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We present the reconstruction method of fðRÞ gravity for the homogeneous and anisotropic Bianchi-I
spacetime, which was previously formulated only for homogeneous and isotropic Friedmann-Lemaitre-
Robertson-Walker spacetime. We argue in this paper that for anisotropic spacetimes, the total anisotropy
behaves as an independent metric degree of freedom (d.o.f.) on top of the average scale factor in fðRÞ
gravity. This is not like general relativity, where specifying the form of the average scale factor as a function
of time also specifies the total anisotropy as a function of time uniquely. We link this peculiar fact to an
interesting intertwining between the definition of Ricci scalar for anisotropic metric and anisotropy
evolution equation in fðRÞ gravity. Consequently, specifying an anisotropic solution of fðRÞ gravity
implies specifying both the average scale factor and the total anisotropy as functions of time. The
reconstruction method hence formulated is applied to two scenarios where anisotropy suppression is
important, namely, a quasi-de-Sitter expansion as required in inflation, and a power law contraction as
required in ekpyrotic bounce models.
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I. INTRODUCTION

The present universe is spatially homogeneous and
isotropic in large scales to a high degree of accuracy as
far as the observational evidences go, and can be very
well approximated by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric. Still, possibility of some amount of
spatial anisotropy in some early epochs of the universe
cannot be ruled out. In fact, any “good” physical theory
must be general enough in nature so that the homogeneous
and isotropic universe arises as an attractor solution in the
phase space of more general solutions. Even if the initial
spacetime is anisotropic, there must be some mechanism of
anisotropy suppression in the theory one considers. We try
to tackle the problem in the reverse way. Provided that an
anisotropy suppression occurs, we present a formalism to
reconstruct a good theory of gravity.
Usually any preexisting anisotropy is assumed to be small

and incorporated only as cosmological perturbations in the
metric. Small metric anisotropy has traditionally been ana-
lyzed by the techniques of dynamical system analysis applied
to cosmology (for example, see Refs. [1–5]). A realistic
isotropic cosmologymust be dynamically stable with respect
to small anisotropic perturbations. In other words a realistic
isotropic cosmology must arise as an attractor solution. This
approach has found a huge application in the field of infla-
tionary cosmology [6–9]. A great example is the cosmic no
hair conjecture,which states that thede-Sitter solutionmust be

an attractor solution under general relativistic dynamics for all
homogeneous anisotropic models. Wald has been able to
prove it for all Bianchi models except Bianchi-IX (see [10]).
The attractor nature of the de-Sitter solution has also been
studied in Starobinski’s inflationary scenario, which incor-
porates Rþ αR2 gravity [11–13]. Another area where an
isotropizationmechanismbecomes important is in the context
of the bouncing scenario [14–17], which is alternative to
inflation. It iswell known that ingeneral relativity (GR) spatial
anisotropy evolves as a−6. So in an expanding universe,
anisotropy dies out quickly, but in a contracting universe,
anisotropy actually grows large with time, which, if not
suppressed,might foil a subsequent bounce.This is the case of
well-known Belinski-Khalatnikov-Lifschitz instability [18].
To restore the situation in the context of GR, usually an
ekpyrotic phase dominated by some ultrastiff matter compo-
nent is invoked. An ultrastiff matter component has an
equationof stategreater thanunity, so in a contractinguniverse
the energy density of the ultrastiff matter grows faster than the
anisotropy, and effectively suppresses it. Considering gravity
theories beyond GR, evolution of anisotropy in a contracting
universe has some interesting characteristics for Rþ αR2

gravity, which has recently been studied in [19].
In this paper also we deal with metric anisotropy in fðRÞ

gravity, but we take a different approach. We assume a
Bianchi-I model with some specific form of the average
scale factor together with some anisotropy that is getting
exponentially suppressed with respect to the average
Hubble parameter. We then show that, given the equation
of state parameter of the dominant matter contribution, it is*snilch@iitk.ac.in
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possible to reconstruct the fðRÞ gravity. Although getting a
compact form of fðRÞ may not always be possible,
nevertheless it is possible at least to reconstruct the function
fðRÞ term by term in a systematic manner. The recon-
struction method of fðRÞ gravity has been used previously
in literature for realizing some specific cosmological
evolutions in the isotropic FLRW case [20–25].
The paper is organized as follows. In Sec. II, we briefly

review the reconstruction method of fðRÞ gravity for the
isotropic case, followed by its application to toy models of
matter bounce and inflation in Sec. III. In Sec. IV, we
formulate the reconstruction method of fðRÞ gravity in the
presence of metric anisotropy, followed by its application to
the case of a power law contraction (mimicking a pre-
bounce ekpyrotic phase) and a quasi-de-Sitter expansion
(mimicking an inflation) in Sec. V. Next we conclude with
some discussion of the behavior of anisotropy in fðRÞ
gravity and its relevance to the present method.

