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We study inflation in a supersymmetric Pati-Salam model driven by a potential generated in the context
of no-scale supergravity. The Pati-Salam gauge group SUð4ÞC × SUð2ÞL × SUð2ÞR is supplemented with a
Z2 symmetry. Spontaneous breaking via the SUð4Þ adjoint leads to the left-right symmetric group. Then the
SUð2ÞR breaks at an intermediate scale and the inflaton is a combination of the neutral components of the
SUð2ÞR doublets. We discuss various limits of the parameter space, and we show that consistent solutions
with the cosmological data for the spectral index ns and the tensor-to-scalar ratio r are found for a wide
range of the parameter space of the model. Regarding the latter, which is a canonical measure of primordial
gravity waves, we find that r ∼ 10−3 − 10−2. An alternative possibility where the adjoint scalar field S has
the rôle of the inflaton is also discussed.
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I. INTRODUCTION

In cosmological models, inflation is realized by a slowly
rolling scalar field, the so called inflaton, whose energy
density dominates the early history Universe [1–4]. Among
several suggestions regarding its origin, the economical
scenario that this field can be identified with the Standard
Model (SM) Higgs state h, has received considerable
attention [5]. In this approach, the Higgs field drives
inflation through its strong coupling, ξh2R, where R is
the Ricci scalar and ξ is a dimensionless parameter that
acquires a large value, ξ≳ 104.
In modern particle physics theories, cosmological infla-

tion is usually described within the framework of super-
gravity or superstring grand unified theories (GUTs). In
these theories, the SM is embedded in a higher gauge
symmetry and the field content including the Higgses are
incorporated in representations of the higher symmetry
which includes the SM gauge group. In this context, several
new facts and constraints should be taken into account. For
instance, since new symmetry breaking stages are involved,
the Higgs sector is usually extented and alternative pos-
sibilities for identifying the inflaton emerge. In addition,
the effective potential has a specific structure constrained

from fundamental principles of the theory. In string theory
effective models, e.g., in a wide class of compactifications
the scalar potential appears with a no-scale structure as in
standard supergravity theories [6,7]. In general, the scalar
potential is a function of the various fields which enter in a
complicated manner through the superpotential W and the
Kähler potential K. Thus, a rather detailed investigation is
required to determine the conditions for slow roll inflation
and ensure a stable inflationary trajectory in such models.
Modifications of the basic no-scale Kähler potential and
various choices for the superpotential have been studied
leading to a number of different inflationary cases [8–14],
while studies of inflation within supergravity in a model
independent way can be found in [15,16].
In the present work, we implement the scenario of Higgs

inflation in a model based on the Pati-Salam gauge
symmetry SUð4ÞC × SUð2ÞL × SUð2ÞR [17] (denoted for
brevity with 4-2-2). This model has well known attractive
features (see e.g., the recent review [18]) and has been
successfully rederived in superstring and D-brane theories
[19–22]. Early universe cosmology and inflationary pre-
dictions of the model (or its extensions) have been
discussed previously in several works [23–25]. Here we
consider a supersymmetric version of the 4-2-2 model
where the breaking down to the SM gauge group takes
place in two steps. First SUð4Þ breaks spontaneously at the
usual supesymmetric GUT scale MGUT ≳ 1016 GeV, down
to the left-right group1 via the adjoint representation. Then,
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1For a recent discussion on left-right models based on GUTs,
see [26]. Inflation from an SOð10Þ model with left-right
intermediate symmetry is analyzed in [27].
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depending on the specific structure of the Higgs sector, the
SUð2ÞR scale can break either at the GUT scale, i.e.,
simultaneously with SUð4Þ, or at some lower, intermediate
energy scale. Thevariety of possibilities are reflected back to
the effective field theory model implying various interesting
phenomenological consequences. Regarding the Higgs
inflation scenario, in particular, the inflaton field can be
identified with the neutral components of the SUð2ÞR
doublet fields associated with the intermediate scale sym-
metry breaking. In this work, we will explore alternative
possibilities to realize inflation where the inflaton is iden-
tifiedwith the SUð2ÞR doublets.We also examine the case of
inflation in the presence of the adjoint representation.
The layout of the paper is as follows. In Sec. II, we

present a brief description of the 4-2-2 model, focusing in
its particle content and the symmetry breaking pattern. In
Sec. III, we present the superpotential and the emergent no-
scale supergavity Kähler potential of the effective model.
We derive the effective potential and analyze the predic-
tions on inflation when either the SUð2ÞR doublets or the
adjoint play the rôle of the inflaton. We present our
conclusions in Sec. IV.

II. DESCRIPTION OF THE MODEL

In this section, we highlight the basic ingredients of the
model with gauge symmetry,

SUð4ÞC × SUð2ÞL × SUð2ÞR· ð2:1Þ

This model unifies each family of quarks and leptons into
two irreducible representations, Fi and F̄i transforming
as [28]

Fi ¼ ð4; 2; 1Þi and F̄i ¼ ð4̄; 1; 2Þi;

under the corresponding factors of the gauge group (2.1).
Here the subscript i (i ¼ 1, 2, 3) denotes family index. Note
that F þ F̄ comprise the 16 of SOð10Þ, 16 → ð4; 2; 1Þ þ
ð4̄; 1; 2Þ. The explicit embedding of the SM matter fields,
including the right-handed neutrino is as follows:

Fi¼
�
ur ug ub ν

dr dg db e

�
i

; F̄i¼
�
ucr ucg ucb νc

dcr dcg dcb ec

�
i

; ð2:2Þ

where the subscript ðr; g; bÞ are color indices.
The symmetry breaking

SUð4ÞC × SUð2ÞR → SUð3ÞC × Uð1ÞY; ð2:3Þ

is achieved by introducing two Higgs multiplets

H ¼ ð4̄; 1; 2Þ ¼
�
ucH ucH ucH νcH
dcH dcH dcH ecH

�
;

