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We revisit the concept of turnaround radius in cosmology, in the context of modified gravity. While
preliminary analyses were limited to scalar-tensor/FðRÞ gravity, we extend the definition and the study of
this quantity to a much broader class of theories including also quantum R2 gravity. The turnaround radius
is computed in terms of the parameters of the theory, and it is shown that a deviation not larger than 10% of
this quantity from its value in Einstein’s theory could constrain the model parameters and even rule out
some current theories.
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I. INTRODUCTION

Modifying general relativity (GR) is a necessity from the
theoretical physics point of view. In fact, virtually all
attempts to quantize GR modify the Einstein-Hilbert action
by adding extra dynamical fields or nonlocal terms, or by
introducing higher order derivatives in the field equations
(see [1] for review). These corrections are not necessarily
Planck-scale suppressed. For example, the simplest string
theory, the bosonic string theory, reduces to an ω ¼ −1
Brans-Dicke gravity in its low-energy limit [2,3], and the
FðRÞ theories of gravity that are nowadays popular to
explain away dark energy are nothing but scalar-tensor
theories in disguise [4–10].
A significant body of experimental efforts aiming to test

gravity at all possible astrophysical and cosmological scales
has emerged in the past decade. There is little doubt,
however, that the main motivation to question GR comes
from cosmology. The present acceleration of the universe
discovered in 1998 with type Ia supernovae requires an
explanation. While a cosmological constant Λ offers a
possible explanation in principle, it is peppered with
enormous fine-tuning problems, which has led to the
introduction of the completely ad hoc concept of dark
energy (see [11] for a review). Many authors, dissatisfied
with these approaches, have turned to the possibility of
modifying gravity at large scales [12,13] (see also [4–10,14]
for reviews). Modulo some fine-tuning, the idea works in
principle, butmanymodified gravitymodels (andmany dark
energy models as well) fit the observational data. Therefore,

one would like to avail oneself of all the tests of gravity that
become available, at all scales and in all regimes, to obtain
the correct scenario. In this context, the turnaround radius
may be useful.
The concept of turnaround radius has been around for

many years under various names (see, e.g., [15–22]): radius
of the “zero velocity surface” or of the “effective sphere of
influence of a cosmic structure,” “zero gravity radius,”
“critical radius,” “maximum size of large scale structures,”
“maximumsize of bound cosmic structures,” and “maximum
turnaround radius.” The literature seems to have settled on
the term “turnaround radius,” which we adopt. Its study has
emergedonly recently as a possibleway to test dark energy in
GR by comparing theoretical predictions with astronomical
observations [23–25].
In an accelerating Friedmann-Lemâitre-Robertson-

Walker (FLRW) universe, there is a maximum physical
(areal) radius, called turnaround radius rTA such that any
spherical shell of dust (composed of test particles following
radial timelike geodesics) located outside rTA and given
zero radial velocity initially cannot collapse but is forced to
expand forever by the cosmic acceleration. A similar dust
shell located inside the turnaround radius, instead, will
collapse. The turnaround radius constitutes the maximum
possible radius of a bound structure in an accelerating
FLRW universe. Early comparisons of the theoretical
turnaround radius in the GR-based ΛCDM model with
celestial objects have been carried out [23–25] but the
astronomical error is quite large. Nevertheless, the method
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is quite promising in principle. Within GR, the concept of
the turnaround radius has been made precise, more rig-
orous, and gauge invariant (to first order in the perturba-
tions of an exact FLRW cosmos) by using an approach
[26,27] based on the Hawking-Hayward quasilocal energy
[28–30]. The numerical value of the turnaround radius
estimated in this way, however, turns out to be quite
close to that estimated with the previous method [26,27].
The definition of quasilocal energy in GR is not unique
(see [31] for a review), but it is reassuring that the
Hawking-Hayward construct and the Brown-York quasi-
local mass (in an appropriate gauge) provide the same
answer to first order in the cosmological perturbations [32]
(higher order calculations are futile in view of the large
observational errors in the determination of the turnaround
radius).
Even more interesting is the fact that the turnaround

radius can, in principle, be used to discriminate between
GR and alternative theories of gravity. Preliminary analyses
of the turnaround radius in scalar-tensor and FðRÞ gravity
and others were performed in Refs. [33–36]. Unfortunately,
the status of quasilocal energy (which is already nonunique
in GR [31]) is not clear in modified gravity, in spite of some
attempts to generalize this definition within the restricted
context of scalar-tensor theories [37–42]. Therefore, in
modified gravity one is forced, at least for the moment, to
give up the quasilocal energy approach and to pursue other
approaches. Recently, it was reported that the upper bound
set by GR on the turnaround radius is significantly
exceeded in the galaxy group NGC 5353=4 [43,44]. The
need to take into account the error introduced by the
nonsphericity of the system has been emphasized [45],
together with the fact that one should expect a distribution
of the value of the turnaround radius among different
astronomical systems and, therefore, an excess in this
quantity would be significant from the statistical point of
view rather than for individual systems [46,47]. Currently,
the observational search is focusing on galaxy groups
with weblike structures in their neighboring zones, and
six more groups exceeding the general-relativistic predic-
tion for the turnaround radius have been reported [47]. In
view of these very promising observational developments
and of the potential consequences as a probe of the correct
theory of gravity it is worth studying this subject more
in depth.
In GR and in an asymptotically de Sitter spacetime the

