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The propagation of gravitational waves is explored in the cosmological context. It is explicitly
demonstrated that the propagation of gravitational waves could be influenced by the medium. It is shown
that in the thermal radiation, the propagationof gravitationalwaves in general relativity is different from that in
the scalar-tensor theory. The propagation of gravitational waves is investigated in the uniformmagnetic field.
As a result, it is found that cosmic magnetic fields could influence the propagation of gravitational waves to a
non-negligible extent. The corresponding estimation for the spiral galaxy NGC 6946 effect is made.
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I. INTRODUCTION

It has been proved by LIGO that a two-black-holes
system emits strong gravitational waves in the coalescence
phase [1]. The first detection was from black holes with
about 30 solar masses, and the following ones were from
the mergers of two black holes (black hole binary) [2–5].
Very recently, the so-called multimessenger astronomy has
started with the discovery of strong gravitational waves
from the collision of two neutron stars [6] and the
electromagnetic radiation was detected in coincidence with
the gravitational wave.
It is very difficult and complicated to analyze the

processes of black hole mergers and scatterings because
gravitational dynamics is too strong. In spite of the diffi-
culties, there has been accurate numerical simulations,which
reproduce the observational results [7,8] although various
approximate approaches [9] and analytic ideas [10,11] to
calculate the gravitational wave signatures in the strong
gravitational field regimes have also been proposed.
On the other hand, the existence of cosmic magnetic

fields have been known and those origins have also been
explored. In particular, the origins of large-scale magnetic
fields observed in clusters of galaxies can be primordial
magnetic fields from inflation and the following cosmo-
logical phases in the early universe (for reviews on cosmic
magnetic fields, see, e.g., [12–21]).

Moreover, various modified gravity theories including
the scalar-tensor theory have especially been studied in the
cosmological context recently in order to explain the late-
time cosmic acceleration (for recent reviews on modified
gravity theories as well as the dark energy problem, see, for
example, [22–26]). The cosmological bounds from the
Neutron Star Merger GW170817 [6] have been examined
in the scalar-tensor and FðRÞ gravity theories [27]. The
constraints [28] on alternative theories of gravity have been
calculated with GW150914 and GW151226 [2,29,30].
Various features of gravitational waves from modified
gravity theories have also been studied [31–33].
In this paper, we clarify how the propagation of gravita-

tional waves could be changed by the medium. Usually the
radiation is made of the quanta or relativistic particles at the
high temperature as in the early universe after the inflation. In
the radiation dominated era, the universe expands as a ∝ t−

1
2.

Here a is the scale factor of the universe and t is the
cosmological time. On the other hand, it is known that the
power law behavior a ∝ t−

1
2 in the radiation dominated

universe can also be realized by the classical scalar-tensor
theory.1 In order to distinguish the above two kinds of the

1For example, it has been shown that any evolution of the
universe expansion can be realized in the scalar-tensor theory in
[34]. See also [35,36].
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radiation dominated universe, we show that the propaga-
tion of gravitational waves in the thermal radiation in
general relativity is different from that in the classical
scalar-tensor theory. Usually, the radiation is made of
photons, which are quanta of the electromagnetic field.
The classical electromagnetic field is different from the
photon. As an example of the classical electromagnetic
field, we investigate the propagation of gravitational waves
in the uniform magnetic field and we demonstrate that the
effects from the magnetic field to the propagation could
not be negligible.
The structure of the paper is the following. In Sec. II, we

explore the propagation of gravitational waves in general
matter. In Sec. III, we investigate the propagation in quanta
and thermal matter with finite temperature. In Sec. IV, we
analyze the propagation of gravitational waves under the
existence of magnetic fields. In Sec. V, we consider the case
of gravitational waves in FðRÞ gravity. Finally, conclusions
are given in Sec. VI.

II. PROPAGATION OF GRAVITATIONAL
WAVE IN MATTERS

The gravitational wave is given by the perturbation from
the background geometry,

gμν → gμν þ κ2hμν; ð1Þ

where jhμνj ≪ 1 is the perturbation with respect to a given
background gμν. Then by imposing the gauge condition

∇μhμν ¼ gμνhμν ¼ 0; ð2Þ

the Einstein field equations

Rμν −
1

2
gμνR ¼ κ2Tμν ð3Þ

take the perturbed form as follows:

1

2
½−∇2hμν − 2Rλ

ν
ρ
μhλρ þ Rρ

μhρν

þ Rρ
νhρμ − hμνRþ gμνRρλhρλ� ¼ κ2δTμν: ð4Þ

Let us denote the scale of κ2Tμν byM2, that is, κ2Tμν ∼M2.
If we assume that M2 can be small enough, we can expand
the left-hand side (LHS) and the right-hand side (RHS) of
the Einstein equation with respect to M2 as

Rμν −
1

2
gμνR ¼ Ið0ÞR þM2Ið1ÞR þM4Ið2ÞR þOððM2Þ3Þ;

κ2Tμν ¼ M2Ið1ÞT þM4Ið2ÞT þOððM2Þ3Þ: ð5Þ

We should note that the RHS starts with the OðM2Þ term,

and therefore the Oð1Þ term Ið0ÞR in the LHS should vanish,

which gives the flat vacuum solution gμν ¼ ημν. Then the

OðM2Þ termM2Ið1ÞT , which expresses the matters in the flat

background and equation M2Ið1ÞR ¼ M2Ið1ÞT , gives the
OðM2Þ correction to the geometry. We should note that
the energy-momentum tensor Tμν in Eq. (3) depends on the

metric; therefore the OðM4Þ term M4Ið2ÞT in the RHS
expresses the matter in the background with the OðM2Þ
correction. Then the equation M4Ið2ÞR ¼ M4Ið2ÞT gives the
OðM4Þ correction to the geometry. By iterating the above
procedure, we can find the background geometry by the
perturbation with respect to M2. The corrections to the
geometry, which includes the gravitational wave, appear as
the perturbative series with respect to κ2. Therefore we have
two parameters M2 and κ2 for the perturbative expansions.
The parameter M2 is conceptually different from the
parameter κ2, and they are independent from each other.
Then the LHS and the RHS of the Einstein equation can be
expressed by the double expansion with respect to M2

and κ2,

Rμν −
1

2
gμνR ¼ Ið0ÞR þM2Ið1;0ÞR þ κ2Ið0;1ÞR þM2κ2Ið2ÞR

þOðM4; κ2; κ2M2Þ;
κ2Tμν ¼ M2Ið1;0ÞT þM2κ2Ið1;1ÞT þOðM4; κ4Þ: ð6Þ

In Eq. (6), Oðκ2Þ, κ2Ið0;1ÞR , M2κ2Ið2ÞR , M2κ2Ið1;1ÞT , and
Oðκ2M4Þ terms express the propagation of the gravitational
wave because the energy-momentum tensor Tμν in Eq. (3)
depends on the metric, and if we consider the perturbation
as (1), there is a variation of the energy-momentum tensor
Tμν in (4). On the other hand, the Oðκ4Þ terms include the
nonlinear interaction between the gravitational wave. We
now neglect the interactions between the gravitational
wave, we omit the OðM4; κ4Þ terms, and we consider
the κ2 terms including the leading corrections with respect

to M2, that is, κ2Ið0;1ÞR , M2κ2Ið2ÞR , and M2κ2Ið1;1ÞT . The effect

of the term M2κ2Ið1;1ÞT is similar to the propagation of light
in the medium (such as water). As we know by the
Cerenkov radiation, the speed of the light decreases in
the medium. Although the propagation of the light also
follows the geodesics, the incident light makes the electric
charge or electric or magnetic moment distributions fluc-
tuate, and the fluctuations with the electric or magnetic
dipole moments generate the light. The generated light
interferes with the incident light, and the decrease of the
propagation speed of the light occurs. These effects are
known as a polarization and can be expressed as the
changes of the permittivity and permeability. Even for
the gravitational wave, there occur similar phenomena,
which were also recently reported in the paper by Flaugher
and Weinberg [37] in detail for the propagation of the
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gravitational wave in the cold dark matter. The incident
gravitational wave makes the medium fluctuate and the
fluctuation with a quadrupole moment generates an addi-
tional gravitational wave. The RHS in (4) or the term

M2κ2Ið1;1ÞT in (6) expresses such effects although our for-
mulation is rather simplified compared with the paper [37].

