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In general relativity, gravity is universally attractive, a feature embodied by the Raychaudhuri equation
which requires that the expansion of a congruence of geodesics is always non-increasing, as long as matter
obeys the strong or weak energy conditions. This behavior of geodesics is an important ingredient in
general proofs of singularity theorems, which show that many spacetimes are singular in the sense of
being geodesically incomplete and suggest that general relativity is itself incomplete. It is possible that
alternative theories of gravity, which reduce to general relativity in some limit, can resolve these
singularities, so it is of interest to consider how the behavior of geodesics is modified in these frameworks.
We compute the leading corrections to the Raychaudhuri equation for the expansion due to models in string
theory, braneworld gravity, fðRÞ theories, and loop quantum cosmology, for cosmological and black hole
backgrounds, and show that while in most cases geodesic convergence is reinforced, in a few cases terms
representing repulsion arise, weakening geodesic convergence and thereby the conclusions of the
singularity theorems.
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I. INTRODUCTION

General relativity (GR) is widely expected to be an
incomplete theory of dynamical spacetime. One reason
for this is that GR famously predicts its own demise
through the existence of singularities, as demonstrated
by the singularity theorems [1,2]. An essential physical
ingredient of the singularity theorems is that gravity is
attractive, so that congruences of convergent timelike and
null geodesics develop singularities in finite proper (affine)
time. More specifically, geodesic congruences with time-
like uMðτÞ and null nMðλÞ tangent vector fields are
characterized by their expansion θ≡∇MuM; θ̂≡∇MnM,
respectively, which satisfy the Raychaudhuri equations [3]

dθ
dτ

¼ −
θ2

D − 1
− RMNuMuN þ � � � ðtimelikeÞ;

dθ̂
dλ

¼ −
θ̂2

D − 2
− RMNnMnN þ � � � ðnullÞ ð1Þ

for spacetime dimension D, where the additional þ…
terms are non-positive; see Appendix A for details.
For the timelike Raychaudhuri equation, if the so-called

“convergence condition”

RMNuMuN ≥ 0 ð2Þ

holds, then the expansion of a congruence of geodesics is
nonincreasing. Specifically, an initially converging con-
gruence θi < 0 develops a singularity θ → −∞ in finite
proper time τ ∼ jθij−1. A similar singularity θ̂ → −∞
develops for null convergences in finite affine time
λ∼ jθ̂ij−1 if the null convergence condition RMNnMnN ≥0
is satisfied. These singularities in the expansion don’t
necessarily imply a pathology of spacetime themselves;
such caustics appear in Minkowski spacetime, for example
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[4]. However, the existence of strictly nonpositive contri-
butions to the right-hand side of Eq. (1), when combined
with other global conditions on the spacetime manifold,
form the basis for the general existence of singularities in
cosmological and black hole spacetimes [1,2].
Within GR it is possible to convert the convergence

conditions into energy conditions on the types of matter.
We can use the (trace-reversed) Einstein equation

RMN ¼ κ2D

�
TMN −

1

D − 2
gMNTM

M

�
ð3Þ

(where κ2D ≡ 16πGD, GD being the D-dimensional
Newton’s constant) to substitute in Eq. (1)

dθ
dτ

¼ −κ2D

�
TMN −

1

D− 2
gMNTM

M

�
uMuN þ � � � ðtimelikeÞ;

dθ̂
dλ

¼ −κ2DTMNnMnN þ � � � ðnullÞ ð4Þ

where the þ… terms are again strictly nonpositive terms.
Thus, all of the terms on the right-hand side of (4) are
nonpositive provided that matter satisfies the respective
energy conditions

�
TMN−

1

D−2
gMNTM

M

�
uMuN≥0 StrongEnergyCondition;

TMNnMnN≥0 NullEnergyCondition:

ð5Þ

For an isotropic perfect-fluid energy momentum tensor
with energy density ρ and pressure p, these conditions
translate into

ρþD − 1

D − 3
p ≥ 0 Strong Energy Condition;

ρþ p ≥ 0 Null Energy Condition: ð6Þ

Most known classical matter obeys both the null and strong
energy conditions, while vacuum energy p ¼ −ρ violates
the strong energy condition but still saturates the null
energy condition. It may possible to violate the null energy
condition with exotic forms of matter [5,6], nonminimal
coupling [7,8], or quantum gravity effects [9], though these
approaches often face challenges that we will not explore
further here.
However, since we expect corrections to GR of some

form, we do not expect the Einstein equations (3) to
always hold. Corrections to Einstein’s equations may
make it possible to violate the convergence conditions
RMNuMuN < 0 and/or RMNnMnN < 0 without violating
the energy conditions (5). In particular, many corrections
to GR appear perturbatively in the form

RMN ¼ κ2D

�
TMN −

1

D − 2
gMNTM

M

�
þ λHMN; ð7Þ

where λ controls the strength of the corrections and HMN
is a tensor that contains contributions from the metric,
curvature, energy-momentum tensor, or additional fields.
The additional term in Eq. (7) in turn shows up as an
additional term on the right-hand side of the Raychaudhuri
equation

dθ
dτ

¼ −κ2D

�
TMN −

1

D − 2
gMNTM

M

�
uMuN

þ λHMNuMuN þ � � � ðtimelikeÞ;
dθ̂
dλ

¼ −κ2DTMNnMnN þ λHMNnMnN þ � � � ðnullÞ ð8Þ

where it may in principle contribute with any sign. In this
paper, we will examine corrections to the Raychaudhuri
equations from four frameworks for corrections to GR:
string theory, braneworld gravity, fðRÞ theories, and loop
quantum cosmology, for cosmological (and in some cases
black hole) backgrounds.
While we are motivated by the existence of singularities

in these backgrounds, and the promise of these alternatives
to GR for resolving the singularities, we will not attempt to
prove the absence of singularities in this paper. Indeed, a
significant amount of work has shown that finding realistic
singularity-free spacetimes under computational control is
quite challenging, and we expect that true singularity
resolution will require physics beyond the perturbative
approach of (7). Instead, we aim for a more modest goal,
that of finding corrections to GR that lead to potentially
positive terms on the right-hand side of the Raychaudhuri
equation Eq. (1) for timelike and null geodesics—a
necessary, but far from sufficient, condition for ultimately
resolving spacetime singularities. If indeed such positive
terms are found (as we shall see for a handful of cases),
further analysis would be required to see, whether: (a) a
generalization of the singularity theorems holds for these
cases, or (b) another criterion for singularity (in lieu of
geodesic incompleteness) can be applied. If none of the
above holds, one would be forced to conclude that these
spacetimes are indeed nonsingular. Such an analysis is
beyond the scope of this work, however.
In Sec. II we outline a general set of corrections to GR

from string theory in D dimensions, and compute the
corrections to the Raychaudhuri equation for black hole
and cosmological spacetimes. In Sec. III we compute the
corrections to the 4-dimensional induced Einstein equation
for the braneworld scenario in a cosmological spacetime. In
Sec. IV we compute the corrections to the Einstein equation
for so-called fðRÞ theories, and determine the form of the
corrections in a cosmological background. In Sec. V we
compute the corrections to the Raychaudhuri equation in a
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cosmological background from loop quantum gravity. In
Sec. VI we conclude with some comments on the potential
for theories beyond GR to resolve singularities.

II. STRING THEORY AND GAUSS-BONNET
CORRECTIONS

In string theory, higher-order α0 corrections induce
corrections to the action and, correspondingly, to the
Einstein Equations. In particular, the corrected action at
leading order in α0 for bosonic, heterotic, type IIA/IIB takes
the form [10–12]

S ¼ 1

κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2ϕ½RD þ 4ð∂ϕÞ2

þ λRMNPQRMNPQ þOðα02Þ� ð9Þ

where we are ignoring the antisymmetric rank two tensor
BMN , ϕ is the dilaton, RMNPQ is the D-dimensional
Riemann tensor, and where1

λ ¼

8>><
>>:

1
2
α0 for bosonic strings

1
4
α0 for heterotic strings

0 for supersymmetric strings ðIIA=IIBÞ:
ð10Þ

Unfortunately, (9) contains higher derivative terms in its
equation of motion. However, it turns out that (9) is
ambiguous up to field redefinitions of the fields gμν;ϕ to
next order in α0. It is possible to use these field redefinitions
to remove the higher order terms in the equations of
motion,2 giving rise to the action

Smod¼
1

κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
RDþ4ð∂ϕÞ2

þ1

2
λ½R2

GBþ16ðRMN−gMNRDÞ∂Mϕ∂Nϕ

−16∇2ϕð∂ϕÞ2þ16ð∂ϕÞ4�þOðα02Þ
�
þLm ð11Þ

where we have allowed for additional matter (including
potentially a D-dimensional cosmological constant)
through Lm, and R2

GB is the 2nd order Gauss-Bonnet
combination

R2
GB ¼ RMNPQRMNPQ − 4RMNRMN þ R2

D: ð12Þ

Setting the dilaton to a constant, we are left with the usual
Ricci curvature term and the quadratic Gauss-Bonnet term
in our action

SEGB ¼ 1

κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p �
RD þ 1

2
λR2

GB

�
þ Lm: ð13Þ

We will refer to this as the Einstein-Gauss-Bonnet (EGB)
gravity action. The resulting equations of motion are

RMN −
1

2
gMNRD ¼ κ2DTMN þ 1

2
λĤMN; ð14Þ

where

ĤMN ¼ gMN

2
R2
GB − 2RDRMN þ 4RMARA

N

þ 4RABRAMBN − 2RMABCRABC
N : ð15Þ

In order to put (14) in the appropriate form relevant for use
the Raychaudhuri equation,3 we will trace-reverse, giving

RMN ¼ κ2D

�
TMN −

gMN

D − 2
TM
M

�
þ λ

2
HMN; ð16Þ

where now

HMN ¼ gMN

D − 2
R2
GB − 2RDRMN þ 4RMARA

N

þ 4RABRAMBN − 2RMABCRABC
N : ð17Þ

More generally, the terms above are just the leading
terms of the more generic Lanczos-Lovelock extensions of
gravity [16,17] (see [18] for a review). The Lanczos-
Lovelock extensions include the set of additional terms
that can be added to the gravitational action and still lead to
2nd order equations of motion. In 4 spacetime dimensions,
it can be shown that the Ricci scalar and cosmological
constant are the only non-topological terms that can be
added. In particular, the correction term in (11) is purely
topological in 4-dimensions (it is the Euler characteristic χ
of the spacetime), not contributing to the equation of
motion. For higher dimensions D > 4, there is a finite
series of additional terms, increasing in powers of
R;RMN; RM

NPQ (terminating at some order for a given D).
We will just focus on this leading order term for now,
but will keep in mind that there can be additional
corrections to consider.
In order to determine the form of these corrections it is

necessary to calculate HMN for specific backgrounds. For
simplicity, we will restrict ourselves to corrections to black
hole and cosmological backgrounds; in the subsections
that follow, we will examine the corrections for these
backgrounds in more detail.

