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The current 3.8σ tension between local [A. G. Riess et al., arXiv:1804.10655.] and global [N. Aghanim
et al. (Planck Collaboration), Astron. Astrophys. 596, A107 (2016).] measurements of H0 cannot be fully
explained by the concordance ΛCDM model. It could be produced by unknown systematics or by physics
beyond the standard model. In particular, nonstandard dark energy models were shown to be able to
alleviate this tension. On the other hand, it is well known that linear perturbation theory predicts a cosmic
variance on the Hubble parameterH0, which leads to systematic errors on its local determination. Here, we
study how including in the likelihood the cosmic variance on H0 affects statistical inference. In particular
we consider the γCDM, wCDM and γwCDM parametric extensions of the standard model, which
we constrain with the latest CMB, BAO, SNe Ia, RSD and H0 data. We learn two important lessons.
First, the systematic error from cosmic variance is—independently of the model—approximately
σcv ≈ 0.88 km s−1 Mpc−1 (1.2% Hloc

0 ) when considering the redshift range 0.0233 ≤ z ≤ 0.15, which is
relative to the main analysis of [A. G. Riess et al., arXiv:1804.10655.], and σcv ≈ 1.5 km s−1 Mpc−1 (2.1%
Hloc

0 ) when considering the wider redshift range 0.01 ≤ z ≤ 0.15. Although σcv affects the total error
budget on local H0, it does not significantly alleviate the tension which remains at ≈3σ. Second, cosmic
variance, besides shifting the constraints, can change the results of model selection: much of the statistical
advantage of nonstandard models is to alleviate the now-reduced tension. We conclude that, when
constraining nonstandard models it is important to include the cosmic variance on H0 if one wants to use
the local determination of the Hubble constant by Riess et al. [arXiv:1804.10655]. Doing the contrary
could potentially bias the conclusions.

DOI: 10.1103/PhysRevD.98.023537

I. INTRODUCTION

Observations of supernovae (SNe) Ia calibrated with
Cepheid distances to SN Ia host galaxies [1] provide
the value of the Hubble constant Hloc

0 ¼ 73.52�
1.62 km s−1 Mpc−1 (hereafter HR18

0 ). On the other hand,
the most recent analysis of the CMB temperature fluc-
tuations constrains the current expansion rate to H0 ¼
66.93� 0.62 km s−1Mpc−1 [2]. These determinations are
in a tension at 3.8σ, see Fig. 1 for a visual representation. At
this moment, it is perhaps the most severe problem in the
standard model, especially because it involves the well-
understood physics of the CMB and the cosmological-
independent analysis of the local expansion rate.
A re-assessment of the error budget of the local Hubble

constant was carried out by [3–6] and improved near-
infrared supernova measurements were considered in [7].
It is possible to analyze data that require unknown
systematics, but this comes at the cost of obtaining
degraded constraints on the cosmological parameters [8].
If not due to unknown systematics, it may signal physics
beyond the standard model. Indeed, nonstandard dark

energy models were shown to be able to alleviate this

tension [9–16].
On the other hand, a deviation of Hloc

0 with respect to its
global value H0 is predicted by linear perturbation theory.
This deviation, produced by the peculiar velocity field,
could have non-negligible effects on determination of Hloc

0 ,
leading to over- or underestimations of the local expansion
rate. Statistically, the deviation can be quantified by a
theoretical variance onHloc

0 , often dubbed cosmic variance.

H0: Planck 2016

H0
loc: Riess et al. 2018
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FIG. 1. Current 3.8σ tension between local [1, Hloc
0 ] and global

[2, H0] determinations of the Hubble constant.
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A systematic error is produced by this cosmic variance,
which could be important in understanding the current
tension on H0. The contribution of cosmic variance has
already been considered, in the ΛCDM context, in order to
alleviate the tension, both theoretically [17–25] (see also
[26–29]) and through N-body simulations [10,30–35] (see
also [36,37]). The consensus is that standard ΛCDM
perturbations can alleviate the tension on H0 but cannot
explain it away.
Here, we study the impact of cosmic variance on

statistical inference for parametric extensions of the stan-
dard model. In particular, we consider the γCDM, wCDM
and γwCDM models, which we constrain with the latest
CMB, BAO, SNe Ia, RSD and Hloc

0 data. We compare the
results with and without the inclusion of the cosmic
variance in the error budget ofHloc

0 . We learn two important
lessons.
First, the systematic error from cosmic variance is—

independently of the model—approximately σcv ≈
0.88 km s−1 Mpc−1 (1.2% HR18

0 ) when considering the red-
shift range 0.0233 ≤ z ≤ 0.15 and σcv ≈ 1.5 km s−1Mpc−1

(2.1% HR18
0 ) when considering the redshift range

0.01 ≤ z ≤ 0.15. Although it is comparable with the
uncertainty on Hloc

0 —and so it affects the total error
budget—the tension is only reduced to 3.4σ and 2.9σ,
respectively.
Second, cosmic variance, besides shifting the constraints

on the parameters correlated with H0, can change the
results of model selection, which we perform using the
Bayes factor, the AIC [38] and BIC criteria [39]. Indeed,
much of the statistical advantage of nonstandard models is
to alleviate the tension which is now reduced thanks to
cosmic variance. We compute the tension using the simple
estimator proposed in [40], which is a particular case of the
index of inconsistency proposed in [41].
This paper is organized as follows. In Sec. II we review

the cosmic variance on the Hubble constant predicted by
linear perturbation theory and quantify the systematic error
on H0. In Sec. III we review the γCDM, wCDM and
γwCDM models and discuss how a nonstandard dark
energy contributes to the cosmic variance on H0. The data
sets used in this work are discussed in Sec. IV. Statistical

inference is presented in Sec. V and was carried out using
the numerical package MBAYES, which is released together
with this paper and briefly presented in Appendix A. Our
results are presented in Sec. VI and Appendix B. In
Appendix C we list the Fisher matrices and the best-fit
parameters relative to the likelihoods considered in this
work. Finally, we conclude in Sec. VII. The fiducial
cosmology is given in Table I. We assume spatial flatness.