II. RECONSTRUCTION METHOD FOR
THE ISOTROPIC CASE

Let us briefly review the reconstruction method of fðRÞ
gravity for the homogeneous and isotropic FLRW metric,

ds2 ¼ −dt2 þ a2ðtÞ½dx21 þ dx22 þ dx23�; ð1Þ

where symbols carry the usual meanings. The equations of
its dynamics under fðRÞ gravity in the presence of an
isotropic fluid are

3H2 ¼ κ

f0
ðρþ ρcurvÞ; ð2Þ

2 _H þ 3H2 ¼ −
κ

f0
ðpþ pcurvÞ; ð3Þ

p − ωρ ¼ 0; ð4Þ

_ρþ 3Hðρþ pÞ ¼ 0; ð5Þ

where in the above equations

ρcurv ¼
Rf0 − f

2κ
−
3Hf00 _R

κ
; ð6Þ

pcurv ¼
_R2f000 þ 2H _Rf00 þ R̈f00

κ
−
Rf0 − f

2κ
: ð7Þ

Here an overdot denotes time derivative and prime denotes
derivative with respect to R. In the above, note that, once we
know the form of the function fðRÞ, there are a total of
three functions of time, HðtÞ, ρðtÞ, pðtÞ that govern the
dynamics. Existence of the two constraint equations (2) and
(4) implies that only one of these three functions is
independent, while the other two can be determined using

the constraint equations. For example, given a form of
fðRÞ, we can use the constraint equations to write the
dynamical equation (3) as a differential equation in only
one single function HðtÞ. Once we solve for the function
HðtÞ, the functions ρðtÞ and pðtÞ can be found using the
two constraint equations.
However, there may be cases when the form of fðRÞ is

not known a priori. Given some value of the parameter ω,
we would like to derive a suitable form of fðRÞ so as to
realize a particular solution aðtÞ. This program, i.e.,
specifying the solution aðtÞ, the value of the parameter
ω and finding the form fðRÞ that can realize this as a
solution, is called the reconstruction method. For the
isotropic case it works as follows. Using the definition
of ρcurv as in Eq. (6), the constraint equation (2) can be
written as a differential equation for fðRÞ,

3H _Rf00ðRÞ þ
�
3H2 −

R
2

�
f0ðRÞ þ 1

2
fðRÞ

− κρ0a−3ð1þωÞ ¼ 0: ð8Þ

Let us define N ≡ ln aðtÞ, where the scale factor aðtÞ is a
known function of time. This relation can be inverted to
give t ¼ tðNÞ. We have then the following:

HðtÞ ¼ _NðtÞ; ð9Þ

H2ðtðNÞÞ ¼ _N2ðtÞ ¼ _N2ðtðNÞÞ: ð10Þ

Let H2ðtðNÞÞ ¼ GðNÞ. Therefore

_HðtðNÞÞ ¼ 1

2
G0ðNÞ; ð11Þ

RðtðNÞÞ ¼ 6ð _H þ 2H2Þ ¼ 3G0ðNÞ þ 12GðNÞ; ð12Þ

_RðtðNÞÞ¼ dRðtÞ
dN

_NðtÞ¼ ð3G00ðNÞþ12G0ðNÞÞHðtÞ; ð13Þ

H _R ¼ ð3G00ðNÞ þ 12G0ðNÞÞH2ðtÞ
¼ 3GðNÞðG00ðNÞ þ 4G0ðNÞÞ: ð14Þ

Equation (12) can be inverted to yield NðRÞ. Then Eq. (8)
can be rewritten as

9GðNðRÞÞ½G00ðNðRÞÞ þ 4G0ðNðRÞÞ�f00ðRÞ

− 3

�
GðNðRÞÞ þ 1

2
G0ðNðRÞÞ

�
f0ðRÞ þ 1

2
fðRÞ

¼ κρ0e−3NðRÞð1þωÞ: ð15Þ

For the vacuum situation the right-hand side of the above
equation vanishes. So the equation becomes homogeneous
and solving it becomes relatively easier.
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III. EXAMPLES FOR ISOTROPIC CASE

In this section the reconstruction method of fðRÞ gravity
for the isotropic case, as discussed in the previous section,
is applied in a bouncing scenario and in a quasi-de-Sitter
inflationary scenario.

A. Exponential bounce model: aðtÞ= eCt2 (C > 0)

Reconstruction of fðRÞ gravity for this model has been
done in [22]. For this model,

N ≡ ln a ¼ Ct2; ð16Þ

H ¼ _N ¼ 2Ct; ð17Þ

H2 ¼ 4CN ≡GðNÞ; ð18Þ

RðNÞ ¼ 12Cð1þ 4NÞ; ð19Þ

GðNðRÞÞ ¼ R
12

− C: ð20Þ

The reconstruction equation becomes

144CðR − 12CÞ d
2f

dR2
− 3ðRþ 12CÞ df

dR
þ 6f

¼ 12κρ0 exp

�
−
3

4
ð1þ ωÞ

�
R

12C
− 1

��
: ð21Þ

If the matter contribution can be neglected, then the above
equation admits two polynomial solutions as follows:

fðRÞ ¼ −2Cþ R −
1

72C
R2;

