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We investigate the nature of low T=W dynamical instabilities in various ranges of the stiffness of the
equation of state in differentially rotating stars. Here T is the rotational kinetic energy, while W is the
gravitational binding energy. We analyze these instabilities in both a linear perturbation analysis and a
three-dimensional hydrodynamical simulation. An unstable normal mode of a differentially rotating star is
detected by solving an eigenvalue problem along the equatorial plane of the star. The physical mechanism
of low T=W dynamical instabilities is also qualitatively confirmed by a scattering of sound waves between
corotation and the surface caused by the corotation barrier. Therefore, we can draw a picture of existing
pulsation modes unstabilized due to an amplified reflection of sound waves from the corotation barrier. The
feature in the eigenfrequency and eigenfunction of the unstable mode in the linear analysis roughly agrees
with that in the three-dimensional hydrodynamical simulation in Newtonian gravity. Moreover, the nature
of the eigenfunction that oscillates between corotation and the surface for an unstable star requires
reinterpretation of pulsation modes in differentially rotating stars. Finally, we propose a manner by which to
constrain the stiffness of the equation of state by the direct detection of mode decomposed gravitational
waveforms.
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I. INTRODUCTION

Low T=W dynamical instabilities in differentially rotat-
ing stars have been found numerically around the 21st
century [1–4]. Here T is the rotational kinetic energy, while
W is the gravitational binding energy. In contrast to the
standard nonaxisymmetric rotational dynamical m ¼ 2 bar
instability (the threshold is T=W ¼ 0.2738 for a uniformly
rotating, incompressible star [5–7], toroidal modes eimφ,
where m ¼ �1;�2;…, φ is the azimuthal angle), a star
becomes dynamically unstable in a significantly low
magnitude of rotation when these instabilities set in.
A star also becomes dynamically unstable to the m ¼ 1
spiral mode [2,4], which has never been found in a rotating
stellar configuration. According to plenty of results from
numerical simulations, a moderate degree of a differentially
rotating configuration of the star is at least required to
trigger these instabilities, and the stiffness of the equation
of state changes the dominant behavior of these instabilities
between spiral and bar [4,8] (except for Ref. [9]).
There are two representative cases of astrophysical

applications to low T=W dynamical instabilities. One is
the binary neutron star mergers. After the merger, a
moderate degree of a differentially rotating configuration
can be generated in a dynamical timescale, which may
trigger these instabilities. Recent numerical simulations

have found a spiral type of configuration after the merger
(see, e.g., [10–13]), and found the angle direction changes
in a constant phase curve [10,11], which may be essentially
the same as that in m ¼ 1 low T=W dynamical instabilities
[8]. The other is the collapse driven supernovae. After the
core bounce, a proto-neutron star with a high degree of
differential rotation (see, e.g., [14,15]) can be generated in a
dynamical timescale. In such a case, requirements for
triggering these instabilities are naturally satisfied. In fact,
the m ¼ 1 instabilities of gravitational waveforms in
collapse driven supernovae have been demonstrated (see,
e.g., [16]).
In contrast to a clear existence of low T=W dynamical

instabilities, a physical mechanism to trigger them is still a
mystery. The main issue comes from the fact that there is no
complete successful multidimensional linear perturbation
analysis in differentially rotating stars. At present, there are
two representative discussions about the necessary con-
ditions to trigger these instabilities and their demonstra-
tions, mainly based on a self-gravitating disk system. One
is the corotation resonance, which originally comes from
the density wave theory that a self-gravitating disk becomes
unstable due to the absorption of angular momentum at
corotation (see, e.g., [17]). Since corotation plays an
essential role in a disk system, a characteristic feature of
corotation to these instabilities in basic equations has been
argued [18]. Comparison between low T=W dynamical
instabilities and standard m ¼ 2 ones based on a canonical*saijo@aoni.waseda.jp
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angular momentum distribution has been discussed [8]. The
other is nonaxisymmetric Rossby wave instabilities, which
have been investigated for finding a necessary condition
where a potential vorticity takes an extreme [19]. The
necessary conditions acquired in a disk system have been
applied to low T=W dynamical instabilities [9,20].
However, no multidimensional linear perturbation analysis
has been done so far in a rotating stellar configuration. Such
an analysis is necessary since both a rotating stellar
configuration and a self-gravitating effect may take place
(but see Refs. [3,21,22] for a specific fundamental mode of
pulsating stars). Without the analysis mentioned above, it
would not be possible to completely understand the
physical mechanism of low T=W dynamical instabilities.
The purpose of this paper is threefold. First, we want to

understand physical features of low T=W dynamical
instabilities by both linear analyses and numerical simu-
lations. Although plenty of numerical simulations have
confirmed the existence of their instabilities, understanding
their features, such as extracting functional dependence of
characteristic frequencies and timescales, is extremely
expensive solely by numerical simulations. At least, large
parameter sets of computations are required. On the other
hand, a full set of linear perturbation analysis in differ-
entially rotating stars requires two spatial dimensional
analyses even when we adopt harmonic expansion for
time and azimuthal angle. It is still in progress in a general
manner even in Newtonian gravity (see, e.g., [21,23]). But
instead of exploring these instabilities in a two-dimensional
linear perturbation analysis, we restrict our analysis to the
equatorial motion of a perturbed fluid, taking a self-
gravitating effect into account. Although this is a crude
assumption we impose in our study [24,25], it would still be
useful for finding some physical aspects of these insta-
bilities by combining two complementary approaches. This
part is an extension work of Ref. [24] for a wide set of
parameters, each of which varies the stiffness of the
equation of state.
Second, we want to understand the physical mechanism

of low T=W dynamical instabilities. Computational results
from three-dimensional hydrodynamical simulations are
sufficiently attractive to understand the dynamical features
of their instabilities, but without sophisticated diagnostic
quantities and plenty of parameter searches, it is extremely
difficult to confirm the physical mechanisms by them-
selves. Although a linear analysis can only apply to the
linear stage of the instability growth, it is quite powerful to
identify the specific features of these instabilities. Our idea
is to investigate the linear analysis in these systems and
acquire a picture for generating these instabilities. Such a
picture could be useful for a deeper understanding of these
instabilities by three-dimensional numerical simulations.
Although the idea of a scattering problem by the corotation
barrier has been introduced in Ref. [25], we have improved
and adjusted the analysis by comparing the results of linear

analyses with those of three-dimensional numerical
simulations.
Finally, we focus on gravitational waves generated from

these instabilities. Nonaxisymmetric instabilities are sub-
ject to quasiperiodic gravitational waves in general. In
principle, these gravitational waves can be detected in
ongoing ground-based detectors such as advanced LIGO,
advanced VIRGO, KAGRA, and future projects such as
Einstein Telescope [26]. All detectors have good sensitivity
around kilohertz frequencies, preparing for exploring the
dynamics of neutron stars. In fact, recent detection of the
merger of binary neutron stars has opened a new era for
exploring neutron stars by gravitational waves [27].
Detailed analysis of gravitational waveforms may tell us
a variety of interior features of neutron stars, and it would
be worth investigating gravitational waveforms and their
spectra of these instabilities from a theoretical viewpoint.
Moreover, we propose a method to constrain the stiffness of
the equation of state from the direct observation of
gravitational waves, which would potentially become a
guideline for future realistic astrophysical simulations,
direct observations, and data analyses for extracting
physics.
The content of this paper is as follows. In Sec. II, we

briefly explain the basic hydrodynamic equations in
Newtonian gravity equipping shock capturing schemes
in our code with a code test. In Sec. III, we introduce
our basic equations of perturbative approaches and our
formulation of a normal mode analysis and a scattering
problem rising from the corotation barrier, as well as
their results. In Sec. IV, we show our results of three-
dimensional numerical simulations and compare them with
those of perturbative approaches and gravitational waves
from low T=W dynamical instabilities. Section V is devoted
to the summary of this paper. Throughout this paper, we use
the geometrized units with G ¼ c ¼ 1 [28].

II. HYDRODYNAMICS

A. Basic equations

We summarize here the basic equations for perfect fluids
of hydrodynamics in Newtonian gravity. We assume an
adiabatic Γ-law equation of state

p ¼ ðΓ − 1Þρε; ð2:1Þ

where p is the pressure, Γ the adiabatic index, ρ the rest
mass density, and ε the specific internal energy density. For
perfect fluids, Newtonian equations of hydrodynamics
consist of the continuity equation

∂ρ
∂t þ

∂ðρvjÞ
∂xj ¼ 0; ð2:2Þ

where vi is the velocity, the energy equation
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∂e
∂t þ

∂½ðeþ pÞvj�
∂xj ¼ −ρvj

∂Φ
∂xj ; ð2:3Þ

where e ¼ ρðεþ vjvj=2Þ is the total energy, and the Euler
equations

∂ðρviÞ
∂t þ ∂ðρvivj þ pδijÞ

∂xj ¼ −ρ
∂Φ
∂xi ; ð2:4Þ

where Φ is the gravitational potential, which satisfies

△Φ ¼ 4πρ: ð2:5Þ

Constructing the equilibrium configuration of a differ-
entially rotating star assuming a polytropic equation of state
p ¼ κsρ

Γ with κs being constant, first we have to solve the
Euler equations. In the axisymmetric configuration, the
equation can be described in the cylindrical coordinates as

1

ρ
∇ϖpþ∇ϖΦ −ϖΩ2 ¼ 0; ð2:6Þ

where ϖ is the cylindrical radius and Ω the angular
velocity. Here we adopt j-constant rotation law for the
angular velocity distribution of the star as

Ω ¼ j0
d2 þϖ2

;

where j0 is the constant and d the degree of differ-
ential rotation. With this rotation law, we can integrate
Eq. (2.6) as

H þΦþΦc ¼ C; ð2:7Þ

where the enthalpy H and the rotational potential Φc are

H ¼ εþ p
ρ
; ð2:8Þ

Φc ¼ −
Z

ϖ
ϖΩ2dϖ ¼ 1

2

j20
d2 þϖ2

; ð2:9Þ

n is the polytropic index with a relation Γ ¼ 1þ 1=n, and
C is the constant. We summarize our configuration of
differentially rotating stars in Table I.