II. COSMIC VARIANCE ON Hloc
0

The peculiar velocity field, generated by the gravitational
potential of the local distribution of matter, induces spatial
fluctuations of the local expansion rate, Hloc

0 . That is, an
observer at r⃗i that measures the expansion rateHloc

0 usingN
objects at r⃗j (j ¼ 1;…; N) will obtain Hloc

0 ðr⃗iÞ ¼ H0 þ
H0δHðr⃗iÞ, or analogously [43]:

δHðr⃗iÞ ¼
Hloc

0 ðr⃗iÞ
H0

− 1; ð1Þ

whereH0 is the global value of the Hubble constant. If each
object has a peculiar velocity v⃗j, then the deviation (1) will
be related to the radial component of the peculiar velocity,
v⃗j · ðr⃗j − r⃗iÞ. So, we can recast (1) as:

δHðr⃗iÞ ¼
1

N

X
j≠i

v⃗j
H0

·
ðr⃗j − r⃗iÞ
jr⃗j − r⃗ij2

: ð2Þ

Thus, the deviation δH for a sphere of radius R, centered
around x, is given by

δH;Rðx⃗Þ ¼
Z

d3y
v⃗ðyÞ
H0

·
ðy⃗ − x⃗Þ
jy⃗ − x⃗j2Wðy⃗ − x⃗Þ; ð3Þ

where Wðy⃗ − x⃗Þ is the top-hat window function with
radius R:

Wðy⃗ − x⃗Þ ¼
� ð4πR3=3Þ−1; jy⃗ − x⃗j ≤ R

0; jy⃗ − x⃗j > R:
ð4Þ

Linear perturbation theory provides a relation between
the peculiar velocity field and the matter density contrast δ,
which is

v⃗ðyÞ ¼ iH0f
ð2πÞ3

Z
d3k

k̂ δ̃ðk⃗Þeik⃗·y⃗
k

; ð5Þ

where δ̃ðk⃗Þ is the density contrast in Fourier space.
Substituting (5) in (3) we get [19–21]:

δH;Rðx⃗Þ ¼
fðzÞ
ð2πÞ3

Z
d3kδ̃mLðkRÞeik⃗·x⃗; ð6Þ

TABLE I. Fiducial ΛCDM cosmology [[42], Planck 2015,
Table 4, last column].

Parameter Fiducial Value

h 0.6774
Ωbh2 0.0223
Ωch2 0.1188
ln ð1010AsÞ 3.064
ns 0.9667
γ 0.55 (general relativity)
w −1 (cosmological constant)
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where we have defined

LðxÞ≡ 3

x3

�
sin x −

Z
x

0

dy
sin y
y

�
: ð7Þ

The cosmic variance on Hloc
0 is then obtained by

computing the variance of the deviation (6):

hδ2HiR ¼ f2ðzÞ
2π2R2

Z
∞

0

dkPðk; zÞ½ðkRÞLðkRÞ�2; ð8Þ

where Pðk; zÞ is the power spectrum and the operator hi
represents the ensemble (or position) average over the
random fields.
In Fig. 2 we plot the standard deviation hδ2Hi1=2R in order

to illustrate how it depends on the scale R. At larger scales
there are less fluctuations on Hloc

0 because there are less
matter fluctuations. This implies that local measurements
of H0 have to target sources that are at a high enough
redshifts so that cosmic variance is small enough and at low
enough redshifts so that the measurement is still cosmology
independent. Reference [1] considers both 0.01 ≤ z ≤ 0.1
and 0.0233 ≤ z ≤ 0.1, the latter being used in the main part
of the analysis as it helps to reduce cosmic variance. The
redshift z ¼ 0.0233 is shown with a dashed line in Fig. 2
and corresponds roughly at the scale beyond which the
universe is expected to be homogeneous.
In order to estimate the cosmic variance on [1] we adopt

the estimator introduced in [24] and we consider both the
redshift ranges:

σcv;1 ¼ Hloc
0

�Z
0.15

0.0233
dzWSN;1ðzÞhδ2HiR

�1
2

; ð9Þ

σcv;2 ¼ Hloc
0

�Z
0.15

0.01
dzWSN;2ðzÞhδ2HiR

�1
2

; ð10Þ

where WSNðzÞ is the normalized redshift distribution of
the SNe Ia used in [1], see Fig. 3. This estimator neglects
any effect associated to the anisotropic distribution of the
supernovas. In other words, it estimates the monopole
contribution to the variance and neglects the anisotropic
contributions. As the supernovas of Fig. 3 are reasonably
well distributed over the sky [see [44] Fig. 1], anisotropies
may remove correlations among the supernovas so that a
part of the cosmic variance that is estimated with (9) is
averaged away. Also, contrary to numerical simulations,
this estimator does not take into account the Milky-
Way-like position of the observer. For these reasons this
estimator does not reproduce results from simulations: from
Fig. 5 one sees that (9) gives 1.2% in the ΛCDM case while
Ref. [[34], table 1] obtains 0.4%–0.6% depending on the
methodology used. Although less sophisticated than
N-body-based estimators, the estimator of (9) has the
advantage that can be easily computed for cosmological
models for which N-body simulations are not available.

III. COSMOLOGICAL MODELS

As the aim of the present paper is to study the impact of
cosmic variance when analyzing models beyond ΛCDM,
wewill now briefly summarize the parametric extensions of
the standard model that will be later considered. It is
important to stress that nonstandard models may feature
larger cosmic variances and so affect in a nontrivial way the
results of statistical inference. In particular, σcv is directly
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FIG. 2. 1, 2 and 3 times the standard deviation hδ2Hi1=2R as a
function of redshift z and scale RðzÞ for the fiducial cosmology.
At larger scales there are less fluctuations on Hloc

0 because there
are less matter fluctuations. The dashed line marks the redshift
z ¼ 0.0233, see Sec. II for details.
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FIG. 3. Distribution of SNe Ia with 0.0233 ≤ z ≤ 0.15 (top)
and with 0.01 ≤ z ≤ 0.15 (bottom) which is used to obtain the
redshift distributionWSNðzÞ (black dashed curve) used in Eqs. (9)
and (10). From the Pantheon SNIa compilation [45]. The main
analysis by Ref. [1] uses the former redshift range.
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proportional to the growth rate f so that if growth rate data
push toward higher growth rates one would obtain a
significantly higher cosmic variance.