1The leading α0 corrections for type II theories occurs first
at Oðα03Þ [13].

2See the discussion in [11,12,14].

3See [15] for an alternative method of deriving a generalized
Raychaudhuri equation for EGB gravity.
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A. Black holes

The Gauss-Bonnet correction terms (16) appear as
part of a pertubative series of corrections, so we expect
solutions for some given matter content to also be described

by a pertubative series in λ: gMNðλÞ ¼ gð0ÞMN þ λgð1ÞMN þ � � �,
where gð0ÞMN is the uncorrected general relativity solution,

gð1ÞMN is the first-order correction, and so on. It is remarkable
that exact solutions gMNðλÞ of Einstein-Gauss-Bonnet
gravity for black hole backgrounds are known to all orders
in λ [19–21]. However, since we expect the Gauss-Bonnet
corrections to be only the first term in a series of corrections
arising from string theory, we cannot trust these exact
solutions beyond OðλÞ. One can therefore consider the
effects of the Gauss-Bonnet correction terms on the
Raychaudhuri equations up to OðλÞ for black hole back-
grounds in two ways:
(1) Evaluate RMNuMuN ∼ λ

2
H½gð0Þ�MNu

MuN on the un-
corrected Schwarzschild black hole metric.

(2) Evaluate R½gðλÞ�MNu
MuN on the known exact metric

gMNðλÞ for black hole backgrounds, then expand the
result to OðλÞ.

(with similar expressions for the null Raychaudhuri equa-
tion). While both approaches should give identical results,
up to OðλÞ, we will consider and compare both approaches
for completeness.

1. Perturbative black hole corrections

Since we are considering actions with a constant dilaton
and zero form fields, we will restrict ourselves to pure
gravity solutions. We thus first begin by considering the
perturbative correction terms HMN to a D-dimensional
black hole solution of the vacuum Einstein equations

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2; ð18Þ

where dΩ2
D−2 ¼ ĝijdθidθj is the metric of a (D − 2)-

dimensional constant curvature manifold with unit radius
(such as a sphere). The zeroth order black hole solution
takes the form

fðrÞ ¼ 1 −
μ

rD−3 ; ð19Þ

where μ is related to the mass M of the black hole by

M ¼ ðD − 2ÞAD−2

2κ2D
μ ð20Þ

and AD−2 is the area of a unit (D − 2) sphere. Note that for
D ¼ 4 we have μ ¼ κ2DM=4π.
While the Ricci tensor and scalar vanish RMN ¼ 0 ¼

RD, as is expected for a D-dimensional Schwarzschild

background, the Riemann tensor does not, and gives the
only nonzero contribution to the Gauss-Bonnet scalar

R2
GB ¼ RABCDRABCD ¼ ðD − 3ÞðD − 2Þ2ðD − 1Þ μ2

r2D−2 ;

ð21Þ

and corrections to the Einstein equation,

HMN ¼ gMN

D − 2
½RABCDRABCD� − 2RMABCRABC

N : ð22Þ

We are primarily concerned with the correction terms in
the ðttÞ and ðrrÞ directions,

Htt ¼
fðrÞμ2
r2D−2 ðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þ; ð23Þ

Hrr¼−
1

fðrÞ
μ2

r2D−2 ðD−4ÞðD−3ÞðD−2ÞðD−1Þ: ð24Þ

Note that these correction terms vanish identically
HMN ¼ 0 for D ≤ 4, which is what we expect since the
Gauss-Bonnet correction is purely topological for D ≤ 4,
and only acts as a dynamical correction for D > 4.
We now consider a radial affine null tangent vector

nM ¼
�

1

fðrÞ ;�1; 0⃗
�
; ð25Þ

where �1 corresponds to radially outgoing/ingoing. The
null Raychaudhuri equation takes the form

dθ̂
dλ

¼ −θ̂2

D − 2
− jσ̂j2 − RMNnMnN: ð26Þ

Our corrections due to the Gauss-Bonnet term appear on
the right-hand side, as (recall that TMN ¼ 0)

RMNnMnN ¼ λ

2
HMNnMnN ¼ λ

2
Httntnt þ

λ

2
Hrrnrnr ¼ 0:

ð27Þ

Remarkably, the Gauss-Bonnet corrections vanish identi-
cally everywhere for null rays, implying that the null
Raychaudhuri equation for black holes is uncorrected to
leading order in λ.
Finally, consider a timelike geodesic described by the

tangent vector

uM ¼
�

1

fðrÞ ;−
�

μ

rD−3

�
1=2

; 0⃗

�
: ð28Þ

The timelike Raychaudhuri equation takes the form
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dθ
dτ

¼ −
θ2

D − 1
− jσj2 − RMNuMuN; ð29Þ

where again the corrections to the Raychaudhuri equation
due to the Gauss-Bonnet corrections come from the last
term

RMNuMuN ¼ λ

2
HMNuMuN

¼ λ

2
Httutut þ

λ

2
Hrrurur

¼ λðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þ
2

μ2

r2D−2 :

ð30Þ

There are a few things to notice about this correction term.
First, it does not seem to suffer from any pathologies due to
the coordinate singularity of our coordinate system at the
horizon; thus, we expect it to be valid throughout the entire
spacetime (although the coordinate r will require careful
interpretation). Second, notice that the corrections are
manifestly positive, thus the corrections make the caus-
tic/conjugate point at the location of the putative singularity
at r ¼ 0 worse, not better.
We have shown that the perturbative EGB corrections to

the Einstein equations do not provide divergence terms in
either the null or timelike Raychaudhuri equations; in fact,
convergence is strengthened in the timelike case. These
results above are not particularly surprising since it is
known that black hole solutions in Einstein-Gauss-Bonnet
gravity still posses singularities [19–21], as we will now
examine in more detail.

2. Exact black hole solutions

In the previous section we considered how the Gauss-
Bonnet curvature squared terms lead to perturbative cor-
rections to the Raychaudhuri equation for pure-Einstein
gravity black hole solutions. However, exact black hole
solutions for Einstein-Gauss-Bonnet gravity are well-
known [19–21] (see also [10]), so it is also possible to
calculate the right-hand side of the Raychaudhuri equation
for these fully backreacted solutions.
First, let us review the known black hole solutions of

D-dimensional Einstein-Gauss-Bonnet gravity [19–21].
As before, we will work with the general spherically
symmetric metric

ds2D ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2: ð31Þ

Solutions to the Einstein-Gauss-Bonnet equations of
motion (16) are [19] (see also [20,21])

fðrÞ ¼ 1þ r2

λ̂
þ σ

r2

λ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ̂μ

rD−1

s
; ð32Þ

where σ ¼ �1 labels different branches of solutions, and
we have defined λ̂ ¼ ðD − 4ÞðD − 3Þλ for convenience.
Consider first the σ ¼ −1 branch. To lowest order in λ,

the metric is simply that of a Schwarzschild black hole,
and is asymptotically flat as r → ∞, reducing to the usual
Einstein gravity solution. For this reason, this is usually
called the “Einstein branch.” In contrast, the σ ¼ þ1
branch, often called the “Gauss-Bonnet branch,” has a
nontrivial vacuum structure for μ ¼ 0

fðrÞjμ¼0 ¼ 1þ 2r2

λ̂
; ð33Þ

corresponding to anti-de Sitter space for λ > 0 with a large
negative cosmological constant Λeff ∼ −λ̂−1 (or de Sitter
space for λ < 0). For non-zero mass, the metric in this
branch resembles that of Schwarzschild-anti-de Sitter space
with a negative mass

fðrÞ ≈ 1þ μ

rD−3 þ
2r2

λ̂
þOðλ2Þ: ð34Þ

The analysis of the stability of this branch requires some
care (see [19,22]). Note that since the curvature scale of the
corresponding AdS space is nonperturbative in λ, it is
doubtful that we can trust these solutions as solutions
to perturbative string theory. Further, for λ > 0 there is a
naked singularity at the origin [19]. For these reasons, we
will restrict our analysis to the Einstein branch σ ¼ −1.
Despite the curvature squared term in EGB gravity, the

Einstein branch solutions (31), (32) still have a curvature
singularity at the origin. This singularity is surrounded
by a horizon located at rh, given by the roots of the
polynomial [19]

λ̂rD−5
h þ 2rD−3

h ¼ 2μ: ð35Þ

For D > 5, this horizon always exists; however, for D ¼ 5,
the existence of the horizon is guaranteed only for μ > λ̂=2;
thus, for “microscopic” black holes, even the EGB sol-
utions posses a naked singularity. Since the exact EGB
black hole solutions still posses a curvature singularity
at the origin, we are not particularly surprised by our
perturbative result from the previous subsection indicating
that the corrections to the null and timelike Raychaudhuri
equations do not allow for terms that could prevent the
formation of conjugate points.
Even though we have the exact EGB solutions, which do

possess a curvature singularity, in hand, let us nevertheless
compute the contribution of EGB gravity to the right-hand
side of the Raychaudhuri equation to explore the way in
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which the EGB corrections can affect the formation of
conjugate points.
Note that since the solutions (31), (32) are exact

solutions to the corrected Einstein equations

RMN −
1

2
gMNR ¼ κ2DTMN þ 1

2
λHMN; ð36Þ

we can compute the curvature term in the null (timelike)
Raychaudhuri equation RMNNMNN (RMNuMuN respec-
tively) directly, without needing to compute the quadratic
curvature terms.
For the metric (31), we have

