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We investigate the weak lensing corrections to the cosmic microwave background temperature and
polarization anisotropies. We consider all the effects beyond the leading order: post-Born corrections, LSS
corrections, and, for the polarization anisotropies, the correction due to the rotation of the polarization
direction between the emission at the source and the detection at the observer. We show that the full next-to-
leading order correction to the B-mode polarization is not negligible on small scales and is dominated by
the contribution from the rotation; this is a new effect not taken into account in previous works. Considering
vanishing primordial gravitational waves, the B-mode correction due to rotation is comparable to cosmic
variance for ℓ≳ 3500, in contrast to all other spectra where the corrections are always below that threshold
for a single multipole. Moreover, the sum of all the effects is larger than cosmic variance at high multipoles,
showing that higher-order lensing corrections to B-mode polarization are in principle detectable.
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I. INTRODUCTION

The temperature and polarization anisotropies of the
cosmic microwave background (CMB) are the most pre-
cious cosmological data sets. It is fair to say that virtually
all high precision cosmological measurements involve the
CMB. The reason for this is twofold: on the one hand there
is excellent data available [1–8], and on the other hand
CMB fluctuations are theoretically well understood and can
be calculated perturbatively. The CMB success story is by
no means over; we expect more precise data to arrive,
especially for polarization and reconstruction of the cosmic
lens map [9,10].
As is well known, CMB fluctuations are lensed by

foreground large scale structures (LSS) and this effect is
rather large (up to 10% and more) on small scales [11–13].
Therefore, the question is justified whether higher-order
contributions to lensing might be relevant. We naively
expect them to be of the order of the square of the first-
order contribution, hence 1%, and therefore it is necessary
to include them as numerical CMB calculations [14–17]
aimed at a precision of 0.1%. On the other hand, present
CMB codes do take into account some of the nonlinearities

by summing up a series of “ladder diagrams” into an
exponential [12,13]. It is easy to check that including these
nonlinearities is requested to achieve the precision goal.
The question which we address in this paper is: What

about the other nonlinearities which are not included in this
sum? Might they also be relevant? These are mainly con-
tributions coming from the fact that the deflection angle of
the photons at higher order can no longer be computed
assuming the photonsmove along their unperturbed path, but
rather the perturbation of the photon path has to be taken into
account. These are the so-called “post-Born corrections.”We
have already studied this problem for the temperature
anisotropies in a previous paper [18]. The present paper is
a follow-up on that work.We complete the previous study by
calculating also the effects onpolarization. Furthermore, here
we treat also the nonlinearities of the matter distribution
perturbatively. This is more consistent than just using a
Halofit model [19,20], as it allows us to correctly take into
account the higher-order statistics (3- and 4-point functions),
assuming Gaussian first-order perturbations. We neglect the
radial displacement corrections induced by the time delay
effect (which indeed is not a lensing contribution). As shown
in [21], these corrections are at most of the order Oð10−4Þ,
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apart from the temperature-E-mode cross correlation power
spectrum for which can reach the order of Oð10−3Þ. We do,
however, take into account all effects of second- and third-
order lensing. This includes also the induced vector and
tensor modes. These modes are especially important for B
polarization as they effectively rotate thephoton polarization.
In addition to our work, there have been three other

publications on this topic [22–24]. In the first paper, an
important cancellationwhich reduces the final result bymore
than an order of magnitude has been missed. In [23] our so-
called “third group” terms, which vanish when assuming
Gaussian statistics and are very relevant for the final result,
are not included. In the most recent publication [24], these
terms are included, but the rotation of the polarization which
is induced by second-order lensing is not considered. We
discuss it here for the first time and we actually find that it is
the dominant correction for B polarization.
In this paper, we present the methodology of our calcu-

lations and numerical results for the corrections of CMB
temperature and polarization anisotropies by next-to-leading
order lensing. In an accompanying letter [25], we discuss the
relevance of our findings for future CMB experiments.
The paper is organized as follows. In the next section, we

summarize the small deflection angle approximation for
CMB lensing beyond linear order and present the expres-
sions for the deflection angle up to third order. In Sec. III, we
translate the results into harmonic space, “ℓ space.”We also
compare the expressions for temperature anisotropies with
the corresponding terms for the polarization spectra at all
orders in perturbation theory. In Sec. IV, we briefly recollect
the results for the post-Born corrections to the lensed power
spectrum of the CMB temperature anisotropies first given in
[18], considering also the non-Gaussian nature of the
deflection angle at higher order. In Sec. V, we evaluate the
contributions fromhigher orders in the gravitational potential
(or equivalently in the matter density) to corrections of the
lensed power spectrum of the CMB temperature and polari-
zation anisotropies. Following [23,24], we call them “LSS
corrections.” In Sec. VI, we derive the last missing contri-
bution coming from the fact that parallel transported polari-
zation direction changes along the path of the photon from
the source to the observer. This contribution which turns out
to be very substantial has been missed in previous work. Our
results are summarized in Sec. VII, where we evaluate the
different contributions numerically considering a Halofit
matter power spectrum. In Sec. VIII, we conclude. Several
technical aspects and calculations are presented in four
appendices.

II. WEAK LENSING CORRECTIONS BEYOND
LEADING ORDER IN REAL SPACE

We want to determine the effect of lensing on the
CMB temperature and polarization anisotropies beyond
the well-studied leading order from first-order perturbation
theory [12,13].