A. γCDM parametrization

Within general relativity the equation for the growth
rate is

df
dN

þ f2 þ
�
1

2
−
3

2
wdeð1 −ΩmÞ

�
f −

3

2
Ωm ≈ 0: ð11Þ

There is not an analytical solution to the latter equation and
the following the parametrization is commonly used:

fðzÞ ≈ Ωγ
mðzÞ; ð12Þ

where γ can be expressed as a function of Ωm and w, as
shown in [46,47]. The exact ΛCDM growth rate is well
described by the previous expression with γ ≈ 0.55.
We will use γ in order to study perturbative properties of

a dark energy which is different from Λ. We will consider
the γ ¼ constant case.

B. wCDM parametrization

We will parametrize the equation of state of dark energy
w ¼ p=ρ in order to study the background properties of a
dark energy which is different from Λ. We will consider the
w ¼ constant case. It is important to stress that w is strongly
correlated with H0; see the triangular plots in Appendix B.
More precisely, the high value of HR18

0 pushes w towards
(somehow troubling) phantom values; in other words, the
wCDM model can alleviate the tension between global and
local determination of the Hubble constant [1,11,16].

C. γwCDM parametrization

Finally, motivated by the fact that γ and w are linked by
Eq. (11), we will consider the case in which both the dark
energy equation of state w and the growth rate parameter γ
are free to take a constant value. Figure 4 summarizes how
the cosmic-variance uncertainty σcv depends on the growth
rate parameter γ and the dark energy equation of state
parameter w.

IV. DATA SETS AND LIKELIHOODS

In this section we present the data that we use to perform
statistical inference.

A. Local expansion rate

As mentioned before, we will use the cosmology-
independent determination of the local Hubble constant
by [1]. Accordingly, we will build the following χ2

function:

χ2H0;i
¼ ðH0 −HR18

0 Þ2
σ2loc;i

: ð13Þ

In order to highlight the effect of the cosmic variance on
statistical inference, we will consider three cases for σloc
(and consequently for χ2H0

):

σ2loc;0 ¼ σ2R18; ð14Þ

σ2loc;1 ¼ σ2R18 þ σ2cv;1; ð15Þ

σ2loc;2 ¼ σ2R18 þ σ2cv;2; ð16Þ

where σR18 ¼ 1.62 km s−1Mpc−1 is the uncertainty from
[1].1 As the main analysis by Ref. [1] uses the redshift range
0.0233 ≤ z ≤ 0.15, the most relevant case is the one
relative to σ2loc;1.

B. Cosmic microwave background

The CMB is one of the most important observables in
cosmology due to its well-understood linear physics,
precision and sensibility to cosmological parameters.
Here, we will consider the compressed CMB likelihood
(Planck TTþ lowP) from [[48], Table 4] on the shift
parameter R, the acoustic scale lA, the baryon density
Ωbh2 and the spectral index ns. The other likelihoods
described in the next sections depend weakly on the latter
two parameters. Therefore, in those likelihoods, we will fix
Ωbh2 and ns to their best-fit values and marginalize the
CMB likelihood over Ωbh2 and ns by eliminating the
corresponding rows and columns from the covariance

w=–0.7 w=–1 w=–1.3

0.4 0.5 0.6 0.7
0.5

1.0

1.5

2.0

FIG. 4. Cosmic-variance uncertainty σcv as a function of the
growth rate parameter γ for various values of the dark energy
equation of state parameter w. Dashed lines are relative to σcv;1 of
(9) (0.0233 ≤ z ≤ 0.15), while solid lines to σcv;2 of (10)
(0.01 ≤ z ≤ 0.15).

1We do not consider the cosmology-dependent normalization
of the likelihood ln 2πσ2loc because its effect is negligible.
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matrix (we adopt wide flat priors on all parameters).R and
lA are defined according to [49]:

lA ¼ πrðz�Þ
rsðz�Þ

; ð17Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0H2

0

p
c

rðz�Þ; ð18Þ

where rðzÞ ¼ ð1þ zÞdAðzÞ is the comoving distance, z� is
the redshift at decoupling and rsðzÞ is the sound horizon:

rsðzÞ ¼
2

3keq

ffiffiffiffiffiffiffi
6

Req

s
ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ Req

p
1þ ffiffiffiffiffiffiffi

Req
p �

;

with R ¼ 3ΩbðzÞ
4ΩmðzÞ and Req ¼ RðzeqÞ. For z� we adopted the fit

given in [50].
We also consider the Gaussian likelihood on the ampli-

tude of fluctuations ln ð1010AsÞ from [[42] Table 4, first
column], which, differently from σ8, is approximately
uncorrelated with respect to R and lA. Also this likelihood
is relative to the Planck TTþ lowP constraints. Con-
sequently, we build the CMB likelihood using the follow-
ing central value and Fisher matrix (or inverse covariance
matrix):

dcmb ¼ f1.7488; 301.76; 3.089g; ð19Þ

Fcmb ¼

0
B@

25779 −735.8 0

72 0

771.6

1
CA; ð20Þ

and the corresponding χ2 function is

χ2cmb ¼ ðdcmb − tcmbÞ:Fcmb:ðdcmb − tcmbÞT ð21Þ

where the vector tcmb ¼ fR; lA; ln ½1010As�g is relative to
the theoretical predictions.

C. Baryonic acoustic oscillations

BAO data is also of great importance for present and
future cosmology, thanks again to its well-understood
linear physics. We will use BAO data from seven different
surveys: 6dFGS, SDSS-LRG, BOSS-MGS, BOSS-LOWZ,
WiggleZ, BOSS-CMASS, BOSS-DR12. We separate the
data set in two groups, organized in Tables II and III.