turnaround radius depends on the cosmological constant,
the gravitational coupling, and the mass contained inside
this radius. It is important to realize that, in modified
gravity, both the effective cosmological constant and the
gravitational coupling are changed from their GR values
[27,33]. Therefore, by comparing the turnaround radius in
modified gravity theories with the size of large scale
structures, we constrain the modified gravity theory.
Lacking a clear concept of quasilocal energy when we

leave the GR context, as already noted, we resort to a

different definition of turnaround radius than the one of
[27]. The idea is that, at the turning radius, the gravitational
force balances the inertial force generated by the accel-
erating expansion of the universe. Here, we consider the
generalization of the turnaround radius for FðRÞ gravity
and Rþ R2 þ RμνRμν gravity and its generalizations (like
one-loop corrected quantum R2 gravity). In Ref. [34], only
the asymptotically de Sitter spacetime background was
considered, where the effective cosmological constant and
the effective gravitational coupling are constant. In this
paper instead, we consider power-law expansion in FðRÞ
gravity, where the effective gravitational “constant” is time
dependent and therefore the expression of the turnaround
radius changes from that in GR coupled with a cosmo-
logical fluid. Even in the case of Rþ R2 þ RμνRμν gravity,
which includes the square of the Ricci tensor introducing
new degrees of freedom, the Schwarzschild–de Sitter
spacetime is an exact solution. We investigate the possible
observational constraints on the parameters of the models
coming from the turnaround radius. A problem arising in
these models is that we observe the effective coupling
constant as defined by Newton’s law and, therefore, it is
difficult to distinguish the modified gravity theory from
Einstein gravity in the de Sitter spacetime background
using the turnaround radius. This fact tells us that we need
to find the coupling constant in the Einstein-Hilbert term
with independent methods.
The plan of this paper is as follows. In the next section,

we review the turnaround radius and discuss the case of
FðRÞ gravity, especially in a power-law expanding uni-
verse. Section III derives general formulas for a broad class
of gravitational theories, while Sec. IV focuses on a par-
ticular model of R2 gravity including the Ricci-squared
term. Section V constrains a yet more general class of
models that represent one-loop corrected R2 gravity, and
Sec. VI contains a discussion and the conclusions. We use
the metric signature −þþþ and units in which the speed of
light c assumes the value unity. GN is Newton’s constant,
and otherwise we follow the notation of Ref. [48].

II. GENERALIZATION OF
TURNAROUND RADIUS

For the spherical and (locally) static Schwarzschild-like
metric written in curvature coordinates

ds2 ¼ −AðrÞdt2 þ 1

AðrÞ dr
2 þ r2dΩ2

ð2Þ; ð2:1Þ

where dΩ2
ð2Þ ¼ dθ2 þ sin2 θdφ2 is the line element on the

unit 2-sphere, the turnaround radius rTA (an areal radius) is
defined by r ¼ rTA which satisfies the condition [34]

0 ¼ A0ðrTAÞ: ð2:2Þ
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This is because AðrÞ is related with the effective gravita-
tional potential ϕ by

AðrÞ ¼ 1þ 2ϕ: ð2:3Þ

In particular, in the case of the Schwarzschild–de Sitter
spacetime,

AðrÞ ¼ 1 −
2GNM

r
−
r2

l2
; ð2:4Þ

with Newton’s gravitational constant GN, the de Sitter
length parameter l, and the mass M of the gravitational
source, we find [24,25]

r3TA ¼ GNMl2: ð2:5Þ

Following previous literature, we discuss a spherical
inhomogeneity embedded in a spatially flat FLRW back-
ground universe with line element

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2
ð2ÞÞ ð2:6Þ

and scale factor aðtÞ. The turnaround radius can be
regarded as the radius where the gravitational force

Fg ¼
GNmM

r2
; ð2:7Þ

acting on a test mass m or an observer, balances the inertial
force generated by the expansion of the universe and
discussed for the big rip [49] and the little rip [50,51],

Fin ¼ rm
ä
a
¼ rmð _H þH2Þ: ð2:8Þ

Here H is the Hubble rate, H ≡ _a=a where an overdot
denotes differentiation with respect to the comoving time t
of the FLRW background. In the case of the de Sitter
universe, where H ¼ 1=l, the equation expressing the
balance Fg ¼ Fin reproduces the well known result of
Eq. (2.5). In a more general expanding universe, we obtain
the following expression of rTA:

r3TA ¼ GNM
_H þH2

: ð2:9Þ

Equation (2.9) can be used, for example, in the universe
with the power-law expansion. This criterion for the turn-
around radius is conceptually different from previous
definitions given in the literature [24,25,27] in the context
of GR, although the numerical value of this quantity can be
numerically close to that computed with other definitions in
some physically interesting situations.

