i |Zji| 2 2Z1j 2<k(#i.)) 4ij |Zki|

_ ZZﬁK 3 ("k—"j)s)+ > th]
2<j#i |Zji| 2<k(#)) 2|ij| 2<k(#i)) 4ij |Zki|

. — k)3 k)3 .
_ Z Zji |:Z (kkz k}) + Z (kkzk,/) Zk1:|’ (70)

S il LAy el Ldz, Y

= 2h3my = 3h;ki k3 =313kl 2y . hiked = 3hkik3 z;iz,,

21z 2,1

. (e = ky)* (71)

r<fwllny) ki
where we have used Eq. (67) for the second equality. Thus, the straightforward computations enable us to show that

(71) coincides with (69) up to the minus sign. This completes the proof of @) = 0.

D. Axis

The z axis of E* (i.e., x =y =0) in the Gibbons-Hawking space is split into the (n + 1) intervals as I_ =

{(x,y,)x=y=0,z<z}, [ ={(x,y.29)lx=y=0,z; <z<zim}(i=1,..on=1), and I, = {(x,y,2)[x =y =0,
z > z,}. We find that, on /.., & vanishes since

3 3
)

k.j(k#j J
3 d d
= z <hkmj + —kkl/‘> ¢ + Z <Wl()]’l + = lok - hom >d¢ Z (hkm + = kkl > d)
‘ . 2 ’ ik
k.j(k#j) k.j(k#j) J
3
J
=0, (72)

where we have used Eqgs. (29) and (28), respectively, in the second equality and the last equality.
|

Forzel;(i=1,2,...,n—1), we find where we have used the fact that @ is constant on /; in the
second equality and Eq. (53) in the third equality.
§)¢|1_ = dy (p=0,2 <z<2zi) (73) Furthermore, we have used Egs. (60) and (64), respectively,

in the fourth equality and last equality. It hence turns out
that @ = 0 holds at each interval, which proves that no

- w""’:’f (0=0) (74) Dirac-Misner string pathologies exist throughout the
spacetime.
= (1) + @) (75) In turns, we prove the absence of orbifold singularities.
On /., we have
=—c 76
’ 7o x = *dg, (78)
=0, (77) whereas on /;, we have
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( -7
NC=>
|z -z 2Sj$i|

2=z Z z—zj>d¢

z— 2z i+1<j<n-1 |z = zj]
— (2n—2i + 1)d¢. (79)

Therefore, the two-dimensional (¢, y) part of the metric on
the intervals 7, and I; takes the following simple form:

ds3 = (=fo, + ' H™)(dy +xydp)*.  (80)

In the analysis of orbifold singularities, it is more useful to
consider in the coordinate basis (J,, , 9, ) of the periodicity
of 27, in (0. 0,,), where these coordinates are defined by
¢ = (v + ¢)/2 and ¢, == (y — ¢)/2. From Eq. (80), we
see that the Killing vector v := 9, — y,0,, vanishes on each
interval. Therefore, we can obtain the rod structure is given
by the following:

(i) On the interval /., the Killing vector v, := 0, —
d,, = (0,—1) vanishes.

(i) On each interval I; (i =1,....,n—1), the Killing
vector v;:=0y—(2n—-2i+1)0, = (i—n,i—n—1)
vanishes.

(iii) On the interval I_, the Killing vector v_ := 8¢ +
0, = (1,0) vanishes.

From these, we can observe that the Killing vectors v and
v; on the intervals satisfy

det(vl, o) = —1,det(v], 07 ) =-1,  (81)
with

det(vl,07) = n. (82)
!

Equation (81) means that there exist no orbifold singular-
ities at adjacent intervals z = z;(1 <i<n) [13], and
Eq. (82) shows that the spatial topology of the horizon
is the lens space L(n,1) = $°/Z,.

IV. PHYSICAL PROPERTIES

Since appropriate boundary conditions are given in the
last section, we can now investigate several physical proper-
ties of the solution obtained in Sec. II. To do so, we can
consider the physical conserved charges from two points of
view, in the five-dimensional minimal supergravity and in
the dimensionally reduced four-dimensional theory, which
leads to a massless axion and a dilaton coupled to gravity and
two U(1) gauge fields, one of which has Chern-Simon
coupling. Here, let us take the five-dimensional point of view
for the simplicity. Since at infinity r — oo the spacetime
asymptotically behaves as an S' fiber bundle over four-
dimensional Minkowski spacetime, the metric of which can
be written as g,, ~1,, + h,, in Cartesian coordinates, the
Arnowitt-Deser-Misner (ADM) mass and ADM (angular)
momentum can be computed. Following the notations in
Ref. [42], we can express the 2 x 2 ADM stress tensor as

1 2 20 ¢ j
Tap = 1672Gs5 /Sm dQSZ” n'[nap(0ih . — ajhji) = Oihap),

(a,b,C:f,V_V,l.,jZX,y,Z), (83)

where inZ is a volume element of a two-dimensional

sphere with unit radius and n' is the radial unit normal vector.
In terms of the stress tensor, we have the ADM mass and
ADM (angular) momentum along the fifth dimension 9/9w,
respectively, as

M— /dWT;; _ 7R (1 - 2homg) Y ki + ho(3) ;L = 3mg Y ik; = 2hgmgy - m;)

2Gs

s

1- hom(z)

_ TRy 2myy iy — 6homod il + (14 homd) (3D k; + 2hg > m;)

4G5

Moreover, the angular momentum along 0/0¢ can be
obtained as

7R 3
J(/) = G:Z(moh, +§kl - h0m0> Zj- (84)
As pointed out in Refs. [24,25], let us note that the
asymptotically flat supersymmetric black lens must have
two nonzero-angular momenta. Now, we would like to see
whether the Kaluza-Klein black lens obtained here allows
two zero-angular momenta or not, in particular, for the
simplest case of n = 2. From Eq. (64), z,; can be written in
terms of the other parameters, as