H̄ ¼ ð4; 1; 2Þ ¼
�
ūcH ūcH ūcH ν̄cH

d̄cH d̄cH d̄cH ēcH

�
ð2:4Þ

which descend from the 16 and 16 of SOð10Þ, respectively.
An alternative way to break the gauge symmetry arises

in the case where the adjoint scalar Σ ¼ ð15; 1; 1Þ is
included in the spectrum. We parametrize Σ with a singlet
scalar field S

Σ≡ ð15; 1; 1Þ ¼ S

2
ffiffiffi
3

p

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

1
CCCA; ð2:5Þ

which acquires a GUT scale vacuum expectation value
(vev) hSi≡ υ≃3× 1016 GeV breaking SUð4Þ → SUð3Þ×
Uð1Þ. The breaking leads to the left-right symmetric group,
SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, and the decom-
position of the Higgs fields H, H̄ is as follows:

Hð4̄; 1; 2Þ → QHð3̄; 1; 2Þ−1=3 þ LHð1; 1; 2Þ1
H̄ð4; 1; 2Þ → Q̄Hð3; 1; 2Þ1=3 þ L̄Hð1; 1; 2Þ−1 ð2:6Þ

where QH¼ðucH dcHÞT , Q̄H¼ðūcH d̄cHÞ and LH¼ðνcH ecHÞT ,
L̄H ¼ ðν̄cH ēcHÞ.
The right-handed doublets LH, L̄H, acquiring vev’s

along their neutral components νcH; ν̄
c
H and as a result they

break the SUð2ÞR symmetry at some scale MR. This way
we obtain the symmetry breaking pattern [21]:

SUð4ÞC × SUð2ÞR × SUð2ÞL
→ SUð3ÞC ×Uð1ÞB−L × SUð2ÞR × SUð2ÞL
→ SUð3Þ × SUð2ÞL ×Uð1ÞY:

The two scales MGUT and MR are not related to each other
and it is, in principle, possible to take MR at some lower
scale provided there is no conflict with observational data
such as flavor changing neutral currents and lepton or
baryon number violation. Regarding the fast proton decay
problem, in particular, in 4-2-2 models, due to absence of
the associated gauge bosons there are no contributions from
dimension six (d-6) operators, and related issues from d-5
operators can be remedied with appropriate symmetries in
the superpotential.
The remaining spectrum and its SOð10Þ origin is as

follows: The decomposition of the 10 representation of
SOð10Þ, gives a bidoublet and a sextet field, transforming
under the 4-2-2 symmetry as follows
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10 → hð1; 2; 2Þ þD6ð6; 1; 1Þ· ð2:7Þ

The two Higgs doublets of the minimal supersymmetric
standard model (MSSM) descend from the bidoublet

h ¼ ð1; 2; 2Þ ¼
�
hþ2 h01
h02 h−1

�
: ð2:8Þ

Also, the sextet of (2.7) decomposes into a pair of
colored triplets: D6 → D3ð3; 1; 1Þ þ D̄3ð3̄; 1; 1Þ.
Collectively we have the following SM assignments:

F ¼ ð4; 2; 1Þ → Q

�
3; 2;

1

6

�
þ L

�
1; 2;−

1

2

�

F̄ ¼ ð4̄; 1; 2Þ → uc
�
3̄; 1;−

2

3

�
þ dc

�
3̄; 1;

1

3

�
þ ecð1; 1; 1Þ þ νcð1; 1; 0Þ

h ¼ ð1; 2; 2Þ → Hu

�
1; 2;

1

2

�
þHd

�
1; 2;−

1

2

�

H ¼ ð4̄; 1; 2Þ → ucH

�
3̄; 1;−

2

3

�
þ dcH

�
3̄; 1;

1

3

�
þ ecHð1; 1; 1Þ þ νcHð1; 1; 0Þ

H̄ ¼ ð4; 1; 2Þ → ūcH

�
3; 1;

2

3

�
þ d̄cH

�
3; 1;−

1

3

�
þ ēcHð1; 1;−1Þ þ ν̄cHð1; 1; 0Þ

D6 ¼ ð6; 1; 1Þ → D3

�
3; 1;−

1

3

�
þ D̄3

�
3̄; 1;

1

3

�
ð2:9Þ

Fermions receive Dirac type masses from a common
tree-level invariant term, FF̄h, while right-handed (RH)
neutrinos receive heavy Majorana contributions from non-
renormalizable terms, to be discussed in the next sections.
In addition, the color triplets dcH and d̄cH are combined with
the D3 and D̄3 states via the trilinear operators HHD6 þ
H̄ H̄ D6 and get masses near the GUT scale.
After the short description of the basic features of the

model, in the following sections, we investigate various
inflationary scenarios in the context of no-scale super-
gravity, by applying the techniques presented in [29,30].

III. INFLATION IN NO-SCALE SUPERGRAVITY

In this section, we consider the 4-2-2 model as an
effective string theory model and study the implications
of Higgs inflation. The ‘light’ spectrum in these construc-
tions contains the MSSM states in representations trans-
forming nontrivially under the gauge group and a number
of moduli fields associated with the particular compacti-
fication. We will focus on the superpotential and the Kähler
potential which are essential for the study of inflation.