B. Shock capturing scheme and wall shock tests

Here we review the shock capturing scheme inserted in
our Newtonian hydrodynamics code. The flux conservative
form of the continuity equation, the Euler equations, and
the energy equation can be written as

∂
∂tU þ ∂

∂xjF
j ¼ S; ð2:10Þ

where the state vector U, the flux vectors F j, and the
source vector S are

U ¼

2
64

ρ

ρvi

e

3
75; F j ¼

2
64

ρvj

ρvivj þ pδij

ðeþ pÞvj

3
75;

S ¼

2
64

0

−ρ ∂Φ
∂xi

−ρvj ∂Φ
∂xj

3
75: ð2:11Þ

We use a monotonized central-difference (MC) limiter
[29] for interpolating the conservative quantities on the grid
to the numerical cell boundaries. To respect their thermo-
dynamical properties, we choose ρ, vi, and ε as primitive
quantities. For given primitive variables uk (≡½ρk; vik; εk�, k:
label of grid point), we are able to interpolate the quantities
to the left and right intercell boundaries located at k� 1=2.
We use the second-order accuracy with monotonic piece-
wise linear slopes along the coordinate xk as

uRk−1=2 ¼ uk þ σkðxk−1=2 − xkÞ;
uLkþ1=2 ¼ uk þ σkðxkþ1=2 − xkÞ;

where

σk ¼ minmod

�
2

�
Δuk
Δxk

�
; 2

�
Δukþ1

Δxkþ1

��
; ð2:12Þ

Δuk ≡ uk − uk−1, Δxk ≡ xk − xk−1 is the grid separation,
and

TABLE I. Equilibrium configuration of differentially rotating
stars.

Model n Ωc=Ωe
a T=W

I(a) 1 26.0 6.09 × 10−2

I(b) 1 12.1 8.00 × 10−2

I(c) 1 5.0 1.00 × 10−1

I(d) 1 2.0 1.09 × 10−1

II(a) 1.5 26.0 6.76 × 10−2

II(b) 1.5 12.1 8.61 × 10−2

II(c) 1.5 5.0 1.01 × 10−1

II(d) 1.5 2.0 9.37 × 10−2

III(a) 2 26.0 7.29 × 10−2

III(b) 2 12.1 8.89 × 10−2

III(c) 2 5.0 9.38 × 10−2

III(d) 2 2.0 6.48 × 10−2

IV(a) 3 26.0 7.21 × 10−2

IV(b) 3 12.1 6.89 × 10−2

IV(c) 3 5.0 4.21 × 10−2

IV(d) 3 2.0 1.81 × 10−2

aΩc: Central angular velocity; Ωe: Equatorial surface angular
velocity.
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minmod½a; b�

¼
�
0 ab ≤ 0;

sgnðaÞmin ½2jaj; 2jbj; ðjaþbj
2

Þ� otherwise:

Note that the label L and R, respectively, represent the left
and right sides of intercell boundaries located at k� 1=2.
We adopt the approximate Harten-Lax–van Leer (HLL)

Riemann solver [30] for constructing a numerical flux

Fj
HLL ¼ SjRF

j
L − SjLF

j
R þ SjLS

j
RðUj

R −Uj
LÞ

SjR − SjL
; ð2:13Þ

where Fj
L;R are the flux vectors at the left and right

numerical cells, and SjL;R are the characteristic speeds at
the left and right intercell boundaries determined as

SjL ¼ maxð0; λjþL ; λjþR ; vjL; v
j
RÞ; ð2:14Þ

SjR ¼ minð0; λj−L ; λj−R ; vjL; v
j
RÞ: ð2:15Þ

The quantities λj� are the maximum and the minimum of
the eigenvalues in the Jacobian matrix of the flux vectors as

λj� ¼ vj � cs; ð2:16Þ

where cs is a speed of sound.
We check the ability of our new HLL flux scheme to

resolve shocks by solving a wall shock problem, in which
two phases of a fluid collide at supersonic speeds. In Fig. 1,
we compare numerical results with the analytic solutions
for initial velocities that are similar to those found in our
simulations in Sec. IV. We find good agreement for Mach

numbers up toMmach ≲ 7, which is a typical number in our
simulations.

III. LINEAR PERTURBATION

A. Basic equations in a nonaxisymmetric perturbation

We perturb the differentially rotating stars nonaxisym-
metrically in order to investigate the feature of low T=W
dynamical instabilities. We assume a harmonic dependence
of time and azimuthal angle on the perturbed quantity δq as

δqðt;ϖ; z;φÞ ¼
X
m

δqmðϖ; zÞe−iωtþimφ; ð3:1Þ

where z is the coordinate along the rotational axis, φ the
azimuthal coordinate, and m the azimuthal wave number.
The perturbed Euler equations can be written as [31]

Q−1
ij δv

j ≡ ½iω̃γij − 2∇jvi þ ϕi∇jΩ�δvj ¼ ∇iδU; ð3:2Þ

where δvi is the perturbed velocity, vi the equilibrium
distribution of the velocity, ω̃ ¼ ω −mΩ, γij the spatial 3-
metric, ϕi the rotational Killing vector, δU the scalar
potential δU ≡ δhþ δΦ, δh the perturbed enthalpy, and
δΦ the perturbed gravitational potential. Note that we
define the tensorial quantity Qij in Eq. (3.2).
Assuming a barotropic relation p ¼ pðρÞ in the equation

of state, a perturbed rest mass density δρ can be written as

δρ ¼ ρ
dρ
dp

δh ¼ ρ
dρ
dp

ðδU − δΦÞ: ð3:3Þ

Using Eq. (3.3), the conservation equation of the perturbed
rest mass is described using δU and δΦ as

−iω̃ρ
dρ
dp

ðδU − δΦÞ þ∇iðρQij∇jδUÞ ¼ 0: ð3:4Þ

Combining Eqs. (3.2) and (3.4), one of the pulsation
equations of rotating stars becomes second-order partially
differential equations as

� ∂2

∂ϖ2
−
� ∂
∂ϖ ln

D
ρϖ

� ∂
∂ϖ −

2mΩ
ϖω̃

� ∂
∂ϖ ln

ρΩ
D

�
−
m2

ϖ2

−
D
ω̃2

� ∂2

∂z2 þ
1

ρ

∂ρ
∂z

∂
∂z

�
−

D
dp=dρ

�
δUmðϖ; zÞ

¼ −
D

dp=dρ
δΦmðϖ; zÞ; ð3:5Þ

where D ¼ κ2 − ω̃2 and κ2 is ϖðdΩ2=dϖÞ þ 4Ω2. The
perturbed Poisson’s equation is

∇j∇jδΦ ¼ 4πρ
dρ
dp

ðδU − δΦÞ; ð3:6Þ

ρ 
/ ρ

(0
)

ε 
/ ε

(0
)
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FIG. 1. Comparison of a rest mass density, specific internal
energy, and velocity between numerical and analytical results of
the one-dimensional wall shock problem at t ¼ 1.0xðboundÞ=v0.
Red and blue lines represent our computational and analytical
results. We choose the parameter sets as Γ ¼ 2, κs ¼ 1 with grid

space Δx ¼ 1.0 × 10−3xðboundÞ and v0 ¼ 7.07cð0Þs , where cð0Þs is
the initial speed of sound at t ¼ 0.
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and it is explicitly expressed as

� ∂2

∂ϖ2
þ 1

ϖ

∂
∂ϖ −

m2

ϖ2
þ ∂2

∂z2 þ 4πρ
dρ
dp

�
δΦmðϖ; zÞ

¼ 4πρ
dρ
dp

δUmðϖ; zÞ: ð3:7Þ

To conclude, the basic pulsation equations of δUm and δΦm
are Eqs. (3.5) and (3.7).