Following the derivation of the post-Born correction to
temperature anisotropies in [18], we first generalize the
results of [12,13], writing the following relation between
the lensed and unlensed temperature anisotropies M and
polarization tensor Pmn of the photon field valid up to
fourth order in the deflection angles θaðiÞ [the superscript (i)
denotes the order].

M̃ðxaÞ≡Mðxa þ δθaÞ ≃MðxaÞ þ
X4
i¼1

θbðiÞ∇bMðxaÞ

þ 1

2

X
iþj≤4

θbðiÞθcðjÞ∇b∇cMðxaÞ

þ 1

6

X
iþjþk≤4

θbðiÞθcðjÞθdðkÞ∇b∇c∇dMðxaÞ

þ 1

24
θbð1Þθcð1Þθdð1Þθeð1Þ∇b∇c∇d∇eMðxaÞ;

ð2:1Þ
P̃mnðxaÞ≡ Pmnðxa þ δθaÞ

≃ PmnðxaÞ þ
X4
i¼1

θbðiÞ∇bPmnðxaÞ

þ 1

2

X
iþj≤4

θbðiÞθcðjÞ∇b∇cPmnðxaÞ

þ 1

6

X
iþjþk≤4

θbðiÞθcðjÞθdðkÞ∇b∇c∇dPmnðxaÞ

þ 1

24
θbð1Þθcð1Þθdð1Þθeð1Þ∇b∇c∇d∇ePmnðxaÞ:

ð2:2Þ
A consistent treatment of the polarization in the form of
Pmn or, using the Stokes parameters Q and U, in the form
of P ¼ Qþ iU and P̄ ¼ Q − iU, has to consider that the
polarization tensor is parallel transported along the per-
turbed photon geodesics. Neglecting this effect (we shall
add it at a second stage in Sec. VI) we can substitute Pmn

with P and P̄. An overbar denotes complex conjugation.
Following [18], we can then write

M̃ðxaÞ ≃Að0ÞðxaÞ þ
X4
i¼1

AðiÞðxaÞ þ
X
iþj≤4
1≤i≤j

AðijÞðxaÞ

þ
X

iþjþk≤4
1≤i≤j≤k

AðijkÞðxaÞ þAð1111ÞðxaÞ; ð2:3Þ

P̃ðxaÞ ≃Dð0ÞðxaÞ þ
X4
i¼1

DðiÞðxaÞ þ
X
iþj≤4
1≤i≤j

DðijÞðxaÞ

þ
X

iþjþk≤4
1≤i≤j≤k

DðijkÞðxaÞ þDð1111ÞðxaÞ; ð2:4Þ

where
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Aði1i2…:inÞðxaÞ ¼ Permði1i2…:inÞ
n!

θbði1Þθcði2Þ…::

×∇b∇c……:MðxaÞ; ð2:5Þ

Dði1i2…:inÞðxaÞ ¼ Permði1i2…:inÞ
n!

θbði1Þθcði2Þ…::

× ∇b∇c……:PðxaÞ; ð2:6Þ

where Að0ÞðxaÞ≡MðxaÞ, Dð0ÞðxaÞ≡ PðxaÞ, and
Permði1i2…:inÞ denotes the number of permutation of
the set ði1i2…:inÞ.
We introduce also the Weyl potential

ΦW ¼ 1

2
ðΦþΨÞ ð2:7Þ

in terms of the Bardeen potentials Φ and Ψ. The lensing
potential ψ to the last scattering surface is then determined
by

ψðn; zsÞ ¼
−2

ηo − ηs

Z
ηo

ηs

dη
η − ηs
ηo − η

ΦWððη − ηoÞn; ηÞ

¼ −2
Z

rs

0

dr0
rs − r0

rsr0
ΦWð−r0n; ηo − r0Þ; ð2:8Þ

where n is the direction of photon propagation, η denotes
conformal time and r the comoving distance, r ¼ ηo − η,
where ηo stands for present time. The index s indicates the
corresponding quantity evaluated at the last scattering
surface. The first-order deflection angle is simply the
gradient of the lensing potential [13,26]. Beyond the linear
order, we need to account also for the lensing of the
direction n on the path of the photon. Then one obtains the
following expressions for the deflection angle up to third
perturbative order [27]:

θað1Þ ¼ −2
Z

rs

0

dr0
rs − r0

rsr0
∇aΦWðr0Þ; ð2:9Þ

θað2Þ ¼ −2
Z

rs

0

dr0
rs − r0

rsr0
½∇aΦð2Þ

W ðr0Þ

þ∇b∇aΦWðr0Þθbð1Þðr0Þ�; ð2:10Þ

θað3Þ ¼ −2
Z

rs

0

dr0
rs − r0

rsr0

�
∇aΦð3Þ

W ðr0Þ

þ∇b∇aΦWðr0Þθbð2Þðr0Þ þ∇b∇aΦð2Þ
W ðr0Þθbð1Þðr0Þ

þ 1

2
∇b∇c∇aΦWðr0Þθbð1Þðr0Þθcð1Þðr0Þ

�
: ð2:11Þ

Latin letters a, b, c, d run over the two directions on
the sphere. In Eqs. (2.9)–(2.11) we consider the terms with
the maximal number of transverse derivatives, including the
ones that come from expanding the Weyl potential, ΦW , to
higher order. Note that θað2Þ as well as θað3Þ are not purely
scalar perturbations; they also contain vector contributions
as, for example, the curl of ∇b∇aΦWθ

bð1Þ does not vanish.