Rtt ¼
1

2
fðrÞ

�
f00ðrÞ þ ðD − 2Þ

r
fðrÞ

�
; ð37Þ

Rrr ¼ −
1

2

1

fðrÞ
�
f00ðrÞ þ ðD − 2Þ

r
fðrÞ

�
; ð38Þ

where a prime 0 denotes a derivative with respect to r.
Note that these vanish for a Schwarzschild solution
fðrÞ ¼ 1 − μ

rD−3, as expected.
A radial affine null vector has the same form as in the

Schwarzschild case

nM ¼
�

1

fðrÞ ;�1; 0⃗

�
; ð39Þ

where now fðrÞ refers to the EGB corrected form (32). The
curvature term in the Raychaudhuri equation is then

RMNnMnN ¼ RttðntÞ2 þ RrrðnrÞ2 ¼ 0; ð40Þ

which again vanishes identically, as we found previously
in the perturbative case. It is important to note that the
vanishing result is independent of the precise functional
form of fðrÞ, and only requires the generic structure of the
metric (31).
The geodesic timelike null vector for the metric (31)

takes the form

uM ¼
�

1

fðrÞ ;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
; 0⃗

�
; ð41Þ

where we are assuming fðrÞ < 1, which is the case for the
Einstein branch of solutions. The curvature term in the
Raychaudhuri equation then takes the form

RMNuMuN ¼ RttðutÞ2 þ RrrðurÞ2

¼ 1

2

�
f00ðrÞ þ ðD − 2Þ

r
f0ðrÞ

�
: ð42Þ

The general expression for fðrÞ given in (32) is not
particularly illuminating; however, expanding the solution
in powers of λ, we obtain

RMNuMuN ≈
λðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þμ2

4r2D−2 þOðλ2Þ;
ð43Þ

matching our perturbative result (30), as expected.
As in the perturbative analysis, we see that the EGB

corrections to the Schwarzschild black hole background
give rise to either vanishing or convergent contributions
to the null and timelike Raychaudhuri equations. Thus, the
EGB corrections themselves, despite being quadratic in
curvature, do not alleviate convergence that leads to
conjugate points and singularities in these spaces.
We have restricted ourself to spherically symmetric black

hole solutions for simplicity; however, since we have not
found an improvement in the convergence behavior, we do
not expect that deviations from spherical symmetry are
likely to produce qualitatively different results.
Black hole backgrounds are not the only spacetimes of

interest for the study of singularities and the Raychaudhuri
equation. In the next subsection, we will explore the
application of EGB gravity to cosmological spacetimes.

B. Cosmology

Let us examine the EGB corrections (17) for a
D-dimensional cosmological background4

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2 ˆdΩ2
D−2Þ; ð44Þ

where ˆdΩ2
D−2 ¼ ĝijdθidθj is the metric of a (D − 2)-

dimensional sphere. Our matter will consist of a
D-dimensional perfect fluid

TMN ¼ ðρþ pÞuMuN þ pgMN; ð45Þ

where ρ, p are the energy density and pressure of the fluid,
respectively.
It is straightforward to compute the Gauss-Bonnet scalar

R2
GB ¼ RABCDRABCD − 4RMNRMN þ ðRDÞ2

¼ 4
ä
a
_a2

a2
ðD − 3ÞðD − 2ÞðD − 1Þ

þ _a4

a4
ðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þ; ð46Þ

and the correction terms (17)

4In the Appendix B, we consider cosmological models in
which spacetime is divided into a d-dimensional external space-
time and m-dimensional internal space, each of which with their
own time-dependent scale factors.
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Htt ¼ 2
ä
a
_a2

a2
ðD − 4ÞðD − 3ÞðD − 1Þ

− ðD − 4ÞðD − 3ÞðD − 1Þ _a
4

a4
; ð47Þ

Hrr ¼ −2
ä _a2

a
ðD − 4ÞðD − 3Þ

−
_a4

a2
ðD − 4ÞðD − 3Þ2: ð48Þ

Notice that these corrections vanish identically forD ≤ 4, as
expected since for lower dimensions the EGB terms are
topological and do not contributed to the equations ofmotion.
From the radial affine null tangent vector

nM ¼
�

1

aðtÞ ;�
1

aðtÞ2 ; 0⃗
�
; ð49Þ

where again � refers to radially outgoing/ingoing rays, we
can compute the corrections to the null Raychaudhuri
equation

RMNnMnN ¼ κ2DTMNnMnN þ λ

2
HMNnMnN

¼ κ2D
ðρþ pÞ

a2
þ λ

ä _a2

a5
ðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þ − λ

_a4

a6
ðD − 4ÞðD − 3ÞðD − 2Þ

¼ κ2D
ðρþ pÞ

a2
þ λ

_HDH2
D

a2
ðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þ þ λ

H4
D

a2
ðD − 4ÞðD − 3ÞðD − 2Þ2; ð50Þ

where we wrote HD ≡ _a=a to simplify our result.
Clearly the first term in (50) is positive for matter that

obeys the null energy condition, as usual. However, the
second term can be negative if the time variation of the
Hubble parameter _HD is large enough.
In particular, let us consider perturbative solutions for the

metric (44) of the form

aðtÞ ≈ a0ðtÞ þ λa1ðtÞ þ � � � ð51Þ

where a0ðtÞ is the zeroth-order solution to the λ ¼ 0
Einstein equation

_a20
a20

¼ κ2D
6
ρ≡ ðHð0Þ

D Þ2; ð52Þ

ä0
a0

¼ −
κ2D
12

ðρþ 3pÞ≡ _Hð0Þ
D þ ðHð0Þ

D Þ2; ð53Þ

and Hð0Þ
D is the corresponding zeroth-order Hubble param-

eter. Inserting Hð0Þ
D into (50), we obtain the expression

RMNnMnN ¼ κ2D
ðρþ pÞ

a20
− λκ4D

ðD − 4ÞðD − 3ÞðD − 2Þ
24a20

× ρ

�
Dþ 1

3
ρþD − 1

p

�
þOðλ2Þ: ð54Þ

Assuming an equation of state p ¼ wρ, the second term is
negative for equations of state w > − Dþ1

3ðD−1Þ. The lower

bound is always greater than −1=2, so most ordinary matter
will satisfy this condition. In particular, a D-dimensional
universe dominated by radiation w ¼ 1=3 can contribute a
divergent term in the null Raychaudhuri equation.

Finally, consider a comoving, proper-time parametrized
timelike geodesic described by the tangent vector

uM ¼ ð1; 0; 0; 0Þ: ð55Þ

The corrections to the timelike Raychaudhuri equation due
to the Gauss-Bonnet corrections come from the last term

RMNuMuN ¼ κ2D

�
TMNuMuN þ 1

2
TM
M

�
þ λ

2
HMNuMuN

¼ κ2D
ðD − 3Þρþ ðD − 1Þp

D − 2

þ λ

2
ðD − 4ÞðD − 3ÞðD − 1Þ½2 _HD þH2

D�H2
D;

ð56Þ

where again we substituted HD ≡ _a=a to simplify our
result. The first term is the typical term for matter, and
is positive for matter that obeys the strong energy
condition. The last term, proportional to λ, is the new
contribution; we see that for _HD ∼ −H2

D (as is the case
for any aðtÞ ∼ tn time-dependence), this term can be
negative, giving rise to a positive divergent term in the
timelike Raychaudhuri equation, potentially opposing
convergence.
We have seen in both the null and timelike Raychaudhuri

equations the existence of terms that can give rise to a
positive (divergent) contribution to the divergence. This
does not necessarily mean that cosmology with EGB
gravity can evade the singularity problem, just that the
usual singularity theorems do not apply in a straightforward
way to these backgrounds.

TOWARDS THE RAYCHAUDHURI EQUATION BEYOND … PHYS. REV. D 98, 024006 (2018)

024006-7



In particular, consider the EGB-corrected equations of
motion for the metric (44) from (16). Examining the ðttÞ
component of (16) we have

1

2
ðD − 2ÞðD − 1Þ _a

2

a2

¼ κ2Dρ −
λ

4
ðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þ _a

4

a4
: ð57Þ

For λκ2Dρ ≪ 1, solutions to (57) take the usual Einstein
form; however, for λκ2Dρ ≫ 1, as we would expect to
occur in the early universe near a big bang singularity,
we have instead

_a2

a2
∼

ffiffiffiffiffiffiffiffi
κ2Dρ

λ

r
: ð58Þ

It is clear that a curvature singularity still exists where
aðtÞ → 0; RD → ∞, despite the presence of the higher
curvature terms.