As is clear from the expression of the inertial force (2.8),
Fin is repulsive in an accelerating expanding universe,
ä > 0, but in a decelerating expanding universe, ä < 0, as
in the matter/radiation-dominated universe, the inertial
force Fin becomes attractive, the turnaround radius rTA
does not exist, and we do not obtain any constraint. Even in
an accelerating universe, the inertial force becomes smaller
as time passes if the effective equation of state (EoS)
parameter w≡ P=ρ (where ρ and P are the energy density
and pressure of the cosmic fluid, respectively) is larger
than −1, i.e., for −1 < w < −1=3, and the turnaround
radius becomes larger. An interesting point in FðRÞ gravity
is that the effective gravitational coupling Geff ∝ 1=F0ðRÞ
is time dependent. For example, if FðRÞ behaves as
FðRÞ ∼ Rα with a constant α, F0ðRÞ ∝ Rα−1 ∝ t−2ðα−1Þ

because R ¼ 6ð _H þ 2H2Þ behaves as R ∝ t−2. Therefore,
we find

r3TA ∝ t2ðα−2Þ: ð2:10Þ

Then, if α > 2, the turnaround radius rTA becomes larger as
time passes but becomes smaller if α < 2. We should note
that if FðRÞ behaves as FðRÞ ∼ Rα, the scale factor a
behaves as [6,13]

aðtÞ ∝ t
ðα−1Þð2α−1Þ

α−2 ; ð2:11Þ

when we neglect the contribution from the matter; therefore
α > 2 corresponds to a phantom universe and 1 < α < 2 to
a quintessence one. A general α corresponds to Einstein
gravity coupled with a perfect fluid with the effective
equation of state parameter,

weff ¼ −
ð6α2 − 11αþ 7Þ
3ðα − 1Þð2α − 1Þ : ð2:12Þ

In the case that matter with the EoS parameter w couples
with FðRÞ gravity, the effective EoS parameter is

weff ¼ −1þ 1þ w
α

: ð2:13Þ

In both cases (2.12) or (2.13), if weff < −1=3, the inertial
force (2.8) becomes repulsive and there appears the turn-
around radius (2.9). We should note that, even if the
expansion of the universe is identical, the behavior of
the turnaround radius is different in FðRÞ gravity and in
Einstein gravity coupled with a perfect fluid. When
Einstein gravity couples with only one kind of perfect
fluid with a constant EoS parameter w ≠ −1, the Hubble
rate H always behaves as H ∝ t−1. Then, Eq. (2.9) tells us
that, in GR,

r3TA ∝ t2; ð2:14Þ
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which is different from the expression (2.10) of FðRÞ
gravity. If α > 6, the turnaround radius rTA in FðRÞ gravity
is larger than the corresponding radius (2.14) in Einstein
gravity, and, therefore, comparatively larger bound struc-
tures can form more easily in the universe. On the other
hand, if α < 6, the turnaround radius rTA in FðRÞ gravity is
smaller than the radius (2.14) in Einstein gravity and
the size of bound structures in the universe becomes
smaller.
The concept of the inertial force (2.8) generated by the

expansion of the universe has been introduced in the
investigation of the little rip [50,51]. In the little rip
scenario, the Hubble rate H goes to infinity in the infinite
future t → þ∞, whileH diverges at a finite future t → ts in
the big rip scenario. Anyway, as H becomes larger and
larger, which means _H > 0, the turnaround radius (2.9)
becomes smaller and smaller. In Eq. (2.9), we have
considered the balance between the Newtonian force and
the inertial force (2.8). If the radius becomes of the order of
the human size, say, the electromagnetic force between
molecules becomes stronger than the gravitational force,
and then we need to consider the balance between the
electromagnetic force and the inertial force. If the size of
the turnaround radius becomes of the order of the nuclear
size, we further need to consider the balance between
nuclear and inertial forces.