But for our purpose a decomposition of the higher-order
deflection angle into scalar and vector parts is of no
particular use. On the other hand, let us point out that
we have neglected the second-order vector and tensor
perturbations of the metric appearing as a consequence
of the nonlinear coupling among scalar, vector, and tensor
in the Einstein equation. These corrections are subleading
with respect to the ones discussed here.
Let us also recall that the Taylor expansion in Eqs. (2.1)

and (2.2) holds in the approximation of small deflection
angles, i.e., when the deflection angle is much smaller than
the angular separations related to a given Cℓ. This is valid
for an angular separation of about 4.5 arc minutes, which
corresponds to ℓ≲ 2500 (see [11–13]). In this work, we
adopt the small deflection angle approximation for the
second- and third-order deflection angles only, which are
much smaller than this value; as a consequence, our results
are valid to much higher ℓ values and we can safely present
them up to ℓ ¼ 3500.

III. WEAK LENSING CORRECTIONS
OF THE POWER SPECTRA

We evaluate the lensing correction to the angular power
spectra CM

ℓ , CEM
ℓ , CE

ℓ, and CB
ℓ in the flat sky limit. In this

approximation (see, e.g., [13]) we replace the combination
ðℓ; mÞ with a 2-dimensional vector ℓ . Therefore, the
angular position is then the 2-dimensional Fourier trans-
form of the position in ℓ space at redshift z. For a generic
variable Yðz;xÞ, we have

Yðz;xÞ ¼ 1

2π

Z
d2ℓYðz; ℓ Þe−iℓ·x; ð3:1Þ

and

hYðz1; ℓ ÞȲðz2; ℓ 0Þi ¼ δðℓ − ℓ 0ÞCY
ℓðz1; z2Þ; ð3:2Þ

while for polarization we have (φℓ denotes the polar angle
in ℓ space)

Pðz;xÞ ¼ −
1

2π

Z
d2ℓ½Eðz; ℓ Þ þ iBðz; ℓ Þ�e−2iφℓe−iℓ·x;

ð3:3Þ
with

hEðzs; ℓ ÞM̄ðzs; ℓ 0Þi ¼ δðℓ − ℓ 0ÞCEM
ℓ ðzsÞ;

hEðzs; ℓ ÞĒðzs; ℓ 0Þi ¼ δðℓ − ℓ 0ÞCE
ℓðzsÞ;

hBðzs; ℓ ÞB̄ðzs; ℓ 0Þi ¼ δðℓ − ℓ 0ÞCB
ℓðzsÞ;

hBðzs; ℓ ÞM̄ðzs; ℓ 0Þi ¼ 0;

hBðzs; ℓ ÞĒðzs; ℓ 0Þi ¼ 0: ð3:4Þ
We follow the notation of [28,29] to determine the

angular power spectra defined above and we introduce
the (3-dimensional) initial curvature power spectrum
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hRinðkÞR̄inðk0Þi ¼ δDðk − k0ÞPRðkÞ: ð3:5Þ

[In both 2- and 3-dimensional Fourier transforms we adopt
the unitary Fourier transform normalization, so there are no
factors of 2π in this formula, nor in Eqs. (3.2) and (3.4).]
For a given linear perturbation variable A, we define its

transfer function TAðz; kÞ normalized to the initial curva-
ture perturbation by

Aðz;kÞ ¼ TAðz; kÞRinðkÞ; ð3:6Þ

and an angular power spectrum will be then determined by

CAB
ℓ ðz1; z2Þ ¼ 4π

Z
dk
k
PRðkÞΔA

ℓðz1; kÞΔB
ℓðz2; kÞ

¼ 2

π

Z
dkk2PRðkÞΔA

ℓðz1; kÞΔB
ℓðz2; kÞ; ð3:7Þ

where PRðkÞ ¼ k3

2π2
PRðkÞ is the dimensionless primordial

power spectrum, and ΔA
ℓðz; kÞ denotes the transfer function

in angular and redshift space for the variable A. For
instance, by considering A ¼ B ¼ ΦW and A ¼ B ¼ ψ ,
we obtain that [setting CΨW

ℓ ðz; z0Þ≡ CW
ℓ ðz; z0Þ]

CW
ℓ ðz; z0Þ ¼

1

2π

Z
dkk2PRðkÞ½TΨþΦðk; zÞjℓððkrÞ�

× ½TΨþΦðk; z0Þjℓðkr0Þ�; ð3:8Þ

Cψ
ℓ ðz;z0Þ ¼

2

π

Z
dkk2PRðkÞ

×

�Z
r

0

dr1
r− r1
rr1

TΨþΦðk;z1Þjℓðkr1Þ
�

×

�Z
r0

0

dr2
r0− r2
r0r2

TΨþΦðk;z2Þjℓðkr2Þ
�
; ð3:9Þ

where jℓ denotes a spherical Bessel function of order ℓ. As
before, r≡ ηo − η is the comoving distance to redshift z,
and analogously r0, r1, r2 denote the distances to redshifts
z0, z1, z2. Above and hereafter, we define z ¼ zðrÞ,
z0 ¼ zðr0Þ, etc.
Hereafter, in order to numerically evaluate the next-to-