III. QUANTA AND THERMAL MATTER

In this section, we consider the real scalar field as the
matter. We treat the scalar field as the quantum field at the
finite temperature. In case of the high temperature or in a
massless case, the scalar field plays the role of the radiation.
On the other hand, in the limit that the temperature vanishes
but the density is finite, we obtain the dust, which can be a
cold darkmatter. After that, we compare the obtained results
with those in the classical scalar-tensor model [27,38].
Even in the classical scalar-tensor model, we can realize

a matter dominated (filled with dust) or radiation domi-
nated universe. Then we find that in the case of the matter
dominated universe, the result for the quantum field
coincides with the result in the classical scalar-tensor
theory, but in the other case, the tensor structure of δTμν

is different in the two cases; therefore the propagation of the
gravitational wave changes in general.
In curved space-time, the energy-momentum tensor of a

free real scalar field ϕ with mass M is given by

Tμν ¼ ∂μϕ∂νϕþ gμν

�
−
1

2
gρσ∂ρϕ∂σϕ −

1

2
M2ϕ2

�
: ð7Þ

In the flat background, we find

T00 ¼ ρ ¼ 1

2

�
π2 þ

X
n¼1;2;3

ð∂nϕÞ2 þM2ϕ2

�
;

Tij ¼ ∂iϕ∂jϕþ 1

2
δij

�
π2 −

X
n¼1;2;3

ð∂nϕÞ2 −M2ϕ2

�
: ð8Þ

Here π ¼ _ϕ is the momentum conjugate to ϕ. We also
obtain

∂Tμν

∂gρσ ¼ 1

2
ðδμρδνσ þ δμ

σδν
ρÞ
�
−
1

2
gηζ∂ηϕ∂ζϕ −

1

2
M2ϕ2

�

þ 1

2
gμν∂ρϕ∂σϕ; ð9Þ

which has the following form in the flat background:

∂Tij

∂gkl ¼
1

4
ðδki δlj þ δliδ

k
jÞ
�
π2 −

X
n¼1;2;3

ð∂nϕÞ2 −M2ϕ2

�

þ 1

2
δij∂kϕ∂lϕ: ð10Þ

We now evaluate ∂Tij

∂gkl in (10) at the finite temperature T. In
order to make the situation definite, we assume that the
three-dimensional space is the square box where the lengths
of the edges are L, and we impose the periodic boundary
condition on the scalar field ϕ. Then the momentum k is
given by

k ¼ 2π

L
n; n ¼ ðnx; ny; nzÞ: ð11Þ

Here nx, ny, and nz are integers. If we define

ϕðxÞ≡ 1

L
3
2

X
n

ei
2πn·x
L ϕn; πðxÞ≡ 1

L
3
2

X
n

ei
2πn·x
L πn; ð12Þ

we find

Z
d3xϕðxÞ2 ¼

X
n

ϕ−nϕn;

Z
d3xπðxÞ2 ¼

X
n

π−nπn: ð13Þ

The Hamiltonian is given by

H ¼ 1

2

X
n

�
π−nπn þ

�
4π2n · n

L2
þM2

�
ϕ−nϕn

�
: ð14Þ

Here π̃ðkÞ and ϕ̃ðlÞ satisfy the following commutation
relation:

½πn;ϕn0 � ¼ −iδnþn0;0: ð15Þ

We now define the creation and annihilation operators
a�n by

a�n ¼ 1ffiffiffi
2

p
�

πn

ð4π2n·nL2 þM2Þ14
� i

�
4π2n ·n

L2
þM2

�1
4

ϕn

�
: ð16Þ

We should note ða�n Þ† ¼ a∓−n because πn
† ¼ π−n and

ϕn
† ¼ ϕ−n. The operators a�n satisfy the following com-

mutation relation:

½a−n ; aþn0 � ¼ δnþn0;0; ½a�n ; a�n0 � ¼ 0: ð17Þ

Equation (16) can be solved with respect to πn and ϕn as
follows:

ϕn ¼
1

ið4π2n·nL2 þM2Þ14 ffiffiffi
2

p ðaþn − a−n Þ;

πn ¼
ð4π2n·nL2 þM2Þ14ffiffiffi

2
p ðaþn þ a−n Þ: ð18Þ
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The Hamiltonian (14) can be rewritten as

H ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2n · n

L2
þM2

r �
aþ−na−n þ 1

2

�
: ð19Þ

We now neglect the zero-point energy,

H → H̃ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2n · n

L2
þM2

r
aþ−na−n : ð20Þ

We define the number operator by

N ≡X
n

aþ−na−n : ð21Þ

Then we find the following expression of the partition
function:

Zðβ; μÞ ¼ tre−βH̃−iμN ¼ e−
P

n
ln ð1−e−βEn−iμÞ;

En ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2n · n

L2
þM2

r
: ð22Þ

Here β ¼ 1
kBT

with the Boltzmann constant kB and μ is the
chemical potential. Then we find the thermal average of the
operator aþma−n is given as follows:

haþma−n iT;μ ¼ −δmþn;0
1

β

∂ lnZðβ; μÞ
∂En

¼ δmþn;0
e−βEn−iμ

1 − e−βEn−iμ
: ð23Þ

By normal ordering the operator ∂Tij

∂gkl in (10), we acquire

∶
∂Tij

∂gkl ∶ ¼ 1

L3

X
m;n

ei
2πðmþnÞ·x

L

�
1

4
ðδki δlj þ δliδ

k
jÞ
�
∶πmπn þ

�ð2πÞ2
L2

m · n −M2

�
∶ϕmϕn∶

�
−
ð2πÞ2
2L2

δijmknl∶ϕmϕn∶
�

¼ 1

L3

X
m;n

ei
2πðmþnÞ·x

L

�
1

4
ðδikδjl þ δi

lδj
kÞ
� ffiffiffiffiffiffiffiffiffiffiffiffi

EmEn

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

EmEn
p

�ð2πÞ2
L2

m · n −M2

��
−

ð2πÞ2
2L2

ffiffiffiffiffiffiffiffiffiffiffiffi
EmEn

p δijmknl
�
aþma−n :

ð24Þ

Therefore we obtain

�
∶
∂Tij

∂gkl ∶
�

T
¼ 1

2L3

X
n

�ð2πÞ2nknl
L2En

δij

�
e−βEn−iμ

1 − e−βEn−iμ

¼ 1

6L3

X
n

�ð2πÞ2n · n
L2En

δijδ
kl

�
e−βEn−iμ

1 − e−βEn−iμ
:

ð25Þ

Particularly in the case of massless, M ¼ 0, we find

�
∶
∂Tij

∂gkl ∶
�

T;M¼0

¼ 1

6L3
δijδ

kl
X
n

2π
ffiffiffiffiffiffiffiffiffi
n · n

p
L

e−
2πβ

ffiffiffiffi
n·n

p
L −iμ

1 − e−
2πβ

ffiffiffiffi
n·n

p
L −iμ

:

ð26Þ

The expectation value of the number operator in (21) is
given by

hNiT;M¼0 ¼
X
n

e−βEn−iμ

1 − e−βEn−iμ
: ð27Þ

In the limit of L → ∞, we obtain

�
∶
∂Tij

∂gkl ∶
�

T
¼ 1

6ð2πÞ3 δijδ
kl

Z
d3k

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p

×
e−βðk2þM2Þ12−iμ

1−e−βðk2þM2Þ12−iμ

¼ 1

12π2
δijδ

kl

Z
∞

0

dk
k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þM2
p

×
e−βðk2þM2Þ12−iμ

1−e−βðk2þM2Þ12−iμ
; ð28Þ

and in massless case, M ¼ 0,

�
∶
∂Tij

∂gkl ∶
�

T;M¼0

¼ 1

12π2
δijδ

kl

Z
∞

0

dk
k3e−βk−iμ

1 − e−βk−iμ
: ð29Þ

The expectation value of the number density n is given by

hniT;M¼0≡ lim
L→∞

hNiT;M¼0

L3
¼ 1

2π2

Z
∞

0

dk
k2e−βðk2þM2Þ12−iμ

1−e−βðk2þM2Þ12−iμ
:

ð30Þ
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By using (8), we also find

hρiT ¼
1

2π2

Z
∞

0

dk
k2ðk2þM2Þ12e−βðk2þM2Þ12−iμ

1− e−βðk2þM2Þ12−iμ
;

hTijiT ¼ δijhpiT

¼ δij
6π2

Z
∞

0

dk
k4e−βðk2þM2Þ12−iμ

ðk2þM2Þ12ð1− e−βðk2þM2Þ12−iμÞ
: ð31Þ

In the massless limit m → 0, we acquire

hρiT ¼ 3hpiT ¼ 1

4π2

Z
∞

0

dk
k3e−βk−iμ

1 − e−βk−iμ

¼ 1

4π2β4

Z
∞

0

ds
s3e−s−iμ

1 − e−s−iμ
: ð32Þ

When we explore the dark matter, the number of the
particles might be fixed. Let the number beN0, and then the
partition function in (22) is replaced by

ZN0
ðβÞ ¼

Z
2π

0

dμeiμN0Zðβ; μÞ

¼
Z

2π

0

dμeiμN0−
P

n
ln ð1−e−βEn−iμÞ: ð33Þ

Especially if we consider the limit of T → 0, only the
ground state can contribute, and we find

�
∶
∂Tij

∂gkl ∶
�

T¼0;N¼N0

¼ 0; ð34Þ

and

hρiT¼0;N¼N0
¼ ρ0 ≡N0M

L3
; hTijiT¼0;N¼N0

¼ 0: ð35Þ

Until now, we have treated the scalar field as a quantum
field at finite temperature. Instead of this, we often take the
real scalar field as a classical field. We now investigate
whether there is any difference in the two treatments. The
action of the general scalar field with potential has the
following form:

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lϕ;

Lϕ ¼ −
1

2
ωðϕÞ∂μϕ∂μϕ − VðϕÞ: ð36Þ

Then we find

Tμν ¼ −ωðϕÞ∂μϕ∂νϕþ gμνLϕ; ð37Þ

and instead of (9), we obtain

∂Tμν

∂gρσ ¼ 1

2
ðδμρδνσ þ δμ

σδν
ρÞ
�
−
1

2
gηζωðϕÞ∂ηϕ∂ζϕ − VðϕÞ

�

þ 1

2
gμνωðϕÞ∂ρϕ∂σϕ: ð38Þ

When we assume the Friedmann-Robertson-Walker (FRW)
universe with a flat spatial part,

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2; ð39Þ

and ϕ ¼ t in (36), a power-law behavior for the scale factor
aðtÞ of the universe,

aðtÞ ¼
�
t
t0

�
α

; ð40Þ

with t0 and α real constants, can be realized by choosing

ωðϕÞ ¼ 2α

κ2t20ϕ
2
; VðϕÞ ¼ 3α2 − α

κ2t20ϕ
2
: ð41Þ

In case of the FRW universe (39) filled by the perfect fluid
whose equation of state (EoS) parameter w is constant, α in
(40) is given by

α ¼ 2

3ð1þ wÞ : ð42Þ

For dust where w ¼ 0, in (38), by using (41) and ϕ ¼ t, we
find

−
1

2
gηζωðϕÞ∂ηϕ∂ζϕ − VðϕÞ ¼ 1

2
ωðϕÞ − VðϕÞ

¼ 2

3κ2t20ϕ
2
−

2

3κ2t20ϕ
2

¼ 0; ð43Þ

and therefore

∂Tij

∂gkl ¼ 0; ð44Þ

which is consistent with (34). On the other hand,
in case w ¼ 1

3
, which corresponds to the radiation, we

obtain α ¼ 1
2
and

∂Tij

∂gkl ¼
1

2
ðδikδjl þ δi

lδj
kÞ 1

4κ2t20ϕ
2
; ð45Þ

whose tensor structure is different from that of the real
radiation in (29).
In general, in the case of the quantum field at finite

temperature, we find the tensor structure of ∂Tij

∂gkl as

PROPAGATION OF GRAVITATIONAL WAVES IN STRONG … PHYS. REV. D 98, 024002 (2018)

024002-5



�
∶
∂Tij

∂gkl ∶
�

T
∝ δijδ

kl; ð46Þ

but for the tensor-scalar theory, we find

∂Tij

∂gkl ∝
1

2
ðδikδjl þ δi

lδj
kÞ: ð47Þ

Because of the difference of the tensor structure, the
propagation of the gravitational wave is different in the
case of the quantum field at finite temperature and the case
of the classical scalar-tensor theory, in general. Especially

in the case of the quantum field, because h∶ ∂Tij

∂gkl ∶iT always

includes the factor δkl, by the condition hμμ ¼ 0 in (2), as
long as we consider the gravitational wave with htt ¼ 0, the
term does not contribute. We may investigate the radiation
as a comprehensible example. The usual radiation, for
example in the early universe, is made of many quanta or
particles at finite temperature as is known in the (quantum)
statistical physics. The radiation is realized by the massless
particles or in the limit of the high temperature. On the
other hand, the FRW universe in the radiation dominated
era can be realized by the classical scalar-tensor theory. The

tensor structure of ∂Tij

∂gkl is different in the two cases, as shown
in (46) and (47). The difference of the tensor structure
generates the difference of the propagation of the gravita-
tional wave [38]. In fact, the equation for the gravitational
wave in the scalar-tensor theory is given by

0 ¼
�
2 _H þ 6H2 þH∂t − ∂2

t þ
Δ
a2

�
hij; ð48Þ

but in the case of the quantum field with the finite
temperature, we have

0 ¼
�
6 _H þ 12H2 þH∂t − ∂2

t þ
Δ
a2

�
hij; ð49Þ

where Δ is the Laplacian.

IV. MAGNETIC FIELD

In this section, we analyze the propagation of the
gravitational wave under the magnetic field. The energy-
momentum tensor of the electromagnetic field in curved
space-time is given by

Tμν ¼ gρσFμρFνσ −
1

4
gμνgρσgηζFρηFσζ;

Fμν ¼ ∂μAν − ∂νAμ; ð50Þ

which gives

∂Tμν

∂gρσ ¼ −gρηgσζFμηFνζ −
1

8
ðδμρδνσ þ δμ

σδν
ρÞgξτgηζFξηFτζ

þ 1

2
gμνgρξgστgηζFξηFτζ: ð51Þ

Equation (4) shows that there are mainly two kinds of
effects in the magnetic field. The LHS in (4) receives the
change of the geometry due to the existence of the magnetic
field, and we obtain nontrivial connections and curvatures.
The RHS tells that the gravitational wave gives some
fluctuation of the distribution of the magnetic field, which
becomes a new source of the gravitational field.
We should note that the contributions from the change of

the geometry are the same order with the contributions from
the fluctuation of the magnetic field.