B. Cylindrical model

We impose one assumption in which the equatorial
motion of the perturbed quantities of the stars alone is
taken into account. Our basic idea is that a characteristic
wave propagation mainly lies in the equatorial plane in a
rotating configuration. Therefore, we simply discard the
second-order z derivatives in δUm and δΦm (the first-order
z derivatives in δUm and δΦm automatically disappear due
to an equatorial symmetry which we imposed in the
system). We call this system a cylindrical model.
The basic equations [Eqs. (3.5) and (3.7)] in the

cylindrical model become (see, e.g., [24,32])

�
d2

dϖ2
−
�

d
dϖ

ln
D
ρϖ

�
d
dϖ

−
2mΩ
ϖω̃

�
d
dϖ

ln
ρΩ
D

�
−
m2

ϖ2

−
D

dp=dρ

�
δUmðϖÞ ¼ −

D
dp=dρ

δΦmðϖÞ; ð3:8Þ

�
d2

dϖ2
þ 1

ϖ

d
dϖ

−
m2

ϖ2
þ 4πρ

dρ
dp

�
δΦmðϖÞ

¼ 4πρ
dρ
dp

δUmðϖÞ: ð3:9Þ

We introduce an eigenvalue problem for studying the
stability of the system. We impose regularity conditions at
the center for δUm and δΦm as

δUm ¼ C1
mϖ

jmj; δΦm ¼ C2
mϖ

jmj; ð3:10Þ

where C1
m and C2

m are constants. We also impose a
boundary condition for a perturbed gravitational potential
δΦm at infinity as the quantity is finite (δΦm ∝ ϖ−jmj). That
is to say, we can equivalently impose a boundary condition
on the surface as

δΦm ¼ C3
mϖ

−jmj; ð3:11Þ

in our model. Using the nature of linear perturbation, the
constant C3

m is described as an appropriate combination of
C1
m and C2

m, which is determined from the condition that
δΦm and dδΦm=dϖ are continuous across the surface. In

practice, we can construct two sets of solutions (δUð1Þ
m ,

δΦð1Þ
m ) and (δUð2Þ

m , δΦð2Þ
m ) by integrating Eqs. (3.8) and

(3.9), keeping the same C1
m but different C2

m (C2ð1Þ
m and

C2ð2Þ
m ) from the center to the surface. Although these

solutions do not satisfy the boundary condition on the
surface [Eq. (3.11)] in general, we are able to construct
a solution by linearly combining these two sets of
solutions as

δUm ¼ pð1Þ
m δUð1Þ

m þ pð2Þ
m δUð2Þ

m ; ð3:12Þ

δΦm ¼ pð1Þ
m δΦð1Þ

m þ pð2Þ
m δΦð2Þ

m ; ð3:13Þ

where pð1Þ
m and pð2Þ

m should satisfy

pð1Þ
m

�
δΦð1Þ

m jϖ¼re þ
re
m
dΦð1Þ

m

dϖ

����
ϖ¼re

�

þ pð2Þ
m

�
δΦð2Þ

m jϖ¼re þ
re
m
dΦð2Þ

m

dϖ

����
ϖ¼re

�
¼ 0; ð3:14Þ

to meet the surface boundary condition for δΦm
[Eq. (3.11)]. Note that re represents the equatorial radius
of the star. The constant C3

m can then be written by using

pð1Þ
m and pð2Þ

m as

C3
m ¼ rjmj

e ðpð1Þ
m δΦð1Þ

m jϖ¼re þ pð2Þ
m δΦð2Þ

m jϖ¼reÞ; ð3:15Þ

remaining as one scaling freedom.
We also impose a surface boundary condition for δUm as

the enthalpy vanishes on the oscillating surface. Namely

δhm þ ξjm∇jh ¼ 0; ð3:16Þ

where h is the equilibrium enthalpy, ξim is the Lagrangian
displacement [33] of the m mode as

ξmi ¼ i

�
γij
ω̃

þ i
ϕi∇jΩ
ω̃2

�
δvjm; ð3:17Þ

and δvim is the perturbed velocity of themmode. A concrete
boundary condition for δUm along the equatorial plane in
the cylindrical coordinates is written as

δUm − δΦm −
1

D
ð∇ϖδUmÞð∇ϖU −∇ϖΦÞ

þ 2mΩ
ϖω̃D

ð∇ϖU −∇ϖΦÞδUm ¼ 0: ð3:18Þ

Note that we impose a planner symmetry across the
equatorial plane for an equilibrium configuration to derive
Eq. (3.18). We also apply the Euler equations [Eq. (2.6)] to
compute the term ∇ϖU −∇ϖΦ on the boundary as

∇ϖU −∇ϖΦ ¼ −∇ϖΦþϖΩ2: ð3:19Þ
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Only 1 degree of freedom remains in the system, which
represents the normalization factor in linear perturbation.
We set C1

m ¼ 1 in our computational code, closing the
system as an eigenvalue problem.

C. Spheroidal model

Here we introduce a spheroidal model to take a stellar
configuration partially into account. Instead of discarding z
derivative in the basic equation of δUm in the cylindrical
model, we assume a solution for the polar direction θ in the
spherical coordinates as Legendre polynomial Pm

l ðcos θÞ,

δU ¼
X
l;m

δUlmðrÞPm
l ðcos θÞe−iωtþimφ; ð3:20Þ

δΦ ¼
X
l;m

δΦlmðrÞPm
l ðcos θÞe−iωtþimφ: ð3:21Þ

The basic equations in the spheroidal model are written as
(see, e.g., [33])

�
d2

dr2
þ
�
1

r

�
2 −

κ2

ω̃2

�
þ 1

ρ

dρ
dr

−
1

D
∂D
dϖ

�
d
dr

−
2mΩ
rω̃

�
1

ρ

dρ
dr

þ 1

Ω
dΩ
dϖ

−
1

D
dD
dϖ

�
−

D
dp=dρ

−
1

r2

�
m2 þ

�
1 −

κ2

ω̃2

�
½lðlþ 1Þ −m2�

��
δUlmðrÞ

¼ −
D

dp=dρ
δΦlmðrÞ; ð3:22Þ

�
d2

dr2
þ 2

r
d
dr

−
lðlþ 1Þ

r2
þ 4πρ

dρ
dp

�
δΦlmðrÞ

¼ 4πρ
dρ
dp

δUlmðrÞ: ð3:23Þ

The boundary condition can be imposed in the same
manner as that in the cylindrical model. We explain the
derivation of a boundary condition at the center in
Appendix. In summary, the regularity condition at the
center can be written as

δUlm ¼ C1
lmr

maxðℜ½λð1Þlm �;ℜ½λð2Þlm �Þ; δΦlm ¼ C2
lmr

l;

where λð1Þlm and λð2Þlm are the solutions of Eq. (A5), and C1
lm

and C2
lm are constants. A surface boundary condition is

given as δΦlm ¼ C3
lmr

−ðlþ1Þ, where C3
lm is a function of C1

lm

and C2
lm (enable to apply the same technique to meet the

surface boundary condition as in the cylindrical model),
and the condition for δUlm is

δhlm þ ξjlm∇jh ¼ 0; ð3:24Þ

on the surface. We write down a concrete boundary
condition along the equatorial plane in spherical coordi-
nates as

δUlm − δΦlm −
1

D
ð∇rδUlmÞð∇rU −∇rΦÞ

þ 2mΩ
ϖω̃D

ð∇rU −∇rΦÞδUlm ¼ 0;

imposing a planner symmetry across the equatorial plane
for an equilibrium configuration. In conclusion, the system
is also set as an eigenvalue problem.

D. Reflection waves

In Secs. III B and III C, we formulate the stability
analysis by finding complex eigenmodes. Here we intro-
duce another approach to study the stability of the system: a
wave amplification by inserting incoming waves from the
surface to corotation. Although the basic idea has already
been given in Ref. [25], here we write down our techniques,
which are useful for computing large parameter sets and
comparing the results with those of numerical simulations.
We rewrite the basic equation of the scalar potential δUm
[Eq. (3.8)] to focus on the nature of a wave propagation
as [32]

�
d2

dϖ2
− Veff

m ðϖÞ
�
δηmðϖÞ ¼ −

D
dp=dρ

S−1=2δΦmðϖÞ;

ð3:25Þ

where

S≡ D
ρϖ

; δηm ≡ S−1=2δUm;

Veff
m ðϖÞ≡ D

dp=dρ
þ m2

ϖ2
þ 2mΩ

ϖω̃

�
d
dϖ

ln
ρΩ
D

�

− S1=2
d2

d2ϖ
S−1=2:

Note that the quantity Veff
m is regarded as an effective

potential of the wave propagation and contains the ω̃−1

term. Although it is useful to introduce an effective
potential to understand the mechanism of a corotation
amplification, the solution δηm contains an apparent sin-
gular behavior at Lindbald radius (the radius whereD ¼ 0).
Therefore, we first construct the solution of Eq. (3.25)
using a scalar potential δUm, which does not contain a
singular behavior at Lindbald radius, and then transfer the
scalar potential δUm to the perturbed quantity δηm to avoid
the apparent singular behavior.
The basic equation around corotation (ω̃ ≈ 0) can be

expressed by extracting the dominant contribution to the
singular behavior in the effective potential Veff

m as
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�
d2

d2ϖ
−
2mΩ
ϖω̃

�
d
dϖ

ln
ρΩ
D

��
δUmðϖÞ ¼ 0: ð3:26Þ

The quantity ω̃ can be expanded up to the first order of
ϖ −ϖcr as

ω̃ ¼ ℜ½ω� þ iℑ½ω� −mΩ

¼ −m
dΩ
dϖ

����
ϖ¼ϖcr

ðϖ −ϖcrÞ þ iℑ½ω�

¼ gcrℜ½ω�
ϖcr

ðϖ − ΠcrÞ;

where ϖcr is the cylindrical radius at corotation, gcr≡
−ðϖcr=ΩcrÞðdΩ=dϖÞϖ¼ϖcr

, and Πcr ≡ϖcr − iðϖcrℑ½ω�Þ=
ðgcrℜ½ω�Þ. Then, Eq. (3.26) can be written as

�
d2

d2w
þ βcr

w

�
δUmðwÞ ¼ 0; ð3:27Þ

where

w ¼ ϖ −ϖcr þ i
ϖcrℑ½ω�
gℜ½ω� ; ð3:28Þ

βcr ≡ 2

gcr

d
dϖ

ln
κ2

ρΩ

����
ϖ¼ϖcr

; ð3:29Þ

introducing a complex coordinate w in a replacement of a
radial one ϖ. To construct a solution δUm around coro-
tation analytically, we perform a coordinate transformation
as w ¼ s2. The basic equation can then be written as

�
d2

ds2
þ 1

s
d
ds

þ
�
4βcr −

1

s2

��
δΨmðsÞ ¼ 0; ð3:30Þ

where δUm ¼ sδΨm. Another coordinate transformation
s ¼ q=ð2i ffiffiffiffiffiffiffiffijβcrj

p Þ, where βcr < 0 in our equilibrium case,
leads to the basic equation of ν ¼ 1 Bessel functions as

�
d2

dq2
þ 1

q
d
dq

þ
�
1 −

1

q2

��
δΨmðqÞ ¼ 0; ð3:31Þ

containing two independent solutions N1ðqÞ and J1ðqÞ.
The general solutions of δUm, using Taylor’s expansion
around corotation, can then be written as

δUmðwÞ ¼ A1
mwþ A2

m½−4þ wðln jwj þ 2γ − 2 ln 2 − 1Þ�;
ð3:32Þ

where γ is Euler’s constant, and A1
m and A2

m are constants.
The term w ln jwj in Eq. (3.32) is the origin of a singular
behavior of δUm on corotation in a cylindrical model.

Next we explain our bridging techniques around coro-
tation. Since we are focusing on the unstable solution, we
introduce a semicircular path in the positive imaginary
plane to avoid the corotation singularity in the real axis. In
fact, only an argument difference appears when bridging
the solution at corotation. Inserting w ¼ εcreiðφ−πÞ (εcr is the
radius and φ the angle) in the general solution, a relation
between the solution inside δU−

m and outside corotation
δUþ

m becomes

δU−
mðϖÞ ¼ A1

mϖ þ A2
m½−4þϖðln jϖj þ 2γ − 2 ln 2 − 1Þ�

as ϖ < ϖcr; ð3:33Þ

δUþ
mðϖÞ¼A1

mϖþA2
m½−4þϖðln jϖj− iπþ2γ−2 ln2−1Þ�

asϖ>ϖcr: ð3:34Þ

We can construct a solution δUm which contains an
incoming and a reflection wave outside corotation as
follows. First, we impose a regularity condition at the
center for δUm and δΦm [Eq. (3.10)], and we solve a pair of
second-order ordinary differential equations [Eqs. (3.8) and
(3.9)] up to corotation. Using an analytical bridging
technique only for δUm (computing the two constants
A1
m and A2

m inside corotation from δU−
m and dδU−

m=dϖ and
construct δUþ

m and dδUþ
m=dϖ from these constants), we are

able to solve continuously a pair of second-order ordinary
differential equations [Eqs. (3.8) and (3.9)] from corotation
up to the surface. Note that we adopt the same technique to
impose a boundary condition for δΦm on the surface
(δΦm ¼ C3

mϖ
−jmj) as in Sec. III B.

After constructing a solution of the perturbed quantity
δηm from a scalar potential δUm, here we explain our
method to extract the reflection amplitude. The solution of
a perturbed quantity δηm in the wave propagation region
can be explained as

δηmðϖÞ ¼ ImðϖÞe−ikmϖ þ RmðϖÞeikmϖ; ð3:35Þ

where km ≡ ffiffiffiffiffiffiffiffiffiffiffi
−Veff

m

p
. Using δηm and dδηm=dϖ around the

surface, an amplitude of incoming and outgoing waves to
corotation around the surface can be extracted as

ImðϖÞ ¼ 1

2
eikmϖ

�
δηm −

1

ikm

dδηm
dϖ

�
; ð3:36Þ

RmðϖÞ ¼ 1

2
e−ikmϖ

�
δηm þ 1

ikm

dδηm
dϖ

�
: ð3:37Þ

The growth timescale can be interpreted as an amplifi-
cation of sound waves by the corotation barrier through a
single reflection cycle of the waves. Suppose a perturbed
quantity δηm grows exponentially in time in the wave
propagation regime as
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δηmðt;ϖÞ ¼ e−iωref tðImðϖÞe−ikmϖ þ RmðϖÞeikmϖÞ
¼ eℑ½ωref �tðImðϖÞe−iðℜ½ωref �tþkmϖÞ

þ RmðϖÞe−iðℜ½ωref �t−kmϖÞÞ; ð3:38Þ

where ωref is a complex frequency including a growth
timescale in the imaginary part, illustrating a wave ampli-
fication due to the corotation barrier. The amplification rate
through a single wave reflection by the effective potential is
jRmj=jImj. Once we introduce a wave-traveling time Tm
through one reflection by the potential, a relation between
the amplification factor and the imaginary part of the
frequency is

jRmj
jImj

¼ exp ½ℑ½ωref �Tm�; ð3:39Þ

where the wave-traveling time Tm is computed as

Tm ¼ 2

ℜ½ωref �
Z

ϖVmax

ϖVmin

kmdϖ: ð3:40Þ

Note that the radii ϖVmin and ϖVmax(or the equatorial
surface radius re if there is no such radius) represent the

turning point (the radius where Veff
m ¼ 0) outside corota-

tion, and the frequencyℜ½ωref � is taken from the real part of
the eigenfrequency by the normal mode analysis computed
in Sec. III B. The imaginary part of the frequency ℑ½ωref � is
derived from Eq. (3.39) as

ℑ½ωref � ¼
ln jRmj − ln jImj

Tm
¼ ℜ½ωref �ðln jRmj − ln jImjÞ

2
R
ϖVmax
ϖVmin

kmdϖ
;

ð3:41Þ

extracting the amplitude of inserted and amplified waves at
the radius ϖ ¼ ϖVmax.

E. Stability analysis

The axisymmetric equilibrium configuration of the differ-
entially rotating stars is computed in the two-dimensional
cylindrical coordinates [34]. Then we take the equilibrium
quantities, the pressure over rest mass density q (≡p=ρ) and
gravitational potential Φ, 3841 grid points uniformly along
the equatorial plane from the center to the stellar surface in
order to integrate the pulsation equations. We use the fourth-
order Runge-Kutta method (fourth-order integration in
space) to integrate Eqs. (3.8) and (3.9) for cylindrical models
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FIG. 2. The m ¼ 1 and m ¼ 2 eigenfunctions jδUmj for four low T=W dynamically unstable stars in cylindrical models. The labels I
(a), II(a), III(a), and IV(a), respectively, represent the equilibrium models in Table I. Red, blue, green, magenta, brown, black, grey, and
cyan, respectively, represent the node number between corotation and surface of N ¼ 0, 1, 2, 3, 4, 5, 6, and 7. The increasing number of
nodes between corotation and the surface can clearly be seen in all eigenfunctions.
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and Eqs. (3.22) and (3.23) for spheroidal models with both
1921 grid points in the normal mode analysis.
We search the complex frequency ω in the region of

ℜ½ω�∈½0;4�Ωc and ℑ½ω�∈ ½0;0.2�Ωc, integrating Eqs. (3.8)
and (3.9) for cylindrical models or Eqs. (3.22) and (3.23)
for spheroidal models from the center to the surface to
check whether the boundary condition of Eq. (3.16) for
cylindrical models or Eq. (3.24) for spheroidal models is
satisfied. Note that the frequency we search covers the
region where corotation exists inside the stars. In fact, we
compute the left-hand side of Eq. (3.16) for cylindrical
models or Eq. (3.24) for spheroidal models normalized by
δhm or δhlm for each complex frequency, and we determine
the eigenfrequency once the following two conditions are
satisfied. The first is that the relative error of the left-hand
side of Eq. (3.16) for cylindrical models or Eq. (3.24) for
spheroidal models normalized by δhm or δhlm is less than
2 × 10−3. The second is that the frequency takes the
minimum around the neighboring four complex frequen-
cies of each grid point in the complex plane. Our frequency
resolution for finding the eigenfrequency isΔω ¼ 1 × 10−5

for both real and imaginary parts. We only focus on m ¼ 1
spiral and m ¼ 2 bar mode here.