The superpotential is a holomorphic function of the
fields. Ignoring Yukawa interaction terms, the most general
superpotential up to dimension four which is relevant to our
discussion is

W ¼ MH̄H þ μh̄hþm trðΣÞ2 þ nH̄ΣH þ c trðΣ3Þ
− αðH̄HÞ2 − βðh̄hÞ2 − β0ðH̄HÞðh̄hÞ
− κ trðΣ4Þ − λH̄ trðΣ2ÞH ð3:1Þ

where from now on we set the reduced Planck mass to
unity, MPl ¼ 1. We focus on the dynamics of inflation
during the first symmetry breaking stages at high energy
scales. For this reason we ignore all the terms involving
the bi-doubled since this state mostly contribute in low
energies by ginving mass to the MSSM particles and do
not play an important rôle during inflation. In addition,
we impose a Z2 symmetry, under which Σ is odd and all
the other fields are even. As a result the trilinear terms
H̄ΣH and trðΣ3Þ are eliminated from the superpotential
in (3.1). The elimination of these trilinear terms of the
superpotential is important, since if we use H̄ΣH and
trðΣ3Þ instead of H̄trðΣ2ÞH and trðΣ4Þ, the shape of the
resulting potential is not appropriate and it leads to
inconsistent results with respect to the cosmological
bounds while at the same time returns a low scale
value for the parameter M in the superpotential, which
usually expected to be close to the GUT scale. Then,
using (2.5) and (2.6) the superpotential takes the
following form:

W ⊃
�
M −

λ̃

9
S2
�
Q̄HQH þ ðM − λ̃S2ÞL̄HLH

− αðQ̄HQH þ L̄HLHÞ2 þmS2 − κ̃S4 ð3:2Þ

where λ̃ ¼ 3λ
4

and κ̃ ¼ 7κ
12
. From the phenomenological

point of view we expect hSi ¼ v to be at the GUT scale.
By assuming v ≃ 3 × 1016 GeV and using the minimi-
zation condition ∂W=∂S ¼ 0, we estimate that m ≃ 2κ̃v2

which, for κ̃ ¼ 1=2, gives m ∼ 1014 GeV.
In the two-step breaking pattern that we consider here,

L̄H and LH must remain massless at this scale in order to
break the SUð2ÞR symmetry at a lower scale. The SUð2ÞR
breaking scale should not be much lower than the GUT
scale in order to have a realistic heavy Majorana neutrino
scenario. In addition, we have to ensure that the colored
triplets Q̄H and QH will be heavy. In order to keep the L̄H,
LH doublets at a lower scale, and at the same time the
colored fields Q̄H and QH to be heavy, we assume that
M ≈ λ̃hSi2 ¼ λ̃υ2. In this case, Q̄H, QH acquire GUT scale
masses MQH

≈ 8λ̃
9
hSi2.

During inflation the colored triplets Q̄H, QH and the
charged components of the RH doublets, L̄H and LH, do
not play an important rôle. The SUð2ÞR symmetry breaks
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via the neutral components2 ν̄H and νH. In terms of these
states, the superpotential reads

W ¼ λ̃ðυ2 − S2Þν̄HνH − αðν̄HνHÞ2 þmS2 − κ̃S4; ð3:3Þ

where we have made use of the relation M ≃ λ̃υ2.
The Kähler potential has a no-scale structure and is a

Hermitian function of the fields and their conjugates. For
the present analysis, we will consider the dependence
of the Higgs fields of the 4-2-2 gauge group and the
‘volume’ modulus T. Therefore, assuming the fields ϕi ¼
ðS; T;H; hÞ and their complex conjugates, we write

K ¼ −3 log
�
T þ T� −

1

3
ðHH� þ H̄H̄� þ tr Σ†ΣÞ

þ ξ

3
ðHH̄ þH�H̄�Þ þ ζ

3
ðhh� þ h̄h̄�Þ

�
ð3:4Þ

where ξ is a dimensionless parameter. In the expression
(3.4), we can ignore the last term which involves the
bidoublet and in terms of νH, ν̄H and S, the Kähler potential
reads:

K ¼ −3 log
�
T þ T� −

1

3
ðjνHj2 þ jν̄Hj2 þ S2Þ

þ ξ

3
ðν̄HνH þ ðν̄HÞ�ðνHÞ�Þ

�
: ð3:5Þ

In order to determine the effective potential, we define the
function

G ¼ K þ log jWj2 ≡ K þ logW þ logW�:

Then the effective potential is given by

V ¼ eGðGiG−1
ij�Gj� − 3Þ þ VD ð3:6Þ

where GiðGj� Þ is the derivative with respect to the field
ϕiðϕ�

jÞ and the indices i, j run over the various fields. VD

stands for the D-term contribution.
Computing the derivatives and substituting in (3.6) the

potential takes the form

V½ν̄H;νH;S� ¼
9

ð−3þν2Hþ ν̄2HþS2−2ξν̄HνHÞ2
× ½ðλ̃υ2−2ανHν̄HÞ2ðν2Hþ ν̄2HÞ−8λ̃mS2ν̄HνH

−2λ̃S2ðλ̃υ2−2ανHν̄HÞðν2Hþ ν̄2HÞ
þ4λ̃2S2ðν̄HνHÞ2þ4m2S2

−16κ̃S4ðm− λ̃ν̄HνHÞþ λ̃2S4ðν2Hþ ν̄2HÞ
þ16κ̃2S6� ð3:7Þ

where we have ignored the D-term contribution and we
have assumed that the value of the T modulus field is
stabilized at hTi ¼ hT�i ¼ 1=2, see [31,32]. Notice that in
the absence of the Higgs contributions in the Kähler
potential, the effective potential is exactly zero, V ¼ 0
due to the well known property of the no-scale structure.
We are going now to investigate two different infla-

tionary cases: firstly, along H-direction and secondly along
S-direction.

