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Propagation of gravitational waves in strong magnetic fields
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The propagation of gravitational waves is explored in the cosmological context. It is explicitly
demonstrated that the propagation of gravitational waves could be influenced by the medium. It is shown
thatin the thermal radiation, the propagation of gravitational waves in general relativity is different from thatin
the scalar-tensor theory. The propagation of gravitational waves is investigated in the uniform magnetic field.
As aresult, it is found that cosmic magnetic fields could influence the propagation of gravitational waves to a
non-negligible extent. The corresponding estimation for the spiral galaxy NGC 6946 effect is made.
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I. INTRODUCTION

It has been proved by LIGO that a two-black-holes
system emits strong gravitational waves in the coalescence
phase [1]. The first detection was from black holes with
about 30 solar masses, and the following ones were from
the mergers of two black holes (black hole binary) [2-5].
Very recently, the so-called multimessenger astronomy has
started with the discovery of strong gravitational waves
from the collision of two neutron stars [6] and the
electromagnetic radiation was detected in coincidence with
the gravitational wave.

It is very difficult and complicated to analyze the
processes of black hole mergers and scatterings because
gravitational dynamics is too strong. In spite of the diffi-
culties, there has been accurate numerical simulations, which
reproduce the observational results [7,8] although various
approximate approaches [9] and analytic ideas [10,11] to
calculate the gravitational wave signatures in the strong
gravitational field regimes have also been proposed.

On the other hand, the existence of cosmic magnetic
fields have been known and those origins have also been
explored. In particular, the origins of large-scale magnetic
fields observed in clusters of galaxies can be primordial
magnetic fields from inflation and the following cosmo-
logical phases in the early universe (for reviews on cosmic
magnetic fields, see, e.g., [12-21]).
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Moreover, various modified gravity theories including
the scalar-tensor theory have especially been studied in the
cosmological context recently in order to explain the late-
time cosmic acceleration (for recent reviews on modified
gravity theories as well as the dark energy problem, see, for
example, [22-26]). The cosmological bounds from the
Neutron Star Merger GW 170817 [6] have been examined
in the scalar-tensor and F(R) gravity theories [27]. The
constraints [28] on alternative theories of gravity have been
calculated with GW150914 and GW151226 [2,29,30].
Various features of gravitational waves from modified
gravity theories have also been studied [31-33].

In this paper, we clarify how the propagation of gravita-
tional waves could be changed by the medium. Usually the
radiation is made of the quanta or relativistic particles at the
high temperature as in the early universe after the inflation. In
the radiation dominated era, the universe expands as a o« 3
Here a is the scale factor of the universe and ¢ is the
cosmological time. On the other hand, it is known that the
power law behavior a « 7 in the radiation dominated
universe can also be realized by the classical scalar-tensor
theory." In order to distinguish the above two kinds of the

'For example, it has been shown that any evolution of the
universe expansion can be realized in the scalar-tensor theory in
[34]. See also [35,36].
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radiation dominated universe, we show that the propaga-
tion of gravitational waves in the thermal radiation in
general relativity is different from that in the classical
scalar-tensor theory. Usually, the radiation is made of
photons, which are quanta of the electromagnetic field.
The classical electromagnetic field is different from the
photon. As an example of the classical electromagnetic
field, we investigate the propagation of gravitational waves
in the uniform magnetic field and we demonstrate that the
effects from the magnetic field to the propagation could
not be negligible.

The structure of the paper is the following. In Sec. II, we
explore the propagation of gravitational waves in general
matter. In Sec. III, we investigate the propagation in quanta
and thermal matter with finite temperature. In Sec. IV, we
analyze the propagation of gravitational waves under the
existence of magnetic fields. In Sec. V, we consider the case
of gravitational waves in F(R) gravity. Finally, conclusions
are given in Sec. VL.

II. PROPAGATION OF GRAVITATIONAL
WAVE IN MATTERS

The gravitational wave is given by the perturbation from
the background geometry,

Guv = G + thﬂl./’ (1)

where |h,,| < 1 is the perturbation with respect to a given
background g,,. Then by imposing the gauge condition

Vth,, = ¢*h,, =0, (2)

the Einstein field equations

1
Rm/ - EgﬂDR = K2T/w (3)

take the perturbed form as follows:

1
[—V2hw - 2R’1D””h,1/, + R’,h,,

N |

+R,h

vhpy — R+ gﬂ,,RMhpﬂ] = K25Tm,. (4)

Let us denote the scale of k*T,, by M?, that is, K*T,, ~ M>.

If we assume that M? can be small enough, we can expand
the left-hand side (LHS) and the right-hand side (RHS) of
the Einstein equation with respect to M? as

R R=1{ + M1y + M1 + O((M?)),

1
uv Egﬂl/
KT, = MY + MY + O(M2))). (5)

We should note that the RHS starts with the O(M?) term,
and therefore the O(1) term / E?’ in the LHS should vanish,

which gives the flat vacuum solution g, = 7,,. Then the
O(M?) term M?1 (Tl ), which expresses the matters in the flat
background and equation M2I3) = M2\, gives the

O(M?) correction to the geometry. We should note that
the energy-momentum tensor 7', in Eq. (3) depends on the

metric; therefore the O(M*) term M*I” in the RHS
expresses the matter in the background with the O(M?)
correction. Then the equation M*I'Y) = M*I?) gives the
O(M*) correction to the geometry. By iterating the above
procedure, we can find the background geometry by the
perturbation with respect to M?. The corrections to the
geometry, which includes the gravitational wave, appear as
the perturbative series with respect to x?. Therefore we have
two parameters M2 and x* for the perturbative expansions.
The parameter M? is conceptually different from the
parameter k2, and they are independent from each other.
Then the LHS and the RHS of the Einstein equation can be
expressed by the double expansion with respect to M?>
and x2,