III. BRANEWORLD GRAVITY

We will consider a 5-dimensional bulk spacetime (with
5-dimensional cosmological constant Λ5) with coordinates
ðt; x⃗; yÞ and metric gMN given by [23]

ds2¼ aðt;yÞ2bðt;yÞ2ð−dt2þdy2Þþa2ðt;yÞðdr2þ r2dΩ2Þ;
ð59Þ

which is sufficiently general to capture the backreaction of
the singular brane on the bulk as well as 4-dimensional
homogeneous and isotropic cosmological evolution. The
extra dimension has the range y ∈ ð−∞;∞Þ; however, we
will additionally impose a Z2 symmetry [24] y → −y, so
that the covering space is reduced to y ∈ ½0;∞Þ, as in the
RS I scenario [25]. We embed a (singular) 3-brane at y ¼ 0

with unit normal nM ¼ ð0; 0; 0; 0; 1
abÞ and induced metric

qμν ¼ gμν − nμnν; we will use capital Latin lettersM, N for
5-dimensional coordinate indicies and lowercase Greek
letters μ, ν for 4-dimensional brane indices. The 5-dimen-
sional energy-momentum tensor has the form

ð5ÞTMN ¼ −Λ5gMN þ δμMδ
ν
NSμνδðyÞ; Sμν ¼ −σqμν þ τμν

ð60Þ

where σ is the brane tension and τμν is the brane matter
energy momentum tensor. Note that the usual Minkowski
RS I model has the solution

ds2 ¼ e−2KðzÞημνdxμdxν þ dz2: ð61Þ

This can be obtained from (59) under the limits and
identifications

bðt; yÞ → 1;

aðt; yÞ → aðyÞ ¼ e−KðzÞ;

z ¼
Z

∞

0

aðyÞdy: ð62Þ

Gravity on the 3-brane hypersurface is induced by its
embedding in the extra dimensions; in particular, the
induced 4-dimensional Einstein equations on the brane
are [26]

ð4ÞRμν −
1

2
qμνð4ÞR ¼ −Λ4qμν þ κ24τμν þ κ45πμν − Eμν; ð63Þ

where Λ4 ¼ 1
2
κ25ðΛ5 þ 1

6
κ25σ

2Þ and κ24 ¼ κ4
5
σ
6
, and the new

tensors πμν; Eμν are defined as

πμν ¼ lim
y→0

�
−
1

4
τματ

α
ν þ

1

12
ττμν þ

1

8
qμνταβταβ −

1

24
qμντ2

�
;

ð64Þ

Eμν ¼ lim
y→0

½ð5ÞCμανβnαnβ�; ð65Þ

where ð5ÞCMNPQ is the 5-dimensional Weyl tensor; see
Appendix C for more details. The first two terms on the
right-hand side of (63) are just the usual 4-dimensional
cosmological constant and energy-momentum tensor
sources, while the last two terms arise from the extra
dimensional embedding of the brane. In order to put this
into a form suitable for use with the Raychaudhuri equation
we trace-reverse (63)

ð4ÞRμν ¼ Λ4qμν þ 8πGN

�
τμν −

1

2
qμντ

μ
μ

�

þ κ45

�
πμν −

1

2
qμνπ

μ
μ

�
−
�
Eμν −

1

2
qμνE

μ
μ

�
ð66Þ

¼ Λ4qμν þ 8πGN

�
τμν −

1

2
qμντ

μ
μ

�
þHμν; ð67Þ

where we rewrote the last two terms as a correction term
Hμν so that the corrections take the form (7) as outlined in
the Introduction. The timelike and null 4-dimensional
Raychaudhuri equations thus have the new terms arising
from the braneworld

dθ
dτ

¼ −ð4ÞRμνuμuν þ � � �

¼ −κ45

�
πμνuμuν þ

1

2
πμμ

�
þ
�
Eμνuμuν þ

1

2
Eμ
μ

�
þ � � � ;

ð68Þ
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dθ̂
dλ

¼ −ð4ÞRμνnμnν þ � � � ¼ −κ45πμνnμnν þ Eμνnμnν þ � � � ;
ð69Þ

where… on the right-hand sides denote nonpositive terms.
Assuming the brane energy-momentum tensor is of the

perfect fluid form, with energy density ρðtÞ and pressure
pðtÞ, we can immediately compute the πμν tensor contri-
bution for the metric (59)

πtt ¼
1

12
ρ2ðtÞa2ðt; 0Þb2ðt; 0Þ;

πrr ¼
1

12
ρðtÞð2pðtÞ þ ρðtÞÞa2ðt; 0Þ;

πθθ ¼
1

12
ρðtÞð2pðtÞ þ ρðtÞÞaðt; 0Þ2r2;

πϕϕ ¼ 1

12
ρðtÞð2pðtÞ þ ρðtÞÞ; a2ðt; 0Þr2sin2θ; ð70Þ

where we evaluated the terms at y ¼ 0, while we compute
Eμν directly from the metric (59)

Ett ¼ lim
y→0

1

2

�
b00

b
−
b02

b2
−
b̈
b
þ

_b2

b2

�
≡ lim

y→0

1

2
βðt; yÞ; ð71Þ

Err ¼
1

6
lim
y→0

βðt; yÞ ¼ Eθθ

r2
¼ Eϕϕ

r2sin2θ
; ð72Þ

where a dot denotes a derivative with respect to t, and a
prime denotes a derivative with respect to y. All of the
components of the Eμν tensor are proportional to the
quantity βðt; yÞ, involving a second derivative b00ðt; yÞ.
In order to evaluate the common quantity βðt; yÞ

appearing in Eμν in the limit y → 0, we need to use the

5-dimensional Einstein equations ð5ÞRMN − 1
2
gð5ÞMNR ¼

κ25
ð5ÞTMN for the metric (59) and sources (60), which take

the form [23]

ðttÞ 3

�
2
_a2

a2
þ _a _b

ab
−
a00

a
þ a0b0

ab

�
¼ a2b2κ25½Λ5 þ ðρþ σÞδðyÞ�; ð73Þ

ðyyÞ 3

�
ä
a
−

_a _b
ab

− 2
a02

a2
−
a0b0

ab

�
¼ a2b2κ25Λ5; ð74Þ

ðtyÞ 3

�
−
_a0

a
þ 2

_aa0

a2
þ _ab0

ab
þ a0 _b

ab

�
¼ 0; ð75Þ

ðrrÞ& ðijÞ
�
3
ä
a
þ b̈
b
−

_b2

b2
− 3

a00

a
−
b00

b
þ b02

b2

�
¼ a2b2κ25½Λ5 þ ðσ − pÞδðyÞ�: ð76Þ

Integrating the ðttÞ and ðijÞ equations across the brane
gives rise to

a0

a

				
y¼0

¼ 1

6
aðt; 0Þbðt; 0Þκ25ðρþ σÞ;

b0

b

				
y¼0

¼ −
1

2
aðt; 0Þbðt; 0Þκ25ðρþ pÞ: ð77Þ

In addition, the restriction of the ðtyÞ component of the
Einstein equations to the brane at y ¼ 0 takes the form
of the usual energy-momentum conservation equation on
the brane

_ρþ 3
_a
a

				
y¼0

ðρþ pÞ ¼ 0: ð78Þ

Finally, restricting the ðyyÞ component of the Einstein
equations to the brane at y ¼ 0 we can obtain a “Hubble”-
like equation

�
1

ab
_a
a

�
2

¼ κ45
ðρþ σÞ2

36
þ κ25

Λ5

6
þ μ

a4
; ð79Þ

Where the last term arises as an integration constant and
is known as the “dark radiation” term [27–29]. We will
assume μ ≥ 0.
We can rearrange (76) to write

βðt; yÞ ¼ b00

b
−
b02

b2
−
b̈
b
þ

_b2

b2

¼ 3

�
ä
a
−
a00

a

�
− a2b2κ25ðΛ5 − pδðyÞÞ: ð80Þ

Subtracting (74) and (73), this then becomes

βðt;yÞ¼6

�
_a2

a2
−
a02

a2

�
−a2b2κ25ðΛ5þðρþpÞδðyÞÞ: ð81Þ

Using the jump condition (77) and the Hubble equa-
tion (79), this simplifies considerably to

βðt; yÞ ¼ 6μ
b2

a2
− a2b2κ25ðρþ pÞδðyÞ: ð82Þ

The Eμν tensor is evaluated in the limit y → 0; since the
delta-function does not contribute in this limit, we have

Eμν ∝ lim
y→0

βðt; yÞ ¼ 6μ
b2

a2
; ð83Þ

thus the Weyl tensor term Eμν only potentially contributes
to the induced Einstein equations on the brane through the
dark radiation term. However, the induced Einstein equa-
tions (63) are not closed, and must be supplemented by
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additional constraints [26]. Examining these constraints for
our background and matter content in Appendix C, we find
that the dark radiation term μ must vanish, so that the Eμν

contributions vanish as well.
In order to evaluate the correction terms (88), (69), we

will take the proper-time parametrized timelike vector and
affine null vectors on the brane to be

uμ ¼
�

1

aðt; 0Þbðt; 0Þ ; 0; 0; 0
�
; ð84Þ

nμ ¼
�

1

aðt; 0Þbðt; 0Þ ;�
1

aðt; 0Þ ; 0; 0
�
; ð85Þ

where the � refers to radially outgoing/ingoing null rays.
We can then compute the additional braneworld terms

Hμνuμuν ¼ κ45ρ

�
ρþ 3

2
p

�
; ð86Þ

Hμνnμnν ¼ κ45
ρ2

12
: ð87Þ

We see that the braneworld terms only contribute positively
to the additional terms for null vectors, while the additional
contributions for timelike vectors can be negative if
p < −2=3ρ. Including these results, we have the following
expressions for the timelike and null Raychaudhuri equa-
tions on the brane

dθ
dτ

¼ Λ4 −
1

2
GNðρþ 3pÞ − κ45ρ

�
ρþ 3

2
p

�
þ � � � ; ð88Þ

dθ̂
dλ

¼ −GNðρþ pÞ − κ45
ρ2

12
þ � � � ; ð89Þ

where again… refer to strictly nonpositive terms. Thus, we
see that the corrections to the induced Einstein equations on
the brane due to the braneworld embedding of the brane
only contribute to convergence for the null Raychaudhuri
equation. However, the additional contributions do add
divergent (positive) terms to the right-hand side of the
timelike Raychaudhuri equation; we note, though, that the
second term in Eq. (88), which is present in unmodified
4-dimensional general relativity, is also divergent in the
presence of matter that violates the strong energy con-
dition, p < −1=3ρ.
Is the presence of the additional positive term in Eq. (88)

arising from induced gravity on the brane sufficient to
avoid a singularity? Rewriting the Friedmann-like equation
Eq. (79) using the relations Λ4 ¼ 1

2
κ25ðΛ5 þ 1

6
κ25σ

2Þ and

κ24 ¼ κ4
5
σ
6

and by reparametrizing the time variable on the
brane into cosmic time, dt0 ¼ aðt; 0Þbðt; 0Þdt, we have
[30,31]

�
da=dt0

a

�
2

¼ κ24
3
ρ

�
1þ ρ

2σ

�
þ Λ4

3
: ð90Þ

Notice that at late times, when the energy density is much
smaller than the brane tension ρ ≪ σ, we recover the usual
Friedmann equation of general relativity. However, at early
times ρ ≥ σ, assuming an equation of state ρ ¼ wp (w ≠ 1)
implies ρ ∝ a−3ð1þwÞ (recall that local energy conservation
on the brane Eq. (78) is unchanged) so that [32,33]:

da=dt0

a
∼
a−3ð1þwÞffiffiffi

σ
p ;⇒ a ∼

�
ð1þ wÞ t0ffiffiffi

σ
p

� 1
3ð1þwÞ

; ð91Þ

which diverges as t0 → 0. Thus, we expect the big bang
singularity persists in braneworld induced gravity models
as well.