A. Inflation along H-direction

We proceed by parametrizing the neutral components of
the LH and L̄H fields as νH ¼ 1

2
ðX þ YÞeiθ and ν̄H ¼

1
2
ðX − YÞeiφ, respectively. These yield

X ¼ jνHj þ jν̄Hj; Y ¼ jνHj − jν̄Hj· ð3:8Þ
Assuming θ ¼ 0 and φ ¼ 0, along the D-flat direction,

Y ¼ 0, and the combination X is identified with the
inflaton. The shape of the potential, as a function of the
fields S and X, is presented in Fig. 1. In order to avoid
singularities from the denominator, we have assume a
condition which is described in the following.
The potential along the S ¼ 0 direction is:

VðXÞ ¼
λ̃2υ4X2

�
1 − αX2

2λ̃υ2

�
2

2
�
1 −

�
1−ξ
6

�
X2
�
2
: ð3:9Þ

The shape of the VðX; SÞ scalar potential presented in
Fig. 1 along with the inflaton trajectory description and the
simplified form in (3.9) is similar with the one presented in
[29,30]. As it is usually the case in no-scale supergravity,
the effective potential displays a singularity when the
denominator vanishes. The presence of these singularities
lead to an exponentially steep potential which can cause
violation of the basic slow-roll conditions (i.e., ε ≪ 1,
jηj ≪ 1). Consequently, these singularities must be
removed. In our specific model described by the potential

)3.9 ), we first notice that for the special value ξ ¼ 1 the
potential is free from singularities. For generic values of ξ
however, i.e., ξ ≠ 1, the potential displays a singularity for

X ¼
ffiffiffiffiffiffi
6

1−ξ

q
. In order to remove the zeros of the denominator

in (3.9), we assume the following condition [29],
2Here and for the rest of the paper, for shorthand we remove

the subscript “c” on the fields, i.e.: ν̄cH , ν
c
H → ν̄H; νH .
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α ¼ ð1 − ξÞλ̃υ2
3

· ð3:10Þ

This is a strong assumptionwhich relates parameters with
different origins. Indeed, α is a superpotential parameter
while ξ descents from the Kahler potential. Since in our
specific model the condition (3.10) lacks an explanation
from first principles, it will be reasonable in the subsequent
analysis to study the effects of a slightly relaxed version of
(3.10). This can be achieved by introducing a small
parameter δ (with δ ≪ 1) and modifying the condition as
follows,

α ¼ ð1 − ξþ δÞλ̃υ2
3

· ð3:11Þ

In the remainder of this section, we are going to study the
potential for special ξ values using the conditions (3.10)
and (3.11).
We will start by analyzing some special cases first. By

imposing (3.10), which means δ ¼ 0 the scalar potential
simplifies to a quadratic monomial,

VðXÞ ¼ λ̃2υ4

2
X2 ð3:12Þ

something that can be also seen from the plots in Fig. 1,
where for small values of S (along the S ¼ 0 direction) the
potential receives a quadratic shape form. The Eq. (3.12)
shows the potential of a chaotic inflation scenario.
However, at this stage, the inflaton field X is not canoni-
cally normalized since its kinetic energy terms take the
following form

LðXÞ ¼ 1 − ξ
6
ð1 − ξÞX2

2ð1 − 1
6
ð1 − ξÞX2Þ2 ð∂XÞ

2 −
λ̃2υ4

2
X2: ð3:13Þ

We introduce a canonically normalized field χ satisfying

�
dχ
dX

�
2

¼ 1 − ξ
6
ð1 − ξÞX2

ð1 − 1
6
ð1 − ξÞX2Þ2 : ð3:14Þ

After integrating, we obtain the canonically normalized
field χ as a function of X

χ ¼
ffiffiffi
6

p
tanh−1

0
B@ ð1 − ξÞXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

�
1 − ξð1−ξÞX2

6

�s
1
CA

−

ffiffiffiffiffiffiffiffiffiffi
6ξ

1 − ξ

s
sin−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ

�
1 − ξ

6

�s
X

1
CA: ð3:15Þ

Next, we investigate the implications of Eq. (3.15) by
considering two different cases, for ξ ¼ 0 and ξ ≠ 0.

(i) For ξ ¼ 0 we have X ¼ ffiffiffi
6

p
tanhð χffiffi

6
p Þ and the poten-

tial becomes,

V ¼ 3λ̃2υ4 tanh2
�

χffiffiffi
6

p
�
; ð3:16Þ

which is analogous to the conformal chaotic infla-
tion model (or T-Model) [33]. In these particular
type of models, the potential has the general form

VðχÞ ¼ λn tanh2n
�

χffiffiffi
6

p
�

where n ¼ 1; 2; 3;…

ð3:17Þ
As we can see, for n ¼ 1 we receive our result in
(3.16) with λ ¼ 3λ̃2υ4. This potential can be further
reduced to subcases depending upon the value of χ.
For χ ≥ 1 the potential in Eq. (3.16) reduces to
Starobinsky model [34]. In this case, the inflationary
observables have values ðns; rÞ ≈ ð0.967; 0.003Þ and

FIG. 1. Plots of the potential as a function of S and X and for appropriate values of the other parameters. The plot on the right displays a
close-up view of the region with small values for X and S.
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the tree level prediction for ξ ¼ 0 is consistent with
the latest Planck bounds [35]. This type of models
will be further analyzed in the next section where
inflation along the S-direction is discussed.

(ii) The particular case of ξ ¼ 1 implies a quadratic
chaotic inflation and the tree-level inflationary
prediction ðns; rÞ ≈ ð0.967; 0.130Þ is ruled out ac-
cording to the latest Planck 2015 results. For
0 < ξ < 1, the prediction for ðns; rÞ, can be worked
out numerically.
After this analysis, we turn our attention to a

numerical calculation. In our numerical analysis, we
imply the modified condition (3.11) were as men-
tioned previously a small varying parameter δ has
been introduced in order to soften the strict
assumption (3.10). By substitute the relaxed con-
dition (3.11) in (3.9) and neglecting Oðδ2Þ, the
potential receives the following form:

VðXÞ ≃ λ̃2υ4

2
X2

�
1 −

2δX2

6þ ðξ − 1ÞX2

�
: ð3:18Þ

Aswe observe the first term in the above relation is
the quadratic potential (3.12), while the second term
encodes the effects of the small parameter δ. In
addition, we note that the order of the singularity
enhancement have been improved in comparison
with the initial potential (3.9). Next we present our
numerical results where the rôle of the parameter δ is
also discussed.