1 0 1.0
Ry —=guR=1¢ + M1

0.1 2
5 + g + ML)

+ O(M*, K, k*M?),
2T, = M1 + M2 + O(M* ). (6)

In Eq. (6), Ox?), 1%V, mM221y), M1, and
O(x>M*) terms express the propagation of the gravitational
wave because the energy-momentum tensor 7', in Eq. (3)
depends on the metric, and if we consider the perturbation
as (1), there is a variation of the energy-momentum tensor
T,, in (4). On the other hand, the O(x*) terms include the
nonlinear interaction between the gravitational wave. We
now neglect the interactions between the gravitational
wave, we omit the O(M* k*) terms, and we consider
the x? terms including the leading corrections with respect

to M2, that is, KZIES"), Mzkzl;z), and MZK‘ZIg—l’l). The effect

of the term M2x213"") is similar to the propagation of light
in the medium (such as water). As we know by the
Cerenkov radiation, the speed of the light decreases in
the medium. Although the propagation of the light also
follows the geodesics, the incident light makes the electric
charge or electric or magnetic moment distributions fluc-
tuate, and the fluctuations with the electric or magnetic
dipole moments generate the light. The generated light
interferes with the incident light, and the decrease of the
propagation speed of the light occurs. These effects are
known as a polarization and can be expressed as the
changes of the permittivity and permeability. Even for
the gravitational wave, there occur similar phenomena,
which were also recently reported in the paper by Flaugher
and Weinberg [37] in detail for the propagation of the
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gravitational wave in the cold dark matter. The incident
gravitational wave makes the medium fluctuate and the
fluctuation with a quadrupole moment generates an addi-
tional gravitational wave. The RHS in (4) or the term

M1 in (6) expresses such effects although our for-
mulation is rather simplified compared with the paper [37].

III. QUANTA AND THERMAL MATTER

In this section, we consider the real scalar field as the
matter. We treat the scalar field as the quantum field at the
finite temperature. In case of the high temperature or in a
massless case, the scalar field plays the role of the radiation.
On the other hand, in the limit that the temperature vanishes
but the density is finite, we obtain the dust, which can be a
cold dark matter. After that, we compare the obtained results
with those in the classical scalar-tensor model [27,38].

Even in the classical scalar-tensor model, we can realize
a matter dominated (filled with dust) or radiation domi-
nated universe. Then we find that in the case of the matter
dominated universe, the result for the quantum field
coincides with the result in the classical scalar-tensor
theory, but in the other case, the tensor structure of 67,
is different in the two cases; therefore the propagation of the
gravitational wave changes in general.

In curved space-time, the energy-momentum tensor of a
free real scalar field ¢ with mass M is given by

1 1
T;w = aﬂ¢ab¢ + Guw <_ Egpﬁapgbaod) - §M2¢2> . (7)

In the flat background, we find

Too=p = % (”2 + Z (0n)* + M2¢2>,
n=1273
le - 8l¢8j¢ +%5U (7[2 - Z (6,,(,2’))2 — M2¢2> . (8)

n=1,23

Here 7 = ¢ is the momentum conjugate to ¢. We also
obtain

oT,,

1
ag po 2

1
+ Eg,uyapqﬁaﬁ(ﬁ’ (9)

1 1
(8,05,° +6,°5,7) <— S °0,00:4 - EM%/»Z)

which has the following form in the flat background:

> (0.9

n=123

oT;; 1
Wk; Z(5k51+515k)< —M2¢2)

1
+58,0"40'¢. (10)

We now evaluate % in (10) at the finite temperature 7. In

order to make the situation definite, we assume that the
three-dimensional space is the square box where the lengths
of the edges are L, and we impose the periodic boundary
condition on the scalar field ¢. Then the momentum k is
given by

n=(ngn,n,). (11)

v

Here n,, ny, and n, are integers. If we define

n(x)=— Y e tm,  (12)
n

we find
[ @i =Y desth,
/ Bxr(x Zn_,,n,, (13)

The Hamiltonian is given by

2

ZZ( i+ (”L” ”+M2)¢_n¢n). (14)

Here 7#(k) and ¢(l) satisfy the following commutation
relation:

[”n’ ¢n’] = _i5n+n’,0- (15)

We now define the creation and annihilation operators
ib
an DY

1 y3 47°n-n i
+_ L n . 2
a;t _\/§<(4”Z§""+M2)%il< 2 +M > qb,,). (16)

We should note (ajf)" = ajF,, because 7z, =z_, and
¢n" = ¢_,. The operators a;S satisfy the following com-
mutation relation:

[a;’ a:,r/] = On+4n' 0> [arf’ af’] =0. (17)

Equation (16) can be solved with respect to z, and ¢,, as
follows:

1
b = (aw — az),
i(47r2121»n _|_M2)%\/§
47°n-n 2\1
nn M~#)4
Ty :%(a;{—i_a;)' (18)
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The Hamiltonian (14) can be rewritten as

4
H= Z\/ - n—i—M2 <a_,,a,, ) (19)
We now neglect the zero-point energy,
" 4z’n-n
H—»H:Z\/ E + M? at, (20)
n
We define the number operator by
N= Zaf,,a;. (21)

Then we find the following expression of the partition
function:

agkl

2a(m+n)x (27[)2
_L3 Ze z { (576, + 5555)(:71,,,71,,4—( m

Z(B.u) = tre PN — e 2 I (1=e i)
4n’n -n
E,= ER M. (22)
Here # = 5 with the Boltzmann constant kg and u is the

chemical potentlal. Then we find the thermal average of the
operator a;a, is given as follows:

10InZ(B, )
—Omtn0 5 OE,
e PEa—in

<a;a;>T./4 =

= Omino 1 oPEuin” (23)