leading order lensing contributions to the CMB temper-
ature and polarization anisotropies, we will apply the
Limber approximation [30–32]. We remark that this
approximation works very well for CMB lensing.
Indeed, CMB lensing is appreciable only for ℓ > 100,
where the Limber approximation is very close to the exact
solution.
Following [33], the Limber approximation can be written

as

2

π

Z
dkk2fðkÞjℓðkx1Þjℓðkx2Þ

≃
δDðx1 − x2Þ

x21
f

�
ℓþ 1=2

x1

�
; ð3:10Þ

where fðkÞ should be a smooth, not strongly oscillating
function of k which decreases sufficiently rapidly for k →
∞ [more precisely, fðkÞ has to decrease faster than 1=k for
k > ℓ=x]. Using this approximation, one can then obtain
the Limber-approximated CW

ℓ and Cψ
ℓ (see [18] for details).

Starting with the definitions (3.1) and (3.3), we can
transform Eqs. (2.3) and (2.4) into ℓ space where they
become (see [18] for details)

M̃ðzs; ℓ Þ ≃Að0Þðℓ Þ þ
X4
i¼1

AðiÞðℓ Þ þ
X
iþj≤4
1≤i≤j

AðijÞðℓ Þ

þ
X

iþjþk≤4
1≤i≤j≤k

AðijkÞðℓ Þ þAð1111Þðℓ Þ; ð3:11Þ

P̃ðzs; ℓ Þ ≃Dð0Þðℓ Þ þ
X4
i¼1

DðiÞðℓ Þ þ
X
iþj≤4
1≤i≤j

DðijÞðℓ Þ

þ
X

iþjþk≤4
1≤i≤j≤k

DðijkÞðℓ Þ þDð1111Þðℓ Þ; ð3:12Þ

where we drop the redshift dependence for simplicity on
the right-hand side, and we have

Dð0Þðzs; ℓ Þ≡ Pðzs; ℓ Þ ¼
1

2π

Z
d2xPðz;xÞeiℓ·x

¼ −½Eðz; ℓ Þ þ iBðz; ℓ Þ�e−2iφℓ :

ð3:13Þ

To evaluate the lensing corrections at next-to-leading
order we now have to calculate the ℓ -space expressions for
the terms Aði…:Þ and Dði…:Þ. The expressions for Aði…:Þ
considering at next-to-leading order only the post-Born
corrections were determined in [18]. Starting from these
results (see Appendix A of [18]), and from the results of
Sec. V for the LSS corrections, one can easily find the
corresponding expressions for Dði…:Þ both at leading and
next-to-leading order. They are obtained from theAði…:Þ by
the substitution

Mðzs; ℓ Þ → −½Eðzs; ℓ Þ þ iBðzs; ℓ Þ�e−2iφℓ ; ð3:14Þ

performed for any Mðzs; ℓ Þ inside the integrals. For
completeness, we report them in Appendix A. This is very
useful as it means, comparing Eq. (3.12) with Eq. (3.11)
and using Eq. (3.4), that the lensing corrections at the next-
to-leading order ofCEM

ℓ ,CE
ℓ, andC

B
ℓ can be obtained, as the

MAROZZI, FANIZZA, DI DIO, and DURRER PHYS. REV. D 98, 023535 (2018)

023535-4



leading lensing corrections (see [12,13]), by using the
results for CM

ℓ by a series of simple substitutions (see also
[24]). Namely, we find that the corrections to CEM

ℓ are
obtained by substituting

CM
ℓ ðzsÞ → CEM

ℓ ðzsÞ;
ĈM
ℓ1
ðzsÞ → CEM

ℓ1
ðzsÞ cos½2ðφℓ1

− φℓÞ�; ð3:15Þ

the corrections to CE
ℓ by substituting

CM
ℓ ðzsÞ → CE

ℓðzsÞ;
ĈM
ℓ1
ðzsÞ → CE

ℓ1
ðzsÞcos2½2ðφℓ1

− φℓÞ�
þ CB

ℓ1
ðzsÞsin2½2ðφℓ1

− φℓÞ�; ð3:16Þ

and, finally, the corrections to CB
ℓ by substituting

CM
ℓ ðzsÞ → CB

ℓðzsÞ;
ĈM
ℓ1
ðzsÞ → CE

ℓ1
ðzsÞsin2½2ðφℓ1

− φℓÞ�
þ CB

ℓ1
ðzsÞcos2½2ðφℓ1

− φℓÞ�; ð3:17Þ

where we use a ˆ to indicate the CM
ℓ that are inside an

integral (for completeness, we present more details in
Appendix B).
At this point, let us briefly recall our approach to obtain

the lensing correction to the temperature anisotropies
beyond leading order (see [18] for details). Following
[18], we have that

hM̃ðℓ Þ ¯̃Mðℓ 0Þi ¼ hAðℓ ÞĀðℓ 0Þi; ð3:18Þ

where

Aðℓ Þ ¼ Að0Þðℓ Þ þ
X4
i¼1

AðiÞðℓ Þ þ
X
iþj≤4
1≤i≤j

AðijÞðℓ Þ

þ
X

iþjþk≤4
1≤i≤j≤k

AðijkÞðℓ Þ þAð1111Þðℓ Þ: ð3:19Þ

We now introduce Cði…;j…Þ
ℓ defined by

δðℓ − ℓ 0ÞCðij…;ij…Þ
ℓ ¼ hAðij…Þðℓ ÞĀðij…Þðℓ 0Þi;