In the first case, the theoretical prediction is given by:

dzðzÞ ¼
rsðzdÞ
DvðzÞ

; ð22Þ

so that our first χ2bao function is:

χ2bao;1 ¼
X
i

ðdz;i − dzðziÞÞ2
σ2i

; ð23Þ

where dz;i, σi and zi are given in the Table II. The data
points are uncorrelated.
In the second case, the theoretical prediction is

α�ðzÞ ¼ DvðzÞ
rsðzdÞ

rfids ; ð24Þ

so that our second χ2bao function is

χ2bao;2 ¼ fα�i − α�ðziÞgΣ−1
bao;ijfα�j − α�ðzjÞg; ð25Þ

where the sum over the indices is implied and α�i and the
corresponding zi are showed in Table III. The data points
are uncorrelated, except for the WiggleZ subset. Therefore
the covariance matrix Σ is diagonal (with variances from
Table III) except the block relative to WiggleZ which reads:

ΣWiggleZ ¼

0
B@

6889 −8961 21277

10201 −13918
7396

1
CA: ð26Þ

Note that for both χ2 functions it is necessary to compute
the drag redshift zd. Here, we use the fit from [57].

D. Supernovae Ia

We use the binned Pantheon SN Ia data set [[45],
Appendix A]. In this version of the Pantheon data set
the nuisance parameters α, β and ΔM are fixed at their
ΛCDM best-fit values. This should not heavily bias our
results as these nuisance parameters are approximately
uncorrelated with respect to the cosmological parameters.

TABLE II. BAO data set in old format.

Survey z dz σ

6dFGS [51] 0.106 0.336 0.015
SDSS-LRG [52] 0.35 0.1126 0.0022

TABLE III. BAO data set in new format.

Survey z α�ðMpcÞ σ (Mpc) rfids (Mpc)

BOSS-MGS [53] 0.15 664 25 148.69
BOSS-LOWZ [54] 0.32 1264 25 149.28
WiggleZ [55] 0.44 1716 83 148.6

0.6 2221 101 148.6
0.73 2516 86 148.6

BOSS-CMASS [54] 0.57 2056 20 149.28
BOSS-DR12 [56] 0.38 1477 16 147.78

0.51 1877 19 147.78
0.61 2140 22 147.78
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The data is given with respect to the distance modulus μ
whose theoretical prediction is obtained via:

μðzÞ ¼ 5log10
dLðzÞ
10 pc

; ð27Þ

where the luminosity distance dL, for a flat universe, is
given by:

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz̃
Hðz̃Þ : ð28Þ

The χ2 function is then:

χ02sne ¼ fμb;i −M − μðziÞgΣ−1
sne;ijfμb;j −M − μðzjÞg; ð29Þ

where the binned distance moduli μb;i, redshifts zi and
covariance matrix Σ are from the binned Pantheon catalog
(considering both statistical and systematic errors). The
nuisance parameter M is an unknown offset sum of the
supernova absolute magnitude and other possible system-
atics, and is completely degenerate with log10H0. As M is
not interesting as far as the present analysis is concerned,
we marginalize over it right away adopting an improper
prior on M:

Lsne ¼ j2πΣsnej−1=2
Z þ∞

−∞
dMe−

1
2
χ02sne ; ð30Þ

so that one can define a new χ2 function:

χ2sne ≡ −2 lnLsne: ð31Þ

The marginalization overM can be carried out analytically.
If we define the following quantities:

S0 ¼ V1 · Σ−1
sne · VT

1 ; ð32Þ

S1 ¼ W · Σ−1
sne · VT

1 ; ð33Þ

S2 ¼ W · Σ−1
sne ·WT; ð34Þ

where V1 is a row vector of unitary elements and
Wi ¼ μb;i − μðziÞ, one has:

χ2sne ¼ S2 −
S21
S0

þ ln
S0
2π

þ ln j2πΣsnej; ð35Þ

where the cosmology-independent normalization constants
can be dropped.

E. Redshift space distortions

Redshift space distortion data is useful to constrain the
history of structure formation and, in the coming years, will
be crucial to understand the nature of dark energy. RSD

data allow us to constraint the combination fσ8ðzÞ [58] and
consequently the cosmic growth index γ. Here, we use the
large RSD data compilation showed and discussed in [59].
This data set consists of 63 data points published by
different surveys and is the largest compilation of fσ8ðzÞ
data presented in the literature so far. Due to overlap in the
galaxy samples these data points are expected to be
correlated. However, [59] showed that this correlation
has not a large impact on cosmological analyses. So,
one can neglect correlations due to overlap and only
consider the covariance matrix given for each survey.
We can then define the following χ2:

χ02rsd ¼ ffσ8;i − fσ8ðziÞgΣ−1
rsd;ijffσ8;j − fσ8ðzjÞg

≡ fdi − σ8tigΣ−1
rsd;ijfdj − σ8tjg; ð36Þ

where di is the data vector, ti ¼ tðziÞ and the theoretical
prediction is given by:

fσ8ðzÞ ¼ fðzÞσ8DðzÞ≡ σ8tðzÞ; ð37Þ

where σ8 is the root-mean-square mass fluctuation in
spheres with radius 8h−1 Mpc at z ¼ 0 and DðzÞ is the
growth function normalized according to Dð0Þ ¼ 1. The
data points zi and fσ8;i are given in [[59] Table II] together
with the error that can be used to build the covariance
matrix Σ. We correct the prediction tðzÞ by taking into
account the fiducial model used in the analysis as explained
in [59,60]. Σ is diagonal except for the block relative to
WiggleZ which reads:

ΣWiggleZ ¼ 10−3

0
B@

6.4 2.57 2.54

3.969 2.54

5.184

1
CA: ð38Þ

The χ2 function of Eq. (36) depends on σ8. However,
RSD data were obtained assuming the ΛCDM model; in
particular, it is assumed the standard initial power spec-
trum, which may have evolved differently for alternative
theories that feature a different matter era. Therefore, we
conservatively marginalize over σ8 as the latter is degen-
erate with the initial conditions of the perturbations. This
means that only the curvature of fσ8ðzÞ matters and not its
overall normalization. We will not consider changes in
α ¼ δ0inicial=δinicial, that is, we assume that at high redshift
the standard cosmology is valid (α ¼ 1), see [61,62] for a
thorough discussion.
As σ8 is not interesting as far as the present analysis is

concerned, we marginalize over it right away adopting an
improper flat prior on σ8 > 0:

Lrsd ¼ j2πΣrsdj−1=2
Z þ∞

0

dσ8e−
1
2
χ02rsd ; ð39Þ
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where it is worth stressing that, here, the parameter σ8 is
seen as a nuisance parameter; in particular, it is not the σ8
relative to a cosmological model we may analyze.
Also in this case the marginalization can be carried

out analytically. Let us define the following auxiliary
functions:

Sdd ¼ diΣ−1
rsd;ijdj;

Sdt ¼ diΣ−1
rsd;ijtj;

Stt ¼ tiΣ−1
rsd;ijtj: ð40Þ

We find then that:

χ2rsd ≡ −2 lnLrsd ¼ Sdd −
S2dt
Stt

þ ln Stt

− 2 ln

�
1þ erf

Sdtffiffiffiffiffiffiffiffi
2Stt

p
�
þ ln j2πΣrsdj; ð41Þ

where the cosmology-independent normalization constant
can be dropped.

V. STATISTICAL INFERENCE

A. Total likelihood

The total likelihood is given by:

χ2tot;i ≡ −2 lnLtot ¼ χ2H0;i
þ χ2cmb

þ χ2bao;1 þ χ2bao;2 þ χ2sne þ χ2rsd: ð42Þ
where the index i labels the three cases of Eqs. (14)–(16).
We should point out that all data used here, excluding

HR18
0 , are model-dependent, i.e., they use a fiducial ΛCDM

model in their analyses. This could bias our results toward
ΛCDM; yet this bias should not be important as the
cosmologies we consider are parametrizations of the
ΛCDM model.

B. Measuring the tension

We adopt the following estimator2 in order to
quantity the discordance or tension in current determina-
tions of H0:

TH0 ¼
jH0 −HR18

0 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2H0 þ σ2loc

p ; ð43Þ

where H0 and σ2H0 are mean and variance of the posterior
pðH0Þ, respectively. In the Gaussian and weak prior limit
the index of inconsistency, defined in [41], is IOI ¼ 1

2
T2
H0
.

Thus, we can recalibrate Table III of [41] into Table IV in
order to obtain a qualitative assessment of the tension in the
Hubble constant.
Using (43) with (14), that is, neglecting cosmic variance,

the tension between global and local H0 is about 3.8σ.
According to Table IV, there is a strong tension (or
inconsistency) between the two determinations. If one
considers the effect of the cosmic variance and uses (15)
and (16), the discordance is reduced to 3.4σ and 2.9σ,
respectively. As the main analysis of [1] uses (15), it seems
as if cosmic variance does not have an important effect.
However, as we will see, it does have an important impact
on model selection.
Hereafter, we shall compute (43) using the σloc;i of

Eqs. (14)–(16) that is relative to the χ2tot;i used.

C. Model selection: Evidence

The natural way to perform model selection within
Bayesian inference is to compare the evidences of the
models via the Bayes factor. The Bayesian evidence of a
model is obtained by integrating the product of the prior
PðTÞ and the likelihood LðDjTÞ over the relevant param-
eter space:

E ¼
Z

PðTÞLðDjTÞdT: ð44Þ

The evidence is the normalizing factor that transforms
PðTÞLðDjTÞ into the posterior distribution. In the previous
equations T ¼ fθγg represents the parameter vector and D
the data set. As the evidence is the likelihood of the model
itself, assuming that different models have the same prior
probability, one can take the ratio of the posterior prob-
abilities of the models i and j and obtain the Bayes factor:

Bij ¼
Ei

Ej
: ð45Þ

The above odds ratio is then interpreted qualitatively via the
Jeffreys’ scale [64]. Here, we will use the conservative
version defined in [65], see Table V.
For the data sets and models of this work, the likelihood

of (42) can be very well approximated via the following
multivariate Gaussian distribution:

LðDjθγÞ ≃ Lmaxe−
1
2
ðθα−θ̂αÞLαβðθβ−θ̂βÞ; ð46Þ

TABLE IV. Qualitative interpretation of the tension estimator
TH0 according to Jeffreys’ scale of Table V as proposed in [41].

TH0 Qualitative interpretation

<1.4 No significant tension
1.4–2.2 Weak tension
2.2–3.1 Moderate tension
>3.1 Strong tension

2This estimator was used in [40] to asses the S8
ð≡σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p Þ tension. More sophisticated estimators can
be found in the literature. For instance, the tension T [63] or
the index of inconsistency IOI [41].
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where θ̂γ denotes the best-fit parameters that maximize
the likelihood, LðDjθ̂γÞ ¼ Lmax, and Lαβ is the Fisher
matrix associated to the likelihood. As we are using
wide flat (constant) priors, we can compute analytically
the evidence:

E ¼ Lmax
ð2πÞn=2
jLj1=2

Yk
α¼1

1

Δθα
; ð47Þ

where k is the number of parameters θγ , and Δθγ are the
widths of the (possibly improper) priors.
The ΛCDM model is clearly a particular case of the

γCDM, wCDM and γwCDM models considered here.
Therefore, common parameters share the same priors
so that the Bayes factors with respect to ΛCDM (model
j ¼ 0) are

lnBγ0 ¼ − lnΔγ −
1

2
Δ χ2 þ 1

2
ln
jL0j
jLγj

þ ln
ffiffiffiffiffiffi
2π

p
;

lnBw0 ¼ − lnΔw −
1

2
Δ χ2 þ 1

2
ln
jL0j
jLwj

þ ln
ffiffiffiffiffiffi
2π

p
;

lnBγw0 ¼ − lnΔγ − lnΔw −
1

2
Δ χ2 þ 1

2
ln

jL0j
jLγwj

þ ln 2π:

ð48Þ
Note that the common improper priors on M and σ8 cancel
out when taking the ratio of the evidences. Note also that
Δ χ2 is only a part of the Bayes factor, and that lnB < 0

supports the ΛCDM model (a positive Δ χ2 means that the
alternative model has a worse fit as compared to ΛCDM).
The prior widths Δγ and Δw together with the ratio of the
determinants of the Fisher matrices quantify the qualitative
Occam’s razor. The Fisher matrices Lαβ together with the
best-fit parameters are given in Appendix C.