. T . .
By normal ordering the operator % in (10), we acquire

M2> :¢m¢n:)_

(2z)?
217

5ijmknl :¢m¢n . }

m+n X 1 (27[)2 (27[)
2 k5 o 15 E E — M? ————=9; +a
s Ze { F OO VEnEn + e (T 2UJELE, Y A
(24)
|
Therefore we obtain In the limit of L — oo, we obtain
. oT;; 1 K2
T (2m)?nn! o\ e <: ] :> R Nl S —
<: Dau, :>T 513 Z{ } | — o PEnin g /1 6(2x)° VK> + M?
. K2 MZ%
_ 2ﬂ) n 'I’l(s 6kl e_ﬁEn—W X—e R 1
- @Z L’E, 77 J1-ePhin 1 — e PRI )ik
(25) L 5 5 °°dkk74
“ne ), e
1
Particularly in the case of massless, M = 0, we find 8 e‘MkZJFMZ)Z_W (28)

27’/’\/'7;
: 8T,j . . 51{12 27[\/” n e L .
9/ r.m=o 6L3 g | — e~ in
(26)

The expectation value of the number operator in (21) is
given by

(27)

_ﬂEn_iﬂ

€

(N)r.m=0 = Z]_e_m
n

1 — e-BUC+M =iy

and in massless case, M = 0,

<:8Tij:> _ 1 5 5kl/mdk ke Ph-in
Og "/ rm—o 127 0 1

1o (&)

The expectation value of the number density #n is given by

1
N . 1 K2 PU+M)I~in
mmMEmLmH:_/&
0

L-e L3 | — e-BUC+MP—iy

(30)
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By using (8), we also find

1 1
: / o (R M)A
0

| — P+ M)o—in

’

<Tij>T:5ij<P>T

K e PR+M) iy

- d . (31
2 1 2 2y
677 J0 (12 4 M2)S(1 — e PW+I )iy

In the massless limit m — 0, we acquire
1 o KBePhuin
<P>T:3<P>T:4—ﬂ2£ dkl_em

1 0 3 a—s—ip
a2pt Jy T —em

When we explore the dark matter, the number of the
particles might be fixed. Let the number be N, and then the
partition function in (22) is replaced by

2r .
Zu,p) = [ dueroz(pn)
:/271' dﬂeiﬂNo_Znln(l_e_ﬂEn_m). (33)

0

Especially if we consider the limit of 7 — 0, only the
ground state can contribute, and we find

oT ;.
< ' > =0, (34)
O9u T=0,N=N,

and

NoM
L3

<p>T:O,N:N0 =Po= <Tij>T:o,N:N0 =0. (35)

Until now, we have treated the scalar field as a quantum
field at finite temperature. Instead of this, we often take the
real scalar field as a classical field. We now investigate
whether there is any difference in the two treatments. The

action of the general scalar field with potential has the
following form:

Sp = / d*x\/=gLy,
1
Ly=—50@)0406 V(). ()
Then we find

T;w = _w(¢)8ﬂ¢ab¢ + g/wE(/)v (37)

and instead of (9), we obtain

or,, 1 1
S = 5007 48,00 (< 3 0ld10900 - V(9))
po
1
+ 5 9 (DD PP, (38)

When we assume the Friedmann-Robertson-Walker (FRW)
universe with a flat spatial part,

ds® = —d* +a(1)? > (dx')?, (39)
i=1,2,3

and ¢ = ¢ 1in (36), a power-law behavior for the scale factor
a(t) of the universe,

a(t) = <é> (40)

with 7, and « real constants, can be realized by choosing

2a 3> —a
==, V(ig) =—5—5. 41

oD =Gag VO =g @D
In case of the FRW universe (39) filled by the perfect fluid
whose equation of state (EoS) parameter w is constant, & in

(40) is given by

2

(42)

For dust where w = 0, in (38), by using (41) and ¢ = t, we
find

S DB~ V($) = 3 0ld) ~ V(@)

2
2 2
3R’ 3K’
=0, (43)
and therefore
oT;;
—Y =0, (44)
g
which is consistent with (34). On the other hand,
in case w = %, which corresponds to the radiation, we
obtain a = 1 and
aT; 1 1
V= — (555! 4+ 6,165 ———, 45
agk! 2(1 ]+z 1)4K‘2t(2)¢2 ( )

whose tensor structure is different from that of the real
radiation in (29).
In general, in the case of the quantum field at finite

. oT;;
temperature, we find the tensor structure of WZ as
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oT; >
L) x 80K, 46
< g T / (46)

but for the tensor-scalar theory, we find

oT; 1
— (858! +6,'6.5). (47)
Ogu 2 ! !

Because of the difference of the tensor structure, the
propagation of the gravitational wave is different in the
case of the quantum field at finite temperature and the case
of the classical scalar-tensor theory, in general. Especially

in the case of the quantum field, because (: % :>T always
includes the factor 6"/, by the condition /,* = 0 in (2), as
long as we consider the gravitational wave with /,, = 0, the
term does not contribute. We may investigate the radiation
as a comprehensible example. The usual radiation, for
example in the early universe, is made of many quanta or
particles at finite temperature as is known in the (quantum)
statistical physics. The radiation is realized by the massless
particles or in the limit of the high temperature. On the
other hand, the FRW universe in the radiation dominated
era can be realized by the classical scalar-tensor theory. The

. . .
tensor structure of WZ is different in the two cases, as shown

in (46) and (47). The difference of the tensor structure
generates the difference of the propagation of the gravita-
tional wave [38]. In fact, the equation for the gravitational
wave in the scalar-tensor theory is given by

(48)

ijs

: A
0= <2H+6H2+Ha,—a,2+—2>h
a

but in the case of the quantum field with the finite
temperature, we have

(49)

ijs

. A
0= <6H+ 12H2+H8,—8,2+—2>h
a
where A is the Laplacian.