δðℓ − ℓ 0ÞCðij…;i0j0…Þ
ℓ ¼ hAðij…Þðℓ ÞĀði0j0…Þðℓ 0Þi

þ hAði0j0…Þðℓ ÞĀðij…Þðℓ 0Þi; ð3:20Þ

where the last definition applies when the coefficients
ðij…Þ and ði0j0…Þ are not identical. The delta Dirac
function δðℓ − ℓ 0Þ is a consequence of statistical isotropy.
By omitting terms of higher than fourth order in the Weyl
potential and terms that vanish as a consequence of Wick’s
theorem (odd number of Weyl potentials), we obtain

C̃M
ℓ ¼ CM

ℓ þ Cð0;2Þ
ℓ þ Cð0;11Þ

ℓ þ Cð1;1Þ
ℓ þ Cð0;4Þ

ℓ þ Cð0;13Þ
ℓ

þ Cð0;22Þ
ℓ þ Cð0;112Þ

ℓ þ Cð0;1111Þ
ℓ þ Cð1;3Þ

ℓ þ Cð2;2Þ
ℓ

þ Cð1;12Þ
ℓ þ Cð1;111Þ

ℓ þ Cð2;11Þ
ℓ þ Cð11;11Þ

ℓ ; ð3:21Þ

where Cð0;0Þ
ℓ ≡ CM

ℓ is the unlensed power spectrum. The

terms Cð0;2Þ
ℓ , Cð0;4Þ

ℓ , and Cð0;112Þ
ℓ , containing an odd number

of deflection angles from only one direction, are identically
zero as a consequence of statistical isotropy. This was

shown explicitly for the post-Born part of Cð0;112Þ
ℓ in [18]

and for the second-order contribution Cð0;2Þ
ℓ in [34].

Furthermore, making use of the Gaussian statistics of the
first-order deflection angle, the full correction from first-
order deflection angles alone, to the unlensed CM

ℓ , i.e., all
the terms above containing only 0’s and 1’s, can be fully

resummed [11–13]. Denoting this sum by C̃Mð1Þ
ℓ , we have

C̃Mð1Þ
ℓ ¼

Z
drrJ0ðℓrÞ

Z
d2ℓ0

ð2πÞ2C
M
ℓ0 e−iℓ

0·r

× exp

�
−
ℓ02

2
ðA0ð0Þ − A0ðrÞ þ A2ðrÞ cos ð2φℓÞÞ

�
;

ð3:22Þ
with

A0ðrÞ ¼
Z

dℓℓ3

2π
Cψ
ℓJ0ðrℓÞ;

A2ðrÞ ¼
Z

dℓℓ3

2π
Cψ
ℓJ2ðrℓÞ; ð3:23Þ

and where J0 and J2 are the Bessel functions of order zero
and two.
We now write

C̃M
ℓ ¼ C̃Mð1Þ

ℓ þ ΔCð2Þ
ℓ þ ΔCð3Þ

ℓ ; ð3:24Þ
where (neglecting vanishing contributions)

ΔCð2Þ
ℓ ¼ Cð0;13Þ

ℓ þ Cð0;22Þ
ℓ þ Cð1;3Þ

ℓ þ Cð2;2Þ
ℓ ; ð3:25Þ

ΔCð3Þ
ℓ ¼ Cð1;12Þ

ℓ þ Cð2;11Þ
ℓ : ð3:26Þ

As already mentioned, C̃Mð1Þ
ℓ denotes the well-known

resummed correction from the first-order deflection angle
[11–13], which is computed in standard CMB codes

[14,15]. ΔCð2Þ
ℓ and ΔCð3Þ

ℓ denote corrections involving
two or three deflection angles respectively, at least one
of them beyond the Born approximation or with a higher-
order Weyl potential. With a slight abuse of language we
call them the Gaussian and non-Gaussian contribution of
the deflection angle or, as in [18], the second and third
groups, respectively. Even though the contributions to the
second group are not Gaussian, they would be present also
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if the higher-order deflection angles would be Gaussian.
Terms of the third group, however, would vanish for
Gaussian higher-order deflection angles. Note that even
though the number of deflection angles is odd in the third
group, statistical isotropy does not require it to vanish as (in
the correlation function picture) there is, in addition, the
angle between the two directions n1 and n2, which can be
employed to “pair up” all the angles. If the deflections are
all attached to one of these two directions, this additional
angle is no longer present and a term of the form

C
ð0;n1���n2jþ1Þ
ℓ has to vanish due to statistical isotropy, while

a term of the form C
ðn1���nk;nkþ1���n2jþ1Þ
ℓ with k > 0 does not.

Here we of course always assume that CMB anisotropies
and deflection angles are uncorrelated as the latter come
from much lower redshifts.
Furthermore, within the Limber approximation, which is

very accurate for these small corrections relevant only at high

ℓ, the two contributions Cð0;13Þ
ℓ and Cð0;22Þ

ℓ coming from the
post-Born part of the deflection angle exactly cancel,

Cð0;13Þ
ℓ ¼ −Cð0;22Þ

ℓ . This is no longer so when we consider
the LSS contributions to these terms; see Sec. V below.