We show the eigenfrequencies from the linear perturba-
tion analysis in Tables II–V for cylindrical models and in
Table VI for spheroidal models. We also show the eigen-
functions in Fig. 2 for cylindrical models and in Fig. 3 for
spheroidal models. As we have already stated in Ref. [24],
we find the following three conclusions. One is that an
oscillation between corotation and the surface can be found
in all eigenfunctions. Every node number can be seen in all
differentially rotating stars for the m ¼ 2 bar mode. Note
that some of the zero nodes form ¼ 1, which represents the
shift of the center of mass, correspond to the pure
imaginary eigenfrequency (we omit these pure imaginary
eigenfrequencies from the tables). Another is that all
eigenfrequencies that have a corotation inside the star
are unstable (existence of a positive imaginary part in
eigenfrequencies). This fact indicates that the existence of
corotation triggers dynamical instabilities. The other is that
m ¼ 1 dynamical instabilities become dominant in a soft
equation of state. This means that we are able to identify the
stiffness of the equation of state by the direct detection of
gravitational waves.
For the reflection wave analysis, we basically adopt

the same computational technique as in the normal mode
analysis. We take again the equilibrium quantities, the
pressure over rest mass density q and gravitational potential
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FIG. 3. Same as Fig. 2, but for m ¼ 2 eigenfunctions jδUmj in
spheroidal models.

TABLE II. The m ¼ 1 and m ¼ 2 normal modes of n ¼ 1
differentially rotating stars in the cylindrical model.

Model m Na ℜ½ω�=Ωc ℑ½ω�=Ωc rcr=re
b ℑ½ω�ref=Ωc

c

I(a) 1 1 0.65275 0.00012 0.14587 0.00001
I(a) 1 2 1.15197 0.00000 � � � � � �
I(a) 2 0 0.29017 0.00855 0.48549 0.00110
I(a) 2 1 0.89791 0.00100 0.22158 0.00005
I(a) 2 2 1.39597 0.00039 0.13156 0.00001
I(a) 2 3 1.86074 0.00024 0.05471 0.00000
I(a) 2 4 2.31080 0.00000 � � � � � �
I(b) 1 1 0.53732 0.00001 0.27838 0.00000
I(b) 1 2 1.77131 0.00000 � � � � � �
I(b) 2 0 0.42797 0.01568 0.57497 0.00122
I(b) 2 1 1.40812 0.00036 0.19450 0.00001
I(b) 2 2 2.17266 0.00000 � � � � � �
I(c) 1 0 1.20707 0.00000 � � � � � �
I(c) 2 0 0.56668 0.00001 0.79519 NAd

I(c) 2 1 2.31692 0.00000 � � � � � �
I(d) 1 0 2.23106 0.00000 � � � � � �
I(d) 2 0 0.70460 0.22153 � � � � � �
I(d) 2 1 3.66914 0.00000 � � � � � �

aN: Node numbers between corotation and equatorial surface
radius.

brcr: Corotation radius.
cℑ½ω�ref : Imaginary part of the complex frequency computed

from the amplification timescale.
dNA: No amplification.

DETERMINING THE STIFFNESS OF THE EQUATION OF … PHYS. REV. D 98, 024003 (2018)

024003-9



Φ, 3841 grid points uniformly along the equatorial plane,
and use the fourth-order Runge-Kutta method (fourth-order
integration in space) to integrate Eqs. (3.8) and (3.9) for
cylindrical models with both 1921 grid points in the normal
mode analysis. Only the difference of computational
techniques from the normal mode analysis is an introduc-
tion of bridging of the perturbed scalar potential δUm
around corotation due to a coordinate singularity at
corotation. We assume that the corotation is not located
on the grid point (the measure is zero in a mathematical
sense), and we separate two regions as inside and outside
corotation. Bridging the perturbed scalar function δUm

between two different regions, two constants A1
m and A2

m at
the closest inner grid point to corotation are used to
construct the solution. We summarize our finding of the
reflection timescale (corresponds to an imaginary part of
the reflection frequency), which is based on the idea of an
amplification mechanism through a corotation singularity,
in Tables II–V for cylindrical models. Although estimating
the timescale of a single reflection wave contains many
crude approximations (assumption of a wave propagation
in the equatorial plane, a transmitting wave is not taken into
account for deriving timescale Tm and estimating wave-
traveling time is assumed by the time of one reflection from
the potential), qualitative features seem to be similar to

those of the normal mode analysis. Although a complete
understanding of the mechanism requires a two-dimensional
nonaxisymmetric perturbation analysis, which is out of
our scope in this paper, our finding may enlighten a direction
to understand a physical mechanism for low T=W dynamical
instabilities.

F. Picture of low T=W dynamical instabilities

In Sec. III D, we qualitatively have good agreement
between the stability analysis of a scattering problem and a
normal mode analysis. We are able to propose the following
mechanism for generating low T=W dynamical instabil-
ities. Suppose that an eigenfrequency of a pulsation mode,
such as f or p mode, shows an existence of corotation
inside the star. The mode grows exponentially in a non-
axisymmetric manner due to an amplification mechanism.
After the angular momentum transport efficiently plays a
role due to nonaxisymmetric deformation, the amplification
condition may no longer be satisfied. As a result, the
growth of the instabilities are at least saturated. If this
picture is correct, all existing pulsation modes are the
potential candidates to unstabilize the system when the
amplification condition sets in. However, the eigenfrequen-
cies that contain corotation inside the star are quite limited

TABLE III. Same as Table II, but of n ¼ 1.5 differentially
rotating stars.

Model m N ℜ½ω�=Ωc ℑ½ω�=Ωc rcr=re ℑ½ω�ref=Ωc

II(a) 1 1 0.55723 0.00080 0.17828 0.00016
II(a) 1 2 0.97454 0.00019 0.03233 0.00000
II(a) 1 3 1.34786 0.00000 � � � � � �
II(a) 2 0 0.31734 0.00841 0.46054 0.00001
II(a) 2 1 0.78994 0.00196 0.24753 0.00007
II(a) 2 2 1.18978 0.00026 0.16504 0.00037
II(a) 2 3 1.56573 0.00044 0.10533 0.00008
II(a) 2 4 1.92897 0.00001 0.03838 0.00000
II(a) 2 5 2.00084 0.00000 � � � � � �
II(b) 1 1 0.53737 0.00001 0.27836 NA
II(b) 1 2 1.48459 0.00000 � � � � � �
II(b) 2 0 0.44482 0.00723 0.56094 0.00003
II(b) 2 1 1.22913 0.00024 0.23758 0.00147
II(b) 2 2 1.83866 0.00042 0.08887 0.00001
II(b) 2 3 2.00188 0.00000 � � � � � �
II(c) 1 0 1.20707 0.00000 � � � � � �
II(c) 2 0 0.58081 0.00001 0.78158 0.00332
II(c) 2 1 1.70706 0.00001 0.20713 0.00031
II(c) 2 2 2.00116 0.00000 � � � � � �
II(d) 1 0 2.17560 0.00000 � � � � � �
II(d) 2 0 0.31532 0.00000 � � � � � �
II(d) 2 1 1.17702 0.00001 0.83619 NA
II(d) 2 2 3.03110 0.00000 � � � � � �

TABLE IV. Same as Table II, but of n ¼ 2 differentially
rotating stars.

Model m N ℜ½ω�=Ωc ℑ½ω�=Ωc rcr=re ℑ½ω�ref=Ωc

III(a) 1 1 0.50040 0.00553 0.19984 0.00053
III(a) 1 2 0.86641 0.00018 0.07853 0.00001
III(a) 1 3 1.18793 0.00000 � � � � � �
III(a) 2 0 0.35218 0.00676 0.43262 0.00012
III(a) 2 1 0.73570 0.00249 0.26218 0.00056
III(a) 2 2 1.06871 0.00027 0.18670 NA
III(a) 2 3 1.38662 0.00001 0.13302 0.00001
III(a) 2 4 1.69457 0.00001 0.08491 0.00000
III(a) 2 5 1.99668 0.00001 0.00816 NA
III(a) 2 6 2.29444 0.00000 � � � � � �
III(b) 1 1 0.74278 0.00635 0.17654 0.00015
III(b) 1 3 1.30342 0.00000 � � � � � �
III(b) 2 0 0.47957 0.00006 0.53417 0.00639
III(b) 2 1 1.13383 0.00024 0.26221 0.00002
III(b) 2 2 1.63501 0.00040 0.14174 0.00000
III(b) 2 3 2.10710 0.00000 � � � � � �
III(c) 1 0 1.20716 0.00000 � � � � � �
III(c) 2 0 0.81573 0.00002 0.60245 NA
III(c) 2 1 1.82914 0.00027 0.15282 0.00002
III(c) 2 2 2.56178 0.00000 � � � � � �
III(d) 1 0 2.14064 0.00000 � � � � � �
III(d) 2 0 0.16891 0.00000 � � � � � �
III(d) 2 1 2.23895 0.00000 � � � � � �
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in rotating equilibrium stars. Also, a certain degree of
differential rotation is required. In addition, the growth
timescale depends on the configuration of an effective
potential, which is normally powerful to the f mode.
Finally, a saturation amplitude depends on the efficiency
of the angular momentum transport in the instabilities.