IV. MAGNETIC FIELD

In this section, we analyze the propagation of the
gravitational wave under the magnetic field. The energy-
momentum tensor of the electromagnetic field in curved
space-time is given by

1
T/u/ = gpaprFbo- _ngugpo—gnngnFaéjv
F,= Q,AD — 8UAﬂ, (50)

which gives

oT 1
g:: = _g/mgﬂCF;va{ - g (5;4/)51/” + 5/4651//))9519"CF§;7F1C

1
+§gyugp§gﬁfg”§F§nF‘rC' (51)

Equation (4) shows that there are mainly two kinds of
effects in the magnetic field. The LHS in (4) receives the
change of the geometry due to the existence of the magnetic
field, and we obtain nontrivial connections and curvatures.
The RHS tells that the gravitational wave gives some
fluctuation of the distribution of the magnetic field, which
becomes a new source of the gravitational field.

We should note that the contributions from the change of
the geometry are the same order with the contributions from
the fluctuation of the magnetic field.

A. Change of geometry by magnetic field

Because Eq. (50) gives the effects via the fluctuation of
the distribution in the magnetic field, we now examine the
change of the geometry. We assume that the background is
almost flat but there is a constant magnetic field along the z
direction, F, = —F,, = B. Then we find

1
TXX = Tyy = EBZ + O(Kz),
1
T,,=-T,= _532 + O(Kz)’
other components = 0. (52)

The Einstein equation (3) leads to
R =0, R (53)

The parameter M in (5) and (6) corresponds to x>B>. Then
before considering the gravitational wave, we need to
consider the O(k*B?) correction, corresponding to (5),
from the flat background g,, =7,,,

g;w = npw + Kszz.:ﬂzz' (54)

Then the Einstein equation (3) gives

9,0°¢,, +0,00¢,, — 0,0°C,, — 0,0,(n*,;)
2
- nyu(apaagpa - 82(’7/)6Cp0)) - ? TﬂIJ’ (55)

which corresponds to the equation M21%) = M21{") in (5).
A solution of (55) is given by

1 1,

Z.:xx:_iyzv gyy:_ix > Z:zz:_y >

1
— _Exz, other components = 0. (56)
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We find that the connections read

, 1
F;; = fo _Fix = _EszBz7
1
Oy =0 =-I3, = —EXKZBZ,
1
Iy =I5, =T = EyKZBZ,
1
Iy=Tr,=I= EXK2327
other components = 0. (57)
Because
Rlﬂpv = _Fﬁp,v + I_‘/};I/,p + O((Ksz)z)’ (58)
we obtain
X _ X Z _ _ 2Rn2
R yxy — —-R yyx _R}xxy = Ryxyx =k°B-,
thxt = _thtx _Rtxtx = Rtxxt = _K2327
) ) 1 ,m
R)zyz = _R}zzy = Rzyzy = _Rzyyz = _EK B~
other components = 0. (59)

The above results are consistent with (53). The expressions
in (56) with (54) show that we should require
K>B2x?, K*B%y? <« 1, (60)

or we need to consider the higher order terms with respect
to k?B?. The gauge conditions in (2) can be explicitly
written as

0= V¥h,,
= Db+ 3 B g = ) + 2+ )
= Yhy, + xhy, + xhy,),
0= Vih, = 0, + %,832 (2 (hyy — hy)
+ x(hyy + hy) + Yhy = xhyy = yh.),
0= Vih, = dh, + %K2B2(y2(hxz —h.)
+ x*(hy, + h,) — yhy,).
0=Vth, = 0"h, + %Ksz(yz(hx, —h,)
+ xz(hy, + hy) — xhy,),
0= g"hy, = hyy + hy, + hy, — by

1 1
+ EKszyz(hxx - hzz) + EKZBZyz(hyy + htt)' (61)

The above equations indicate that there appear the longi-
tudinal modes in general.

B. Propagation of gravitational wave and scattering

Because

V2hw =¢°V,V,h, = g¢°(0,V,h,
-7, Vohey, = T3, Vshy,,)
= (9" = K*B2¢"")0,0,hy,,
+ 1777 (0, (T by = T hye) = The0hy,
—T5,05he, = T5,0,h,:) + O((K*B*)?),  (62)

~T5,V.h

tuy

we find the following explicit expressions, which corre-

spond to the equation M221%Y = M*21"" in Eq. (6):

kB2

2 (yz(_a)zc +8§) _x2(8§ +al2))hxx
+K232{hxx +2yayhxx + (_yax +xay>(hxy + hyx)
+x0,(hy +hi) (63)

V2 hxx = nﬂgapan hxx -

232
V2 hy, =n"°0,0,h,, — KT

(=03 +02) =205 +07))hyy
+ k2B { hyy +2x0 by, + (=x0y +y0,) (hyy + hyy )
_yaz (hyz+hzy)}v (64)

k2B

vzhzz = ”pﬂapavhzz __(yZ(_ag —1-63) _x2 (a% + a%))hzz

+Kk2B*{=h_—2y0 h_ +y0, (h,+h,)}, (65)
k>B?