IV. POST-BORN CONTRIBUTIONS

Let us first recall the results for the post-Born lensing
corrections obtained in [18] for the temperature anisotro-
pies. The results for polarization spectra can then be
obtained as illustrated in the previous section.

A. Second group

The second group, where we study the leading post-Born
corrections coming from the deflection angles up to third
order when these appear in pairs like hθað2Þθbð2Þi and
hθað1Þθbð3Þi, is given by

Cð1;3Þ
ℓ;pB ¼ −

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½ðℓ − ℓ 1Þ · ℓ 1�2½ðℓ − ℓ 1Þ · ℓ 2�2ĈM
ℓ1
ðzsÞ

×
Z

rs

0

dr0
ðrs − r0Þ2
r2sr04

Cψ
ℓ2
ðz0; z0ÞPR

�jℓ − ℓ 1j þ 1=2
r0

��
TΨþΦ

�jℓ − ℓ 1j þ 1=2
r0

; z0
��

2

; ð4:1Þ

Cð2;2Þ
ℓ;pB ¼

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½ðℓ − ℓ 1 þ ℓ 2Þ · ℓ 1�2½ðℓ − ℓ 1 þ ℓ 2Þ · ℓ 2�2ĈM
ℓ1
ðzsÞ

×
Z

rS

0

dr0
ðrs − r0Þ2
r2sr04

Cψ
ℓ2
ðz0; z0ÞPR

�jℓ − ℓ 1 þ ℓ 2j þ 1=2
r0

��
TΨþΦ

�jℓ − ℓ 1 þ ℓ 2j þ 1=2
r0

; z0
��

2

: ð4:2Þ

B. Third group

The third group, where we consider terms with three deflection angles which do not vanish due to the non-Gaussian
statistic of θað2Þ, is given by

Cð1;12Þ
ℓ;pB ¼ −2

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ðℓ 1 · ℓ 2Þ½ðℓ − ℓ 1Þ · ℓ 2�½ðℓ − ℓ 1Þ · ℓ 1�2

× ĈM
ℓ1
ðzsÞ

Z
rs

0

dr0
ðrs − r0Þ2
r2sr04

PR

�jℓ − ℓ 1j þ 1=2
r0

��
TΨþΦ

�jℓ − ℓ 1j þ 1=2
r0

; z0
��

2

Cψ
ℓ2
ðzs; z0Þ; ð4:3Þ

Cð2;11Þ
ℓ;pB ¼ 2

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ðℓ 1 · ℓ 2Þ½ðℓ − ℓ 1 þ ℓ 2Þ · ℓ 2�½ðℓ − ℓ 1 þ ℓ 2Þ · ℓ 1�2

× ĈM
ℓ1
ðzsÞ

Z
rs

0

dr0
ðrs − r0Þ2
r2sr04

PR

�jℓ − ℓ 1 þ ℓ 2j þ 1=2
r0

��
TΨþΦ

�jℓ − ℓ 1 þ ℓ 2j þ 1=2
r0

; z0
��

2

Cψ
ℓ2
ðzs; z0Þ: ð4:4Þ

As for the temperature anisotropies (see [18]) and also for the polarization spectra, the contributions above, within each
group, partially erase each other. In the range of integration where jℓ − ℓ 1 þ ℓ 2j ≃ jℓ − ℓ 1j, the integrands in Eqs. (4.1)
and (4.2) [as well as the ones in Eqs. (4.3) and (4.4)] are nearly identical and the corresponding contributions partially
cancel (see [18] for details and a physical interpretation).
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V. LSS CONTRIBUTIONS

In this section we determine the next-to-leading order
corrections to CMB lensing coming from higher-order
corrections of the Weyl potential (the so-called LSS
contributions, see also [24]).
We want to determine the LSS contributions to the

deflection angle up to third order. As one sees from
Eqs. (2.10) and (2.11), this requires Φð2Þ

W and Φð3Þ
W . We

use the Newtonian approximations to ΦW , which are very
accurate on largely subhorizon scales, k=H ≫ 1, and in a
matter-dominated regime. They are given by (see, for
example, [35])

Φð2Þ
W ðk; ηÞ ¼ −

3H2ΩmðηÞ
2k2

δð2Þðk; ηÞ; ð5:1Þ

δð2Þðk; ηÞ ¼ 1

ð2πÞ3=2
Z

d3k1d3k2δDðk − k1 − k2Þ

× F2ðk1;k2Þδðk1; ηÞδðk2; ηÞ; ð5:2Þ

F2ðk1;k2Þ ¼
5

7
þ 1

2

k1 · k2

k1k2

�
k1
k2

þ k2
k1

�
þ 2

7

�
k1 · k2

k1k2

�
2

;

ð5:3Þ

and [36,37]

Φð3Þ
W ðk; ηÞ ¼ −

3H2ΩmðηÞ
2k2

δð3Þðk; ηÞ; ð5:4Þ

δð3Þðk;ηÞ¼ 1

ð2πÞ3
Z

d3k1d3k2d3k3

×δDðk−k1−k2−k3Þ
×F3ðk1;k2;k3Þδðk1;ηÞδðk2;ηÞδðk3;ηÞ;