A. Change of geometry by magnetic field

Because Eq. (50) gives the effects via the fluctuation of
the distribution in the magnetic field, we now examine the
change of the geometry. We assume that the background is
almost flat but there is a constant magnetic field along the z
direction, Fxy ¼ −Fyx ¼ B. Then we find

Txx ¼ Tyy ¼
1

2
B2 þOðκ2Þ;

Tzz ¼ −Ttt ¼ −
1

2
B2 þOðκ2Þ;

other components ¼ 0: ð52Þ

The Einstein equation (3) leads to

R ¼ 0; Rμν ¼ κ2Tμν: ð53Þ

The parameterM2 in (5) and (6) corresponds to κ2B2. Then
before considering the gravitational wave, we need to
consider the Oðκ2B2Þ correction, corresponding to (5),
from the flat background gμν ¼ ημν,

gμν ¼ ημν þ κ2B2ζμν: ð54Þ

Then the Einstein equation (3) gives

∂μ∂ρζνρ þ ∂ν∂ρζμρ − ∂ρ∂ρζμν − ∂μ∂νðηρλζρλÞ

− ημνð∂ρ∂σζρσ − ∂2ðηρσζρσÞÞ ¼
2

B2
Tμν; ð55Þ

which corresponds to the equation M2Ið1ÞR ¼ M2Ið1ÞT in (5).
A solution of (55) is given by

ζxx ¼ −
1

2
y2; ζyy ¼ −

1

2
x2; ζzz ¼

1

2
y2;

ζtt ¼ −
1

2
x2; other components ¼ 0: ð56Þ
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We find that the connections read

Γx
xy ¼ Γx

yx ¼ −Γy
xx ¼ −

1

2
yκ2B2;

Γy
xy ¼ Γy

yx ¼ −Γx
yy ¼ −

1

2
xκ2B2;

Γz
zy ¼ Γz

yz ¼ −Γy
zz ¼ 1

2
yκ2B2;

Γt
xt ¼ Γt

tx ¼ Γx
tt ¼

1

2
xκ2B2;

other components ¼ 0: ð57Þ

Because

Rλ
μρν ¼ −Γλ

μρ;ν þ Γλ
μν;ρ þOððκ2B2Þ2Þ; ð58Þ

we obtain

Rx
yxy ¼ −Rx

yyx ¼ −Ry
xxy ¼ Ry

xyx ¼ κ2B2;

Rx
txt ¼ −Rx

ttx ¼ −Rt
xtx ¼ Rt

xxt ¼
1

2
κ2B2;

Ry
zyz ¼ −Ry

zzy ¼ Rz
yzy ¼ −Rz

yyz ¼ −
1

2
κ2B2;

other components ¼ 0: ð59Þ

The above results are consistent with (53). The expressions
in (56) with (54) show that we should require

κ2B2x2; κ2B2y2 ≪ 1; ð60Þ

or we need to consider the higher order terms with respect
to κ2B2. The gauge conditions in (2) can be explicitly
written as

0 ¼ ∇μhμx

¼ ∂μhμx þ
1

2
κ2B2ðy2ðhxx − hzxÞ þ x2ðhyx þ htxÞ

− yhxy þ xhyy þ xhttÞ;

0 ¼ ∇μhμy ¼ ∂μhμy þ
1

2
κ2B2ðy2ðhxy − hzyÞ

þ x2ðhyy þ hyxÞ þ yhxx − xhyy − yhzzÞ;

0 ¼ ∇μhμz ¼ ∂μhμz þ
1

2
κ2B2ðy2ðhxz − hzzÞ

þ x2ðhyz þ htzÞ − yhyzÞ;

0 ¼ ∇μhμt ¼ ∂μhμt þ
1

2
κ2B2ðy2ðhxt − hztÞ

þ x2ðhyt þ httÞ − xhttÞ;
0 ¼ gμνhμν ¼ hxx þ hyy þ hzz − htt

þ 1

2
κ2B2y2ðhxx − hzzÞ þ

1

2
κ2B2y2ðhyy þ httÞ: ð61Þ

The above equations indicate that there appear the longi-
tudinal modes in general.

B. Propagation of gravitational wave and scattering

Because

∇2hμν ¼ gρσ∇ρ∇σhμν ¼ gρσð∂ρ∇σhμν − Γτ
ρσ∇τhμν

− Γτ
ρμ∇σhτν − Γτ

ρν∇σhμτÞ
¼ ðηρσ − κ2B2ζρσÞ∂ρ∂σhμν

þ ηρσð∂ρð−Γτ
σμhτν − Γτ

σνhμτÞ − Γτ
ρσ∂τhμν

− Γτ
ρμ∂σhτν − Γτ

ρν∂σhμτÞ þOððκ2B2Þ2Þ; ð62Þ

we find the following explicit expressions, which corre-

spond to the equation M2κ2Ið2ÞR ¼ M2κ2Ið1;1ÞT in Eq. (6):

∇2hxx¼ηρσ∂ρ∂σhxx−
κ2B2

2
ðy2ð−∂2

xþ∂2
zÞ−x2ð∂2

yþ∂2
t ÞÞhxx

þκ2B2fhxxþ2y∂yhxxþð−y∂xþx∂yÞðhxyþhyxÞ
þx∂tðhxtþhtxÞg; ð63Þ

∇2hyy¼ηρσ∂ρ∂σhyy−
κ2B2

2
ðy2ð−∂2

xþ∂2
zÞ−x2ð∂2

yþ∂2
t ÞÞhyy

þκ2B2fhyyþ2x∂xhyyþð−x∂yþy∂xÞðhxyþhyxÞ
−y∂zðhyzþhzyÞg; ð64Þ

∇2hzz¼ηρσ∂ρ∂σhzz−
κ2B2

2
ðy2ð−∂2

xþ∂2
zÞ−x2ð∂2

yþ∂2
t ÞÞhzz

þκ2B2f−hzz−2y∂yhzzþy∂zðhzyþhyzÞg; ð65Þ

∇2hxy¼ηρσ∂ρ∂σhxy−
κ2B2

2
ðy2ð−∂2

xþ∂2
zÞ−x2ð∂2

yþ∂2
t ÞÞhxy

þκ2B2fhxyþðx∂xþy∂yÞhxy
þð−x∂yþy∂xÞðhxx−hyyÞþx∂thty

−y∂zhxzg; ð66Þ

∇2hxz¼ηρσ∂ρ∂σhxz−
κ2B2

2
ðy2ð−∂2

xþ∂2
zÞ−x2ð∂2

yþ∂2
t ÞÞhxz

þκ2B2fð−y∂xþx∂yÞhyzþx∂thtzþy∂zhxyg; ð67Þ

∇2hyz¼ηρσ∂ρ∂σhyz−
κ2B2

2
ðy2ð−∂2

xþ∂2
zÞ−x2ð∂2

yþ∂2
t ÞÞhyz

þκ2B2fðx∂x−y∂yÞhyzþð−x∂yþy∂xÞhxz
þy∂zðhyy−hzzÞg: ð68Þ
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On the other hand,

δTμν ≡∂Tμν

∂gρσ hρσ; δTxx ¼ −
1

2
B2hyy;

δTyy ¼ −
1

2
B2hxx; δTzz ¼ B2

�
−
1

2
hzz þ

1

2
ðhxx þ hyyÞ

�
;