D. Model selection: AIC and BIC

For completeness, we consider also the Akaike infor-
mation criterion (AIC) [38] and Bayesian information
criterion (BIC) [39], which are supposed to approximate

the full evidence of the previous section. They are defined
according to:

AIC ¼ χ2min þ 2k; ð49Þ

BIC ¼ χ2min þ k lnN; ð50Þ

where N is the total number of data points, k the number of
free parameters and

χ2min ≡ −2 lnLmax; ð51Þ

whereLmax is the maximum value of the likelihood given in
(42). For the present analysis it is lnN ≃ 4.8. We will
compute the differences ▵AIC and ▵BIC with respect to
the standard ΛCDM model:

▵AIC ¼ Δ χ2 þ 2Δk; ð52Þ

▵BIC ¼ Δ χ2 þ ðlnNÞΔk; ð53Þ

with Δk ¼ 1 for the γCDM and wCDM models and Δk ¼
2 for the γwCDM model. Note that a positive value of
▵AIC or ▵BIC means a preference for ΛCDM. Unlike
Δ χ2, the AIC and BIC criteria punish the model with a
larger number of free parameters. The values that we will
obtain for the differences ▵AIC and ▵BIC will be inter-
preted according to the calibrated Jeffreys’ scales showed in
the Tables VI–VII3.

TABLE V. Jeffreys’ scale as presented in [65].

lnBi0 Strength of evidence Color code

>5 Strong evidence for model i

[2.5, 5] Moderate evidence for model i

[1, 2.5] Weak evidence for model i

½−1; 1� Inconclusive

½−2.5;−1� Weak evidence for ΛCDM

½−5;−2.5� Moderate evidence for ΛCDM

< − 5 Strong evidence for ΛCDM

TABLE VI. Qualitative interpretation of ▵AIC according to the
calibrated Jeffreys’ scale [66,67].

j▵AICj
Level of empirical support

for the model with the higher AIC

0–2 Substantial
4–7 Considerably less
>10 Essentially none

TABLE VII. Qualitative interpretation of ▵BIC according to
the calibrated Jeffreys’ scale [66,68].

j▵BICj
Evidence against the model

with the higher BIC

0–2 Weak
2–6 Positive
6–10 Strong
>10 Very strong

3Note that the categories of Tables VI do not cover the interval
½0;∞Þ. This means that these values have to be interpreted as
orders of magnitudes.
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VI. RESULTS AND DISCUSSION

We have performed a full Bayesian analysis of the
ΛCDM, γCDM, wCDM and γwCDM models with and
without considering the cosmic variance on H0. The
corresponding triangular plots are shown in the Figs. 9–
12 of Appendix B. The plots show the strong correlation

ofH0 withΩm0 and w. Therefore, any bias in the likelihood
relative to H0 directly translates into a bias on these
parameters. In particular, the inclusion of cosmic variance
shifts the posteriors relative to w towards nonphantom
values. This is shown by the 3σ confidence levels reported
in Table VIII. It is interesting to point out that the posterior
on H0 shifts toward lower values when including σcv not
only because the local determination has lower statistical
weight (larger error) but also because σcv depends on Ωm0

via the growth rate f ¼ ΩmðzÞγ and Ωm0 is inversely
correlated with respect to H0 (see triangular plots).
Indeed, a larger σcv decreases the χ2 and can be obtained
with a higherΩm0 which in turns imply a lowerH0. We also
report the confidence levels on γ, which have a reduced
constraining power because we have marginalized the
posterior over the RSD normalization. Nevertheless, the
allowed values for γ decrease when σcv is included in
the analysis. This because cosmic variance is inversely
proportionally to γ, see Fig. 4 (lower γ, faster growth).
In Fig. 5 we show the values of σcv relative to the best fits

of the models considered in this analysis (given in
Table IX). Roughly, one can say that, with little variation,
σcv≈0.88 kms−1Mpc−1 (1.2% HR18

0 ) when considering the
redshift range 0.0233≤ z≤0.15 and σcv≈1.5 kms−1Mpc−1

(2.1% HR18
0 ) when considering the redshift range 0.01 ≤

z ≤ 0.15. This implies that one may roughly estimate the
error due to cosmic variance by assuming the latter values
in Eqs. (15) and (16), without going through the method
detailed in Sec. II.

TABLE VIII. Summary of results. See Sec. VI for details.

Analysis with χ2tot;0 (without cosmic variance on H0)

Model 3σ c.l. on γ 3σ c.l. on w TH0 Δ χ2 ΔAIC ΔBIC � � �
ΛCDM � � � � � � 3.9 � � � � � � � � � � � �
γCDM [0.47, 0.84] � � � 4.0 −2.4 −0.4 2.3 � � �
wCDM � � � ½−1.22;−1.03� 1.6 −15.8 −13.8 −11 � � �
γwCDM [0.42, 0.79] ½−1.22;−1.02� 1.8 −16.4 −12.4 −6.9 � � �

Analysis with χ2tot;1 (with cosmic variance σcv;1 on H0)

Model 3σ c.l. on γ 3σ c.l. on w TH0 Δ χ2 ΔAIC ΔBIC χ2min;1 − χ2min;0

ΛCDM � � � � � � 3.6 � � � � � � � � � −4.1
γCDM [0.46, 0.84] � � � 3.7 −2 0 2.8 −3.6
wCDM � � � ½−1.21;−1.02� 1.7 −12.8 −10.8 −8 −1.1
γwCDM [0.42, 0.79] ½−1.21;−1.01� 1.8 −13.5 −9.5 −3.9 −1.1

Analysis with χ2tot;2 (with cosmic variance σcv;2 on H0)

Model 3σ c.l. on γ 3σ c.l. on w TH0 Δ χ2 ΔAIC ΔBIC χ2min;2 − χ2min;0

ΛCDM � � � � � � 3.0 � � � � � � � � � −8.6
γCDM [0.45, 0.83] � � � 3.2 −1.8 0.2 2.9 −8
wCDM � � � ½−1.21;−1.00� 1.6 −9.6 −7.6 −4.8 −2.4
γwCDM [0.43, 0.80] ½−1.20;−1.00� 1.7 −10.4 −6.4 −0.8 −2.6