B. Numerical analysis

Before presenting numerical predictions of the model it
is useful to briefly review here the basic results of the slow
roll assumption. The inflationary slow roll parameters are
given by [36,37]:

ϵ ¼ 1

2

�
V 0ðXÞ

VðXÞχ0ðXÞ
�

2

;

η ¼
�

V 00ðXÞ
VðXÞðχ0ðXÞÞ2 −

V 0ðXÞχ00ðXÞ
VðXÞðχ0ðXÞÞ3

�
: ð3:19Þ

The third slow-roll parameter is,

ς2 ¼
�

V 0ðXÞ
VðXÞχ0ðXÞ

��
V 000ðXÞ

VðXÞðχ0ðXÞÞ3 − 3
V 00ðXÞχ00ðXÞ
VðXÞðχ0ðXÞÞ4

þ 3
V 0ðXÞðχ00ðXÞÞ2
VðXÞðχ0ðXÞÞ5 −

V 0ðXÞχ000ðXÞ
VðXÞðχ0ðXÞÞ4

�
ð3:20Þ

where a prime denotes a derivative with respect to X. The
slow-roll approximation is valid as long as the conditions
ϵ ≪ 1,jηj ≪ 1 and ς2 ≪ 1 hold true. In this scenario, the
tensor-to-scalar ratio r, the scalar spectral index ns and the
running of the spectral index dns

d ln k are given by

r≃16ϵ; ns≃1þ2η−6ϵ;
dns
d lnk

≃16ϵη−24ϵ2þ2ς2:

ð3:21Þ

The number of e-folds is given by

Nl ¼
Z

Xl

Xe

�
VðXÞχ0ðXÞ
V 0ðXÞ

�
dX; ð3:22Þ

where l is the comoving scale after crossing the horizon, Xl
is the field value at the comoving scale and Xe is the field
when inflation ends, i.e., max ðϵðXeÞ; ηðXeÞ; ςðXeÞÞ ¼ 1.
Finally, the amplitude of the curvature perturbation ΔR is
given by:

Δ2
R ¼ VðXÞ

24π2ϵðXÞ : ð3:23Þ

Focusing now on the numerical analysis, we see that we
have to deal with three parameters: ξ, δ and λ̃. We took the
number of e-folds (N) to be 60, and in Fig. 2, we present
two different cases in the ns − r plane, along with the
Planck measurements (Planck TT,TE,EE+lowP) [35].
Specifically, in Fig. 1(a), we fixed ξ and vary λ̃ and δ.
The various colored (dashed) lines corresponds to different
fixed ξ-values. The green line corresponds to the limiting
case with ξ ¼ 1 and as we observe the results are more
consistent with the Plank bounds (black solid contours) as
the value of ξ decreases. Similar, in Fig. 1(b) we treat δ as a
fixed parameter while we vary ξ and λ̃. Also, in this case, we
observe that for a significant region of the parameter space
the solutions are in good agreement with the observed
cosmological bounds. The green curve here corresponds to
δ ¼ 10−6. The special case with δ ¼ 10−6 ∼ 0 and ξ ¼ 1 is
represented by the black dot and as we discussed earlier is
ruled out from the recent cosmological bounds. We observe
from the plot that, as ξ approaches to unity the splitting
between the curves due to different values of δ is small and
the solution converges to δ ∼ 0 case. However, as we
decrease the values of ξ we have splitting of the curves
and better agreement with the cosmological bounds. Finally,
in plots 1(c) and 1(d), we present values of the running of the
spectral index with respect to ns. We observe that the
running of the spectral index, approximately receives values
in the range −5 × 10−4 < dnS

d ln k < 5 × 10−4.
Next we present additional plots to better clarify the rôle

of the various parameters involved in the analysis.
Firstly, we study the spectral index ns as a function of the

various parameters. The results are presented in Fig. 3. In
plots (a) and (b), we consider the cases with fixed values for
ξ and δ, respectively, and we take variations for λ̃. We vary
the parameter ξ in the range ξ ∼ ½0.92; 1� with the most
preferable solutions for ξ ≃ ½0.96; 1�. In addition, the two
plots suggest that acceptable solutions are found in the
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range λ̃ ∼ ½10−2; 10−1�. In plots (c) and (d), ns is depicted in
terms of δ and ξ, respectively. As we expected, the
dependence on δ is negligible when it receives very small
values, since we observe from plot 3(c) that the various
curves are almost constant for very small δ values. The
results are become more sensitive on δ as we decrease the
value of ξ. This behavior can also be confirmed from
the potential (3.18). As we can see for ξ ∼ 1 the second
term is simplified and the potential receives a chaotic like
form. In this case, the effects of small δ in the observables
are almost negligible (green line). However as we decrease
the value of ξ and we increase the values of δ the second
term becomes important and contributes to the results.
Next, in Fig. 4 we consider various cases for the tensor

to scalar ratio, r. The description of the plots follows the
spirit of those presented in Fig. 3 for the spectral index nS.
In particular, by comparing the plots 4(c) and 3(c) we notice
that the dependence of r on δ is weaker in comparison
with nS. Thus the relaxation parameter δ strongly affects
the spectral index nS while for δ < 10−4 and fixed ξ the

tensor-scalar ratio r remains almost constant. In summary,
from the various figures presented so far we observe that
consistent solutions can be found in a wide range of the
parameter space. We also note that the model predicts
solutions with r ≤ 0.02, which is a prediction that can be
tested with the discovery of primordial gravity waves and
with bounds of future experiments.
Regarding the superpotential parameter λ̃, we can see

from the various plots that its value must be within the range
λ̃ ∼ ½10−2; 10−1�. Using this range of values for λ̃ and the fact
that, MQH

≈ 8λ̃
9
υ2, with υ ≃ 10−2 in MPl ¼ 1 units we

conclude that: MQH
∼ ½0.217; 2.17� × 1013 GeV. The fact

that the mass value is small compare to theOðMGUTÞ scale,
can create tension with other phenomenological predictions
of the model, like unification of gauge couplings. On the
other hand, as already mentioned, QH, Q̄H triplet fields can
be mixed with the tripletsD3, D̄3 contained in the sextetD6,
something that is possible to lead in a significant lift to the
mass value of the extra triplet fields.