δTxy ¼
1

2
B2hxy; δTxz ¼ −

1

2
B2hxz;

δTyz ¼ −
1

2
B2hyz: ð69Þ

By combining (63)–(69), we find Eq. (4) gives

0 ¼ ηρσ∂ρ∂σhxx −
κ2B2

2
ðy2ð−∂2

x þ ∂2
zÞ − x2ð∂2

y þ ∂2
t ÞÞhxx

þ κ2B2f2y∂yhxx þ ð−y∂x þ x∂yÞðhxy þ hyxÞ
þ x∂tðhxt þ htxÞg

þ 1

2
κ2B2ð−hxx þ hyy þ htt þ hzzÞ; ð70Þ

0 ¼ ηρσ∂ρ∂σhyy −
κ2B2

2
ðy2ð−∂2

x þ ∂2
zÞ − x2ð∂2

y þ ∂2
t ÞÞhyy

þ κ2B2f2x∂xhyy þ ð−x∂y þ y∂xÞðhxy þ hyxÞ
− y∂zðhyz þ hzyÞg

þ 1

2
κ2B2ðhxx − hyy − hzz − httÞ; ð71Þ

0 ¼ ηρσ∂ρ∂σhzz −
κ2B2

2
ðy2ð−∂2

x þ ∂2
zÞ − x2ð∂2

y þ ∂2
t ÞÞhzz

þ κ2B2f−2y∂yhzz þ y∂zðhzy þ hyzÞg

þ 1

2
κ2B2ðhxx − hyy − hzz − httÞ; ð72Þ

0 ¼ ηρσ∂ρ∂σhxy −
κ2B2

2
ðy2ð−∂2

x þ ∂2
zÞ − x2ð∂2

y þ ∂2
t ÞÞhxy

þ κ2B2fðx∂x þ y∂yÞhxy þ ð−x∂y þ y∂xÞðhxx − hyyÞ
þ x∂thty − y∂zhxzg − κ2B2hxy; ð73Þ

0 ¼ ηρσ∂ρ∂σhxz −
κ2B2

2
ðy2ð−∂2

x þ ∂2
zÞ − x2ð∂2

y þ ∂2
t ÞÞhxz

þ κ2B2fð−y∂x þ x∂yÞhyz þ x∂thtz þ y∂zhxyg
− κ2B2hxz; ð74Þ

0 ¼ ηρσ∂ρ∂σhyz −
κ2B2

2
ðy2ð−∂2

x þ ∂2
zÞ − x2ð∂2

y þ ∂2
t ÞÞhyz

þ κ2B2fðx∂x − y∂yÞhyz þ ð−x∂y þ y∂xÞhxz
þ y∂zðhyy − hzzÞg: ð75Þ

We investigate the propagation of the gravitational wave
based on the above equations. In order to see the effect of
the magnetic field, we assume

hxy ¼ hð0Þ× sin kðz − tÞ þOðκ2B2Þ;
other components ¼ Oðκ2B2Þ; ð76Þ

which corresponds to × mode propagating in parallel with
the magnetic field. Then we obtain

0¼ ηρσ∂ρ∂σhxx ¼ ηρσ∂ρ∂σhyy ¼ ηρσ∂ρ∂σhzz ¼ ηρσ∂ρ∂σhyz;

ð77Þ

0 ¼ ηρσ∂ρ∂σhxy þ
κ2B2k2

2
ðy2 − x2Þhð0Þ× sin kðz − tÞ

− κ2B2hð0Þ× sin kðz − tÞ; ð78Þ

0 ¼ ηρσ∂ρ∂σhxz þ κ2B2ykhð0Þ× cos kðz − tÞ: ð79Þ

Therefore if we define □≡ ηρσ∂ρ∂σ , we find

hxx ¼ hyy ¼ hzz ¼ hyz ¼ 0;

hxz ¼ −κ2B2khð0Þ× □
−1ðy cos kðz − tÞÞ;

hxy ¼ hð0Þ×

�
sin kðz − tÞ

− κ2B2
□

−1
��

k2ðy2 − x2Þ
2

− 1

�
sin kðz − tÞ

��
:

ð80Þ

The Oðκ2B2Þ is given by the scattering of the gravitational
wave by the magnetic field. It could be interesting that there
appears a nontrivial hxz component.
Next we explore theþmode propagating in parallel with

the magnetic field,

hxx ¼ −hyy ¼ hð0Þþ sin kðz − tÞ þOðκ2B2Þ;
other components ¼ Oðκ2B2Þ: ð81Þ

Then we find

0 ¼ ηρσ∂ρ∂σhxx þ
κ2B2k2

2
ðy2 − x2Þhð0Þþ sin kðz − tÞ

þ κ2B2hð0Þþ sin kðz − tÞ; ð82Þ

0 ¼ −ηρσ∂ρ∂σhyy þ
κ2B2k2

2
ðy2 − x2Þhð0Þþ sin kðz − tÞ

þ κ2B2hð0Þþ sin kðz − tÞ; ð83Þ

0 ¼ ηρσ∂ρ∂σhzz ¼ ηρσ∂ρ∂σhxy ¼ ηρσ∂ρ∂σhxz; ð84Þ

0 ¼ ηρσ∂ρ∂σhyz − κ2B2ykhð0Þþ cos kðz − tÞ; ð85Þ

and the solution is given by
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hzz ¼ hxy¼ hxz ¼ 0;

hyz¼þκ2B2khð0Þþ □−1ðycoskðz− tÞÞ;

hxx¼−hyy¼ hð0Þþ

�
sinkðz− tÞ

− κ2B2□−1
��

k2ðy2−x2Þ
2

þ1

�
sinkðz− tÞ

��
: ð86Þ

Then there appears a nontrivial hyz component. The
physical behavior of the þ mode (86) does not change
from that of the × mode in (80).
We examine the × mode propagating perpendicular to

the magnetic field,

hxz ¼ h̄ð0Þ× sin kðy − tÞ þOðκ2B2Þ;
other components ¼ Oðκ2B2Þ: ð87Þ

Then we find

0¼ ηρσ∂ρ∂σhxx ¼ ηρσ∂ρ∂σhyy ¼ ηρσ∂ρ∂σhzz ¼ ηρσ∂ρ∂σhxy;

ð88Þ

0 ¼ ηρσ∂ρ∂σhxz − κ2B2k2x2h̄ð0Þ× sin kðy − tÞ
− κ2B2h̄ð0Þþ sin kðy − tÞ; ð89Þ

0 ¼ ηρσ∂ρ∂σhyz − κ2B2kh̄ð0Þ× cos kðy − tÞ; ð90Þ

whose solution is given by

hxx¼ hyy¼ hzz ¼ hxy¼ 0;

hxz¼ h̄ð0Þ× fsinkðy− tÞþ κ2B2
□

−1ððk2x2þ1Þsinkðy− tÞÞg;
hyz¼ κ2B2kh̄ð0Þ× □

−1ðxcoskðy− tÞÞ: ð91Þ

In the case of the þ mode propagating perpendicular to
the magnetic field,

hxx ¼ −hzz ¼ h̄ð0Þþ sin kðy − tÞ þOðκ2B2Þ;
other components ¼ Oðκ2B2Þ; ð92Þ

we obtain

0¼ ηρσ∂ρ∂σhxx− κ2B2k2x2h̄ð0Þþ sinkðy− tÞ
þ2κ2B2kyh̄ð0Þþ coskðy− tÞ− κ2B2h̄ð0Þþ sinkðy− tÞ; ð93Þ

0 ¼ ηρσ∂ρ∂σhyy ¼ ηρσ∂ρ∂σhxz ¼ ηρσ∂ρ∂σhyz; ð94Þ

0 ¼ ηρσ∂ρ∂σhzz þ κ2B2k2x2h̄ð0Þþ sin kðy − tÞ
þ 2κ2B2kyh̄ð0Þþ cos kðy − tÞ
þ κ2B2h̄ð0Þþ sin kðy − tÞ; ð95Þ