III. A CLASS OF MODELS

We now consider the following class of models of
gravity:

S¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½FðRÞþGðRÞRμνRμν�þSmatter: ð3:1Þ

By varying the action (3.1) with respect to the (inverse)
metric gμν, one obtains the fourth order field equations

0 ¼ 1

2
gμν½FðRÞ þ GðRÞRρσRρσ� − 2GðRÞRρ

μRνρ

− ½F0ðRÞ þG0ðRÞRρσRρσ�Rμν

þ ð∇μ∇ν − gμν∇2Þ½F0ðRÞ þ G0ðRÞRρσRρσ�
þ∇μ∇ρ½GðRÞRρνÞ þ∇ν∇ρðGðRÞRρμ�
−∇2½GðRÞRμν� − gμν∇ρ∇σ½GðRÞRρσ� þ κ2Tμν: ð3:2Þ

Here we have used the following formulas:

δRμν¼
1

2
½∇ρð∇μδgνρþ∇νδgμρÞ−∇2δgμν−∇μ∇νðgρλδgρλÞ�;

ð3:3Þ

δR ¼ −δgμνRμν þ∇μ∇νδgμν −∇2ðgμνδgμνÞ: ð3:4Þ

When Tμν ¼ 0, if we assume that the scalar curvature and
the Ricci tensor are covariantly constant,

R ¼ 12

l2
; Rμν ¼

3

l2
gμν; ð3:5Þ

we obtain the algebraic equation for 1=l2,

0¼ 1

2
FðR0Þ−

�
F0ðR0Þþ

36G0ðR0Þ
l4

�
3

l2
; R0≡12

l2
: ð3:6Þ

If a real positive solution 1=l2 exists, the de Sitter and the
Schwarzschild–de Sitter spacetimes (2.4) are solutions of
Eq. (3.2), with

AðrÞ ¼ 1 −
2GeffM

r
−
r2

l2
; ð3:7Þ

except for the fact that Newton’s gravitational constant GN
is now replaced by the effective one Geff .
In order to define the effective gravitational constant

Geff , we consider the perturbation of Eq. (3.2),

gμν → gμν þ hμν: ð3:8Þ

Because

δΓκ
μν ¼

1

2
gκλð∇μhνλ þ∇νhμλ −∇λhμνÞ; ð3:9Þ

we obtain

δR ¼ −hμνRμν þ∇μ∇νhμν −∇2ðgμνhμνÞ;

δRμν ¼
1

2
½∇ρð∇μhνρ þ∇νhμρÞ −∇2hμν −∇μ∇νðgρλhρλÞ�

¼ 1

2
½∇μ∇ρhνρ þ∇ν∇ρhμρ −∇2hμν −∇μ∇νðgρλhρλÞ

− 2Rλ
ν
ρ
μhλρ þ Rρ

μhρν þ Rρ
μhρν�: ð3:10Þ

Then we find
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0 ¼ 1

2
hμνfFðRÞ þ GðRÞRρσRρσg þ 1

2
gμνfF0ðRÞ þ G0ðRÞRρσRρσgð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞ

− 2G0ðRÞRρ
μRνρð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞ

−
1

2
fF0ðRÞ þG0ðRÞRρσRρσgf∇ρð∇μhνρ þ∇νhμρÞ −∇2hμν −∇μ∇νðgρλhρλÞg

− 2GðR0ÞRμ
ηf∇ρð∇ηhνρ þ∇νhηρÞ −∇2hην −∇η∇νðgρλhρλÞg

− 2GðR0ÞRν
ηf∇ρð∇ηhμρ þ∇μhηρÞ −∇2hημ −∇η∇μðgρλhρλÞg

− fF00ðRÞ þ G00ðRÞRρσRρσgRμνð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞ
þ ð∇μ∇ν − gμν∇2ÞfðF00ðRÞ þ G00ðRÞRρσRρσÞð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞg
þ∇μ∇ρfG0ðRÞRρνð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞg
þ∇ν∇ρfG0ðRÞRρμð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞg
−∇2fG0ðRÞRμνð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞg
− gμν∇ρ∇σfG0ðRÞRρσð−hξηRξη þ∇ξ∇ηhξη −∇2ðgξηhξηÞÞg
− gμνGðRÞRρ