(a)

(c) (d)

(b)

FIG. 2. The inflationary predictions (r-ns) and ð dns
d ln k − nsÞ of the model by varying the various parameters involved in to the analysis.

In all cases, we took the number of e-folds, N ¼ 60. In plots (a) and (b), black solid contours represents the Planck constraints (Planck
TT,TE,EE+lowP) at 68% (inner) and 95% (outer) confidence level [35]. In plots (a) and (c), we keep ξ constant for each curve and vary λ̃
and δ. While in plots (b) and (d) for each curve we fixed δ and vary λ̃ and ξ. The black dot solution corresponds to ξ ¼ 1.
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It is also interesting to investigate the values of the
Hubble parameter during inflation Hinf in the model. In the
slow-roll limit, the Hubble parameter it depends on
the value of X:

H2
inf ¼

VðXÞ
3M2

Pl

ð3:24Þ

and we evaluate it at the pivot scale. In Fig. 5, we show the
values of the Hubble parameter in the (Hinf − ns) plane. We
observe that the values of the Hubble parameter with
respect to ns bounds are of order 1013 GeV.

C. Reheating

As has already been discussed in Sec. II, the quarks and
leptons in the 4-2-2 model are unified under the represen-
tations Fi ¼ ð4; 2; 1Þ and F̄i ¼ ð4̄; 1; 2Þ, where i ¼ 1, 2, 3
denote the families and the RH-neutrinos are contained
in the F̄ representation. A heavy Majorana mass for the
RH-neutrinos can be realized from the following non-
renormalizable term,

Mνcν
cνc ≈ γ

F̄ F̄ H̄ H̄
M�

; ð3:25Þ

where we have suppressed generation indices for simplic-
ity, γ is a coupling constant andM� represents a high cut-off
scale (e.g., the compactification scale in a string model or
the Planck scale MPl). In terms of SOð10Þ GUTs, this
operator descent from the following invariant operator

16F16F1̄6H1̄6H

and as described in [38] can be used to explain the reheating
process of the universe after the end of inflation. In our
case, the 4-2-2 symmetry breaking occur in two steps: first

GPS →
hSi

GL−R and then GL−R !hνHi;hν̄HiGSM. The first breaking
is achieved via the adjoint of the PS group at the GUT scale
while the second breaking occurs in an intermediate scale
MR. After the breaking of the L-R symmetry, the high order
term in (3.25) gives the following Majorana mass term for
the RH neutrinos

(a)

(c) (d)

(b)

FIG. 3. Plots (a) and (c) show how nS depends on log λ̃ and log δ, respectively. For each curve in plots (a),(c), we fixed the value of ξ
and vary λ̃ and δ. Similarly, plots (b) and (d), shows ns vs logðλ̃Þ and nS vs ξ, respectively. In plots (b) and (d), the value of δ is fixed while
we vary the other parameters.
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(a)

(d)(c)

(b)

FIG. 4. Plots (a) and (c) show r vs log λ̃ and r vs log δ, respectively. For each curve in plots (a) and (c), we fixed ξ and vary λ̃ and δ.
Similar, in plots (b) and (d), we present r vs log λ̃ and r vs ξ. For each curve in these plots we fixed the value of δ and vary λ̃ and ξ.

(a) (b)

FIG. 5. Plots showing the values (in GeV) of the Hubble parameter with respect to the scalar spectral index ns. For acceptable ns values
we see that the Hubble parameter receives values of order 1013 − 1014 GeV.
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γ
hνHi2
MPl

νcνc: ð3:26Þ

We can see that a heavy Majorana scale scenario implies
that the SUð2ÞR breaking scale should not be much lower
than the SUð4Þ scale and also γ should not be too small.
Another important role of the higher dimensional operators
is that after inflation the inflaton X decays into RH
neutrinos through them to reheat the Universe. In addition,
the subsequent decay of these neutrinos can explain the
baryon asymmetry via leptogenesis [39,40]. For the reheat-
ing temperature, we estimate [38] (see also [41]):

TRH ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓXMPl

p
ð3:27Þ

where the total decay width of the inflaton is given by

ΓX ≃
1

16π

�
Mνc

M

�
2

MX ð3:28Þ

withMνc ¼ γ hνHi2
MPl

the mass of the RH neutrinos andMX the
mass of the inflaton. The later is calculated from the effective
mass matrix at the local minimum and approximately is
MX ¼ 2M ≃ 2λ̃υ2. Since M ≃ 1013 GeV, the decay condi-
tionMX > Mνc it is always satisfied for appropriate choices
of the parameters hνHi and γ. In Figs. 6, we present solutions
in ns − TRH and r − TRH plane with respect to the various
parameters of the model. For the computation of TRH we
assume that hνHi ¼ M ≃ λ̃v2 and we present the results for
γ ¼ 0.1 (solid), γ ¼ 0.5 (dashed) and γ ¼ 1 (dotted). In this
range of γ values, we have a Majorana mass, Mνc ∼ 106−
107 GeV, which decreases as we decrease the value of γ. In
addition, gravitino constraints implies a bound for the
reheating temperature with TRH < 106 − 109 GeV and as
we observe from the plots there are acceptable solutions in
this range of values.More precisely, fromplots (a) and (c)we
see that for ξ > 0.97 and γ > 0.5most of the results predict
TRH > 109 GeV. However, it is clear that the consistency
with the gravitino constraints strongly improves as we

(a) (b)

(c) (d)