ð5:5Þ

F3ðk1;k2;k3Þ ¼
1

18
fG2ðk1;k2Þ½7αðk1 þ k2;k3Þ

þ 4βðk1 þ k2;k3Þ�
þ 7αðk1;k2 þ k3ÞF2ðk2;k3Þg;

ð5:6Þ

with

αðk;k0Þ ¼ ðkþ k0Þ · k
k2

;

βðk;k0Þ ¼ ðkþ k0Þ2k · k0

2k2k02
; ð5:7Þ

G2ðk1;k2Þ ¼
3

7
þ 1

2

k1 · k2

k1k2

�
k1
k2

þ k2
k1

�
þ 4

7

�
k1 · k2

k1k2

�
2

:

ð5:8Þ

We now write explicit formulas for the case of temper-
ature anisotropies, the corresponding expressions for E and
B modes are obtained from the temperature results using
the substitutions in Eqs. (3.15)–(3.17).

A. Second group

Let us first evaluate the impact of the LSS corrections on
our second group. As we will show explicitly in the
following, within the Limber approximation the LSS
contribution to the second group is already included when
we consider a Halofit model in evaluating the leading first-
order contribution. Namely, it is equivalent to taking the
leading lensing correction, obtained from a first-order
deflection angle, and considering in the Cψ

ℓ the higher-
order contributions to the gravitational potential (i.e.,
considering an higher-order power spectrum).
To show this, we write the deflection angles up to third

order in terms of the 2-dimensional Fourier transform of the
Weyl potential including also the LSS contributions from

Φð2Þ
W and Φð3Þ

W . In general, an angle θaðnÞ contains a part
which depends only on the first order Weyl potential and a
second part which depends on higher-order corrections to

the Weyl potential, up to third order these areΦð2Þ
W andΦð3Þ

W .

The first part is the one evaluated in [18], let us call it θaðnÞSt ,

while we call the second part θaðnÞLSS . Up to third order, the
second part is given by

θað2ÞLSS ðxÞ ¼
i
π

Z
d2ℓ

Z
rs

0

dr
rs − r
rsr

ℓaΦð2Þ
W ðr; ℓ Þe−iℓ·x;

ð5:9Þ

θað3ÞLSS ðxÞ ¼
i
π

Z
d2ℓ

Z
rs

0

dr
rs − r
rsr

ℓaΦð3Þ
W ðr0; ℓ Þe−iℓ·x

þ i
π2

Z
d2ℓ1

Z
d2ℓ2

Z
rs

0

dr
rs − r
rsr

ðℓa
1ℓ1bΦ

ð2Þ
W ðr0; ℓ 1Þe−iℓ1·xÞ

Z
r

0

dr0
r − r0

rr0
ℓb
2ΦWðr0; ℓ 2Þe−iℓ2·x

þ i
π2

Z
d2ℓ1

Z
d2ℓ2

Z
rs

0

dr
rs − r
rsr

ðℓa
1ℓ1bΦWðr; ℓ 1Þe−iℓ1·xÞ

Z
r

0

dr0
r − r0

rr0
ℓb
2Φ

ð2Þ
W ðr0; ℓ 2Þe−iℓ2·x: ð5:10Þ
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The LSS corrections to the second group contribute to Cð0;22Þ
ℓ , Cð0;13Þ

ℓ , Cð2;2Þ
ℓ , and Cð1;3Þ

ℓ . To evaluate them we calculate the

contribution of Φð2Þ
W and Φð3Þ

W to Að2Þðℓ Þ, Að3Þðℓ Þ, Að13Þðℓ Þ, and Að22Þðℓ Þ. Following [18], we obtain

Að2Þ
LSSðℓ Þ ¼

1

2π

Z
d2xθað2ÞLSS∇aMeiℓ·x

1

π

Z
d2ℓ2½ðℓ − ℓ 2Þ · ℓ 2�

Z
rs

0

dr
rs − r
rsr

Φð2Þ
W ðr; ℓ − ℓ 2ÞMðrs; ℓ 2Þ; ð5:11Þ

Að3Þ
LSSðℓ Þ ¼

1

2π

Z
d2xθað3ÞLSS∇aMeiℓ·x

¼ 1

π

Z
d2ℓ2½ðℓ − ℓ 2Þ · ℓ 2�

Z
rs

0

dr
rs − r
rsr

Φð3Þ
W ðr; ℓ − ℓ 2ÞMðrs; ℓ 2Þ

−
1

π2

Z
d2ℓ2

Z
d2ℓ3½ðℓ þ ℓ 2 − ℓ 3Þ · ℓ 3�½ðℓ þ ℓ 2 − ℓ 3Þ · ℓ 2�

Z
rs

0

dr
rs − r
rsr

×
Z

r

0

dr0
r − r0

rr0
½ΦWðr; ℓ þ ℓ 2 − ℓ 3ÞΦ̄ð2Þ

W ðr0; ℓ 2Þ þΦð2Þ
W ðr; ℓ þ ℓ 2 − ℓ 3ÞΦ̄Wðr0; ℓ 2Þ�Mðrs; ℓ 3Þ; ð5:12Þ

Að13Þ
LSSðℓ Þ ¼

1

2π

Z
d2xθað1Þθbð3ÞLSS∇a∇bMeiℓ·x

¼ −
1

π2

Z
d2ℓ2

Z
d2ℓ3½ðℓ þ ℓ 2 − ℓ 3Þ · ℓ 3�ðℓ 2 · ℓ 3Þ

×
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0
ΦWðr; ℓ þ ℓ 2 − ℓ 3ÞΦ̄ð3Þ