5 (=05 +02) = (05 + 07) )y
+Kk2B*{ by + (x0, +y0, ) hyy
+(=x0y +y0,) (hyx —hyy ) +x0;hyy
—y0_h,.}, (66)

V2hyy =170,0,h.y

232
vzhxz :npgapaahxz _KT(yz(_a% —‘,—8?) _x2 (a,% + 6%))hxz

+12B{ (=Y +x0y ) hy. + X0, +y0 hyy }, (67)
2 - x*B’ 2 2 2092 4 92
\Y hyz:np apaahyz_T(y (_ax+az)_x (ay +at))hyz
+K2Bz{(xax_yay)hyz+(_xa)'+y8x)hxz
+y8z(hyy_hzz)}' (68)
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On the other hand,
oT 1

6Tﬂl/ = ﬁ::hpm 6Txx = _EBzh_W’
- 11
5Tyy == —EB hxxa 6TZZ = B —Ehzz +§ (hxx + hyy) N
1 2 1 2
6Ty =5Bhy. 6T =—>Bh,.
1
6Ty = —5 Bh.. (69)

By combining (63)-(69), we find Eq. (4) gives

2R2

0 = 170,0,hy — o (Y (=02 + O2) = x2(D + 02))
+ K2B2{2y0,h,, + (—=y0y + x0,) (hyy + hyy)

+ xat(hxl + htx)}

1
+ 5:<232(—hm + hyy + hy + hy), (70)

ZBZ
5= (=08 + 02) = 2(05 + 07) ) hyy
+ k2B*{2x0,hyy, + (=x0, + y0,) (hyy + hyy)

- yaz(hyz + hzy)}

= 170,0,h

1
+ EKQBZ(hxx - hyy - hzz - htt)’ (71)
k*B?
0= ”pgapaghzz - B (y2(_8§ + a%) - xz(ag + atz))hzz

+ K2B2{_2yayhzz + yaz (hzy + hyz)}

1
+ EK'ZBZ (hxx - hyy - hzz - htt)’ (72)

k*B?

B R+ ) - 2@+ ),
+ k2B*{(x0, + y0,)hyy + (=x0, + y0,) (hyy — hyy)
+ x0hyy — y0,hy. } — Kszhxy, (73)

0 =1"70,0,h,y

2B2
0= ’/lpgapaahxz - £

(y*(=0% + 02) = x*(05 + 97)) .,
+ KQBQ{(_yax + xay)hyz + xathlz + yazhxy}

— Kszhxz, (74)
k*B?

—— (=08 + 02) = x*(0 + 97))h,.
+ KB (x0, =y, )hy. + (=x0y + y0, ).
+yaz(hyy _hzz)}' (75)

We investigate the propagation of the gravitational wave
based on the above equations. In order to see the effect of
the magnetic field, we assume

0 =n"0,0,h,,

hy, = h sink(z — 1) + O(2B?),
other components = O(k*B?), (76)

which corresponds to x mode propagating in parallel with
the magnetic field. Then we obtain

0= ”paapaahxx = ”Ipaapaahyy = ﬂpga/)aahzz = ﬂpgapaahyz»
(77)
ZBZkZ )
0 =n"°0,0,h,, + £ 5 (y? = x)h sink(z — 1)
—2B*hY sink(z — 1), (78)
0 = 7°0,0,hy, + K2B*ykh cos k(z — 1) (79)
pYo’txz X .

Therefore if we define [1=#»"?0,0,, we find
hyy = hyy = hy; = hy, =0,
h,, = —2B*khY' 07 (y cos k(z — 1)),

Iy = h@{sm k(z— 1)

- ?B*0! ((M - 1) sink(z — t)> }

(80)

The O(xk*B?) is given by the scattering of the gravitational
wave by the magnetic field. It could be interesting that there
appears a nontrivial /,, component.

Next we explore the + mode propagating in parallel with
the magnetic field,

he = —hy, = Y sink(z — 1) + O(*B?),
other components = O(x*B?). (81)
Then we find
2B
= 170,05+~ — 2\ sink(z - 1)
+ k2820 sink(z - 1), (82)
B2
0= —10,0,h,, +——— 5 (y? = )V sin k(z - 1)
+ 2821 sink(z — 1), (83)
0=n"0,0,h,, =n"°0,0,h., = 10,0, (84)
=n°0,0,h,, — K2B2ykh" cos k(z — 1), (85)

and the solution is given by
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hzz - hxy = hXZ = 0’

hyy=—hy, =h {sin k(z—1)

e (S0 Yo s

Then there appears a nontrivial A, component. The
physical behavior of the + mode (86) does not change
from that of the x mode in (80).

We examine the x mode propagating perpendicular to
the magnetic field,

h, = h sink(y — 1) + O(2B?2),
other components = O(xk*B?). (87)

Then we find

0=71"0,0,hy, =n"°0,0,hyy, =n°0,0,h.. =n"°0,0,h,,,

(88)

0 = 770,0,hy. — B sin k(y — 1)
—i2B*hY sink(y — 1), (89)
0 = 77°0,0,hy. — 2B cos k(y — 1), (90)

whose solution is given by

hy = hyy =hy, = hxy =0,
hy, =R sink(y — ) + k2B>07 (K22 + 1) sink(y — 1))},
hy. = 2Bk 07! (xcosk(y—1)). (91)

In the case of the + mode propagating perpendicular to
the magnetic field,

hy =—h,, = ﬁf) sink(y — 1) + O(x*B?),
other components = O(x*B?), (92)

we obtain

0=10,0,hy, — k2B RY sink(y — 1)

+2:2B2kyhY cosk(y — 1) —=2B*h" sink(y—1),  (93)

0 = #°0,0,hyy = 1°°0,0,hy, = 1°°0,0,h,.. (94)

0 = 77°8,0,h.. + 2B RY sin k(y — 1)
+ 22 B2kyh " cos k(y — 1)
+ k2820 sink(y - 1), (95)

0=n"0,0,h,, — Kszkxﬁ(f) cosk(y —1). (96)
Then we find

he = B {sink(y — £) + K2B>071 (k2% + 1) sink(y — 1)
—2kycosk(y —1))}, hy, = hy, = hy, =0,

h,, =B {=sink(y - 1)
+ 2B*O7 N (= (k*x% + 1) sink(y — 1)
—2kycosk(y—1))},

hyy = B2k 0 (x cos k(y — 1)), (97)

The behavior of the + mode in (97) seems to be rather
different from that of the x mode (91).