IV. F(R) THEORIES

Higher curvature gravity theories, collectively known as
fðRÞ theories, have been studied both for its improved short
distance properties, although at the expense of introducing
ghosts [34], as well as for their potential for avoiding
singularities, and as a model of inflation and an alternative
model for dark energy. We start with the action for fðRÞ
gravity in the so-called Jordan frame [35–38]

S ¼ 1

κ24

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sðgμν;ψÞ; ð92Þ

where the last term represents matter action.
From this action, variation of the metric gives rise to the

modified Einstein equations [36]

Rμνf0ðRÞ ¼ κ24Tμν þ
1

2
gμνfðRÞ þ ð∇μ∇ν − gμν□Þf0ðRÞ:

ð93Þ

From this we can write the null and timelike Raychaudhuri
equations for fðRÞ gravity:

dθ̂
dλ

¼ −
θ̂2

2
−
�

κ24
f0ðRÞTμν þ

1

2
gμν

fðRÞ
f0ðRÞ

þ 1

f0ðRÞ ð∇μ∇ν − gμν□Þf0ðRÞ
�
nμnν; ð94Þ

dθ
dτ

¼ −
θ2

3
−
�

κ24
f0ðRÞTμν þ

1

2
gμν

fðRÞ
f0ðRÞ

þ 1

f0ðRÞ ð∇μ∇ν − gμν□Þf0ðRÞ
�
uμuν; ð95Þ

in terms of the expansions θ̂; θ for null and timelike
geodesics nμðλÞ; uμðτÞ parametrized by affine and proper
times λ, τ, respectively.
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Since we are interested in singularities with larger curva-
tures, wewill consider an fðRÞ theory consisting of the usual
scalar curvature plus a perturbative correction of higher power
in the curvature fðRÞ ¼ R½1þ ðl2

PlRÞn−1�, where we will
take the Planck length lPl to control the strength of the
corrections, and n is a positive integer. Sincewe are interested
in the large curvature regime, i.e., R ≫ 1=l2

Pl, we will
consider the case where the second term in fðRÞ dominates
so that f ∼ Rn. In this case, the equations of motion are
dominated by thehigher curvature correction terms,which act
as an effective energy-momentum tensor.
Substituting this into the Raychaudhuri equations (94),

(95), we obtain

dθ̂
dλ

¼ −
θ̂2

2
−
�

κ24Tμν

2nl2n−2
Pl Rn−1 þ

R
2n

gμν

þ 1

nRn−1 ð∇μ∇ν − gμν□ÞRn−1
�
nμnν:; ð96Þ

dθ
dτ

¼ −
θ2

3
−
�

κ24Tμν

2nl2n−2
Pl Rn−1 þ

R
2n

gμν

þ 1

nRn−1 ð∇μ∇ν − gμν□ÞRn−1
�
uμuν: ð97Þ

Note that (i) the sign of the second term in square brackets
in each equation is opposite to the Tμν term, and (ii) the sign
of the last term in each equation depends on the spacetime
under consideration.
Next, we consider homogeneous and isotropic cosmo-

logical backgrounds with the metric

ds2¼−dt2þaðtÞ2
�

dr2

1−kr2
þr2ðdθ2þsin2θdϕ2Þ

�
; ð98Þ

and corresponding scalar curvature

R ¼ 6

�
ä
a
þ _a2

a2
þ k
a2

�
: ð99Þ

The null Raychaudhuri equation (96), using nμnνgμν ¼ 0,
becomes

dθ̂
dλ

¼ −
θ̂2

2
−

κ24Tμνnμnν

2nl2n−2
Pl Rn−1 þ

1

nRn−1 ðntÞ2∂2
t Rn−1; ð100Þ

while the timelike Raychaudhuri equation (97) becomes

dθ
dτ

¼ −
θ2

3
−
�

κ24Tμν

2nl2n−2
Pl Rn−1 þ

3

n

�
ä
a
þ _a2

a2
þ k
a2

�
gμν

�
uμuν:

ð101Þ

When the cosmological evolution is dominated by the
curvature corrections, we have an effective perfect fluid

peff ¼ weffρeff ; weff ¼ −
6n2 − 7n − 1

6n2 − 9nþ 3
; ð102Þ

with scale factor (weff ≠ 1):

a ¼ a0t
2

3ð1þweff Þ;
_a
a
¼ 2

3ð1þ weffÞt
;

ä
a
¼ −

2ð1þ 3weffÞ
9ð1þ weffÞ2t2

;

ä
a
þ _a2

a2
þ k
a2

¼ 2ð1 − 3weffÞ
9ð1þ weffÞ2t2

þ k

a20t
4=3ð1þweffÞ : ð103Þ

We can substitute this solution for the scale factor into the
Raychaudhuri equations to obtain

dθ̂
dλ

¼ −
θ̂2

2
þ 1

n
n

2ð1−3weffÞ
3nð1þweffÞ2t2 þ

3k
na2

0
t4=3ð1þweff Þ

o
n−1

�
−
κ24Tμνnμnν

2l2n−2
Pl

þ ðntÞ2∂2
t

�
2ð1 − 3weffÞ

3nð1þ weffÞ2t2
þ 3k

na20t
4=3ð1þweffÞ

�
n−1

�
; ð104Þ

dθ
dτ

¼ −
θ2

3
−

κ24ρ

2nl2n−2
Pl

n
2ð1−3weffÞ

3nð1þweffÞ2t2 þ
3k

na2
0
t4=3ð1þweff Þ

o
n−1

þ
�

2ð1 − 3weffÞ
3nð1þ weffÞ2t2

þ 3k

na20t
4=3ð1þweffÞ

�
; ð105Þ

where we considered the rest frame of the fluid streamlines,
for which Tμνuμuν ¼ ρ, and used u2 ¼ −1.
Since we are primarily interested in the corrected

Raychaudhuri equation close to the putative big-bang
singularity, i.e., preinflation with w ≠ −1, we ignore the
energy-momentum term in Eqs. (104), (105), since this term

becomes subdominant at larger curvatures. Furthermore,
omitting exotic matter from our discussions, i.e., w≰ − 1=3
such that the k term can also be ignored, we arrive at the
rather simple form for the Raychaudhuri equations

dθ̂
dλ

¼ −
θ̂2

2
þ 2ðn − 1Þð2n − 1ÞðntÞ2

nt2
ð106Þ

dθ
dτ

¼ −
θ2

3
þ 2ð1 − 3weffÞ
3nð1þ weffÞ2t2

¼ −
θ2

3
þ 3ð4n2 − 5Þð2n2 − 3nþ 1Þ

ðn − 2Þ2t2 ð107Þ
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As can be seen, the second term in both Eqs. (106), (107) are
repulsive and dominate over the first term (due to the factor of
1=t2 therein) for all n. This causes geodesics to not to
converge in this epoch, potentially preventing the formation
of a singularity. At later epochs, e.g., during inflation and
thereafter, that term is subdominant as are additional terms
originating in an actual perfect fluid described by the equation
p ¼ wρ, with −1 ≤ w ≤ 1=3. Therefore the standard con-
clusions from the Raychaudhuri equation and the singularity
theorems hold. Note that while in [36], the authors consider
constant curvature cosmological metrics (Einstein spaces), in
[37] the authors consider theories of the form fðRÞ ¼ Rþ
α=Rn with α < 0 and n ∈ R. These are relevant to late time
acceleration, as an alternative to dark energy. As mentioned
above, herewe are primarily concernedwith very early times,
to examine effects of repulsive terms (if any) near the initial
singularity. Furthermore, similar to the above references we
too assume that the standard energy conditions are valid for
the cosmological fluids.

V. LOOP QUANTUM COSMOLOGY

In loop quantum cosmology, one starts with the standard
large scale homogeneous and isotropic model of the
Universe, described by metric (98), and obtains an effective
Hamiltonian, incorporating the discrete quantum nature of
spacetime at the fundamental level, quantum backreaction
and the behavior of the scale factor at very small length
scales [39–41]

Heff ¼ −
6

κ24γ
2

sin2ðλβÞ
λ2

V þHmatter; ð108Þ

where λ is a measure of fundamental discreteness, γ the
Immirizi parameter, V the volume, βð¼ γHÞ its conjugate,
and Hmatter the matter Lagrangian. Next, using the
Hamiltonian constraint Heff ≈ 0 and the Hamilton’s equa-
tion for V, namely _V ¼ fV;Heffg, one obtains the “loop
quantum corrected Raychaudhuri equation”

ä
a
¼ _HþH2 ¼ −

κ24
4

�
ρ

�
1−

ρ

ρc

�
þ 3

�
P

�
1−

2ρ

ρc

�
−
ρ2

ρc

��
;

ð109Þ

where: ρc ≡ 3
8πγ2λ2V2.