FIG. 6. Plots (a) and (b) show solutions in the ns − TRH plane by varying the various parameters of the model, while plots (c) and (d)
present solutions in the r − TRH plane. In all the cases for the coupling constant γ, we choose the values γ ¼ 0.1 (solid), γ ¼ 0.5 (dashed)
and γ ¼ 1 (dotted).
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decrease γ, since all the curves with γ ¼ 0.1 (solid lines)
predicts TRH ≲ 109 GeV. Similar conclusions can be
derived from plots (b) and (d). In addition, from the r −
TRH plots (c) and (d) we observe that for TRH < 106 − 109

there are regions in the parameter space with r ∼ 10−2−
10−3. Furthermore,we observe fromplot 6(c) that the tensor-
scalar ratio and the reheating temperature are decreased as
we decrease the value of ξ since the curves are shift to the left
and down regions of the plot.
A sample of the results have been discussed so far is

presented in Table I. The table is organized in horizontal
blocks and each block contains three sets of values. For
each set in a block we change only the coupling constant γ
(γ ¼ 1, 0.5, 0.1) while we keep λ̃, ξ and δ constant. We
observe that as we decrease the values of λ̃ and ξ the values
of the tensor to scalar ratio (r) and the reheating temper-
ature (TRH) also decreased.

D. Inflation along S direction

Here we briefly discussed the case where the S field has
the rôle of the inflaton. In the potential (3.7), we put
hνHi ¼ 0 and hν̄Hi ¼ 0, so we have

V ¼ 144κ̃2S2ðm
2κ̃ − S2Þ2

ð3 − S2Þ2 : ð3:29Þ

In order to remove the singularity of the denominator, we
takem ¼ 6κ̃. In this case, we get the following simple form

V ¼ 144κ̃2S2 ð3:30Þ

which is of the form of a chaotic-potential.
Now the kinetic energy is defined as,

L ¼ 1

2
Kj

ið∂SÞ2 − 144κ̃S2 where

Kj
i ¼

∂2K
∂S∂S� ¼

9

ð3 − SS�Þ2 · ð3:31Þ

Let S ¼ Xffiffi
2

p then the potential in (3.30) becomes,

V ¼ 72κ̃2X2, and from the coefficient of the kinetic energy
term we can find X in terms of a canonical normalized
field χ:

X ¼
ffiffiffi
6

p
tanh

�
χffiffiffi
6

p
�
: ð3:32Þ

The potential in terms of the canonical normalized field
reads as

V ¼ 432κ̃2 tanh2
�

χffiffiffi
6

p
�
; ð3:33Þ

TABLE I. Inflationary predictions of the model for various values of λ̃, ξ, δ and γ. The number of e-folds is taken to be N ¼ 60.

X0

MPl

Xe
MPl

γ λ̃ ξ δ MInf
MPl

Mνc

MPl
ns r dns

dlnκ
log ðTRH=GeVÞ

15.04 1.41 1 0.0384 0.9936 10−6 1.16 × 10−5 3.4 × 10−11 0.968 0.1070 −4.7 × 10−4 9.83
15.04 1.41 0.5 0.0384 0.9936 10−6 1.16 × 10−5 1.7 × 10−11 0.968 0.1070 −4.7 × 10−4 9.53
15.04 1.41 0.1 0.0384 0.9936 10−6 1.16 × 10−5 3.4 × 10−12 0.968 0.1070 −4.7 × 10−4 8.84
13.848 1.41 1 0.0304 0.98 10−4.61 9.25 × 10−6 2.139 × 10−11 0.971 0.057 −2.87 × 10−4 9.683
13.848 1.41 0.5 0.0304 0.98 10−4.61 9.25 × 10−6 1.07 × 10−11 0.971 0.057 −2.87 × 10−4 9.382
13.848 1.41 0.1 0.0304 0.98 10−4.61 9.25 × 10−6 2.139 × 10−12 0.971 0.057 −2.87 × 10−4 8.683
12.83 1.40 1 0.02141 0.97 10−4.22 6.5 × 10−6 1.05 × 10−11 0.967 0.0238 1.5 × 10−6 9.45
12.83 1.40 0.5 0.02141 0.97 10−4.22 6.5 × 10−6 5.29 × 10−12 0.967 0.0238 1.5 × 10−6 9.15
12.83 1.40 0.1 0.02141 0.97 10−4.22 6.5 × 10−6 1.05 × 10−12 0.967 0.0238 1.5 × 10−6 8.45
12.69 1.40 1 0.019 0.97 10−3.72 5.8 × 10−6 8.4 × 10−12 0.958 0.018 2.3 × 10−4 9.38
12.69 1.40 0.5 0.019 0.97 10−3.72 5.8 × 10−6 4.2 × 10−12 0.958 0.018 2.3 × 10−4 9.08
12.69 1.40 0.1 0.019 0.97 10−3.72 5.8 × 10−6 8.4 × 10−13 0.958 0.018 2.3 × 10−4 8.3
11.85 1.40 1 0.0118 0.96 10−4.82 3.57 × 10−6 3.2 × 10−12 0.966 0.0061 5.1 × 10−5 9.065
11.85 1.40 0.5 0.0118 0.96 10−4.82 3.57 × 10−6 1.6 × 10−12 0.966 0.0061 5.1 × 10−5 8.76
11.85 1.40 0.1 0.0118 0.96 10−4.82 3.57 × 10−6 3.2 × 10−13 0.966 0.0061 5.1 × 10−5 8.065
11.79 1.40 1 0.010 0.96 10−4.397 3.13 × 10−6 2.5 × 10−12 0.957 0.0050 2.1 × 10−4 8.98
11.79 1.40 0.5 0.010 0.96 10−4.397 3.13 × 10−6 1.2 × 10−12 0.957 0.0050 2.1 × 10−4 8.67
11.79 1.40 0.1 0.010 0.96 10−4.397 3.13 × 10−6 2.5 × 10−13 0.957 0.0050 2.1 × 10−4 7.97
11.64 1.404 1 0.00891 0.958 10−4.5 2.71 × 10−6 1.85 × 10−12 0.957 0.0034 1.8 × 10−4 8.89
11.64 1.404 0.5 0.00891 0.958 10−4.5 2.71 × 10−6 9.24 × 10−13 0.957 0.0034 1.8 × 10−4 8.59
11.64 1.404 0.1 0.00891 0.958 10−4.5 2.71 × 10−6 1.84 × 10−13 0.957 0.0034 1.8 × 10−4 7.89
11.59 1.40 1 0.0084 0.958 10−4.5 2.6 × 10−6 1.64 × 10−12 0.956 0.00299 1.9 × 10−4 8.84
11.59 1.40 0.5 0.0084 0.958 10−4.5 2.6 × 10−6 8.2 × 10−13 0.956 0.00299 1.9 × 10−4 8.54
11.59 1.40 0.1 0.0084 0.958 10−4.5 2.6 × 10−6 1.64 × 10−13 0.956 0.00299 1.9 × 10−4 7.84
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which is analogous to the conformal chaotic inflation model
or T-Model inflation already mentioned before. Potentials
for the T-Model inflation are given in Eq. (3.17). For n ¼ 1