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
1.05

1.10

1.15

1.20

1.25
CDM

CDM

wCDM

wCDM

1.40 1.45 1.50 1.55 1.60 1.65
1.8

1.9

2.0

2.1

2.2
CDM

CDM

wCDM

wCDM

FIG. 5. Cosmic variance on the Hubble constant σcv relative to
the best fits of the models considered in this analysis. Filled
markers refers to the analysis that uses χ2tot;0, while empty
markers refers to χ2tot;1 (top panel, 0.0233 ≤ z ≤ 0.15) or χ2tot;2
(bottom panel, 0.01 ≤ z ≤ 0.15).
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Next we discuss model selection. First, the inclusion of
the cosmic variance σcv significantly decreases the value of
χ2min (last column of Table VIII). However, the decrease is
less pronounced for the models which feature the parameter
w. This causes theΔ χ2 differences to decrease significantly
when σcv is included (fifth column of Table VIII). Models
with the w parameter perform better because they can
produce a higherH0, see Table IX; this is also shown by the
fourth column of Table VIII which shows how low the
discordance onH0 becomes for these models. A qualitative
interpretation of the values of TH0 is given in Table IV. It is
also worth commenting that the inclusion of σcv decreases
the allowed valued of H0; this is welcome since it is not
trivial to accommodate a higher value of H0 with the
constraints from CMB, see [69] for a discussion.
Similar behaviors follow the ▵AIC and ▵BIC

differences (sixth and seventh columns of Table VIII). In
particular, using the qualitative interpretations given in

Tables VI and VII and neglecting σcv one concludes that
ΛCDM is considerable less supported by data with
respect to the wCDM model (▵AIC) and that there is
a positive evidence against it (▵BIC). However, if σcv is
considered, the evidence in favor of wCDM model
becomes a category weaker. Therefore, the cosmic
variance on H0 not only shifts the constraints and
improve the fit to the data but also changes model
selection. This is confirmed by Figs. 6–8 which show
the Bayes factor, Eq. (49), as a function of the prior
widths. The colors are coded according to Table V. The
Bayes factor depends weakly (logarithmically) on the
widths. The widths ranges go from the minimum values
necessary to close the unmarginalized posterior to 5 times
the latter value. Again, by including the cosmic variance
in the analysis one goes from a strong evidence for
models with the w parameter to moderate evidence. The
impact on the γ parameter is instead negligible.

Without With With

0.5 1.0 1.5 2.0

–5

–2.5
–1

1
2.5

5

–5

–2.5
–1

1
2.5

5

FIG. 7. Bayes factor as a function of the prior width. See
Sec. VI for details.
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FIG. 6. Bayes factor as a function of the prior width. See
Sec. VI for details.
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FIG. 8. Bayes factor as a function of the prior widths. See Sec. VI for details.
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VII. CONCLUSIONS

We have studied the impact of including the cosmic
variance on the Hubble constant on statistical inference—in
particular in light of the 3.8σ tension on local H0. We
considered the γCDM, wCDM and γwCDM parametric
extensions of the standard model and the latest CMB, BAO,
SNe Ia, RSD and H0 data.
We showed that the systematic error from cosmic

variance is, with little variation, approximately σcv ≈
0.88 km s−1 Mpc−1 (1.2% Hloc

0 ) when considering the red-
shift range 0.0233≤ z≤0.15 and σcv≈1.5kms−1Mpc−1

(2.1% Hloc
0 ) when considering the redshift range

0.01 ≤ z ≤ 0.15. The former range is used in the main
part of the analysis by [1] as it helps to reduce cosmic
variance. One may roughly estimate the error due to cosmic
variance by assuming the latter values in Eqs. (15) and (16),
without going through the method detailed in Sec. II.
The inclusion of σcv lowers the tension and shifts the

parameters correlated (directly or indirectly) with H0. This
produces important changes in the case of the wCDM
model as the posterior is pushed toward nonphantom
values.
Even more important are the implications regarding

model selection. We computed differences in χ2min, AIC
and BIC, and the Bayes factor as a function of the prior
widths, and we found that the alternative models with
free equation of state w lose their strong support when
the cosmic variance is included. Indeed, models such as
wCDM can accommodate a higher H0 at the price of a
phantom equation of state (w < −1). This is the reason
why the Bayes factor with respect to ΛCDM is so high
(see Fig. 7). Once the cosmic variance on H0 is included
in the analysis, there is less statistical gain in having a
higher H0 and the wCDM model is only moderately
supported. This can be interpreted as a volume effect,
which is the quantitative formulation of the qualitative
Occam’s razor: as the uncertainty on H0 increases it is
more difficult to justify the parameter space volume
associated to the extra parameter w. While we analyzed
only parametric extensions of the ΛCDM model, these
conclusions (biased model selection) could hold for
more specific nonstandard models that can accommo-
date a higher H0.
As said earlier, the tension between global and local H0

may favor nonstandard models. For this reason we think
that it is safer to use a theoretical estimation of the cosmic
variance which is not based on analyses carried out
assuming the standard model (at least until the tension is
well understood and explained). While for the standard
ΛCDM model it may be possible to constrain the local
peculiar velocity flow with observations, this procedure is
based on results (e.g., data analyses and simulations) that
are not necessarily valid for non-standard models. For
example, correcting, as done in [70], the individual SN
redshifts for the local mass density as measured in flow

maps may be correct within the ΛCDM model and it may
correct potential biases on its parameters but it could bias
model selection with respect to nonstandard exotic models,
which could feature a different growth of structures and a
different cosmic variance. According to our results, one
should evaluate the cosmic variance on local H0 for the
models under consideration and include it in the error
budget. Neglecting its effect could potentially bias the
conclusions of both parameter estimation and model
selection.
Finally, it could be that cosmic variance has a minor role,

that local determinations of H0 already consider all
possible sources of systematics and that CMB observations
suffer from unaccounted-for systematics which bias the
global H0 towards lower values. In order to exclude this
possibility it will be crucial to determine H0 at redshifts
0.2≲ z≲ 0.5 [71–74], that is, at scales at which cosmic
variance is expected to be negligible.
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APPENDIX A: MBAYES