By substituting [42,43]

_a
a
¼ θ

3
; ð110Þ

θ̂ ¼ 2

a2

�
_a −

1

r

�
ð111Þ

for timelike and null geodesics, respectively, we can obtain
the corresponding Raychaudhuri equations

dθ
dτ

¼ −
θ2

3
−
κ24
4

�
ρ

�
1 −

ρ

ρc

�

þ 3

�
P

�
1 −

2ρ

ρc

�
−
ρ2

ρc

��
ðtimelikeÞ; ð112Þ

dθ̂
dλ

¼ −
θ̂2

2
þ 2

a2
_H

¼ θ̂2 −
2

ða2rÞ2 −
2θ

a2r
−

κ24
2a2

�
ρ

�
1 −

ρ

ρc

�

þ 3

�
P

�
1 −

2ρ

ρc

�
−
ρ2

ρc

��
ðnullÞ: ð113Þ

Note that there are three positive (repulsive) terms in the
right-hand side of the RE (112), (113), effective near
ρ ≃ ρc, i.e., in the early Universe. Since the above equations
were derived using a nonperturbative quantization scheme,
without assuming a fixed background metric and allowing
for backreaction, one expects that they will hold good all
the way to t → 0. At this point, the repulsive terms take
over (since ρ → ∞) and the singularity theorems and their
conclusions cease to hold.

VI. CONCLUSIONS

In this paper, we have examined the effects of several
different alternative theories of gravity on the geodesic
convergence properties of the Raychaudhuri equation in
some simple backgrounds, and found some cases where
these corrections provide repulsive terms.
In the case of string theory, we studied the leading order

corrections to the Einstein equations (for constant dilaton
and vanishing form fields) arising in the form of Einstein-
Gauss-Bonnet gravity. We did not find repulsive contribu-
tions to the Raychaudhuri equation for D-dimensional
black hole backgrounds, which is consistent with known
exact black hole solutions in Einstein-Gauss-Bonnet grav-
ity, which still contain singularities. We did find repulsive
terms for D-dimensional cosmological backgrounds, how-
ever these terms do not appear to be significant enough to
prevent the existence of a big bang singularity, at least at
leading order. It is therefore interesting that the string
theory corrections to the Raychaudhuri equation do not
have a definite sign, but instead the sign of the corrections
depends on the background under consideration. We note
that our results here should be taken as preliminary steps
towards analyzing the potential for string theory corrections
to resolve singularities. In particular, we have only exam-
ined the leading-order pure gravity corrections, setting the
dilaton to a constant and form fields to zero. Allowing these
fields to be dynamical will give rise to additional terms in
the Raychaudhuri equation that could act repulsively.
Additionally, the leading corrections we considered here
vanish for type IIA/IIB string theory; it would be
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interesting, though technically challenging, to include the
next order of corrections.
We also considered corrections to the Einstein equations

coming from induced gravity on a brane embedded in a
warped 5-dimensional bulk. In this case, the corrections show
up as quadratic in the brane-localized energy-momentum
tensor. For a cosmological background we found that the
corrections to the null Raychaudhuri equation always
increase convergence, while the corrections of the timelike
Raychaudhuri equation can give rise to repulsive terms when
the brane matter is described by a perfect fluid with pressure
p < −2=3ρ. Nonetheless, it appears that a big bang singu-
larity persists in this case as well. It would be interesting to
study these corrections for black hole backgrounds, as well as
explore the role that bulk fields play in providing additional
constraints.
We examined corrections for curvature-dominated fðRÞ

theories of the form fðRÞ ¼ R½1þ ðlPlRÞn−1�, where lPl is
the Planck length and n is a positive integer. We found that
the fðRÞ corrections can contribute repulsive terms to the
timelike and null Raychaudhuri equations for weff > −1=3,
where weffðnÞ ¼ −ð6n2 − 7n − 1Þ=ð6n2 − 9nþ 3Þ is the
effective equation of state of the curvature corrections. It
would be interesting to study these corrections further to
examine whether they do indeed lead to a resolution of the
cosmological singularity.
Finally, we also considered corrections to the Friedmann

equation for loop quantum cosmology. These corrections
give rise to repulsive terms in both the timelike and null
Raychaudhuri equations, suggesting a resolution of the
big bang singularity. Note that in this case the results are
non-perturbative in nature. It is important to explore fðRÞ
theories and loop quantum cosmology further to see if
indeed all possible geodesics are complete in these theories,
and if so, whether there exists another criterion for the
existence of singularities. If not, the corresponding space-
times should play an important role near the normally
singular regions inside black holes and in cosmology.
In all of our examples we have considered simple

isotropic and/or homogeneous backgrounds, and it would
be interesting to study how robust our results are to
anisotropic or inhomogeneous deviations. Since the power
of the singularity theorems is in their general applicability,
and generic situations likely would not possess such a high
degree of symmetry, it is not clear whether the additional
terms to the Raychaudhuri equation would continue to be
repulsive in more general backgrounds with less symmetry.
We leave this general analysis for future work. In addition,
all of our analysis has focused on the corrections to the
classical equations of motion from alternative theories of
gravity. It would be interesting to examine quantum effects
(which depend on the wave function of the fluid) over and
above the above classical terms. However, since these
effects are always repulsive in nature, and prevents the
quantal trajectories (quantum counterparts of geodesics)

from crossing, such effects should reinforce the above
conclusion [44,45].
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APPENDIX A: RAYCHAUDHURI EQUATIONS
IN D DIMENSIONS

1. Timelike

Consider a congruence of timelike geodesics parametrized
by proper time τ with tangent vectors uMðτÞ satisfying
uMuM ¼ −1 and uM∇MuN ¼ 0 for some D-dimensional
metric gMN . We can define the “spatial” (or transverse)
metric as

hMN ≡ gMN þ uMuN; ðA1Þ

which is transverse to the tangent vectors uMhMN ¼ 0.
We will define the following quantities:

θ≡∇MuM Expansion scalar ðA2Þ

σMN ¼ 1

2
ð∇MuN þ∇NuMÞ −

1

D − 1
hMNθ Shear tensor

ðA3Þ

ωMN ¼ 1

2
ð∇MuN −∇NuMÞ Twist tensor ðA4Þ

Note that σMN;ωMN are purely spatial (or transverse), since
uMσMN ¼ 0 ¼ uMωMN . In addition, ωMN ¼ 0 for tangent
vectors that are hypersurface orthogonal, as will be the
case for all of the tangent vectors considered in this paper.
Following [46], the expansion obeys the Raychaudhuri
equation

dθ
dτ

¼−
θ2

D−1
−σMNσ

MNþωMNω
MN−RMNuMuN: ðA5Þ

Since σMN is purely spatial, the second term is nonpositive,
and as mentioned above we will be considering cases where
ωMN ¼ 0, so that the right-hand side of Eq. (A5) is non-
positive as long as RMNuMuN ≥ 0.
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2. Null

The derivation of the null Raychaudhuri equation pro-
ceeds in a similar way as the timelike case above, with an
additional complication in identifying the transverse direc-
tions to the null geodesic.
Consider a congruence of null geodesics parametrized

by affine parameter λwith tangent vectors nMðλÞ, satisfying
nMnM ¼ 0 and nM∇MnN ¼ 0. In order to define the
transverse directions to the geodesic we need an “auxiliary”
null vector kM such that5 kMkM ¼ 0 and nMkM ¼ −1. We
define the transverse metric to the null geodesics

ĥMN ¼ gMN þ nMkN þ kMnM ðA6Þ

which has dimension gMNĥMN ¼ D − 2 and is transverse to
both nM and kM: nMĥMN ¼ 0 ¼ kMĥMN . We then proceed
as in the timelike case by defining:

θ̂≡∇MnM Expansion scalar ðA7Þ

σ̂MN ≡ 1

2
ð∇MnN þ∇NnMÞ −

1

D − 2
ĥMN θ̂ Shear tensor

ðA8Þ

ω̂MN ≡ 1

2
ð∇MnN −∇NnMÞ Twist tensor ðA9Þ

As before, σMN;ωMN are transverse to the null geodesics.

The expansion obeys the Raychaudhuri equation

dθ̂
dλ

¼ −
θ̂2

D − 2
− σ̂MN σ̂

MN þ ω̂MNω̂
MN − RMNnMnN:

ðA10Þ

As in the timelike case, ωMN ¼ 0 for geodesics that are
hypersurface orthogonal; further, since σMN is purely
spatial the second term in Eq. (A10) is nonpositive, so
that the entire right-hand side is nonpositive as well as long
as RMNnMnN ≥ 0.

APPENDIX B: GAUSS-BONNET CORRECTIONS
IN ANISOTROPIC COSMOLOGY

We will examine the correction terms HMN for a
D-dimensional background consisting of a d-dimensional
flat, homogeneous spacetime, with coordinates fr; θig, and
a m-dimensional homogeneous spacetime, with coordi-
nates fymg, each with their own scale factor

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2 ˆdΩ2
d−1Þ þ bðtÞ2g̃mndymdyn;

ðB1Þ

where D ¼ dþmþ 1.
The Gauss-Bonnet scalar is

R2
GB ¼ RABCDRABCD − 4RMNRMN þ ðRDÞ2

¼ 4dðd − 1Þðd − 2Þ ä
a
_a2

a2
þ dðd − 1Þðd − 2Þðd − 3Þ _a

4

a4

þ 4mðm − 1Þðm − 2Þ b̈
b

_b2

b2
þmðm − 1Þðm − 2Þðm − 3Þ

_b4

b4

þ 4dmðm − 1Þ ä
a

_b2

b2
þ 4dmðd − 1Þ _a

2

a2
b̈
b
þ 2dmðd − 1Þðm − 1Þ _a

2

a2
_b2

b2

þ R̃m

b2

�
4d

ä
a
þ 2dðd − 1Þ _a

2

a2
þ 4ðm − 2Þ b̈

b3
− 6mðm − 1Þ

_b2

b2
− 3

R̃m

b2

�
: ðB2Þ

Note that R2
GB simplifies considerably when d ¼ 3 and m ¼ 1, 2, corresponding to D ¼ 5 or 6-dimensional spacetime,

respectively, and the internal space is flat R̃m ¼ 0

R2
GBjd¼3;m¼1;2 ¼ 24

ä _a2

a3
þ 24m

_a2

a2
b̈
b
; ðB3Þ

though this does not seem to give any particularly useful interpretation.