In the above expressions, in order that the perturbation
should be consistent, in addition to (60), we need to require

K’B?
En < 1. (98)
We should note that (1! is the retarded propagator,
which is nonlocal and satisfies the equation
OG(x*,x*)=8*(x*—x"*), G xX*)=0"1.  (99)
Therefore for any function f(x*) of the space-time coor-
dinate x#, we have

O (o) = /V PXG(, F(). (100)

The region V of the integration is given by the region of the
space-time, where the magnetic field exists. Therefore the
gravitational wave carries the information of the distribu-
tion of the magnetic field in the universe. In the above
analysis, we have assumed that x>B”> should be small
enough. Even if x*B? is small, the integration over the
space-time in (100) enhances the amplitude of the gravi-
tational wave.

As an example, we consider NGC 6946, which is a spiral
galaxy. The size of NGC 6946 is ~100 k light years ~ 102 /eV,
and its distance from the earth is 20 M light year ~ 10°°/eV.
We may estimate

/ d*X'G(x*, xX) f(x*) ~ (100 /eV)~1 (107 /eV)3 f
v

= 10*/eV?f. (101)
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The exponents —1 and 3 come because we are considering the
static magnetic field. Because NGC 6946 has a magnetic field
with G, we may evaluate B as

B> ~ 10716 V4, (102)
and therefore
K’B? ~1077% eV2, (103)
We may also estimate x and y from the size of the galaxy as
x~y~10%8/eV. (104)
Therefore we obtain
K2B?x* ~k*B%y? ~ 10710 <« 1, (105)

and as a result the condition (60) is satisfied.

In the case of the gravitational wave GW 150914, the
typical frequency is 100—500 Hz, which corresponds to the
wave number

k~10°m™' ~ 10713 eV, (106)
and hence
kx ~ ky ~ 1022 (107)
Because
K2 B2
2 ~107%0 <« 1, (108)

the condition (98) is also satisfied.
For example, in (80), we find

/’lxz = _K2B2kh£<0)|:|_l (y cos k(Z - t))

~ 107724544220 cos k(7 — 1) = 100 cos k(z — 1),

hy = B {sin k(z—1)

-*B*0O! <<M - 1) sink(z — t)) }

~(1+ 1028 sink(z — 1), (109)

which shows that the corrections are rather large. The large
correction comes from the large size of the galaxy. Of course,
we have neglected the numerical factors and we have
assumed that the magnetic field is uniform at the large scale
of the galaxy, which indicates that we should have over-
estimated the value. Furthermore the correction to the wave
number is enhanced because it is multiplied by the distance
of the propagation, which gives a non-negligible correction

in the phase. However, we expand the expression with
respect to k>B?, and there appears the large correction, for
example, sin ((k + ax*B?)z) ~ sin (kz) + cos (kz)ax? Bz,
where we express the correction by ax’B?, which might
be small but ax’>B%z (multiplied with z) is not small in
general. Anyway the magnetic field may give a contribution
that cannot be neglected.

We may study magnetar [39], which has a very strong
magnetic field of 10'" T. Then we find B> ~ 10?° eV and
therefore k>B”> ~ 10730 eV2. If we consider the gravita-
tional wave in (106), we find

K2B?

e 0% <1,

(110)

which is still small and the condition (98) is also satisfied.
Thus the perturbation is still valid. The typical size of the
magnetic field in magnetar is 2 x 108 km ~ 10'3/eV, and
therefore

kx ~ ky ~ 103 (111)

and

K2B%x? ~ k?B%y? ~ 1, (112)

which tells us that the condition (60) is not always satisfied.
In the case of SGR 1806-20, which is the first magnetar
found, the distance from the Earth is 5 x 10* light years
~10%7/eV, instead of (101), and we may estimate

/ d*X'G(x*, x™) f(x™) ~ (1077 /eV)~1 (101 /eV)* f
v

= 10'8/eV2f. (113)

The expressions corresponding to (109) have the following
form:

hy, = —*B*kh' 07 (ycos k(z — 1))
~ 10730434181 cog k(2 — 1) = 108 cos k(z — 1),

hy, = nY {sin k(z—1)

e (EU2 1) i)

~(1+ 10 sin k(z — 1), (114)

where the corrections are reasonably small. Hence, contrary
to the case of the large magnetic field, it could be difficult to
detect the effect of the magnetic field.
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C. Propagation of gravitational wave
by adiabatic approximation

In the last subsection, we have investigated the scattering
of the gravitational wave by the magnetic field. As
mentioned after Eq. (51), there are two kinds of sources
for the scattering. One is given by the change of the
geometry and the other is the fluctuation of the distribution
of the magnetic field given by the gravitational wave. The
obtained results seem to say that the effects in the change of
the geometry are much larger than those of the fluctuation
of the magnetic field.

The expressions (80), (86), and (97) [except of (92)]
could not be valid for the magnetic field of the galactic size
although they may be valid for the magnetic field with a
smaller size. This could be mainly because the variation of
the phase is not small although the correction of the wave
number is small. Then we now try to solve Egs. (70)—(75)
by using the adiabatic approximation, where we neglect the
derivative with respect to the background.