ξRρηhξη þ 2GðRÞRμ
ξRν

ηhξη þ 2G0ðRÞRρ
ξRρηhξηRμν

þ ð∇μ∇ν − gμν∇2ÞðG0ðRÞRρ
ξRρηhξηÞ

þ 1

2
gμνGðRÞRρσf∇ξð∇ρhσξ þ∇σhρξÞ −∇2hρσ −∇ρ∇σðgξηhξηÞg

−GðRÞf∇ξð∇ρhμξ þ∇μhρξÞ −∇2hρμ −∇ρ∇μðgξηhξηÞgRν
ρ

−GðRÞf∇ξð∇ρhνξ þ∇νhρξÞ −∇2hρν −∇ρ∇νðgξηhξηÞgRRμ
ρ

−G0ðRÞRρσf∇ξð∇ρhσξ þ∇σhρξÞ −∇2hρσ −∇ρ∇σðgξηhξηÞgRμν

þ ð∇μ∇ν − gμν∇2ÞfG0ðRÞRρσf∇ξð∇ρhσξ þ∇σhρξÞ −∇2hρσ −∇ρ∇σðgξηhξηÞgg
þ∇μ∇ρfGðRÞf∇ξð∇ρhνξ þ∇νhρξÞ −∇2hρν −∇ρ∇νðgξηhξηÞgg
þ∇ν∇ρfGðRÞf∇ξð∇ρhμξ þ∇μhρξÞ −∇2hρμ −∇ρ∇νðgξηhξηÞgg
−∇2fGðRÞf∇ξð∇μhνξ þ∇νhμξÞ −∇2hμν −∇μ∇νðgξηhξηÞgg
− gμν∇ρ∇σfGðRÞf∇ξð∇ρhσξ þ∇σhρξÞ −∇2hρσ −∇ρ∇σðgξηhξηÞgg
− ðhμν∇2 − gμνhξη∇ξ∇ηÞfF0ðRÞ þ G0ðRÞRρσRρσg

−
1

2
ðδμξδνη − gμνgξηÞð∇ξhηλ þ∇ηhξλ −∇λhξηÞ∂λfF0ðRÞ þG0ðRÞRρσRρσg

−
1

2
f2gκλð∇μhνλ þ∇νhμλ −∇λhμνÞ∇ρðGðRÞRρκÞ þ∇μðhξη∇ξðGðRÞRη

νÞÞ þ∇νðhξη∇ξðGðRÞRη
μÞÞ

þ∇μðgρσðgκλð∇ρhσλ þ∇σhρλ −∇λhσρÞðGðRÞRκνÞ þ gκλð∇ρhνλ þ∇νhρλ −∇λhνρÞðGðRÞRσκÞÞÞ
þ∇νðgρσðgκλð∇ρhσλ þ∇σhρλ −∇λhgσρÞðGðRÞRκμÞ þ gκλð∇ρhμλ þ∇μhρλ −∇λhμρÞðGðRÞRσκÞÞÞ
− 2hξη∇ξ∇ηðGðRÞRμνÞ − gξηðgκλð∇ξhηλ þ∇ηhξλ −∇λhξηÞ∇κðGðRÞRμνÞ
þ gκλð∇ξhμλ þ∇μhξλ −∇λhξμÞ∇ηðGðRÞRκνÞ þ gκλð∇ξhνλ þ∇νhξλ −∇λhξνÞ∇ηðGðRÞRμκÞÞ
− gξη∇ξðgκλð∇ηhμλ þ∇μhηλ −∇λhημÞðGðRÞRκνÞ þ gκλð∇ηhνλ þ∇νhηλ −∇λhηνÞðGðRÞRμκÞÞ
þ 2hμν∇ρ∇σðGðRÞRρσÞ − 2gμνhξη∇ξ∇σðGðRÞRη

σÞ − gμνgτρgκλð∇τhρλ þ∇ρhτλ −∇λhτρÞ∇σðGðRÞRκσÞ
− gμν∇ρðgτσðgκλð∇τhρλ þ∇ρhτλ −∇λhτρÞðGðRÞRκσÞ þ gκλð∇τhσλ þ∇σhτλ −∇λhτσÞðGðRÞRρκÞÞÞg
þ κ2Tμν: ð3:11Þ
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In the de Sitter background (3.5), Eq. (3.11) assumes the simplified form,