0 ¼ ηρσ∂ρ∂σhxy − κ2B2kxh̄ð0Þþ cos kðy − tÞ: ð96Þ

Then we find

hxx ¼ h̄ð0Þþ fsin kðy − tÞ þ κ2B2
□

−1ððk2x2 þ 1Þ sin kðy − tÞ
− 2ky cos kðy − tÞÞg; hyy ¼ hxz ¼ hyz ¼ 0;

hzz ¼ h̄ð0Þþ f− sin kðy − tÞ
þ κ2B2

□
−1ð−ðk2x2 þ 1Þ sin kðy − tÞ

− 2ky cos kðy − tÞÞg;
hxy ¼ κ2B2kh̄ð0Þþ □−1ðx cos kðy − tÞÞ: ð97Þ

The behavior of the þ mode in (97) seems to be rather
different from that of the × mode (91).
In the above expressions, in order that the perturbation

should be consistent, in addition to (60), we need to require

κ2B2

k2
≪ 1: ð98Þ

We should note that □−1 is the retarded propagator,
which is nonlocal and satisfies the equation

□Gðxμ;x0μÞ¼ δ4ðxμ−x0μÞ; Gðxμ;x0μÞ≡□
−1: ð99Þ

Therefore for any function fðxμÞ of the space-time coor-
dinate xμ, we have

□
−1fðxμÞ≡

Z
V
d4x0Gðxμ; x0μÞfðx0μÞ: ð100Þ

The region V of the integration is given by the region of the
space-time, where the magnetic field exists. Therefore the
gravitational wave carries the information of the distribu-
tion of the magnetic field in the universe. In the above
analysis, we have assumed that κ2B2 should be small
enough. Even if κ2B2 is small, the integration over the
space-time in (100) enhances the amplitude of the gravi-
tational wave.
As an example, we consider NGC 6946, which is a spiral

galaxy.The sizeofNGC6946 is∼100k light years∼1028=eV,
and its distance from the earth is 20 M light year ∼ 1030=eV.
We may estimate

Z
V
d4x0Gðxμ; x0μÞfðx0μÞ ∼ ð1030=eVÞ−1ð1028=eVÞ3f

¼ 1054=eV2f: ð101Þ
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The exponents−1 and 3 come becausewe are considering the
static magnetic field. Because NGC 6946 has a magnetic field
with μG, we may evaluate B2 as

B2 ∼ 10−16 eV4; ð102Þ

and therefore

κ2B2 ∼ 10−72 eV2: ð103Þ

We may also estimate x and y from the size of the galaxy as

x ∼ y ∼ 1028=eV: ð104Þ

Therefore we obtain

κ2B2x2 ∼ κ2B2y2 ∼ 10−16 ≪ 1; ð105Þ

and as a result the condition (60) is satisfied.
In the case of the gravitational wave GW150914, the

typical frequency is 100–500 Hz, which corresponds to the
wave number

k ∼ 10−6 m−1 ∼ 10−13 eV; ð106Þ

and hence

kx ∼ ky ∼ 1022: ð107Þ

Because

κ2B2

k2
∼ 10−46 ≪ 1; ð108Þ

the condition (98) is also satisfied.
For example, in (80), we find

hxz ¼ −κ2B2khð0Þ× □
−1ðy cos kðz − tÞÞ

∼ 10−72þ54þ22hð0Þ× cos kðz − tÞ ¼ 104hð0Þ× cos kðz − tÞ;

hxy ¼ hð0Þ×

�
sin kðz − tÞ

− κ2B2
□

−1
��

k2ðy2 − x2Þ
2

− 1

�
sin kðz − tÞ

��

∼ ð1þ 1026Þhð0Þ× sin kðz − tÞ; ð109Þ

which shows that the corrections are rather large. The large
correction comes from the large size of thegalaxy.Of course,
we have neglected the numerical factors and we have
assumed that the magnetic field is uniform at the large scale
of the galaxy, which indicates that we should have over-
estimated the value. Furthermore the correction to the wave
number is enhanced because it is multiplied by the distance
of the propagation, which gives a non-negligible correction

in the phase. However, we expand the expression with
respect to κ2B2, and there appears the large correction, for
example, sin ððkþ ακ2B2ÞzÞ ∼ sin ðkzÞ þ cos ðkzÞακ2B2z,
where we express the correction by ακ2B2, which might
be small but ακ2B2z (multiplied with z) is not small in
general. Anyway the magnetic field may give a contribution
that cannot be neglected.
We may study magnetar [39], which has a very strong

magnetic field of 1011 T. Then we find B2 ∼ 1026 eV and
therefore κ2B2 ∼ 10−30 eV2. If we consider the gravita-
tional wave in (106), we find

κ2B2

k2
∼ 10−4 ≪ 1; ð110Þ

which is still small and the condition (98) is also satisfied.
Thus the perturbation is still valid. The typical size of the
magnetic field in magnetar is 2 × 108 km ∼ 1015=eV, and
therefore

kx ∼ ky ∼ 103 ð111Þ

and

κ2B2x2 ∼ κ2B2y2 ∼ 1; ð112Þ

which tells us that the condition (60) is not always satisfied.
In the case of SGR 1806-20, which is the first magnetar
found, the distance from the Earth is 5 × 104 light years
∼1027=eV, instead of (101), and we may estimate

Z
V
d4x0Gðxμ; x0μÞfðx0μÞ ∼ ð1027=eVÞ−1ð1015=eVÞ3f

¼ 1018=eV2f: ð113Þ

The expressions corresponding to (109) have the following
form:

hxz ¼ −κ2B2khð0Þ× □
−1ðy cos kðz − tÞÞ

∼ 10−30þ3þ18hð0Þ× cos kðz − tÞ ¼ 10−9hð0Þ× cos kðz − tÞ;

hxy ¼ hð0Þ×

�
sin kðz − tÞ

− κ2B2
□

−1
��

k2ðy2 − x2Þ
2

− 1

�
sin kðz − tÞ

��

∼ ð1þ 10−6Þhð0Þ× sin kðz − tÞ; ð114Þ

where the corrections are reasonably small. Hence, contrary
to the case of the large magnetic field, it could be difficult to
detect the effect of the magnetic field.
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C. Propagation of gravitational wave
by adiabatic approximation

In the last subsection, we have investigated the scattering
of the gravitational wave by the magnetic field. As
mentioned after Eq. (51), there are two kinds of sources
for the scattering. One is given by the change of the
geometry and the other is the fluctuation of the distribution
of the magnetic field given by the gravitational wave. The
obtained results seem to say that the effects in the change of
the geometry are much larger than those of the fluctuation
of the magnetic field.
The expressions (80), (86), and (97) [except of (92)]

could not be valid for the magnetic field of the galactic size
although they may be valid for the magnetic field with a
smaller size. This could be mainly because the variation of
the phase is not small although the correction of the wave
number is small. Then we now try to solve Eqs. (70)–(75)
by using the adiabatic approximation, where we neglect the
derivative with respect to the background.
First we analyze the gravitational wave along the z axis

and assume

hij¼hð0Þij ðx;yÞeiðkðx;yÞz−ωðx;uÞtÞ; hti¼hit¼htt¼0: ð115Þ

Finally we choose the real part of the above expression. We

take hð0Þij ðx; yÞ, kðx; yÞ, and ωðx; uÞ can depend on the
coordinates ðx; yÞ although we neglect the derivative with

respect to x and y for hð0Þij ðx; yÞ, kðx; yÞ, and ωðx; uÞ. Then
Eqs. (70)–(75) give the following algebraic equations:

0 ¼
�
−k2 þ ω2 −

κ2B2

2
ð−k2y2 þ ω2x2Þ

�
hð0Þxx

þ 1

2
κ2B2ð−hð0Þxx þ hð0Þyy þ hð0Þzz Þ; ð116Þ

0 ¼
�
−k2 þ ω2 −

κ2B2

2
ð−k2y2 þ ω2x2Þ

�
hð0Þyy

− 2ikyκ2B2hð0Þyz þ 1

2
κ2B2ðhð0Þxx − hð0Þyy − hð0Þzz Þ; ð117Þ

0 ¼
�
−k2 þ ω2 −

κ2B2

2
ð−k2y2 þ ω2x2Þ

�
hð0Þzz

þ 2ikyhð0Þyz þ 1

2
κ2B2ðhð0Þxx − hð0Þyy − hð0Þzz Þ; ð118Þ

0 ¼
�
−k2 þ ω2 −

κ2B2

2
ð−k2y2 þ ω2x2Þ

�
hð0Þxy

− ikyκ2B2hð0Þxz − κ2B2hð0Þxy ; ð119Þ

0 ¼
�
−k2 þ ω2 −

κ2B2

2
ð−k2y2 þ ω2x2Þ

�
hð0Þxz

þ ikyκ2B2hð0Þxy − κ2B2hð0Þxz ; ð120Þ

0 ¼
�
−k2 þ ω2 −

κ2B2

2
ð−k2y2 þ ω2x2Þ

�
hð0Þyz

þ ikyκ2B2ðhð0Þyy − hð0Þzz Þ: ð121Þ

Then the solution corresponding to theþmode is givenby

hð0Þxx ¼ −hð0Þyy ; other components ¼ 0; ð122Þ

with the dispersion relation,

0 ¼ −k2 þ ω2 −
κ2B2

2
ð−k2y2 þ ω2x2Þ − κ2B2: ð123Þ

As is clear from the dispersion relation, there appears the
square of an effective mass ∼κ2B2 in addition to the x, y
dependent shift of the phase. Equation (123) leads to

�
1þ κ2B2y2

2

�
¼

�
1þ κ2B2x2

2

�
ω2 − κ2B2 ð124Þ

or

k2¼
�
1þκ2B2ðx2−y2Þ

2

�
ω2−κ2B2þOððκ2B2Þ2Þ: ð125Þ

The factor 1þ κ2B2ðx2−y2Þ
2

in front of ω2 comes from the
change of the geometry, and therefore there appears
the same correction even for the propagation of light but
the term κ2B2 gives the square of the effective mass, which
is absent in the photon.
The solution corresponding to the × mode is given by

hð0Þxz ¼ 1

ikyκ2B2

×

�
−k2 þ ω2 −

κ2B2

2
ð−k2y2 þ ω2x2Þ − κ2B2

�
hð0Þxy ;

other components ¼ 0; ð126Þ

with a little bit of a complex dispersion relation,

�
−k2 þω2 −

κ2B2

2
ð−k2y2 þω2x2Þ− κ2B2

�
2

¼ k2y2κ4B4;

ð127Þ

that is,

0 ¼ −k2 þ ω2 −
κ2B2

2
ð−k2y2 þ ω2x2Þ − κ2B2 � kyκ2B2:

ð128Þ
We should note that there should appear a hxz component
whose phase is different from that of the hxy component by π

2
.
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Next we consider the gravitational wave along the y axis
and assume

hij¼hð0Þij ðx;yÞeiðkðx;yÞy−ωðx;uÞtÞ; hti¼hit¼htt¼0: ð129Þ
Again we neglect the derivative with respect to x and y for

hð0Þij ðx; yÞ, kðx; yÞ, and ωðx; uÞ as an adiabatic approxima-
tion. Then we find the following equations:

0¼
�
−k2 þω2 −

κ2B2x2

2
ðk2þω2Þ

�
hð0Þxx

þ 2ikκ2B2ðyhð0Þxx þ xhð0Þxy Þþ 1

2
κ2B2ð−hð0Þxx þ hð0Þyy þ hð0Þzz Þ;

ð130Þ

0 ¼
�
−k2 þ ω2 −

κ2B2x2

2
ðk2 þ ω2Þ

�
hð0Þyy

− 2ikκ2B2xhð0Þxy þ 1

2
κ2B2ðhð0Þxx − hð0Þyy − hð0Þzz Þ; ð131Þ

0 ¼
�
−k2 þ ω2 −

κ2B2x2

2
ðk2 þ ω2Þ

�
hð0Þzz − 2ikκ2B2yhð0Þzz

þ 1

2
κ2B2ðhð0Þxx − hð0Þyy − hð0Þzz Þ; ð132Þ

0 ¼
�
−k2 þ ω2 −

κ2B2x2

2
ðk2 þ ω2Þ

�
hð0Þxy

þ ikκ2B2fyhð0Þxy − xðhð0Þxx − hð0Þyy Þg − κ2B2hð0Þxy ; ð133Þ

0 ¼
�
−k2 þ ω2 −

κ2B2x2

2
ðk2 þ ω2Þ

�
hð0Þxz

þ ikκ2B2xhð0Þyz − κ2B2hð0Þxz ; ð134Þ

0 ¼
�
−k2 þ ω2 −

κ2B2x2

2
ðk2 þ ω2Þ

�
hð0Þyz

þ ikκ2B2ð−yhð0Þyz − xhð0Þxz Þ: ð135Þ

Note as in Eqs. (116)–(121), it is difficult to solve

Eqs. (130)–(135). First we assume hð0Þxz ¼ hð0Þyz ¼ 0 and
the following dispersion relation:

0 ¼ −k2 þ ω2 −
κ2B2x2

2
ðk2 þ ω2Þ

þ 2ikκ2B2y − κ2B2 þ λκ2B2: ð136Þ
By substituting (136) into Eqs. (130)–(133), we obtain

0 ¼ 2ikxhð0Þxy þ 1

2
ðhð0Þxx þ hð0Þyy þ hð0Þzz Þ þ λhð0Þxx ; ð137Þ

0 ¼ −2ikðyhð0Þyy þ xhð0Þxy Þ þ 1

2
ðhð0Þxx þ hð0Þyy − hð0Þzz Þ þ λhð0Þyy ;

ð138Þ

0 ¼ −4ikyhð0Þzz þ 1

2
ðhð0Þxx − hð0Þyy þ hð0Þzz Þ þ λhð0Þzz ; ð139Þ

0 ¼ ikf−yhð0Þxy − xðhð0Þxx − hð0Þyy Þg þ λhð0Þxy ; ð140Þ

which can be rewritten by using a matrix,

0¼

0
BBBBB@

λþ 1
2

1
2

1
2

2ikx
1
2

λþ 1
2
−2iky −1

2
−2ikx

1
2

−1
2

1
2
−4ikyþλ 0

−ikx ikx 0 −ikyþλ

1
CCCCCA

0
BBBBB@

hð0Þxx

hð0Þyy

hð0Þzz

hð0Þxy

1
CCCCCA
:

ð141Þ

Then the dispersion relation (136) can be determined by
solving the following equation:

0¼

									

λþ 1
2

1
2

1
2

2ikx
1
2

λþ 1
2
−2iky −1

2
−2ikx

1
2

−1
2

1
2
−4ikyþλ 0

−ikx ikx 0 −ikyþλ

									
: ð142Þ

In the case that jkxj, jkyj ≪ 1, we may approximate
Eq. (141) as follows:

0 ¼ λ

��
λþ 1

2

�
3

−
3

4

�
λþ 1

2

�
−
1

4

�
¼ λ

�
λ−

1

2

�
ðλþ 1Þ2;

ð143Þ

whose solution is given by λ ¼ 0, 1
2
, and two λ ¼ −1.