First we analyze the gravitational wave along the z axis
and assume

hij= hg')) (x’)’)e“k(x’y)z_w(x’u)t)v hi=hy=h,=0. (115)

Finally we choose the real part of the above expression. We
take hl(-?) (x,y), k(x,y), and @(x,u) can depend on the
coordinates (x,y) although we neglect the derivative with
respect to x and y for h,(»;)) (x,¥), k(x,y), and @(x, u). Then
Egs. (70)—(75) give the following algebraic equations:

232
0= (_k2+w2_’<2 (_k2y2+w2x2)>h)(gc>

1
+ 5K B2 (=i + )+ b, (116)
K*B?
0= <—k2 + @® - 5 (=k*y* + w2x2)> )
1
= 2iky B + 2B — by — R (117)
2B2
0= (_k2 + ) _K2 (_k2y2 + a)2x2)>h£)
1
+ 2ikyhyd + S R2BH( = 1y = b)), (118)
K> B? 0
0= <—k2 +@? ———(=k*? + a)2x2)> )
— ikyeB2hY — k2B*hY), (119)
232
0= (_kZ + > _K2 (_k2y2 + a)2x2))hgg)
v B2 0 2p2(0)
Xy = XZ
+ ikyk*B*hyy — k*B*h (120)

2 B2
0= <—k2 + w® - KT (—k*y* + w2x2)> A
~ ).

+ iky2B2 (RS (121)

Then the solution corresponding to the + mode is given by

hS) = —h§3>, other components = 0, (122)
with the dispersion relation,
K*B?
0=-k+a® ———(-k*y* + 0*x?) —*B*>.  (123)

As is clear from the dispersion relation, there appears the
square of an effective mass ~k>B? in addition to the x, y
dependent shift of the phase. Equation (123) leads to

<1+K2322y2> - <1+K2322x2> 2 _ 22

W™ —K
2B2(2_\2
k2:(1+M>w2—x232+0((;<232)2). (125)

(124)

or

2

The f LBy 2
e factor 1+ 5 in front of w* comes from the
change of the geometry, and therefore there appears
the same correction even for the propagation of light but
the term x> B? gives the square of the effective mass, which
is absent in the photon.

The solution corresponding to the x mode is given by

) 1
hy, =
° ikyk®B?

2p2

B
x (—k2 T B e K232> Y,

other components = 0, (126)

with a little bit of a complex dispersion relation,

2R2

B 2
<—k2 +@? _ K (—k2y2 +w2x2) _Ksz> _ k2y21<4B4,

(127)

that is,

2 2 KB 2.2 2.2 212 2p2
0=—-k"+ow —T(—ky + w*x*) — k*B* £ kyk*B*.

(128)

We should note that there should appear a &,, component
whose phase is different from that of the 4, component by 7.
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Next we consider the gravitational wave along the y axis
and assume

A (x.y) eik(xy)y=o(xu)r)

h,-j ij hti:hit:htt:O' (129)

Again we neglect the derivative with respect to x and y for

(0) S .
hi;’(x,¥), k(x,y), and @(x, u) as an adiabatic approxima-
tion. Then we find the following equations:

0= <—k2 +w? - KB (k> + w2)> A
+2ikk2 B2 (yhY + xhS) + %KZBZ(—hSSQ + 1)+ 1y,
(130)
0— <—k2 T @? _I<2B2x2 (e + w2)>h§g)
— 2ikk®B2xhY) + %Ksz(h,(gc) —nY =), 31

0= (—18 Lo B (K + w2)> nQ — 2iki2B2ynY

+ %KQBQ(I’!J(SC) — Y -y, (132)
0::<_H‘*w2‘K%ﬂﬁ(P—%w”>hQ

+ ik BHyhY) — x(hY — KO} — 2B, (133)
0= <—k2 +w? - ﬁ (K + 0)2)> K

+ ik B2xh\) — 2B2hY, (134)
0= (_k2 e KB @ w2)> 40

+ k2B (—yhY — xnY). (135)

Note as in Egs. (116)—(121), it is difficult to solve
Egs. (130)—(135). First we assume A\ =AY =0 and
the following dispersion relation:

ZB2x2

0=—k>+a? -~

(k* + @?)

+ 2ikk*B%y — k*B% + Ax*B2. (136)

By substituting (136) into Eqgs. (130)—(133), we obtain

1
0 = 2ikxhY + 5 hQ + 1Y + 1y + 09, (137)

1
+ o (WS + 1Y = hY) + 2k,

0 = —2ik(yh\Y + xhS) 5

(138)

1
0 = —4ikyhl? +5 (hE) = ) + W)+l (139)
0 = ik{—ynY — x(h — K + 209, (140)
which can be rewritten by using a matrix,
A+ 1 2ike ) [ h
2 2 2 xx
o | B oAby b ik hy
! -1l diky+a 0 A
—ikx ikx 0 —iky+24 ) \ nY
(141)

Then the dispersion relation (136) can be determined by
solving the following equation:

A+ 3 : 2ikx
0 1o A+i-2iky -3 —2ikx (142)
! -1 l-diky+2 0
—ikx ikx 0 —iky + 4

In the case that |kx|, |ky| < 1, we may approximate
Eq. (141) as follows:

1\ 3 1 1 1
0= (A+=] = (A4+=)—=p=A[A=2)(A+1)2,
{es) 3 (e) mgf =)o
(143)
whose solution is given by A =0, % and two A= —1.
Because there appears the imaginary part in the dispersion
relation (136), the amplitude of the gravitational wave is

decaying. The mode corresponding to 4 = 0 gives hY) =

h@ = hg(;) =0and h,(g) # 0, and therefore the mode could
be unphysical. The mode corresponding to 4 :% gives

hg;) = hg(;) = —hY and the mode to 1 = —1 gives nY =

h.@) + hg?. These are not connected with the modes of the
gravitational wave in the vacuum. In the case that |kx|,
|ky| > 1, by using Eq. (141), we acquire

0 = (A — 4iky)(A — iky) (1> — 2ikyd — 2k*x?),  (144)
whose solution is given by
A = iky, 4iky, iky £ ik\/y* —2x>.  (145)

For 1 = iky, we obtain hg;) = hi‘?, h =0, and h)(g) =

— 0. When 4 = 4iky, Y = nl) = 1 =0, and if
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A=iky+iky/y? =222, we find hY) = 0 and A = 4 n\Y,
W) = — 4 hl).