1- hom(z)

© =2hok3 + 6k, + 3k, — 2hgm,

21 (85)

and the substitution of this into the inequality (63) yields

(c1=)1—hok
(—Zhok% +6k2 +3k1 —2h0m1)(11 —Zk% —2k1k2)

3 5 <0.
2k2+3k1k2—3llk2+2m1

(86)

The solid curve in Fig. 1 shows the plots of P = 0 in the
(ky,ky) plane for n =2, z; =0, and hy =m; =1, = 1.
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FIG. 1. Plots of P =0 in a (k;,k,) plane for n =2, z; =0,

hy = m; = l; = 1. The shaded regions and the curve denote the
regions of R? > 0, R} > 0, ¢; <0, z5; > 0, and P = 0, respec-
tively. The (angular) momentum P vanishes where the curve
crosses on the shaded region.

The shaded portions in this figure present the region such
that all of the inequalities R} > 0, R3 > 0, z,; > 0, and
¢y < 0 are satisfied. It can be seen from this figure that
there indeed exists a parameter region in which P = 0 can
be realized. Moreover, it can be shown from Eq. (28) that
for n = 2 the angular momentum J, vanishes in the choice
of the parameter z; = 0. Therefore, at least, for n = 2, in
contrast to the result of the asymptotically flat super-
symmetric black lens, we can see that there exists a case
in which both of angular momenta (J,, P) vanish.

The interval /; is topologically a disk, and the (n —2)
intervals I; (i = 2, ..., n — 1) are a two-dimensional sphere.
The magnetic fluxes through I; that are defined by

1
alt =g, [ 7 7)
are computed as
V3 kyl
0 =5 [ )
) =2 k) (=21 (58)

In particular, the first term in g[I,] gives the contribution
from the horizon, whereas the second term and each term
in g[[;](i=2,...,n) come from r =r;(i =2,...,n). The
expression (88) for the magnetic fluxes are exactly the same
as for the asymptotically flat black lens with the horizon
topology of L(n, 1) in Ref. [25]. As shown in Refs. [24,25],

for the asymptotically flat supersymmetric black lenses,
the existence of the magnetic fluxes plays an essential
role in supporting the horizon of the lens space topology.
On the contrary, it can be shown that this is not true for
the Kaluza-Klein supersymmetric black lens obtained
here. In turns, we consider whether the Kaluza-Klein
black lens also prohibits (g[l,],...,q[l,—{]) = (0, ..., 0).
For k2 = klll/[2<k% + nll)], ki = ki+l(i = 2, e, n— 1),
all magnetic fluxes ¢[[;](i =1,...,n—1) vanish. In the
choice of these parameters, the condition (63) can be
simply written as

nl3(3k3 +4nl,)

VRTINS () ok 2,
4(k%+nll)2 >( 0 z)le

i=2,...n.  (89)

As exactly proved in Ref. [25] for the asymptotically flat
black lens, which can be realized by putting 7y = m; = 0,
these inequalities cannot be satisfied, since the left-hand
side is nonpositive by Eq. (48) but the right-hand side must
be positive from our assumption. However, for the Kaluza-
Klein black lens with hg > 0, the right-hand side can be
negative due to the existence of the constant %, which
corresponds to the size of an extra dimension at infinity.
In fact, we can see from Fig. 2 that the magnetic flux can
vanish, at least, for n = 2. The solid curve in Fig. 2 denotes
the plots of ¢[I;] =0 in the (k;,k,) plane for n =2,
71 =0, hy =10°, m; = 107%, and [, = 1, and the two
separated shaded portions are the regions such that all of
the inequalities R? > 0, R5 > 0, z5; > 0, and ¢; < 0 are
satisfied. Therefore, the magnetic flux ¢[/] vanishes on the
solid curve in the shaded regions. Thus, in contrast to the

k
1k J
0 — 3
-1t |
_27““1““\“1““
-2 -1 0 1 2

FIG. 2. Plots of g[I;] =0 in the (k;,k,) plane for n =2,
71 =0, hy = 10°, m; = 107, and [, = 1. The shaded regions
and the curve denote the regions of R? >0, R3 >0, z5; > 0
¢y <0, and g[I,] =0, respectively. The magnetic flux g¢[I,]
vanishes on the curve in the shaded regions.
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asymptotically flat supersymmetric black lens, the mag-
netic flux can vanish for the Kaluza-Klein supersymmetric
black lens.

V. SUMMARY

In this work, we have constructed a biaxisymmetric
Kaluza-Klein black lens solution as a supersymmetric
solution in the bosonic sector of the five-dimensional
minimal supergravity. We have shown that the spacetime
has a degenerate Killing horizon with the spatial cross
section of the lens topology of L(n,1) = $?/Z, and also
computed the mass, two angular momenta, and (n — 1)
magnetic fluxes. When the compactification radius of the
extra dimension becomes infinite, this solution exactly
coincides with the asymptotically flat black lens in the
previous work [24,25].

For the asymptotically flat supersymmetric black lens in
Refs. [24,25], which can be obtained by taking the limit
hy — 0, a pair of angular momenta cannot vanish, whereas
for the Kaluza-Klein black lens in this paper, both of them
can vanish at least for n = 2. For the asymptotically flat
black lens, the existence of the magnetic fluxes plays an
essential role in supporting the horizon of the black lens,
whereas for the Kaluza-Klein black lens obtained in this
paper, this cannot be applied since the magnetic flux
vanishes, at least, for n = 2.
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