Because there appears the imaginary part in the dispersion
relation (136), the amplitude of the gravitational wave is

decaying. The mode corresponding to λ ¼ 0 gives hð0Þxx ¼
hð0Þyy ¼ hð0Þzz ¼ 0 and hð0Þxy ≠ 0, and therefore the mode could
be unphysical. The mode corresponding to λ ¼ 1

2
gives

hð0Þyy ¼ hð0Þzz ¼ −hð0Þxx and the mode to λ ¼ −1 gives hð0Þxx ¼
hð0Þyy þ hð0Þzz . These are not connected with the modes of the
gravitational wave in the vacuum. In the case that jkxj,
jkyj ≫ 1, by using Eq. (141), we acquire

0 ¼ ðλ − 4ikyÞðλ − ikyÞðλ2 − 2ikyλ − 2k2x2Þ; ð144Þ

whose solution is given by

λ ¼ iky; 4iky; iky� ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 2x2

q
: ð145Þ

For λ ¼ iky, we obtain hð0Þyy ¼ hð0Þyy , h
ð0Þ
zz ¼ 0, and hð0Þxy ¼

− y
2x h

ð0Þ
xx . When λ ¼ 4iky, hð0Þxx ¼ hð0Þyy ¼ hð0Þxy ¼ 0, and if
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λ¼iky�ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2−2x2

p
, we find hð0Þzz ¼ 0 and hð0Þxy ¼ iλ

2kx h
ð0Þ
xx ,

hð0Þyy ¼ − λ
λ−2iky h

ð0Þ
xx .

We may also investigate the mode where hð0Þxx ¼ hð0Þyy ¼
hð0Þzz ¼ hð0Þxy ¼ 0. Then by using (134) and (135), the
dispersion relation is given by

0 ¼
�
−k2 þ ω2 −

κ2B2x2

2
ðk2 þ ω2Þ − κ2B2

�

×

�
−k2 þ ω2 −

κ2B2x2

2
ðk2 þ ω2Þ − ikyκ2B2

�

− k2κ4B4x2; ð146Þ
and we obtain

hð0Þyz ¼−
i

kκ2B2x

�
−k2þω2−

κ2B2x2

2
ðk2þω2Þ−κ2B2

�
hð0Þxz :

ð147Þ

Then we find that the adiabatic approximation gives rea-
sonable results for the large magnetic field compared with
simple perturbation with respect to κ2B2 even if κ2B2 is
small. As mentioned after Eq. (109), the overestimated
amplitude in the simple perturbation can be absorbed into
the phase, and therefore the real amplitude does not become
so large.

V. FðRÞ GRAVITY CASE

Let us briefly discuss FðRÞ gravity in a similar context.
Its action is given by

SFðRÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðRÞ
2κ2

þ Lmatterðgμν;ΨiÞ
�
; ð148Þ

where Ψi expresses the field corresponding to matters. It is
well known that by using the scale transformation,

gμν → eσgμν; σ ¼ − lnF0ðAÞ; ð149Þ

action (148) can be rewritten in the scalar-tensor form

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
R −

3

2
gρσ∂ρσ∂σσ − VðσÞ

�

þ Lmatterðeσgμν;ΨiÞ
�
;

VðσÞ ¼ eσgðe−σÞ − e2σfðgðe−σÞÞ: ð150Þ

Here gðe−σÞ is given by solving the equation σ ¼
− ln ð1þ f0ðAÞÞ ¼ − lnF0ðAÞ as A ¼ gðe−σÞ. In the case
of the Einstein gravity in this paper, we have neglected the
cosmic expansion. Hence we may assume the scalar field σ
is a constant σ ¼ σ0 and Vðσ0Þ ¼ 0. Furthermore, as long
as we consider the gravitational wave, we do not consider

the fluctuation of the scalar field σ. This also shows that the
metric eσgμν that appears in the Lagrangian density of
matter Lmatter is different from the metric gμν by only a
constant scale transformation, which effectively gives the
change of the gravitational constant κ2 → κ2eσ0 . Thus as
long as we neglect the cosmic expansion, the propagation
of the gravitational wave in the FðRÞ gravity is not
qualitatively changed from that in the Einstein gravity.
By the variation of the action in (150) with respect to the

metric gμν, we obtain the Einstein equation in the Einstein
frame,

Rμν −
1

2
gμνR ¼ 3∂μσ∂νσ þ gμν

�
−
3

2
gρσ∂σϕ∂σσ − VðσÞ

�

þ κ2eσTμν: ð151Þ

Naively if the first two terms are dominant compared with
the last term κ2eσTμν as in the vacuum, we can neglect the
contribution from the matter. On the other hand, if the last
term κ2eσTμν is dominant as in the dense matter, the
expansion of the universe, which could be generated by
the first two terms, could be negligible.
In the case of the FðRÞ gravity, there appears a scalar

mode corresponding to σ. The mass of the scalar mode
should be very small in the bulk but the mass can become
large inside the matter by the chameleon mechanism [40].
Therefore the propagation of the scalar mode is a little bit
complicated.
The propagation of the graviton in other kinds of the

modified gravity theories has also been actively investi-
gated; see, for instance, [41–47].

VI. CONCLUSIONS

In the present paper, we have analyzed the propagation
of gravitational waves in the medium in detail. We have
shown how the propagation of gravitational waves could be
changed by the medium.
In general, the radiation is made of the quanta or massless

particles at high temperature. Usually the radiation consists
of photons, which are quanta of the electromagnetic field.
We should note that the radiation-dominated stage of the
universe can be realized not only by the real radiation but
also by the scalar-tensor theory. Thenwe have shown how to
distinguish the radiation dominated universe generated by
the real radiation with that generated by the scalar-tensor
theory.
Motivated with the above observations, we have inves-

tigated the propagation of gravitational waves in the
medium. Especially it has been found that the propagation
of gravitational waves in the thermal radiation in general
relativity is different from that in the scalar-tensor theory.
Furthermore, we have explored the propagation of gravi-
tational waves in the uniform magnetic field, and it has
been found that the effects from the magnetic field to the
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propagation could not be negligible. For a small object such
as magnetar, the perturbation with respect to κ2B2 could be
valid, but for the large object of galaxy size such as the
large magnetic field, the perturbation breaks down. For the
large object, the adiabatic approximation gives more
reasonable results. Note that we limited to a flat space
background where there is no qualitative difference
between general relativity and, say, FðRÞ gravity.
At the next stage, it would be extremely interesting to

extend our study for evolving cosmological background. It
is known that the evolution of gravitons in accelerating
cosmologies for the case of extended gravity which has
been considered in Ref. [48] is qualitatively different from
that of general relativity. Then, the account of the cosmic
magnetic field may even increase this qualitative difference.
Then, as the first proposal for future possible extensions of
the present work one can study the gravitational waves
propagation in the anisotropic (Bianchi) universe with
magnetic fields. Moreover, it has been examined that the
stochastic background of gravitational waves can be tuned
by the effect of FðRÞ gravity [49]. This again may be
generalized for the presence of the cosmic magnetic field.

Finally, it is very interesting to mention that there
is a possibility of the existence of some relations
between primordial magnetic fields and primordial gravi-
tational fields [50]. This may be a clue to find a
fundamental connection between electromagnetism and
gravitation, which would be similar to that between
thermodynamics and gravity. From the other side, such
a study may give further bounds to gravitational wave
propagation at the early universe with primordial mag-
netic fields.
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