ðR − 12CÞ3=2L3
2
1
2

�
R

48C
−
1

4

�
; ð22Þ

where La
nðxÞ is the generalized Laguerre polynomial. An R2

theory with a negative coefficient of R2, such as the first
one, was shown to produce bouncing solutions in [26].
A general solution would be a linear combination of the
two solutions shown above.
The matter contribution usually cannot be neglected in a

matter bounce scenario. In that case Eq. (21) is inhomo-
geneous and finding the compact form of a particular
solution becomes much more complicated. Nevertheless,
an approximate compact form of fðRÞ can be obtained in
the limit N ≈ 0 (near the bounce) and in the limit N → ∞
(away from the bounce). Near the bounce R ≈ 12C, so that
Eq. (21) becomes

72f0ðRÞ − 6fðRÞ ¼ −12κρ0; ð23Þ

which has the solution

fðRÞ ¼ 2κρ0 þ C1eR=12; ð24Þ

for some constant of integration C1. Away from the bounce
R ≫ 12C, so that Eq. (21) becomes

144CRf00ðRÞ − 3Rf0ðRÞ þ 6fðRÞ ¼ 0; ð25Þ

which admits a polynomial solution as follows:

fðRÞ ¼ R −
R2

96C
;

Rð96C − RÞEi
�

R
48C

�
− 48Ce

R
48Cð48C − RÞ: ð26Þ

In the above “Ei(x)” denote the exponential integral
function, which, for real nonvanishing values of x, is
defined as

EiðxÞ ¼ −
Z

∞

−x

e−t

t
dt:

B. Quasi-de-Sitter expansion: aðtÞ= eH0t−M2
12 t

2
(H0 > 0)

For this model,

N ≡ ln a ¼ H0t −
M2

12
t2; ð27Þ

H ¼ _N ¼ H0 −
M2

6
t; ð28Þ

H2 ¼ H2
0 −

M2

3
N ≡GðNÞ; ð29Þ

RðNÞ ¼ 12H2
0 −M2 − 4M2N; ð30Þ

GðNðRÞÞ ¼ RþM2

12
: ð31Þ

Concentrating only a vacuum dominated quasi-de-Sitter
expansion, the reconstruction equation becomes

4M2ðRþM2Þ d
2f

dR2
þ ðR −M2Þ df

dR
− 2f ¼ 0: ð32Þ

The above homogeneous equation has two linearly inde-
pendent solutions as follows:

fðRÞ ¼ M2

6
þ Rþ 1

6M2
R2;

e−
R

4M2

� ffiffiffi
π

p
e
1
4
ð R
M2þ1ÞðM4 þ 6M2Rþ R2ÞErf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ R

p

2M

�

þ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ R

p
ð3M2 þ RÞ

�
: ð33Þ
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In the above “Erf(x)” denote the error function defined as

ErfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

e−t
2

dt:

The first of the above solutions corresponds to the well-
known inflationary model by Starobinsky [27].

IV. RECONSTRUCTION METHOD IN THE
ANISOTROPIC CASE

Let us now formulate the reconstruction method of fðRÞ
gravity for the homogeneous and isotropic Bianchi-I
metric:

ds2 ¼ −dt2 þ a2ðtÞ½e2β1ðtÞdx21 þ e2β2ðtÞdx22 þ e2β3ðtÞdx23�;
ð34Þ

where aðtÞ is the average scale factor and three functions
_β1; _β2; _β3 characterize the deviation from the average scale
factor in the three perpendicular dimensions. The total
amount of anisotropy in the metric is given by the quantity
_β21 þ _β22 þ _β23. Observe that when _β21 þ _β22 þ _β23 ¼ 0, i.e.,
_β21 ¼ _β22 ¼ _β23 ¼ 0, the spatial coordinates can be suitably
rescaled to recast the above metric in the FLRW form.
The dynamics of the above metric for fðRÞ gravity in the
presence of an isotropic fluid can be described by the
following set of equations:

3H2 ¼ κ

f0
ðρþ ρcurvÞ þ

1

2
ð _β12 þ _β2

2 þ _β3
2Þ; ð35Þ

2 _Hþ3H2¼−
κ

f0
ðpþpcurvÞ−

1

2
ð _β12þ _β2

2þ _β3
2Þ; ð36Þ

p − ωρ ¼ 0; ð37Þ
_ρþ 3Hðρþ pÞ ¼ 0; ð38Þ

β̈1 þ
�
3H þ

_Rf00

f0

�
_β1 ¼ 0; ð39Þ

β̈2 þ
�
3H þ

_Rf00

f0

�
_β2 ¼ 0; ð40Þ

β̈3 þ
�
3H þ

_Rf00

f0

�
_β3 ¼ 0; ð41Þ

_β1 þ _β2 þ _β3 ¼ 0; ð42Þ
where ρcurv and pcurv have the same definition as in the
FLRW case. Note that, once we know the form of the
function fðRÞ, there is a total of six functions of time
HðtÞ; ρðtÞ; pðtÞ; _β1ðtÞ; _β2ðtÞ; _β3ðtÞ governing the dynamics.
Existence of the three constraint equations (35), (37),
and (42) implies that only three of them are independent.