IV. NUMERICAL RESULTS

A. Validity of cylindrical and spheroidal models

We briefly introduce our results of three-dimensional
hydrodynamical simulations in Newtonian gravity and
compare them with those of linear perturbative analyses.
Here we choose three differentially rotating equilibrium
stars, keeping the same polytropic index n ¼ 1 and degree
of differential rotation Ωe=Ωc ¼ 26.0, where Ωc is the
central angular velocity of the star and Ωe the equatorial
surface angular velocity, but varying the deformation rate
1 − rp=re as 0.125,0.250,0.375, where rp is the polar
surface radius of the star, summarized in Table VIII. We
impose a nonaxisymmetric perturbation in the rest mass
density as

ρ ¼ ρeq

�
1þ δ

x2 þ 2xy − y2

r2e

�
;

where we set δ ¼ 5 × 10−3 for evolution. Note that ρeq is an
equilibrium configuration of the rest mass density, and x
and y are the components of Cartesian coordinates. Note
that 161 grid points are covered along the equatorial
diameter of the star, with twice the equatorial radius as
large as the outer boundary for each coordinate direction.
We monitor the diagnostics M2 as

Mm ¼ heimφim ¼ 1

M

Z
dvρeimφ; ð4:1Þ

which is m ¼ 2 rest mass density weighted average in the
whole volume, and find thatM2 grows exponentially for the
low T=W dynamically unstable case (Fig. 4). In practice,
the M2 grows exponentially up to t ≈ 50 Pc for models I-i
(a) and I-ii(a), and to t ≈ 150 Pc for model I-i(c), and
saturates its amplitude around M2 ≈ 0.1 for models I-i(a)
and II-i(a), and around M2 ≈ 0.04 for model III-i(a). We
extract the characteristic frequencies in the diagnostics
from computing their spectra in Fig. 5 as

jFmj2 ¼
���� 1M

Z
dt

Z
dx3ρeiðωt−mφÞ

����
2

: ð4:2Þ

The peak frequencies for models I-i(a), I-ii(a), and I-iii(a)
are, respectively, ω=Ωc ¼ 0.380, 0.458, and 0.622. Each
model contains a single peak in the positive frequency
region, indicating that our three models contain one

TABLE V. Same as Table II, but of n ¼ 3 differentially rotating
stars.

Model m N ℜ½ω�=Ωc ℑ½ω�=Ωc rcr=re ℑ½ω�ref=Ωc

IV(a) 1 0 0.52603 0.05126 0.18985 0.00090
IV(a) 1 1 0.72759 0.00688 0.12238 0.00013
IV(a) 1 2 0.97965 0.00011 0.02883 0.00000
IV(a) 1 3 1.24636 0.00000 � � � � � �
IV(a) 2 0 0.52656 0.00041 0.33456 0.00014
IV(a) 2 1 0.71208 0.00147 0.26897 0.00007
IV(a) 2 2 0.94196 0.00072 0.21197 0.00000
IV(a) 2 3 1.17403 0.00039 0.16775 0.00001
IV(a) 2 4 1.40432 0.00037 0.13026 0.00000
IV(a) 2 5 1.63112 0.00038 0.09511 NA
IV(a) 2 6 1.85820 0.00046 0.05525 0.00000
IV(a) 2 7 2.08739 0.00000 � � � � � �
IV(b) 1 0 0.80474 0.00005 0.14777 0.00058
IV(b) 1 1 1.10578 0.00000 � � � � � �
IV(b) 2 0 0.80198 0.00001 0.36667 0.00018
IV(b) 2 1 1.10851 0.00013 0.26904 0.00019
IV(b) 2 2 1.42299 0.00026 0.19103 0.00001
IV(b) 2 3 1.74841 0.00051 0.11380 NA
IV(b) 2 4 2.07242 0.00000 � � � � � �
IV(c) 1 1 1.20713 0.00000 � � � � � �
IV(c) 2 1 1.70729 0.00001 0.20703 0.00000
IV(c) 2 2 2.30367 0.00000 � � � � � �
IV(d) 1 1 1.47885 0.00000 � � � � � �
IV(d) 2 1 0.16891 0.00000 � � � � � �
IV(d) 2 2 3.56353 0.00000 � � � � � �

TABLE VI. The m ¼ 2 normal modes of differentially rotating
stars in the spheroidal model.

Model n m N ℜ½ω�=Ωc ℑ½ω�=Ωc rcr=re

I(a) 1 2 0 0.35170 0.01684 0.43297
I(a) 1 2 1 0.93223 0.02054 0.21405
I(b) 1 2 0 0.54951 0.00635 0.48741
I(c) 1 2 0 0.91189 0.06664 0.54618
I(d) 1 2 0 � � � � � � � � �
II(a) 1.5 2 0 0.37904 0.00381 0.41359
II(b) 1.5 2 0 0.53495 0.00586 0.49516
II(c) 1.5 2 0 � � � � � � � � �
II(d) 1.5 2 0 � � � � � � � � �
III(a) 2 2 0 0.44143 0.01844 0.37580
III(a) 2 2 1 0.77193 0.01448 0.25199
III(b) 2 2 0 0.68370 0.03313 0.41626
III(c) 2 2 0 � � � � � � � � �
III(d) 2 2 0 � � � � � � � � �
IV(a) 3 2 0 0.57186 0.00839 0.31606
IV(a) 3 2 1 0.76898 0.01460 0.25305
IV(a) 3 2 2 0.98177 0.02302 0.20368
IV(b) 3 2 0 0.87934 0.01566 0.33867
IV(c) 3 2 0 � � � � � � � � �
IV(d) 3 2 0 � � � � � � � � �
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dominant unstable “mode.” The growth time of the diag-
nostics (Fig. 6) is extracted by using a fitting formula of the
exponential growth function as

Mm ¼ Am exp ½Bmt=Pc�; ð4:3Þ

where Am and Bm are the two dimensionless parameters to
be fitted for each model. We show a clear fitting to the
diagnostics curve in Fig. 6 with the choice of parameter sets
described in the caption. The imaginary parts of the
characteristic frequencies are extracted by using the relation
ℑ½ω� ¼ Bm=ð2πÞ as ℑ½ω�=Ωc ¼ 0.0124 for model I-i(a),
0.0133 for model I-ii(a), and 0.00668 for model I-iii(a).
We also monitor a scalar potential Um in the simulation

[24], which represents the eigenfunction of rotating pulsat-
ing stars in Newtonian gravity, as

Um ¼ 1

2πU

Z
dφueimφ; U ¼

Z
V
dvu;

where u≡H þΦ ¼ εþ p=ρþΦ (Fig. 7). In all three low
T=W n ¼ 1 dynamically unstable stars, the scalar potential
contains a single local minimum around ϖ=re ≈ 0.2–0.3,
which may express a singular behavior at corotation in
pulsation equations. Only a monotonic increase of the
potential between corotation and the surface indicates that
the dominant frequency we find in simulations represents a
fundamental (f) mode in rotating pulsating stars.
Our comparison of characteristic complex frequencies

(which represent the oscillation frequencies and the growth
times) between three different approaches—a cylindrical
model, a spheroidal model, and a numerical simulation—is
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FIG. 4. The M2 diagnostics for three low T=W n ¼ 1 dynami-
cally unstable stars. Red, blue, and green lines, respectively,
represent models I-i(a), I-ii(a), and I-iii(a). We find an amplified
oscillation in the diagnostics for all three cases.
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FIG. 5. Spectra of M2 diagnostics (jF2j2) for three low T=W
n ¼ 1 dynamically unstable stars. Red, blue, and green lines,
respectively, represent models I-i(a), I-ii(a), and I-iii(a). Only a
single dominant peak in the spectrum shows that the unstable
stars contain one dominant characteristic frequency.
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FIG. 6. Growth rate of jM2j diagnostics for three low T=W
n ¼ 1 dynamically unstable stars. Red, blue, and green lines,
respectively, represent models I-i(a), I-ii(a), and I-iii(a). Dotted
lines, respectively, represent the fitting formula jM2j ¼
A2 exp½B2t=Pc� for each model (½A2; B2� ¼ ½5.90 × 10−3;
7.82 × 10−2� for model I-i[a], ½5.31 × 10−3; 8.35 × 10−2� for
model I-ii[a], and ½5.74 × 10−3; 4.20 × 10−2� for model I-iii[a]).
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FIG. 7. Scalar potentials jU2j for three low T=W n ¼ 1
dynamically unstable stars in the equatorial plane. Red, blue,
and green lines, respectively, represent models I-i(a) at
t ¼ 105.6Pc, I-ii(a) at t ¼ 88.5Pc, and I-iii(a) at t ¼ 102.1Pc.
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summarized in Table VII. As deformation of the equilib-
rium star becomes small, the results of a spheroidal model
and a numerical simulation approach each other. This
feature is especially seen in the corotation radius of the

star and the growth rate of the instabilities. In a spherically
symmetric background, it is natural to expand the perturbed
quantities using a spherical harmonics. As a star deviates
from a spherical symmetry, a spheroidal model becomes
only an approximation, since the model assumes spherical
harmonic dependence. In addition, there is also good
agreement of the results between cylindrical and spheroidal
models when the deformation rate is small. Since a
cylindrical model has less restriction for computing the
normal modes in the frequency regions, we mainly explore
the results of a cylindrical model in a wide frequency
regime and present generic features in Sec. IV B.