I—2iky
We may also investigate the mode where h§f,’2 = h§g,) =

hY =n® =0. Then by using (134) and (135), the
dispersion relation is given by

22,2
0= (—18 +o? - (1 4 0?) - K232>
22,2

X (—k2 e (k* + w?) — ikszBz)

— KB, (146)
and we obtain

i K2B2x?
h§2) = —m <—k2 +CU2 —T(kz -+ 0)2) —K232> hgc(;)
(147)

Then we find that the adiabatic approximation gives rea-
sonable results for the large magnetic field compared with
simple perturbation with respect to x’B? even if k*B? is
small. As mentioned after Eq. (109), the overestimated
amplitude in the simple perturbation can be absorbed into
the phase, and therefore the real amplitude does not become
so large.

V. F(R) GRAVITY CASE

Let us briefly discuss F(R) gravity in a similar context.
Its action is given by

F(R
SF(R) = /d4x\/ _g< 2(I<2> + 'C'matter(guw Tl)) ’ (148)

where V¥; expresses the field corresponding to matters. It is
well known that by using the scale transformation,
o =—InF'(A), (149)

G = € s

action (148) can be rewritten in the scalar-tensor form
Sg= | d*x\/=g L (r-3 °9,60,6 —V
E= X/—9 22 —59’) p00s0 — (o)

+ ‘Cmatter (eagﬂw lPt) } ’
— e f(g(e™)).

Here g(e™) is given by solving the equation ¢ =
—In(1+ f'(A)) =—-InF'(A) as A = g(e™). In the case
of the Einstein gravity in this paper, we have neglected the
cosmic expansion. Hence we may assume the scalar field ¢
is a constant ¢ = 6 and V(o) = 0. Furthermore, as long
as we consider the gravitational wave, we do not consider

V(o) = e%g(e™) (150)

the fluctuation of the scalar field ¢. This also shows that the
metric e°g,, that appears in the Lagrangian density of
matter Ly, is different from the metric g,, by only a
constant scale transformation, which effectively gives the
change of the gravitational constant k> — x%¢”. Thus as
long as we neglect the cosmic expansion, the propagation
of the gravitational wave in the F(R) gravity is not
qualitatively changed from that in the Einstein gravity.

By the variation of the action in (150) with respect to the
metric g,,, we obtain the Einstein equation in the Einstein
frame,

1 3
R”I/ - Eg,,,,R = 38140'8,/0' + g;w <_§gp680¢866 - V(()-))

+ k2T, (151)
Naively if the first two terms are dominant compared with
the last term x’e°T 4w as in the vacuum, we can neglect the
contribution from the matter. On the other hand, if the last
term Kze”T,w is dominant as in the dense matter, the
expansion of the universe, which could be generated by
the first two terms, could be negligible.

In the case of the F(R) gravity, there appears a scalar
mode corresponding to o. The mass of the scalar mode
should be very small in the bulk but the mass can become
large inside the matter by the chameleon mechanism [40].
Therefore the propagation of the scalar mode is a little bit
complicated.

The propagation of the graviton in other kinds of the
modified gravity theories has also been actively investi-
gated; see, for instance, [41-47].

VI. CONCLUSIONS

In the present paper, we have analyzed the propagation
of gravitational waves in the medium in detail. We have
shown how the propagation of gravitational waves could be
changed by the medium.

In general, the radiation is made of the quanta or massless
particles at high temperature. Usually the radiation consists
of photons, which are quanta of the electromagnetic field.
We should note that the radiation-dominated stage of the
universe can be realized not only by the real radiation but
also by the scalar-tensor theory. Then we have shown how to
distinguish the radiation dominated universe generated by
the real radiation with that generated by the scalar-tensor
theory.

Motivated with the above observations, we have inves-
tigated the propagation of gravitational waves in the
medium. Especially it has been found that the propagation
of gravitational waves in the thermal radiation in general
relativity is different from that in the scalar-tensor theory.
Furthermore, we have explored the propagation of gravi-
tational waves in the uniform magnetic field, and it has
been found that the effects from the magnetic field to the
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propagation could not be negligible. For a small object such
as magnetar, the perturbation with respect to x>B? could be
valid, but for the large object of galaxy size such as the
large magnetic field, the perturbation breaks down. For the
large object, the adiabatic approximation gives more
reasonable results. Note that we limited to a flat space
background where there is no qualitative difference
between general relativity and, say, F(R) gravity.

At the next stage, it would be extremely interesting to
extend our study for evolving cosmological background. It
is known that the evolution of gravitons in accelerating
cosmologies for the case of extended gravity which has
been considered in Ref. [48] is qualitatively different from
that of general relativity. Then, the account of the cosmic
magnetic field may even increase this qualitative difference.
Then, as the first proposal for future possible extensions of
the present work one can study the gravitational waves
propagation in the anisotropic (Bianchi) universe with
magnetic fields. Moreover, it has been examined that the
stochastic background of gravitational waves can be tuned
by the effect of F(R) gravity [49]. This again may be
generalized for the presence of the cosmic magnetic field.

Finally, it is very interesting to mention that there
is a possibility of the existence of some relations
between primordial magnetic fields and primordial gravi-
tational fields [50]. This may be a clue to find a
fundamental connection between electromagnetism and
gravitation, which would be similar to that between
thermodynamics and gravity. From the other side, such
a study may give further bounds to gravitational wave
propagation at the early universe with primordial mag-
netic fields.
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