From the constraint equation (42), it can be concluded that
only two of the _β’s are independent. However, observe that
both in the constraint equation (35) and the dynamical
equation (36), _β’s appear only as the combination _β1

2 þ
_β2
2 þ _β3

2, which is the total amount of anisotropy.
Consequently, we conclude that it is only the total amount
of anisotropy which enters into the dynamics. It is easy to
check that the quantity x defined by x2 ¼ _β21 þ _β22 þ _β23
obeys the dynamical equation of the same form as obeyed
by the _βi’s themselves:

_xþ
�
3H þ

_Rf00

f0

�
x ¼ 0: ð43Þ

The reader is advised to be careful not to confuse the
quantity xðtÞ defined above with the notation x used to
denote the spatial coordinates of the metric as in Eq. (1)
or Eq. (34).
If we know the form of the function fðRÞ and concen-

trate only on the quantity xðtÞ, we see that there is now a
total of four functions of time HðtÞ, ρðtÞ, pðtÞ, xðtÞ
governing the dynamics. Existence of the constraint equa-
tions (37) and (35) implies that only two of them are
independent. Without loss of generality, we can choose
them to be HðtÞ and xðtÞ. Given some form of the function
fðRÞ, they can be determined by solving Eqs. (36) and (43).
ρðtÞ and pðtÞ can then be found using the constraint
equations (35) and (37). However, if the form of fðRÞ is
not known a priori, but a suitable form has to be
determined so as to realize a particular solution, given a
particular value of the parameter ω, then we have to
formulate the reconstruction program for the Bianchi-I
metric in Eq. (34). In this case, however, since HðtÞ, xðtÞ
are two independent metric d.o.f., specifying a particular
solution implies specifying both these functions. Usually,
during a particular era given by the background evolution
aðtÞ, we expect the dynamics to contain some kind of
isotropization mechanism so as to match with our observed
isotropic universe. In that case we can take xðtÞ as

x2ðtðNÞÞ
H2ðtðNÞÞ ¼ eλN; ð44Þ

where N ≡ ln a as in the isotropic case, and the constant λ
is positive in a contracting universe and negative in an
expanding universe (assuming a ¼ 1 at time t ¼ 0).
Formulation of the reconstruction method in the anisotropic
case now follows the same route as in the isotropic case.
Equation (35) can be recast as a second order differential
equation in fðRÞ,

3H _Rf00ðRÞ þ
�
3H2 −

R
2
−
1

2
x2
�
f0ðRÞ

þ 1

2
fðRÞ − κρ0a−3ð1þωÞ ¼ 0: ð45Þ

If H2ðtðNÞÞ ¼ GðNÞ, then
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_HðtðNÞÞ ¼ 1

2
G0ðNÞ; ð46Þ

RðtÞ ¼ 6ð _H þ 2H2Þ þ x2 ¼ 3G0ðNÞ þGðNÞð12þ eλNÞ;
ð47Þ

_RðtÞ ¼ dRðtÞ
dN

_NðtÞ ¼ ½3G00ðNÞ þ G0ðNÞð12þ eλNÞ
þ λeλNGðNÞ�HðtÞ; ð48Þ

H _R ¼ ½3G00ðNÞ þG0ðNÞð12þ eλNÞ þ λeλNGðNÞ�H2ðtÞ
¼ GðNÞ½3G00ðNÞ þ G0ðNÞð12þ eλNÞ þ λeλNGðNÞ�:

ð49Þ

Equation (47) can be inverted to yield NðRÞ. Then Eq. (45)
can be rewritten as

3GðNðRÞÞ½3G00ðNðRÞÞ þ G0ðNðRÞÞð12þ eλNðRÞÞ
þ λeλNðRÞGðNðRÞÞ�f00ðRÞ

−
��

3þ 1

2
eλNðRÞ

�
GðNðRÞÞ þ 3

2
G0ðNðRÞÞ

�
f0ðRÞ

þ 1

2
fðRÞ ¼ κρ0e−3NðRÞð1þωÞ: ð50Þ

V. EXAMPLES FOR THE ANISOTROPIC CASE

In this section the reconstruction method of fðRÞ gravity
for the anisotropic case as discussed in the previous section
is applied in the isotropization scenario during an ekpyrotic
power law contraction era and a quasi-de-Sitter expan-
sion era.