B. Numerical simulations

We pick up four low T=W dynamically unstable stars
(I[a], II[a], III[a], and IV[a] of Table I), varying the stiffness
of the equation of state, to focus on the dominancy of spiral
(m ¼ 1) and bar (m ¼ 2) modes throughout the evolution.
Here we impose the following density perturbation in the
equilibrium configuration as:

ρ ¼ ρeq

�
1þ δð1Þ

xþ y
re

þ δð2Þ
x2 þ 2xy − y2

r2e

�
;

where we set δð1Þ ¼ δð2Þ ¼ 1 × 10−5 to trigger the insta-
bilities. We monitorMm diagnostics (M1,M2,M3, andM4)

TABLE VII. The m ¼ 2 unstable f mode of n ¼ 1 differ-
entially rotating stars for three different approaches.

Model Approach ℜ½ω�=Ωc ℑ½ω�=Ωc rcr=re

I(i-a) Cylinder 0.29017 0.00855 0.48549
I(i-a) Spheroid 0.35170 0.01684 0.43297
I(i-a) Simulation 0.380 0.0124 0.412

I(ii-a) Cylinder 0.36611 0.00975 0.42251
I(ii-a) Spheroid 0.43019 0.01473 0.38205
I(ii-a) Simulation 0.458 0.0133 0.367

I(iii-a) Cylinder 0.51473 0.00862 0.33974
I(iii-a) Spheroid 0.60222 0.00936 0.30470
I(iii-a) Simulation 0.622 0.00668 0.296

TABLE VIII. Equilibrium configuration of n ¼ 1 differentially
rotating stars for verification.

Model Ωc=Ωe T=W

I-i(a) 26.0 6.09 × 10−2

I-ii(a) 26.0 3.95 × 10−2

I-iii(a) 26.0 1.90 × 10−2

0 50 100 150 200 250

R
e[

M
m

]

0 50 100 150 200 250

0 50 100 150 200

t / Pc

R
e[

M
m

]

0 50 100 150 200 250

t / Pc

I

III

II

IV

-0.2

-0.1

0

0.1

0.2

-0.02

-0.01

0

0.01

0.02

-0.2

-0.1

0

0.1

0.2

-0.2

-0.1

0

0.1

0.2

FIG. 8. TheMm diagnostics for four low T=W dynamically unstable stars. Red, blue, green, and magenta lines, respectively, represent
diagnostics M1, M2, M3, and M4.
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for all four unstable stars, shown in Fig. 8. For models I, II,
and III, the m ¼ 2 diagnostics grow exponentially up to
≈0.10–0.15, with substantial growth of m ¼ 4. Especially
for model I, the m ¼ 3 diagnostic grows exponentially
around t≳ 180Pc, which may be explained as a nonlinear
mode coupling from the bar mode investigated in
Refs. [34,35]. In contrast to the former three models,
model IV contains a qualitative difference. The m ¼ 1
diagnostic grows exponentially up to ≈0.006, with sub-
stantial growth of m ¼ 2–4 around t≳ 150Pc. This feature
can be used to restrict the stiffness of the equation of state.
This subject will be discussed in Sec. IV D.
We compute the spectra of the diagnostics Mm in Fig. 9.

We find a clear peak for each diagnostic. Model I has a peak
at ω ¼ 0.168Ωc for m ¼ 1, ω ¼ 0.375Ωc for m ¼ 2, ω ¼
0.535Ωc for m ¼ 3, and ω ¼ 0.742Ωc for m ¼ 4. Model II
has a peak at ω ¼ 0.191Ωc for m ¼ 1, ω ¼ 0.409Ωc for
m ¼ 2, ω ¼ 0.583Ωc for m ¼ 3, and ω ¼ 0.825Ωc for
m ¼ 4. Model III has a peak at (no peak for m ¼ 1) ω ¼
0.485Ωc for m ¼ 2, ω ¼ 0.469Ωc for m ¼ 3, and ω ¼
0.937Ωc for m ¼ 4. From these three models, the M2

diagnostics take the dominant role as the maximum
spectrum amplitude is the highest for all four diagnostics.
Also the peak frequency of m ¼ 4 is almost twice that of
m ¼ 2, indicating that they are generated from the same
corotation and act as harmonics. In contrast, the odd Mm

diagnostics do not have a harmonic behavior to the bar
mode, meaning that they are generated from different
corotations.
We show scalar potentials Um for m ¼ 1 and m ¼ 2 in

Fig. 10. Although the definition of a scalar potential has
been taken from the feature of a perturbative approach, we
clearly find the same behavior even in the results of three-
dimensional simulations, indicating a clear correspondence
to the existence of corotation.

C. Saturation amplitude and gravitational waves

We compute approximate gravitational waveforms by
evaluating the quadrupole formula. In the radiation zone,
gravitational waves can be described by a transverse-trace-
less, perturbedmetric hTTij with respect to a flat spacetime. In
the quadrupole formula, hTTij is found from [36]

hTTij ¼ 2

r
d2

dt2
ITTij ; ð4:4Þ

where r is the distance to the source, where Iij is the
quadrupole moment of the mass distribution [see
Eq. (36.42b) in Ref. [36]], and where TT denotes the
transverse-traceless projection. Choosing the direction of
the wave propagation to be along the x axis (one of the

-2 -1 0 1 2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

|F
m

|2

-2 -1 0 1 2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-2 -1 0 1 2
ω / Ωc

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

|F
m

|2

-2 -1 0 1 2
ω / Ωc

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

III

VIIII

FIG. 9. Spectra of Mm diagnostics (jFmj2) for four low T=W dynamically unstable stars. Red, blue, green, and magenta lines,
respectively, represent m ¼ 1, 2, 3, and 4. Only a single dominant peak in the spectrum shows that the unstable stars contain one
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principal axes in the equatorial plane of the equilibrium star)
and z axis (rotational axis of the equilibrium star), we
determine the two polarizationmodes of gravitational waves
from

hðxÞþ ≡ 1

2
ðhTTyy − hTTzz Þ and hðxÞ× ≡ hTTyz ; ð4:5Þ

hðzÞþ ≡ 1

2
ðhTTxx − hTTyy Þ and hðzÞ× ≡ hTTxy : ð4:6Þ

For observers along the x axis and z axis, we thus have

rhðxÞþ
M

¼ 1

2M
d
dt

ð_Iyy − _IzzÞ; ð4:7Þ

rhðxÞ×

M
¼ 1

M
d
dt

_Iyz; ð4:8Þ

rhðzÞþ
M

¼ 1

2M
d
dt

ð_Ixx − _IyyÞ; ð4:9Þ

rhðzÞ×

M
¼ 1

M
d
dt

_Ixy: ð4:10Þ

Note that _A represents the time derivative of A. The number
of time derivatives Iij that have to be taken out can be
reduced by using the continuity equation [Eq. (2.2)]

_Iij ¼
Z

ðρvixj þ ρxivjÞd3x; ð4:11Þ

in Eqs. (4.7), (4.8), (4.9), and (4.10) (see Ref. [37]).
The spectrum of a gravitational waveform can be

computed as

S ¼ jh̃þj2 þ jh̃×j2; ð4:12Þ

where

h̃þ;× ¼
Z

dthþ;×eiωt: ð4:13Þ

We show gravitational waveforms (Fig. 11) and their
spectra (Fig. 12) along the equilibrium rotational axis from
four different low T=W dynamically unstable stars. We find
quasiperiodic oscillations for all four models for both þ
and × modes. Also a single characteristic frequency can
be seen in the spectra for all models. For example, ω ¼
0.375Ωc for model I, ω ¼ 0.418Ωc for model II, ω ¼
0.468Ωc for model III, and ω ¼ 0.429Ωc for model IV.
Since the observer is set along the rotational axis, we can
only observe mð¼ lÞ≳ 2 diagnostics. Therefore, all
frequencies of peaks in the spectra correspond to those
in m ¼ 2 diagnostics.
In order to focus on the detectability of m ¼ 1 diag-

nostics, we next locate the observer along the equatorial
plane of the equilibrium stars and show gravitational
waveforms (Fig. 13) and their spectra (Fig. 14). In this
case, all m modes (−l ≤ m ≤ l for each l modes) can be
observed. We only find a quasiperiodic oscillation for all
four models for þ modes, indicating the feature of m ¼ 2
diagnostics. We also find an amplified oscillation in ×
mode when the m ¼ 1 diagnostic grows, indicating one
feature of the m ¼ 1 diagnostic. This feature can clearly be
seen in the spectrum of gravitational waves. Models I and II
have two peaks in the spectrum of positive frequency,
ω ¼ 0.192Ωc, 0.375Ωc for model I and ω ¼ 0.218Ωc,
0.418Ωc for model II. Comparing to the peak frequencies
in the Mm diagnostics, two peak frequencies in the
gravitational waveforms respectively correspond to m ¼
1 and m ¼ 2 diagnostics. Model III has a single positive
frequency ω ¼ 0.468Ωc, which corresponds to the m ¼ 2
diagnostic. Model IV has four peaks in low amplitudes
compared to models I, II, and III, and the peak frequencies
are ω ¼ 0.190Ωc, 0.417Ωc, 0.610Ωc, and 0.927Ωc.
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star. Red and blue lines, respectively, represent þ and × modes.
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FIG. 12. Spectra of gravitational waveforms observed along the rotational axis for four low T=W dynamically unstable stars.
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FIG. 13. Same as Fig. 11, but along the principal axis in the equatorial plane.
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FIG. 14. Same as Fig. 12, but in the equatorial plane.
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D. Constrain the stiffness of the equation of state