0¼ 1

2
hμν

�
FðR0Þ þ

36

l4
GðR0Þ

�
þ 1

2
gμνF0ðR0Þ

�
−
3

l2
hþ∇ξ∇ηhξη −∇2h

�

−
1

2

�
F0ðR0Þ þ

36

l4
G0ðR0Þ þ

72

l2
GðR0Þ

�
f∇ρð∇μhνρ þ∇νhμρÞ−∇2hμν −∇μ∇νðgρλhρλÞg

þ
�
F00ðR0Þ þ

36

l4
G00ðR0Þ

��
∇μ∇ν − gμν∇2 −

3

l2
gμν

��
−
3

l2
hþ∇ξ∇ηhξη −∇2h

�

þ 6

l2
G0ðR0Þð∇μ∇ν − gμν∇2Þ

�
−
3

l2
hþ∇ξ∇ηhξη −∇2h

�
−
9

l4
gμνGðR0Þhþ

18

l4
GðR0Þhμν þ

54

l6
gμνG0ðR0Þh

þ 9

l4
G0ðR0Þð∇μ∇ν − gμν∇2Þhþ 3

l2
GðR0Þgμνð2∇ξ∇ηhξη −∇2hÞ− 6

l2
GðR0Þf∇ξð∇νhμξ þ∇μhνξÞ−∇2hμν −∇μ∇νhg

þ 6

l2
G0ðR0Þ

�
∇μ∇ν − gμν∇2 −

3

l2
gμν

�
ð∇ξ∇ηhξη −∇2hÞ þGðR0Þ∇μ∇ρff∇ξð∇ρhνξ þ∇νhρξÞ−∇2hρν −∇ρ∇νhgg

þGðR0Þ∇ν∇ρf∇ξð∇ρhμξ þ∇μhρξÞ−∇2hρμ −∇ρ∇νhg−GðR0Þ∇2f∇ξð∇μhνξ þ∇νhμξÞ−∇2hμν −∇μ∇νhg

−GðR0Þgμν∇ρ∇σf∇ξð∇ρhσξ þ∇σhρξÞ−∇2hρσ −∇ρ∇σhgþ
6

l2
GðR0Þð∇μ∇ρhρν þ∇ν∇ρhρμ −∇2hμν þ gμν∇ρ∇σhρσÞg

þ κ2Tμν: ð3:12Þ

In the weak-field, slow-motion limit of GR the linearized
Einstein equations reduce to ∇2hμν ¼ −2κ2Tμν [48].
Hence, the coupling of the graviton to matter is given
by the coefficient of ∇2hμν in the linearized field equa-
tions (3.12) of our gravity model (where we discard time
derivatives and spatial derivatives of order higher than
second). The result is

1

8πGeff
¼ 1

κ2

�
F0ðR0Þ þ

36

l2

�
2GðR0Þ þ

G0ðR0Þ
l2

��
: ð3:13Þ

Then the turnaround radius (2.5) is expressed as

r3TA ¼ GeffMl2

¼ κ2Ml2

8π
h
F0ðR0Þ þ 36

l2

�
G0ðR0Þ

l2 þ 2GðR0Þ
�i : ð3:14Þ

As a partial consistency check of our Eq. (3.13), consider
the special case of FðRÞ ¼ R2 gravity. While this model is
a good approximation of Starobinsky inflation FðRÞ ¼
Rþ μR2 in the early, strongly curved universe, it is well
known that this theory (or, in d spacetime dimensions,
FðRÞ ¼ Rd=2 [52]) does not admit a Newtonian limit [53]
and suffers from other problems as well [54–56]. Indeed, the
exponent n of FðRÞ ¼ Rn gravity is severely constrained by
the precession of Mercury’s perihelion to be [57–60]

n − 1 ¼ ð2.7� 4.5Þ × 10−19; ð3:15Þ

while the criterion F00ðRÞ ≥ 0 necessary to avoid the
notorious Dolgov-Kawasaki instability requires n ≥ 1

[13,61,62]. For the pathological model with FðRÞ ¼ R2

and GðRÞ ¼ 0, Eq. (3.13) gives

Geff ¼
κ2

16πR0

: ð3:16Þ

In order to take the Newtonian limit, one must be able to
consider a Minkowskian background, an assumption that
complements our Eq. (3.8) and that is implemented when
gμν becomes the Minkowski metric ημν. This Minkowski
background can be seen as a de Sitter space with zero
curvature andGeff diverges asR0 → 0, which shows that the
pathological theory FðRÞ ¼ R2 without Newtonian limit
leads to inconsistencies in our equations, as it should be.
In the following sections we consider more concrete

models.

IV. R+R2 +RμνRμν MODEL

Let us consider now the model [1,63]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − Λþ aR2 þ bRμνRμν� þ Smatter;

ð4:1Þ

where a and b are constants and Smatter denotes the matter
action. This theory is known to be multiplicatively renor-
malizable quantum gravity (for a review, see [1]) which still
has some unresolved issues with unitarity.
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One could add to this Lagrangian density a term propor-
tional to the Kretschmann scalar RμναβRμναβ, but this does
not make the action more general. In fact, in four spacetime
dimensions, the integral of the Gauss-Bonnet combination

χ ≡
Z

d4x
ffiffiffiffiffiffi
−g

p ðR2 − 4RμνRμν þ RμναβRμναβÞ ð4:2Þ

is a constant topological invariant, which allows one to
eliminate the Kretschmann term and reduce the action

S0 ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R−ΛþaR2þbRμνRμνþcRμναβRμναβ�

þSmatter; ð4:3Þ

where c is another constant, to an action integral of the form
(4.1) with new coefficients a0 ¼ a − c and b0 ¼ bþ 4c.
It is known that the model (4.1) contains a scalar mode

and also a massive spin two ghost mode, in addition to the
massless spin two mode, which is the usual graviton
familiar from GR. The existence of this ghost mode tells
us that this model is not unitary and is therefore incon-
sistent. This model is, however, regarded as a low-energy
effective theory and, if we include the higher order
corrections and nonperturbative effects, we may obtain a
consistent theory.
Because