the potential become, VðχÞ ¼ λ tanh2ð χffiffi
6

p Þ, which is similar

to our potential in (3.33) for λ ¼ 432κ̃2. We can understand
the inflationary behavior in these type of models, by
considering two cases.
First for χ ≥ 1, by writing the potential in exponential

form we have

V ¼ λ

0
@1 − e−

ffiffi
2
3

p
χ

1þ e−
ffiffi
2
3

p
χ

1
A2

¼ λ

0
@1 −

2e−
ffiffi
2
3

p
χ

1þ 2e−
ffiffi
2
3

p
χ

1
A2

¼ λ
�
1 − 2e−

ffiffi
2
3

p
χ
�
2 ð3:34Þ

and for large values of χ we can write

V ≃ λ

�
1 − 4e−

ffiffi
2
3

p
χ

�
; ð3:35Þ

where λ ¼ 432κ̃2. The slow roll parameters in terms of the
field χ and for large number of e-folds (N) are

dχ
dN

¼ V 0

V
¼ 4

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χ : ð3:36Þ

Integrating (3.36), we have
R
eχ

ffiffiffiffiffiffi
2=3

p
dχ ¼ R 4 ffiffi

2
3

q
dN,

which gives the relation

e−
ffiffi
2
3

p
χ ¼ 3

8N
: ð3:37Þ

Using the relation above we have for the slow-roll
parameter ϵ that,

ϵ ¼ 1

2

�
V 0

V

�
2

¼ 1

2

 
4

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χ

!
2

¼ 3

4N2
: ð3:38Þ

Similarly the second slow-roll parameter η is found to be,

η ¼
�
V 00

V

�
¼ −

1

N
: ð3:39Þ

Finally, the predictions for the tensor-to-scalar ratio r and
the natural-spectral index ns are,

r ¼ 12

N2
; ns ¼ 1þ 2η − 6ϵ ¼ 1 −

2

N
−

9

4N2
ð3:40Þ

and for N ¼ 60 e-foldings we get ns ≃ 0.9673 and
r ≃ 0.0032.
Regarding the case with χ ⪕ 1, we can see from the

expression (3.33) that the potential reduces to a quadratic
chaotic form. The tree-level inflationary predictions in this

case are ðns; rÞ ≈ ð0.967; 0.130Þ, which are ruled out with
the latest Planck 2015 results.
The discussion above strongly depends on the assumption

m ¼ 6κ̃ that we imposed on the potential in order to simplify
it. If we consider small variations of this assumption similar
to (3.11) and modify the condition as, m ¼ 6κ̃ þ δ, we will
see that the parameter δ contributes only to nS while the
tensor-to-scalar ratio r remains constant.

IV. CONCLUSIONS

In the present work, we have studied ways to realize the
inflationary scenario in a no-scale supersymmetric model
based on the Pati-Salam gauge group SUð4Þ × SUð2ÞL×
SUð2ÞR, supplemented with a Z2 discrete symmetry. The
spontaneous breaking of the group factor SUð4Þ →
SUð3Þ × Uð1ÞB−L is realized via the SUð4Þ adjoint Σ ¼
ð15; 1; 1Þ and the breaking of the SUð2ÞR symmetry is
achieved by nonzero vevs of the neutral components νH, ν̄H
of the Higgs fields ð4; 1; 2ÞH and ð4̄; 1; 2ÞH̄.
We have considered a no-scale structure Kähler potential

and assumed that the inflaton field is a combination of νH,
ν̄H and find that the resulting potential is similar with the
one presented in [29,30] but our parameter space differs
substantially. Consequently, there are qualitatively different
solutions which are presented and analyzed in the present
work. The results strongly depend on the parameter ξ and
for various characteristic values of the latter we obtain
different types of inflation models. In particular, for ξ ¼ 0
and canonical normalized field χ ≥ 1, the potential reduces
to Starobinsky model and for ξ ¼ 1 the model receives a
chaotic inflation profile. The results for 0 < ξ < 1 have
been analyzed in detail while reheating via the decay of the
inflaton in right-handed neutrinos is discussed.
We also briefly discussed the alternative possibility

where the S field has the rôle of the inflaton. In this case,
the potential is exponentially flat for χ ≥ 1. Similar con-
clusions can be drawn for the Starobinsky model. On the
other hand, for small χ, it reduces to a quadratic potential.
In conclusion, the SUð4Þ × SUð2ÞL × SUð2ÞR model

described in this paper can provide inflationary predictions
consistent with the observations. Performing a detailed
analysis, we have shown that consistent solutions with the
Planck data are found for a wide range of the parameter
space of the model. In addition, the inflaton can provide
masses to the right-handed neutrinos and depending on the
value of reheating temperature and the right-handed neu-
trino mass spectrum thermal or nonthermal leptogenesis is
a natural outcome. Finally, we mention that, in several
cases the tensor-to-scalar ratio r, a canonical measure of
primordial gravity waves, is close to ∼10−2–10−3 and can
be tested in future experiments.
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