5kM need not be a geodesic, and indeed in most cases it is not possible for both kM and nM to be geodesics and cross-normalized to a
constant.

BURGER, MOYNIHAN, DAS, HAQUE, and UNDERWOOD PHYS. REV. D 98, 024006 (2018)

024006-14



We can now compute the correction terms

Htt ¼
gtt
2
R2
GB − 2RDRtt þ 4RttgttRtt þ 4ðgrrÞ2RrrRtrtr þ 4gii

0
gjj

0
Ri0j0Rtitj þ 4RmnRtmtn − 2RtABCRABC

t

¼ −
1

2
dðd − 1Þðd − 2Þðd − 3Þ _a

4

a4
−
1

2
mðm − 1Þðm − 2Þðm − 3Þ

_b4

b4
− dmðd − 1Þðm − 1Þ _a

2

a2
_b2

b2

þ R̃m

b2

�
−dðd − 1Þ _a

2

a2
þ 3mðm − 1Þ

_b2

b2
þ 3

2

R̃m

b2

�
; ðB4Þ

Hrr ¼
grr
2
R2
GB − 2RDRrr þ 4RrrgrrRrr þ 4RttðgttÞ2Rrtrt þ 4Ri0j0gii

0
gjj

0
Rrirj − 2RrABCRABC

r

¼ 2ðd − 1Þðd − 2Þðd − 3Þ ä _a
2

a
þ 1

2
ðd − 1Þðd − 2Þðd − 3Þðd − 4Þ _a

4

a2
þ 2mðm − 1Þðm − 2Þa2 b̈

_b2

b3

þmðm − 1Þðm − 2Þðm − 3Þa2
_b4

b4
þ 2mðm − 1Þðd − 1Þaä

_b2

b2
þ 2mðd − 1Þðd − 2Þ _a2 b̈

b

þmðm − 1Þðd − 1Þðd − 2Þ _a2
_b2

b2
þ a2

R̃m

b2

�
2d

ä
a
þ dðd − 1Þ _a

2

a2
þ 2ðm − 2Þ b̈

b3
− 3mðm − 1Þ

_b2

b2
−
3

2

R̃m

b2

�
: ðB5Þ

Notice that Htt vanishes identically for all d ¼ 3, m ¼ 1, 2
and a flat internal space R̃m ¼ 0, while Hrr is considerably
more complex.

1. Raychaudhuri corrections

We now consider a d-dimensional radial, null, affine
tangent vector

nM ¼
�

1

aðtÞ ;�
1

aðtÞ2 ; 0⃗; 0⃗
�
: ðB6Þ

Note that nMnM ¼ 0 (it is null) and nM satisfies the affine
condition nN∇NnM ¼ 0, even for the anisotropic back-
ground considered here.
The null Raychaudhuri equation takes the form

dθ̂
dλ

¼ −θ̂2

D − 2
− jσ̂j2 − RMNnMnN: ðB7Þ

Our corrections due to the Gauss-Bonnet term appear on
the right-hand side, as

8

α0
RMNnMnN ∼HMNnMnN ¼ Httntnt þHrrnrnr

¼ ðd − 1Þðd − 2Þðd − 3Þðd − 5Þ
2

_a2

a6
þ 2ðd − 1Þðd − 2Þðd − 3Þ ä _a

2

a5

þ ðm − 1Þðm − 2Þðm − 3Þðm − 5Þ
2

_b4

a2b4
þ 2mðm − 1Þðm − 2Þ b̈ _b2

a2b3
þ 2mðd − 1Þðd − 2Þ _a

2

a4
b̈
b

þ 2mðm − 1Þðd − 1Þ
_b2

b2

�
ä
a3

−
_a2

a4

�
þ 2ðm − 1ÞR̃m

b̈
a2b5

: ðB8Þ

As before, choosing d ¼ 3, m ¼ 1, 2 and a flat internal
space R̃m ¼ 0 simplifies the result considerably

HMNnMnN ¼ 2mðm − 1Þðd − 1Þ
_b2

b2

�
ä
a3

−
_a2

a4

�

þ 2mðd − 1Þðd − 2Þ _a
2

a4
b̈
b

¼ 4mðm − 1Þ
_b2

b2
_Hd

a2
þ 4m

_a2

a4
b̈
b
; ðB9Þ

where we wrote Hd ≡ _a=a, and thus _Hd ¼ ä=a − _a2=a2.
The overall sign of this correction term is not clear; typically
we expect _Hd ≤ 0 for spacetimes that do not have NEC
violating matter, so this term is potentially negative. How-
ever, it is unclear the scenarios for which b̈=b < 0.
Finally, consider a comoving, proper-time parametrized

timelike geodesic described by the tangent vector

uM ¼ ð1; 0; 0⃗; 0⃗Þ: ðB10Þ
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It is straightforward to check that uMuM ¼ −1 and
uN∇NuM ¼ 0.
The timelike Raychaudhuri equation takes the form

dθ
dτ

¼ −
θ2

D − 1
− jσj2 − RMNuMuN; ðB11Þ

where again the corrections to the Raychaudhuri equation
due to the Gauss-Bonnet corrections come from the last
term

8

α0
RMNuMuN∼HMNuMuN ¼Httutut

¼−
dðd−1Þðd−2Þðd−3Þ

2

_a4

a4
−
mðm−1Þðm−2Þðm−3Þ

2

_b4

b4

−dmðd−1Þðm−1Þ _a
2

a2
_b2

b2

þ R̃m

b2

�
−dðd−1Þ _a

2

a2
þ3mðm−1Þ

_b2

b2
þ3

2

R̃m

b2

�
: ðB12Þ

Notice here that for a flat internal space R̃m ¼ 0, these
corrections are manifestly negative, thus they cause diver-
gence in the Raychaudhuri equation.
More generally, we see that whether these additional

correction terms due to Gauss-Bonnet act to increase or
oppose convergence depends on the particular background,
and whether one is considering timelike or null rays. Thus,
there are backgrounds in which the usual singularity
theorems no longer hold.

APPENDIX C: WEYL CURVATURE TENSOR

In Sec. III, we encountered corrections to the induced
4-dimensional Einstein equations that involved the 5-
dimensional Weyl curvature through the tensor

Eμν ¼ ð5ÞCμανβnαnβ: ðC1Þ

In this Appendix, we collect some useful properties of
the Weyl tensor, as well as evaluate this term for the
braneworld metric (59).

1. Weyl Tensor

We begin with some facts about the Weyl curvature
tensor. First, the definition of the Weyl curvature tensor is

Cαβγδ ¼ Rαβγδ þ
1

n − 2
½gαδRγβ þ gβγRδα − gαγRδβ − gβδRγα�

þ 1

ðn − 1Þðn − 2Þ ½gαγgδβ − gαδgγβ�R ðC2Þ

in terms of the Riemann tensor, Ricci tensor, and Ricci
scalar. In effect, theWeyl tensorCαβγδ is the traceless part of
the Riemann curvature tensor. As such, it inherits the usual

symmetry identities from the Riemann tensor, as well as a
traceless condition:

Cαβγδ ¼ −Cαβδγ ¼ −Cβαγδ ¼ Cγδαβ ðC3Þ
Cα
βαδ ¼ 0 ðtrue for any 2 contracted indiciesÞ ðC4Þ

The Weyl curvature tensor has an interesting feature: for
any 2 metrics that can be related by a conformal factor

ĝαβ ¼ Ω2gαβ; ðC5Þ
the Weyl curvature tensors are the same

Ĉαβγδ ¼ Cαβγδ: ðC6Þ
This means that if a metric can be written in a conformally
flat form, then Cαβγδ ¼ 0 identically.
In particular, for the RS Minkowksi metric (61), this can

be written in conformally flat form (with the coordinate
redefinition of dχ ¼ e−KðzÞdz). Further, the ansatz metric
(59), is almost conformally flat, aside from the factor
bðt; yÞ; thus, we expect the Weyl curvature tensor for (59)
to be proportional to the time- and space-derivatives of
bðt; yÞ (as we subsequently find it to be).

2. Evaluating Eμν

In Sec. III we evaluated the Eμν tensor in the limit y → 0,

finding that Eμν ∝ μ b2

a2, consequently the singular terms do
not contribute. However, we need to examine the consis-
tency of this result. In particular, the induced Einstein
equations (63) are not closed, and must be supplemented
by additional constraints [26]. The Bianchi identity for the
induced Einstein equations (63) implies (assuming that the
brane EM tensor τμν obeys EM conservation (78)

∇̂μEμν ¼ κ25∇̂μπμν; ðC7Þ

where ∇̂μ is the covariant derivative constructed with
respect to the 4d q̂μν induced metric. Thus, we will examine
the consistency of our limiting procedure by verifying that
our result for Eμν is indeed a solution of the Bianchi
identity (C7).
Starting on the right-hand side, we rewrite the Bianchi

identity as ∇̂μπμν ¼ ∇̂μπ
μ
ν , and using the suitably raised

versions of the πμν tensor, it is straightforward to compute

∇̂μπμt ¼ −
1

6
ρ_ρ −

1

2

_a
a
ρðpþ ρÞ

¼ −
ρ

6

�
_ρþ 3

_a
a
ðρþ pÞ

�
¼ 0; ðC8Þ

where we used energy conservation of the brane matter (78)
to set this entire term to zero. Similar results are obtained
for the ν ¼ r; θ;ϕ components of the Bianchi identity (C7).

BURGER, MOYNIHAN, DAS, HAQUE, and UNDERWOOD PHYS. REV. D 98, 024006 (2018)

024006-16



However, for the left-hand side of the ν ¼ t component of the Bianchi identity, we obtain

∇̂μE
μ
t ¼ 3

_a
a
μ

a4
ð1 − b2Þ: ðC9Þ

The only way to satisfy the Bianchi identity (C7), then, is to require the dark radiation term to vanish, μ ¼ 0. Similar results
are obtained for the ν ¼ r; θ;ϕ components.