FðRÞ ¼ R − Λþ aR2; GðRÞ ¼ b; ð4:4Þ

Eq. (3.6) is reduced to

0 ¼ 3

l2
−
Λ
2
; ð4:5Þ

that is, if 1=l2 ≠ 0,

l2 ¼ 6

Λ
: ð4:6Þ

Equation (3.13) gives also the effective gravitational
coupling Geff as

8πGeff ¼
κ2

1þ 24
l2 ðaþ 3bÞ ; ð4:7Þ

while the turnaround radius is

r3TA ¼ 3κ2M
4πΛ½1þ 24

l2 ðaþ 3bÞ� : ð4:8Þ

In Ref. [34], it is required that the maximum turnaround
radius in any alternative theory of gravity be, at most, 10%
smaller than the corresponding radius (2.5) in GR,

rTA ≥ 0.9ðGNMl2Þ1=3: ð4:9Þ

Applying this criterion here yields the constraint

Geff

RdS
≥
0.182GN

Λ
: ð4:10Þ

Here RdS is the scalar curvature of the geometry describing
the de Sitter spacetime that solves the alternative theory of
gravity andΛ is the cosmological constant in GR,Λ ¼ 3=l2

in the definition of [34]. In the case of the action (4.1),
Eq. (4.8) in conjunction with the constraint (4.9) yields

1

1þ 24
l2 ðaþ 3bÞ ≥ 0.7; ð4:11Þ

which gives a constraint on the parameters a and b in the
model (4.1). We should note, however, that we have
estimated the effective gravitational coupling Geff as given
by the coupling of hμν, which may give Newton’s law. If we
can know directly any parameter κ2, a, or b by any
independent procedure, Eq. (4.11) produces a more realistic
constraint on the model. For example, it is not so clear
whether the effective gravitational coupling Geff in the
solution describing the Schwarzschild–de Sitter spacetime
(3.7) is identical with Geff in (4.7). The effective gravita-
tional couplingGeff in (3.7) depends on the definition of the
mass M in the modified gravity theory.
In the case of the critical gravity theory [64],

a ¼ −
1

Λ
¼ −

l2

6
; b ¼ −3a ¼ 3

Λ
¼ l2

2
; ð4:12Þ

the scalar mode does not propagate and the massive spin
two mode of the general Rþ R2 þ RμνRμν gravity becomes
massless. Then, Eq. (4.12) tells us that

1

1þ 24
l2 ðaþ 3bÞ ¼

1

33
; 8πGeff ¼

κ2

33
; ð4:13Þ

and therefore Eq. (4.11) is not satisfied.

V. A MORE GENERAL MODEL

Instead of the action (4.1), we consider the case that the
constants Λ, a, and b depend on R,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

2κðRÞ2 ½R − ΛðRÞ þ aðRÞR2 þ bðRÞRμνRμν�

þ Smatter; ð5:1Þ

that is,
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FðRÞ ¼ κ20
κðRÞ2 ½R − ΛðRÞ þ aðRÞR2�;

GðRÞ ¼ κ20
κðRÞ2 bðRÞ: ð5:2Þ

(Similar to the previous section, adding a term cRμναβRμναβ

with constant coefficient c to the Lagrangian density does
not add in generality.) We now write κ in Eq. (3.1) as κ0. In
the model consisting of one-loop corrected quantum R2

gravity of Refs. [1,65], we have

κðRÞ2 ∼ κ20ð1þ λ0β2τÞ0.77;
κðRÞ2ΛðRÞ ∼ κ20Λ0ð1þ λ0β2τÞ−0.55; ð5:3Þ

aðRÞ
κðRÞ2 ∼

a0
κ20

ð1þ λ0β2τÞ;

bðRÞ
κðRÞ2 ∼

b0
κ20

ð1þ λ0β2τÞ; ð5:4Þ

where

β2 ¼
133

10
; τ ¼ τ1 ln

				 RR1

				: ð5:5Þ

The R-dependent coefficients represent one-loop renorm-
alization group (RG) coupling constants. The second
interpretation of the same model is just a more complicated
version of modified gravity that includes the Ricci-
squared term.

Therefore, we obtain

FðRÞ ∼ Rð1þ λ0β2τÞ0.77 − Λ0ð1þ λ0β2τÞ−0.55
þ a0R2ð1þ λ0β2τÞ;

GðRÞ ∼ b0ð1þ λ0β2τÞ; ð5:6Þ

and Eq. (3.6) then yields

0 ¼ 1

2
½R0ð1þ λ0β2τ0Þ0.77 − Λ0ð1þ λ0β2τ0Þ−0.55

þ a0R2
0ð1þ λ0β2τ0Þ�

−
3

l2

�
ð1þ λ0β2τ0Þ0.77 þ 2a0R0ð1þ λ0β2τ0Þ

þ 0.77λ0β2ð1þ λ0β2τ0Þ−0.23

þ 0.55
Λ0λ0β2
R0

ð1þ λ0β2τ0Þ−1.55 þ a0λ0β2R0

�
; ð5:7Þ

where

τ0 ¼ τ1 ln

				R0

R1

				: ð5:8Þ

It is difficult to solve Eq. (5.7) but if we choose
R1 ¼ R0 ¼ 12=l2, that is, τ0 ¼ 0, Eq. (5.7) reduces to