Finally we propose one procedure for constraining the
stiffness of the equation of state by the direct detection of
gravitational waves. We find from three-dimensional
numerical simulations that the dominancy mode between
m ¼ 1 and m ¼ 2 throughout the evolution strongly
depends on the stiffness of the equation of state (Fig. 8).
Models I, II, and III haveM2 diagnostics dominancy, while
model IV has M1 dominancy. We also extract the growth
rate of the instabilities from each Mm diagnostic using the
same fitting formula as in Sec. IVA but changing the
starting time t0 of the exponential growth as

Mm ¼ Am exp ½Bmðt − t0Þ=Pc�: ð4:14Þ

Note that we extract two constants Am and Bm through
around 50 central rotation periods of the equilibrium stars
from time t0. The imaginary part of complex characteristic
frequencies of model I are ℑ½ω�=Ωc ¼ 0.0109, t0 ¼ 160Pc
for m ¼ 1 and ℑ½ω�=Ωc ¼ 0.0168, t0 ¼ 50Pc for m ¼ 2;
model II are ℑ½ω�=Ωc ¼ 0.00557, t0 ¼ 170Pc for m ¼ 1
and ℑ½ω�=Ωc ¼ 0.0179, t0 ¼ 50Pc for m ¼ 2; model III
are ℑ½ω�=Ωc ¼ 0.00366, t0 ¼ 120Pc for m ¼ 1 and
ℑ½ω�=Ωc ¼ 0.0175, t0 ¼ 40Pc for m ¼ 2; and model IV
are ℑ½ω�=Ωc ¼ 0.00909, t0 ¼ 40Pc for m ¼ 1 and
ℑ½ω�=Ωc ¼ 0.00459, t0 ¼ 150Pc for m ¼ 2. Therefore, a
clear relation between the dominancy of the saturation
amplitude of Mm diagnostics and the strength of the
characteristic complex frequency can be seen in Fig. 8.
There seems to be a threshold between Γ ¼ 1.33 and 1.5 to
change the dominancy of the m mode. This feature can

roughly be understood from the strength of the instabilities
by investigating the imaginary part of the eigenfrequency.
Evaluating the amplification timescale derived in Eq. (3.41)
for each eigenfrequency computed in Tables II, III, IV, and
V, the imaginary part of the reflection eigenfrequency has a
clear dependence on the stiffness of the equation of state.
We summarize our finding in Fig. 15.

V. CONCLUSIONS

We have investigated the unstable features of low T=W
dynamical instabilities in differentially rotating stars in
terms of a wide range of the stiffness of the equation of
state. We have adopted a normal mode analysis and a
scattering rising from the corotation barrier in the equatorial
plane, and compare the results with those of three-
dimensional hydrodynamic simulations.
Unstable normal modes for low T=W dynamically

unstable stars are found in the linear analysis, and they
are qualitatively confirmed by an amplified oscillation of
the scattering sound waves between corotation and the
surface. Although the growth timescale is in agreement on a
qualitative level, the criterion has clear agreement with the
results of both numerical simulations and normal mode
analyses. We do not find any additional modes to the well-
known f and p modes in the linear analysis for both stable
and unstable stars, but the stability of the system may
change when the corotation barrier appears in the effective
potential. The resonant frequency in both cylindrical and
spheroidal models in the linear analyses agrees with that of
hydrodynamic simulations when the deformation rate of
the rotating configuration approaches zero (nonrotating
configuration). The above fact confirms our models to be
efficient for finding low T=W dynamically unstable stars.
The eigenfunction of the modes is also found to display a

similar behavior to thewell knownf andpmodes.Once coro-
tation exists inside the star, the perturbed enthalpy oscillates
between corotation and the surface. Thismay indicate that the
perturbed enthalpy is affected by the corotation barrier, and
therefore cannot cross corotation. This feature requires
reinterpretation of the pulsation modes in rotating stars when
a corotation singularity exists inside the stars.
Finally we are able to constrain the stiffness of the

equation of state by the direct observation of mode decom-
posed gravitational waves from low T=W dynamically
unstable stars. Investigating the dominancy of the azimuthal
mode in the normalmode analysis in a cylindricalmodel, the
threshold of them ¼ 2 bar mode is around Γ ≈ 1.50. Using
the above fact, we are able to constrain the stiffness of the
equation of state by focusing the ratio between m ¼ 1 and
m ¼ 2 of the gravitational waveform.
We have computed the linear analysis in the equatorial

plane to reduce the basic pulsation equations to the ordinary
differential ones. Our results clearly show that a rotational
configuration of the star should be fully taken into account.
In order to achieve complete agreement between the linear

0 0.5 1 1.5 2

Re[ω/Ωc]

10
-5

10
-4
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10
-1

Im
[ω

/Ω
c]

FIG. 15. The m ¼ 1 and m ¼ 2 eigenfrequencies for four low
T=W dynamically unstable stars (models I[a], II[a], III[a], and IV
[a]) in cylindrical models. Circles, squares, top triangles, and
bottom triangles, respectively, denote the polytropic index of
n ¼ 1, 1.5, 2, and 3. Opened and filled symbols, respectively,
represent the m ¼ 1 and m ¼ 2 modes. Comparing the largest
imaginary frequencies between m ¼ 1 and m ¼ 2 in each
polytropic index, the dominant m mode changes at the stiffness
of the equation of state around Γ ≈ 1.50.
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analysis and hydrodynamic simulation, a two-dimensional
eigenmode analysis with corotation duly considered is
required, which is a challenging task in this field.
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APPENDIX: BOUNDARY CONDITION AT
CENTER IN SPHEROIDAL MODELS

We adopt the technique of Unno et al. [23] for imposing
a regularity condition at the center. The basic pulsation
equations at the center can be written as

r
d
dr

2
6664
δUlm

χlm

δΦlm

ψ lm

3
7775 ¼

2
6664

0 1 0 0

αlm βlm 0 0

0 0 0 1

0 0 lðlþ 1Þ −1

3
7775

2
6664
δUlm

χlm

δΦlm

ψ lm

3
7775;

ðA1Þ

where χlm ¼ rðdδUlm=drÞ, ψ lm ¼ rðdδΦlm=drÞ,

αlm ¼ lðlþ 1Þ − qlm½lðlþ 1Þ −m2�; ðA2Þ

βlm ¼ −1þ qlm; ðA3Þ

qlm ¼ 4Ω2
c

ω̃2
: ðA4Þ

The four eigenvalues of the matrix in Eq. (A1) are

λlm ¼ λð1Þlm ; λð2Þlm ; l; − ðlþ 1Þ;

where λð1Þlm and λð2Þlm satisfy

λ2lm − βlmλlm − αlm ¼ 0: ðA5Þ

It is clear from the matrix in Eq. (A1) that the real parts of

the eigenvalues λð1Þlm and λð2Þlm correspond to the powers of
δUlm and χlm at the center, while l and −ðlþ 1Þ correspond
to those of δΦlm and ψ lm.
In order to close the system as an eigenvalue problem,

only 2 out of 4 degrees of freedom at the center are needed
since 1 freedom represents scaling for the whole system,
and the other freedom represents the one of a surface
boundary condition. Since the power −ðlþ 1Þ for δΦlm is
already discarded because of the regularity condition at the

center (l≳ 0), only one of the powers λð1Þlm or λð2Þlm for δUlm

should be discarded. The above condition can be written in
general as

FIG. 16. Allowed frequency region (white region) to treat the pulsation system for spheroidal models as an eigenvalue problem. The
left panel represents the case of l ¼ 2, m ¼ 1, and the right one represents that of l ¼ 2, m ¼ 2.
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maxðℜ½λð1Þlm �;ℜ½λð2Þlm �Þ ≥ 1; minðℜ½λð1Þlm �;ℜ½λð2Þlm �Þ < 1:

ðA6Þ

Therefore, we restrict the frequency regime with the above
condition. We show the allowed frequency region for the
case of l ¼ 2, m ¼ 1 and 2 in Fig. 16.

Finally, the regularity conditions at the center are
written as

δUlm ¼ C1
lmr

maxðℜ½λð1Þlm �;ℜ½λð2Þlm �Þ; δΦlm ¼ C2
lmr

l;

where C1
lm and C2

lm are constants.
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