[1] R. Penrose, Gravitational Collapse and Space-time Singu-
larities, Phys. Rev. Lett. 14, 57 (1965).

[2] S. W. Hawking and R. Penrose, The singularities of gravi-
tational collapse and cosmology, Proc. R. Soc. A 314, 529
(1970).

[3] A. Raychaudhuri, Relativistic cosmology. 1., Phys. Rev. 98,
1123 (1955).

[4] H. Friedrich and J. M. Stewart, Characteristic initial data and
wave front singularities in general relativity, Proc. R. Soc. A
385, 345 (1983).

[5] N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M.
Zaldarriaga, Ghost inflation, J. Cosmol. Astropart. Phys. 04
(2004) 001.

[6] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, G-
Inflation: Inflation Driven by the Galileon Field, Phys.
Rev. Lett. 105, 231302 (2010).

[7] B.-H. Lee, C. H. Lee, W. Lee, S. Nam, and C. Park,
Dynamics of false vacuum bubbles with the negative tension
due to nonminimal coupling, Phys. Rev. D 77, 063502
(2008).

[8] B.-H. Lee, W. Lee, and D.-h. Yeom, Dynamics of false
vacuum bubbles in Brans-Dicke theory, J. Cosmol. Astro-
part. Phys. 01 (2011) 005.

[9] L. H. Ford and T. A. Roman, Motion of inertial observers
through negative energy, Phys. Rev. D 48, 776 (1993).

[10] C. G. Callan, Jr., R. C. Myers, and M. J. Perry, Black holes
in string theory, Nucl. Phys. B311, 673 (1989).

[11] B. Zwiebach, Curvature squared terms and string theories,
Phys. Lett. 156B, 315 (1985).

[12] D. J. Gross and J. H. Sloan, The quartic effective action for
the heterotic string, Nucl. Phys. B291, 41 (1987).

[13] S. Frolov, I. R. Klebanov, and A. A. Tseytlin, String
corrections to the holographic RG flow of supersymmetric
SUðNÞ × SUðNþMÞ gauge theory, Nucl. Phys. B620, 84
(2002).

[14] G. Niz and N. Turok, Stringy corrections to a time-
dependent background solution of string and M-Theory,
Phys. Rev. D 75, 126004 (2007).

[15] C. Fairoos, A. Ghosh, and S. Sarkar, Black hole entropy
production and transport coefficients, arXiv:1802.00177.

[16] C. Lanczos, A remarkable property of the Riemann-Chris-
toffel tensor in four dimensions, Ann. Math. 39, 842 (1938).

[17] D. Lovelock, The Einstein tensor and its generalizations,
J. Math. Phys. 12, 498 (1971).

[18] T. Padmanabhan and D. Kothawala, Lanczos-Lovelock
models of gravity, Phys. Rep. 531, 115 (2013).

[19] D. G. Boulware and S. Deser, String Generated Gravity
Models, Phys. Rev. Lett. 55, 2656 (1985).

[20] C. Charmousis, Higher order gravity theories and their black
hole solutions, Lect. Notes Phys. 769, 299 (2009).

[21] C. Garraffo and G. Giribet, The Lovelock black holes, Mod.
Phys. Lett. A 23, 1801 (2008).

[22] S. Deser and B. Tekin, Energy in generic higher curvature
gravity theories, Phys. Rev. D 67, 084009 (2003).

[23] P. Brax, C. van de Bruck, and A.-C. Davis, Brane world
cosmology, Rep. Prog. Phys. 67, 2183 (2004).

[24] P. Horava and E. Witten, Heterotic and type I string dynamics
from eleven-dimensions, Nucl. Phys. B460, 506 (1996).

[25] L. Randall and R. Sundrum, A Large Mass Hierarchy from a
Small Extra Dimension, Phys. Rev. Lett. 83, 3370 (1999).

[26] T. Shiromizu, K.-i. Maeda, and M. Sasaki, The Einstein
equation on the 3-brane world, Phys. Rev. D 62, 024012
(2000).

[27] S. Mukohyama, Brane world solutions, standard cosmology,
and dark radiation, Phys. Lett. B 473, 241 (2000).

[28] D. Ida, Brane world cosmology, J. High Energy Phys. 09
(2000) 014.

[29] K. Ichiki, M. Yahiro, T. Kajino, M. Orito, and G. J.
Mathews, Observational constraints on dark radiation in
brane cosmology, Phys. Rev. D 66, 043521 (2002).

[30] P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois,
Brane cosmological evolution in a bulk with cosmological
constant, Phys. Lett. B 477, 285 (2000).

[31] P. Binetruy, C. Deffayet, and D. Langlois, Nonconventional
cosmology from a brane universe, Nucl. Phys. B565, 269
(2000).

[32] D. Langlois, Cosmology of brane—worlds, in Proceedings,
6th RESCEU International Symposium on Frontiers in
Astroparticle Physics and Cosmology: Tokyo, 2003,
(unpublished).

[33] J. D. Barrow and R. Maartens, Kaluza-Klein anisotropy in
the CMB, Phys. Lett. B 532, 153 (2002).

[34] K. S. Stelle, Renormalization of Higher Derivative Quantum
Gravity, Phys. Rev. D 16, 953 (1977).

[35] T. P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev.
Mod. Phys. 82, 451 (2010).

[36] F. D. Albareti, J. A. R. Cembranos, A. de la Cruz-Dombriz,
and A. Dobado, On the non-attractive character of gravity in
f(R) theories, J. Cosmol. Astropart. Phys. 07 (2013) 009.

[37] C. S. Santos, J. Santos, S. Capozziello, and J. S. Alcaniz,
Strong energy condition and the repulsive character of f(R)
gravity, Gen. Relativ. Gravit. 49, 50 (2017).

TOWARDS THE RAYCHAUDHURI EQUATION BEYOND … PHYS. REV. D 98, 024006 (2018)

024006-17

https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRev.98.1123
https://doi.org/10.1103/PhysRev.98.1123
https://doi.org/10.1098/rspa.1983.0018
https://doi.org/10.1098/rspa.1983.0018
https://doi.org/10.1088/1475-7516/2004/04/001
https://doi.org/10.1088/1475-7516/2004/04/001
https://doi.org/10.1103/PhysRevLett.105.231302
https://doi.org/10.1103/PhysRevLett.105.231302
https://doi.org/10.1103/PhysRevD.77.063502
https://doi.org/10.1103/PhysRevD.77.063502
https://doi.org/10.1088/1475-7516/2011/01/005
https://doi.org/10.1088/1475-7516/2011/01/005
https://doi.org/10.1103/PhysRevD.48.776
https://doi.org/10.1016/0550-3213(89)90172-7
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/S0550-3213(01)00554-5
https://doi.org/10.1016/S0550-3213(01)00554-5
https://doi.org/10.1103/PhysRevD.75.126004
http://arXiv.org/abs/1802.00177
https://doi.org/10.2307/1968467
https://doi.org/10.1063/1.1665613
https://doi.org/10.1016/j.physrep.2013.05.007
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1007/978-3-540-88460-6
https://doi.org/10.1142/S0217732308027497
https://doi.org/10.1142/S0217732308027497
https://doi.org/10.1103/PhysRevD.67.084009
https://doi.org/10.1088/0034-4885/67/12/R02
https://doi.org/10.1016/0550-3213(95)00621-4
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevD.62.024012
https://doi.org/10.1103/PhysRevD.62.024012
https://doi.org/10.1016/S0370-2693(99)01505-1
https://doi.org/10.1088/1126-6708/2000/09/014
https://doi.org/10.1088/1126-6708/2000/09/014
https://doi.org/10.1103/PhysRevD.66.043521
https://doi.org/10.1016/S0370-2693(00)00204-5
https://doi.org/10.1016/S0550-3213(99)00696-3
https://doi.org/10.1016/S0550-3213(99)00696-3
https://doi.org/10.1016/S0370-2693(02)01552-6
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1088/1475-7516/2013/07/009
https://doi.org/10.1007/s10714-017-2212-0


[38] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Modified
gravity theories on a nutshell: Inflation, bounce and late-
time evolution, Phys. Rep. 692, 1 (2017).

[39] A. Ashtekar, Singularity resolution in loop quantum cos-
mology: A brief overview, J. Phys. Conf. Ser. 189, 012003
(2009).

[40] P. Singh, Are loop quantum cosmos never singular?,
Classical Quantum Gravity 26, 125005 (2009).

[41] L.-F. Li and J.-Y. Zhu, Thermodynamics in loop
quantum cosmology, Adv. High Energy Phys. 2009,
905705 (2009).

[42] A. K. Raychaudhuri, Theoretical Cosmology (Oxford
University Press, New York, 1980).

[43] S. S. Haque and B. Underwood, Consistent Cosmic Bubble
Embeddings, Phys. Rev. D 95, 103513 (2017).

[44] S. Das, Quantum Raychaudhuri equation, Phys. Rev. D 89,
084068 (2014).

[45] S. Alsaleh, L. Alasfar, M. Faizal, and A. F. Ali, Quantum
no-singularity theorem from geometric flows, Int. J. Mod.
Phys. A 33, 1850052 (2018).

[46] R. Wald, General Relativity (The University of Chicago
Press, Chicago, 1984).

BURGER, MOYNIHAN, DAS, HAQUE, and UNDERWOOD PHYS. REV. D 98, 024006 (2018)

024006-18

https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1088/1742-6596/189/1/012003
https://doi.org/10.1088/1742-6596/189/1/012003
https://doi.org/10.1088/0264-9381/26/12/125005
https://doi.org/10.1155/2009/905705
https://doi.org/10.1155/2009/905705
https://doi.org/10.1103/PhysRevD.95.103513
https://doi.org/10.1103/PhysRevD.89.084068
https://doi.org/10.1103/PhysRevD.89.084068
https://doi.org/10.1142/S0217751X18500525
https://doi.org/10.1142/S0217751X18500525