0¼ 3−0.77λ0β2
l2

−Λ0

�
1

2
þ0.14λ0β2

�
−
36a0λ0β2

l4
; ð5:9Þ

which can be solved with respect to l2, obtaining

l2 ¼ 3 − 0.77λ0β2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − 0.77λ0β2Þ2 − 72a0λ0β2Λ0ð1þ 0.28λ0β2Þ

p
2Λ0ð1þ 0.28λ0β2Þ

: ð5:10Þ

In Eq. (5.10), the upper (þ) sign corresponds to the
classical limit (4.6). On the other hand, Eq. (3.13) gives

1

8πGeff
¼ 1

κ2

�
ð1þ λ0β2τ0Þ0.77 þ 2a0R0ð1þ λ0β2τ0Þ

þ 0.77λ0β2ð1þ λ0β2τ0Þ−0.23

þ 0.55
Λ0λ0β2
R0

ð1þ λ0β2τ0Þ−1.55 þ a0λ0β2R0

þ 72

l2
b0ð1þ λ0β2τ0Þ

�
: ð5:11Þ

Then, if we choose R1 ¼ R0, we find

1

8πGeff
¼ 1

κ2



1þ 24a0

l2
þ 0.77λ0β2 þ

0.55Λ0λ0β2l2

12

þ 12a0λ0β2
l2

þ 72

l2
b0

�
; ð5:12Þ

and the turnaround radius is given by

r3TA ¼ 8πκ2Ml2

1þ 24a0
l2 þ 0.77λ0β2 þ 0.55Λ0λ0β2l2

12
þ 12a0λ0β2

l2 þ 72
l2 b0

;

ð5:13Þ

which provides the constraint, as in Eq. (4.11),

l2

1þ 24a0
l2 þ 0.77λ0β2 þ 0.55Λ0λ0β2l2

12
þ 12a0λ0β2

l2 þ 72
l2 b0

≥
4.2
Λ

:

ð5:14Þ

If we assume that the correction from Einstein gravity with
a truly constant cosmological constant Λ ¼ Λ0, Eq. (5.10)
gives
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l2 ¼ 3

Λ
ð1 − 0.31λ0β2 − 4a0λ0β2Λ0Þ: ð5:15Þ

Then combining with (5.14), we obtain the constraint

24a0
l2

þ 1.08λ0β2 þ
0.55Λ0λ0β2l2

12

þ 8a0λ0β2Λ0 þ 24Λ0b0 ≤ 0.4; ð5:16Þ

as in (4.11).

VI. DISCUSSION AND CONCLUSIONS

Given the degeneracy between dark energy and modified
gravity models attempting to explain the present acceler-
ation of the universe, and the current level of theoretical and
experimental effort aiming to detect and study, or to
constrain, possible deviations of gravity from Einstein’s
theory [14,66–68], the turnaround radius of large structures
in cosmology could be very useful. Two approaches to the
turnaround radius in the context of GR ([24,25] and
[26,27]) produce more or less the same numerical results.
The second approach, being based on the Hawking-
Hayward quasilocal energy is gauge independent to any
degree of approximation compatible with current and
foreseeable astronomical observations [26,27]), but it
becomes ill defined in modified gravity. For this reason,
we used an alternative definition of turnaround radius in our
analysis in the context of modified gravity models.
Three previous works [33–35] were restricted to scalar-

tensor or FðRÞ gravity (the latter is an incarnation of the
former class of theories). Here we discuss more general

classes of theories containing also the square of the Ricci
tensor and mixed terms. Allowing terms in RμνRμν to be
present in the action introduces extra degrees of freedom in
comparison with pure FðRÞ or scalar-tensor gravity.
An important realization is that, even when the cosmic

expansion is identical in GR and in a modified gravity
model, in general the time dependence of the turnaround
radius in the latter is different from that of the correspond-
ing turnaround radius in GR coupled with a perfect fluid,
because the effective gravitational coupling becomes time
dependent.
To fix the ideas, we have imposed that the deviation of

the turnaround radius in modified gravity from its GR value
is not larger than 10% (this figure may be debatable given
the large error in the observational determination of the
turnaround radius [45], but it serves the purpose of
illustration). The constraint that we derive would already
put the critical gravity scenario of Ref. [64] in jeopardy.
Similarly, more complicated models will be constrained by
the turnaround radius if and when reliable astronomical
observations of this quantity become available.
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