A. Ekpyrotic contraction phase:
aðtÞ= ð− tÞm (t < 0, 0 < m < 1)

For this model,

N ¼ ln a ¼ m lnð−tÞ ð51Þ

HðtÞ ¼ _N ¼ m
t

ð52Þ

H2ðtðNÞÞ ¼ m2

t2
¼ m2

e2N=m ≡GðNÞ ð53Þ

x2ðNÞ ¼ GðNÞeλN ¼ m2eðλ−2=mÞN ð54Þ

RðtðNÞÞ ¼ 6ð _H þ 2H2Þ þ x2

¼ e−2N=m½6mð2m − 1Þ þm2eλN �: ð55Þ

Equation (55) is in general not invertible except for
the special cases m ¼ 1

2
; 2λ. If one chooses to concentrate on

a sufficiently past epoch (i.e., N is a very large positive

quantity), then the second term in RðNÞ dominates, as
λ > 0. Essentially this means that in the far past the leading
contributor to the Ricci scalar is metric anisotropy. In this
case Eq. (55) becomes approximately invertible and the
reconstruction program can be carried out. Note that, along
the same line of reasoning, Eq. (55) is also invertible if one
chooses to concentrate on an epoch close to the end of the
power law contraction phase (i.e., N is a very large negative
quantity). In that case the contribution from the first term
in RðNÞ dominates. But this is essentially the situation
when anisotropy becomes negligible with respect to the
Hubble parameter, and consequently the problem becomes
essentially reconstructing the fðRÞ gravity for an isotropic
evolution.
Concentrating on a sufficiently past epoch when the

anisotropy is much larger than the Hubble parameter,
Eq. (55) approximately becomes

RðNÞ ≈m2eðλ−2=mÞN; ð56Þ
which can be inverted to obtain

NðRÞ ¼
�

m
mλ − 2

�
ln

�
R
m2

�
: ð57Þ

Therefore,

GðNðRÞÞ ¼ m2e−2N=m ¼ m2mλ=ðmλ−2ÞR−2=ðmλ−2Þ: ð58Þ
Let us define γ ¼ 2

mλ−2, k ¼ 2 − 3
2
mð1þ ωÞ. After some

pretty straightforward algebra, the reconstruction equa-
tion (50) can be recast in the following form:

AðRÞf00ðRÞ þ BðRÞRγf0ðRÞ þ R2γfðRÞ ¼ CRkγ; ð59Þ
where the coefficients AðRÞ, BðRÞ have the form

AðRÞ ¼ a0 þ a1R1þγ; BðRÞ ¼ b0 þ b1R1þγ; ð60Þ
and a0, a1, b0, b1 and C are parameter dependent constants
having the following values:

a0 ¼ 72m3þ4γ; a1 ¼
12

γ
m2þ2γ;

b0 ¼ 6m1þ2γ; b1 ¼ −1;

C ¼ 2κρ0m3γmð1þωÞ: ð61Þ
To check whether a power law solution in R exists, one
must check the nature of the point R ¼ 0 for Eq. (59).
Let us define

PðRÞ ¼ Rγ BðRÞ
AðRÞ ¼ Rγ b0 þ b1R1þγ

a0 þ a1R1þγ ;

QðRÞ ¼ R2γ 1

AðRÞ ¼
R2γ

a0 þ a1R1þγ ; ð62Þ

and then note that, as R → 0,
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(i) for γ > 0, PðRÞ → 0, QðRÞ → 0; R ¼ 0 is an
ordinary point;

(ii) for −1 < γ < 0, RPðRÞ → 0, R2QðRÞ → 0; R ¼ 0
is a regular singular point;

(iii) for γ ¼ −1, RPðRÞ and R2QðRÞ tends to some finite
quantity; R ¼ 0 is a regular singular point;

(iv) for γ < −1, RPðRÞ → ∞; R ¼ 0 is an irregular
singular point.

Therefore, in principle, for a power series solution to Eq. (59)
about R ¼ 0 to exist, γ must satisfy γ ≥ −1. Since the
parameters m and λ are both positive in this case, from
the definition of γ, this implies m and λ have to be chosen
such that λ > 2

m. Recalling that x2ðNÞ ¼ m2eðλ−2=mÞN , this
implies that anisotropy is not only getting suppressed with
respect to the Hubble parameter, but actually diminishing
with time. Since γ, k and kγ do not necessarily have to be
integers, it is difficult to find a generic series solution about
R ¼ 0 or a polynomial solution. In the special case when the
rate of anisotropy suppression ismuch greater than the rate of
Hubble parameter increment during contraction (λ ≫ 2

m),
then γ → 0 and R ≫ 1. In this case,

AðRÞ ≈ 6m3λR; BðRÞ ≈ −R; C ¼ 2κρ0; ð63Þ

and the general solution of Eq. (59) is

fðRÞ ¼ 2κρ0 þ C1Rþ C2R
�
Eið R

6m3λ
Þ

6λm3
−
e

R
6λm3

R

�
; ð64Þ

where C1 and C2 are two integration constants. In the above
“Ei(x)” denotes exponential integral function as defined
previously.
The cases m ¼ 2

λ ;
1
2
, are described separately in the two

following subsections.