The results presented in this paper were obtained using
MBAYES, a numerical package that aims at helping
researchers to effortlessly carry out Bayesian inference
within Wolfram Mathematica. The analysis part is com-
pletely automatized while the posterior exploration part
only needs adjusting the “glue code” section. At the
moment, the following features are implemented:

(i) multivariate and flat priors,
(ii) variables can be easily fixed without editing the

glue code,
(iii) Fisher matrix approximation for likelihood and

posterior,
(iv) Fisher and fast numerical evidence,
(v) grid optimization with Fisher,
(vi) optimized parallel computation and

exportation,
(vii) automatized exportation of results with consistent

labeling,
(viii) confidence levels (actual and gaussian),
(ix) combinations of triangular plots.

An MCMC sampler and further optimizations will be
implemented in the near future. MBAYES is available at
github.com/valerio-marra/mBayes.

APPENDIX B: TRIANGULAR PLOTS

Here, we show the triangular plots relative to Sec. VI.
The plots are important to understand correlations and
degeneracies between the various parameters.
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FIG. 9. 1-, 2- and 3σ marginalized constraints on the parameters of the ΛCDMmodel for the likelihoods from Eq. (42) without cosmic
variance (green contours) and with cosmic variance (dashed black contours). See Sec. VI for details.
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FIG. 10. 1-, 2- and 3σ marginalized constraints on the parameters of the γCDMmodel for the likelihoods from Eq. (42) without cosmic
variance (green contours) and with cosmic variance (dashed black contours). See Sec. VI for details.
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FIG. 11. 1-, 2- and 3σ marginalized constraints on the parameters of the wCDM model for the likelihoods from Eq. (42) without
cosmic variance (green contours) and with cosmic variance (dashed black contours). See Sec. VI for details.
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FIG. 12. 1-, 2- and 3σ marginalized constraints on the parameters of the γwCDM model for the likelihoods from Eq. (42) without
cosmic variance (green contours) and with cosmic variance (dashed black contours). See Sec. VI for details.
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APPENDIX C: FISHER MATRICES AND BEST-FIT PARAMETERS

Here, we list the Fisher matrices Lαβ and the best-fit parameters (see Table IX) relative to the likelihoods considered in
this work. Using the latter one can accurately approximate the (normalized) posterior. The Fisher matrices do not change
substantially; this means that cosmic variance mainly shifts the best-fit vector.

L0 ¼ 106

0
BB@

H0 Ωm ln 1010As
1.7 1.5 0

1.4 0

0.00077

1
CCA;

L0;cv;1 ¼ 106

0
BB@

1.7 1.5 0

1.4 0

0.00077

1
CCA;

L0;cv;2 ¼ 106

0
BB@

1.7 1.5 0

1.4 0

0.00077

1
CCA;

Lγ ¼ 106

0
BBB@

γ H0 Ωm ln 1010As
0.00026 0 −0.00056 0

1.7 1.5 0

1.4 0

0.00077

1
CCCA;

Lγ;cv;1 ¼ 106

0
BBB@

0.00026 −0.000081 −0.00055 0

1.7 1.5 0

1.4 0

0.00077

1
CCCA;

TABLE IX. Best-fit parameters.

Analysis with χ2tot;0 (without σcv)

Model γ H0 [km=s=Mpc] Ωm0 w ln ð1010AsÞ
ΛCDM � � � 66.8 0.321 � � � 3.088
γCDM 0.65 66.7 0.323 � � � 3.088
wCDM � � � 70.4 0.306 −1.13 3.088
γwCDM 0.60 70.1 0.307 −1.12 3.088

Analysis with χ2tot;1 (with σcv;1)

Model γ H0 [km=s=Mpc] Ωm0 w ln ð1010AsÞ
ΛCDM � � � 66.7 0.323 � � � 3.088
γCDM 0.64 66.6 0.324 � � � 3.088
wCDM � � � 69.9 0.308 −1.12 3.088
γwCDM 0.60 69.8 0.309 −1.11 3.088

Analysis with χ2tot;2 (with σcv;2)

Model γ H0 [km=s=Mpc] Ωm0 w ln ð1010AsÞ
ΛCDM � � � 66.5 0.325 � � � 3.088
γCDM 0.63 66.4 0.326 � � � 3.088
wCDM � � � 69.5 0.310 −1.10 3.088
γwCDM 0.60 69.3 0.312 −1.10 3.088
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Lγ;cv;2 ¼ 106

0
BBB@

0.00026 −0.00014 −0.00055 0

1.7 1.5 0

1.4 0

0.00077

1
CCCA;

Lw ¼ 106

0
BBB@

H0 Ωm w ln 1010As
1.3 1.5 0.2 0

1.7 0.22 0

0.032 0

0.00077

1
CCCA;

Lw;cv;1 ¼ 106

0
BBB@

1.3 1.5 0.2 0

1.6 0.22 0

0.032 0

0.00077

1
CCCA;

Lw;cv;2 ¼ 106

0
BBB@

1.4 1.5 0.21 0

1.6 0.22 0

0.033 0

0.00077

1
CCCA;

Lγw ¼ 106

0
BBBBBB@

γ H0 Ωm w ln 1010As
0.00028 0 −0.00059 −0.000031 0

1.3 1.5 0.2 0

1.7 0.22 0

0.032 0

0.00077

1
CCCCCCA
;

Lγw;cv;1 ¼ 106

0
BBBBBB@

0.00028 −0.000052 −0.00058 −0.000032 0

1.3 1.5 0.2 0

1.6 0.22 0

0.032 0

0.00077

1
CCCCCCA
;

Lγw;cv;2 ¼ 106

0
BBBBBB@

0.00028 −0.000088 −0.00058 −0.000032 0

1.4 1.5 0.21 0

1.6 0.22 0

0.033 0

0.00077

1
CCCCCCA
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