1. Case I: λ= 2
m ðm ≠ 1

2Þ
In this case, from Eq. (55),

RðtðNÞÞ ¼ e−2N=m½6mð2m − 1Þ þm2e2N=m�
¼ 6mð2m − 1Þe−2N=m þm2: ð65Þ

Inverting this,

NðRÞ ¼ m
2
ln

�
6mð2m − 1Þ
R −m2

�
; ð66Þ

and therefore

GðNðRÞÞ ¼ m2e−2N=m ¼ mðR −m2Þ
6ð2m − 1Þ : ð67Þ

The reconstruction equation (50) becomes of the form

2ðR −mÞ2f00ðRÞ þ ð2m − 1ÞðR − 2m3Þf0ðRÞ
þ ð2m − 1Þ2fðRÞ ¼ CðR −m2Þ2−k; ð68Þ

with

C¼ κρ0
18m2

½6mð2m−1Þ�k; k¼ 2−
3

2
mð1þωÞ: ð69Þ

R ¼ 0 is an ordinary point of the differential equation (68),
meaning a series solution about R ¼ 0 is, although very
complicated, still in principle obtainable. The general
solution to the homogeneous part of the equation comes
in terms of Kummer confluent hypergeometric functions.
In the far past epoch (N ≫ 0), however, R → m2, and in
this limit Eq. (68) becomes approximately homogeneous.
Then the two linearly independent solutions become

fðRÞ ∼ exp�
�ð2m − 1Þð2m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4 − 4m3 − 7m2 þ 16m − 8

p
−mÞR

4ðm − 1Þ2m
�
: ð70Þ

2. Case II: m= 1
2

In this case, from Eq. (55), we get

RðtðNÞÞ ¼ 1

4
eðλ−4ÞN: ð71Þ

Inverting this,

NðRÞ ¼ 1

λ − 4
lnð4RÞ; ð72Þ

and therefore,

GðNðRÞÞ ¼ 1

4
e−4N ¼ 4λ=ð4−λÞR4=ð4−λÞ: ð73Þ

The reconstruction equation (50) becomes of the form

AðRÞf00ðRÞ − BðRÞf0ðRÞ þ fðRÞ ¼ CR3ð1þωÞ=ð4−λÞ; ð74Þ

where the coefficients AðRÞ, BðRÞ and the constant C are

AðRÞ¼6×4λ=ð4−λÞR4=ð4−λÞ½12×44=ð4−λÞR4=ð4−λÞ þðλ−4ÞR�;
BðRÞ¼R−3×44=ð4−λÞR4=ð4−λÞ;

C¼2κρ04
3ð1þωÞ=ð4−λÞ: ð75Þ

To check whether a power law solution in R exists, one
must check the nature of the point R ¼ 0 for Eq. (74). Let
us define
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PðRÞ ¼ BðRÞ
AðRÞ ; QðRÞ ¼ 1

AðRÞ ; ð76Þ

and recall that λ > 0. It is straightforward to check that,
as R → 0,

(i) for λ > 4, RPðRÞ → 0, R2QðRÞ → 0; R ¼ 0 is a
regular singular point;

(ii) for 0 < λ < 4, RPðRÞ → ∞, R2QðRÞ → ∞; R ¼ 0
is a irregular singular point.

Therefore for a power series solution in R to exist, λ must
satisfy λ > 4. Again, finding a generic compact form of
fðRÞ may not be possible. In the special case when the rate
of anisotropy suppression is much greater than the rate of
Hubble parameter increment during contraction (λ ≫ 4),
then R ≫ 1. In this case,

AðRÞ ≈ 3

2
λR; BðRÞ ¼ R; C ¼ 2κρ0; ð77Þ

and the general solutions is

fðRÞ ¼ κρ0 þ C1Rþ C2R

�
2Eið2R

3λÞ
3λ

−
e
2R
3λ

R

�
; ð78Þ

whereC1 andC2 are two integration constants. In the above
“Ei(x)” denotes exponential integral function as defined
previously.

B. Quasi-de-Sitter expansion: aðtÞ= eH0t−M2
12 t

2
(H0 > 0)

For this model, N and GðNÞ bears the same definition as
in the isotropic case. However, in the anisotropic case,

RðNÞ ¼ −M2 þ
�
H2

0 −
1

3
M2N

�
ð12þ eλNÞ; ð79Þ

where λ is negative in this case. Note that the above
expression is not in general invertible. For small N, i.e.,
within a very small time from the beginning of the expansion,
Eq. (79) is approximately invertible and we obtain

NðRÞ ¼ 3

�
RþM2 − 13H2

0

3λH2
0 − 13M2

�
; ð80Þ

and therefore,

GðNðRÞÞ ¼ M2RþM4 − 3λH4
0

13M2 − 3λH2
0

: ð81Þ

Concentrating on only a vacuum dominated quasi-de-Sitter
expansion, the reconstruction equation takes the form

½c1ðRþM2Þ þ c2�
d2f
dR2

− ½c3ðRþM2Þ þ c4�
df
dR

þ f ¼ 0;

ð82Þ
where c1, c2, c3, c4 are model dependent constants as
follows:

c1 ¼ 2

�
9λ2H4

0 þ 13M4 − 9λH2
0M

2

3λH2
0 − 13M2

�
;

c2 ¼ −6λH4
0

�
36λH2

0 − 13M2

3λH2
0 − 13M2

�
;

c3 ¼
3λH2

0 − 7M2

3λH2
0 − 13M2

;

c4 ¼ −
18λH4

0 − 13M4 þ 3λH2
0M

2

3λH2
0 − 13M2

: ð83Þ

The Hubble slow roll parameter ϵ is defined as ϵ ¼
− _H

H2 ≈ M2

6H2
0

. As shown in Ref. [28], solving the horizon

and flatness problem of the big bang cosmology requires
the inflation to occur for at least 70 e-foldings, which places
the lower upper bound on the Hubble slow roll parameter
as ϵ≲ 7 × 10−3. Taking ϵ ¼ 7 × 10−3 gives H0 ¼ 5M.
Therefore,

c1 ¼ 2M2

�
5625λ2 − 225λþ 13

75λ − 13

�
;

c2 ¼ −3750λM4

�
900λ − 13

75λ − 13

�
;

c3 ¼
75λ − 7

75λ − 13
; c4 ¼ −M2

�
11325λ − 13

75λ − 13

�
: ð84Þ

Close to the start of the quasi-de-Sitter epoch (N ≈ 0),
R ≈ 13H2

0 −M2 ≈ 324M2. In this limit, Eq. (82) admits
two linearly independent solutions which are as follows:

fðRÞ ∼ exp

�
Rð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8219M4 − 3750λM4

p
þ 87M2Þ

50ð75λM4 − 13M4Þ
�
: ð85Þ

VI. A REMARK ON THE RECONSTRUCTION
METHOD

In this section we make a general remark on the
reconstruction method we have used. Observe that, both
for the isotropic or the anisotropic case, the reconstruction
equation is a second order ordinary differential equation.
Therefore the general solution to a reconstruction equation
is of the form

fðRÞ ¼ f0ðRÞ þ C1f1ðRÞ þ C2f2ðRÞ; ð86Þ
where f0ðRÞ is the particular integral, f1ðRÞ and f2ðRÞ are
complementary functions of the differential equation and
C1, C2 are arbitrary integration constants. The particular
integral appears because of the matter contribution. When
matter contribution can be neglected, the reconstruction
equation is homogeneous and the general solution can be
expressed as the linear combination of the complementary
functions. Let us assume that the functions f0ðRÞ, f1ðRÞ,
f2ðRÞ can be Taylor expanded around R ¼ 0 as
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f0ðRÞ ¼ f0ð0Þ þ f00ð0ÞRþ 1

2
f000ð0ÞR2 þ � � � ;

f1ðRÞ ¼ f1ð0Þ þ f01ð0ÞRþ 1

2
f001ð0ÞR2 þ � � � ;

f0ðRÞ ¼ f2ð0Þ þ f02ð0ÞRþ 1

2
f002ð0ÞR2 þ � � � :

Therefore

fðRÞ¼ ðf0ð0ÞþC1f1ð0ÞþC2f2ð0ÞÞþðf00ð0ÞþC1f01ð0Þ

þC2f02ð0ÞÞRþ1

2
ðf000ð0ÞþC1f001ð0ÞþC2f002ð0ÞÞ � � � :

The choice of the two integration constants C1 and C2 is
at our hand. They can always be chosen such as to get
any desired value of the cosmological constant, and to
scale the coefficients such that the coefficient of R is unity.
Suppose we want the fðRÞ obtained by solving the
reconstruction equation to reduce to −2Λþ R in low
curvature limit (where Λ > 0 is the cosmological con-
stant). Then we must set

f0ð0Þ þ C1f1ð0Þ þ C2f2ð0Þ ¼ −2Λ; ð87Þ
f00ð0Þ þ C1f01ð0Þ þ C2f02ð0Þ ¼ 1: ð88Þ

These two equations can then be solved to get the desired
numerical values of the integration constant C1 and C2, so
that our theory successfully reduces to−2Λþ R in the low
curvature limit.
Also observe that the above pair of linear equations in

C1, C2 is similar to what we would have obtained by
demanding fð0Þ ¼ −2Λ and f0ð0Þ ¼ 1. Therefore, when
solving a reconstruction differential equation numerically,
it may not even be required to find the particular integral
and the complementary functions separately. All we need is
to solve the differential equation numerically by imposing
the initial conditions

fð0Þ ¼ −2Λ; f0ð0Þ ¼ 1.

VII. DISCUSSION AND CONCLUSION

In the present work we try to extend the reconstruction
technique of fðRÞ gravity, which was previously formu-
lated for homogeneous and isotropic FLRW background, to
the more general case of homogeneous and anisotropic
Bianchi-I background. Given some specific anisotropic
background solution, it is possible to reconstruct the
functional form of the action fðRÞ. We again emphasize
that in general it might be hard to find a compact functional
form in most of the cases, but the modifications to the
Einstein-Hilbert action can at least be found term by term. It
must be emphasized that in a given problem just plain
application of the reconstruction method to find out a
solution for fðRÞ is not enough. One has to check for

various conditions for the physical viability of the fðRÞ
solution obtained, viz. f0ðRÞ > 0, f00ðRÞ > 0.
Moreover, stability of the solution is another issue that

needs to be dealt with. Once the fðRÞ gravity correspond-
ing to an anisotropic solution is obtained, the stability of the
solution under that theory of gravity can be checked using
the same method as for the isotropic case (e.g., see [22,29]).
For the isotropic case the stability analysis is done by
examining the behavior of a small perturbation δGðNÞ to
the background solution H2ðNÞ≡GðNÞ. We can use the
Friedmann equation to check whether the perturbed sol-
ution goes back towards the background solution asymp-
totically. In the anisotropic case the stability analysis will
be more involved. It is to be kept in mind that for the
anisotropic case both H2ðNÞ≡ GðNÞ and x2ðNÞ act as
independent metric d.o.f. in fðRÞ gravity. The form
x2ðNÞ ¼ eλNH2ðNÞ was taken only on the assumption
suppression of anisotropy with respect to the average
Hubble parameter. A generic perturbation to the back-
ground solution will involve both δðH2ðNÞÞ≡ δGðNÞ and
δðx2ðNÞÞ. A generic method of stability analysis of the
anisotropic solutions needs to be formulated, which will be
dealt with in a later publication.
An important point to note here is the behavior of metric

anisotropy as an independent dynamic d.o.f. of the metric.
This is in stark contrast with what happens in GR. In GR
once the average scale factor aðtÞ is given, the total amount
of anisotropy xðtÞ in a Bianchi-I metric is uniquely
determined, since we have xðtÞ ∼ 1

a3ðtÞ. In fðRÞ gravity,

however, even if the form of fðRÞ is known, the total
amount of anisotropy xðtÞ in a Bianchi-I metric is not
uniquely determined in terms of the average scale factor
aðtÞ. This is because in fðRÞ gravity we have
xðtÞ ∼ 1

a3ðtÞf0ðRÞ, so that the definition of x contains R.

But the definition of R for an anisotropic metric itself
contains x in it, namely R ¼ 6ð _H þH2Þ þ x2. In fact, the
definitions of R and x for fðRÞ gravity are intertwined in
such a way that, even if the functions aðtÞ and fðRÞ are
known, it is impossible to find unique RðtÞ or xðtÞ. The
interested reader is referred to [19] for novelties of such
anisotropic dynamics in metric fðRÞ gravity, where it was
shown that, even for the very simple case of Rþ αR2

gravity, there are in general three solutions for total
anisotropy xðtÞ possible for a given average scale factor
aðtÞ. If the function fðRÞ is not known a priori, then the
freedom of choosing fðRÞ can be traded to obtain any xðtÞ
of our interest. Therefore, specifying a solution for the
anisotropic case implies specifying both the functions aðtÞ
and xðtÞ.
Another important point, which we have emphasized in

the last section, is that since the reconstruction equation is
second order for both the isotropic and the anisotropic case,
it yields two linearly independent solutions to the homo-
geneous part of the equation. Any linear combination of
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them is also a solution of the homogeneous part of the
equation. It is always possible to choose the integration
constants in a way to get any desired value of the
cosmological constant and make the coefficient of R is
unity.
In the present work, we have presented the formulation

of the reconstruction method of fðRÞ gravity assuming a
particular time law for the scale factor. A shortcoming of
this method is that even a very simple time law of the scale
factor may lead to a differential reconstruction equation that
has very complicated fðRÞ solutions. It might even be
impossible to find a general solution, as is the case with
many of the examples we have considered. A different
formulation of the reconstruction method of fðRÞ gravity
exists in literature, which is based not on any particular time
law of the scale factor, but on actual expansion parameters
that can be measured from the observations [30–33]. This
parameters are called cosmographic parameters. They are
the Hubble rate, deceleration parameter, jerk, snap and lerk
parameter, which are related to the first, second, third,
fourth and fifth derivative of the scale factor respectively.

In terms of this measured parameters the present time law
of the scale factor can be found by doing a Taylor
expansion around the present value of the scale factor,
which is assumed to be unity. In an fðRÞ cosmology the
coefficients of the higher powers of R in a series expansion
of fðRÞ can be related to these parameters. Therefore the
observed values of these parameters also give bounds on
the coefficients of the higher powers of R, and a series
solution for fðRÞ can be obtained. However, this approach
to reconstruct fðRÞ gravity has been formulated only for
the isotropic case, as all the cosmographic parameters
mentioned above are related to FLRW cosmology.
Extension of this approach to anisotropic Bianchi-I cos-
mology is still not found in literature.
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