W ðr0; ℓ 3ÞMðrs; ℓ 3Þ

þ 1

π3

Z
d2ℓ2

Z
d2ℓ3

Z
d2ℓ4½ðℓ − ℓ 2 − ℓ 3 − ℓ 4Þ · ℓ 4�ðℓ 4 · ℓ 2Þðℓ 3 · ℓ 2Þ

×
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
r0

0

dr00
r0 − r00

r0r00
ΦWðr; ℓ − ℓ 2 − ℓ 3 − ℓ 4Þ

× ½ΦWðr0; ℓ 2ÞΦð2Þ
W ðr00; ℓ 3Þ þΦð2Þ

W ðr0; ℓ 2ÞΦWðr00; ℓ 3Þ�Mðrs; ℓ 4Þ; ð5:13Þ

Að22Þ
LSSðℓ Þ ¼

1

2π

Z
d2x

1

2
½θað2ÞLSSθ

bð2Þ
LSS þ 2θað2Þθbð2ÞLSS �∇a∇bMeiℓ·x

¼ −
1

2

1

π2

Z
d2ℓ2

Z
d2ℓ3½ðℓ þ ℓ 2 − ℓ 3Þ · ℓ 3�ðℓ 2 · ℓ 3Þ

×
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0
Φð2Þ

W ðr; ℓ þ ℓ 2 − ℓ 3ÞΦ̄ð2Þ
W ðr0; ℓ 2ÞMðrs; ℓ 3Þ

þ 1

π3

Z
d2ℓ2

Z
d2ℓ3

Z
d2ℓ4½ðℓ − ℓ 2 − ℓ 3 − ℓ 4Þ · ℓ 4�ðℓ 4 · ℓ 2Þðℓ 3 · ℓ 2Þ

×
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
r0

0

dr00
r0 − r00

r0r00
Φð2Þ

W ðr; ℓ − ℓ 2 − ℓ 3 − ℓ 4Þ

×ΦWðr0; ℓ 2ÞΦWðr00; ℓ 3ÞMðrs; ℓ 4Þ: ð5:14Þ
With these results and using also the Aði…:Þðℓ Þ containing only the first-order Weyl potential given in [18], we can now
determine the LSS contribution to the second group by following the procedure outlined in [18]. We first introduce

hΦð2Þ
W ðz; ℓ ÞΦ̄ð2Þ

W ðz0; ℓ 0Þi ¼ δðℓ − ℓ 0ÞCWð22Þ
ℓ ðz; z0Þ;

hΦWðz; ℓ ÞΦ̄ð3Þ
W ðz0; ℓ 0Þi ¼ δðℓ − ℓ 0ÞCWð13Þ

ℓ ðz; z0Þ; ð5:15Þ
and

Cψð22Þ
ℓ ðz; z0Þ ¼ 4

Z
r

0

dr1
r − r1
rr1

Z
r0

0

dr2
r0 − r2
r0r2

CWð22Þ
ℓ ðz1; z2Þ;

Cψð13Þ
ℓ ðz; z0Þ ¼ 4

Z
r

0

dr1
r − r1
rr1

Z
r0

0

dr2
r0 − r2
r0r2

CWð13Þ
ℓ ðz1; z2Þ: ð5:16Þ
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With this we obtain

Cð0;22Þ
ℓ;LSS þ Cð0;13Þ

ℓ;LSS ¼ −CM
ℓ ðzsÞ

Z
d2ℓ1

ð2πÞ2 ðℓ 1 · ℓ Þ2½Cψð22Þ
ℓ1

ðzs; zsÞ þ 2Cψð13Þ
ℓ1

ðzs; zsÞ�

− 16CM
ℓ ðzsÞ

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½ðℓ 2 þ ℓ 3Þ · ℓ �ðℓ 2 · ℓ Þðℓ 3 · ℓ Þ

×
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
r0

0

dr00
r0 − r00

r0r00
bΦΦΦð2Þ
jℓ 2þℓ 3jℓ2ℓ3ðr; r0; r00Þ; ð5:17Þ

Cð2;2Þ
ℓ;LSS þ Cð1;3Þ

ℓ;LSS ¼
Z

d2ℓ1

ð2πÞ2 ½ðℓ − ℓ 1Þ · ℓ 1�2½Cψð22Þ
jℓ−ℓ 1jðzs; zsÞ þ Cψð13Þ

jℓ−ℓ 1jðzs; zsÞ�CM
ℓ1
ðzsÞ

− 16

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½ðℓ þ ℓ 2 − ℓ 1Þ · ℓ 2�½ðℓ − ℓ 1Þ · ℓ 1�½ðℓ þ ℓ 2 − ℓ 1Þ · ℓ 1�

× CM
ℓ1
ðzsÞ

Z
rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
r0

0

dr00
r0 − r00

r0r00
bΦΦΦð2Þ
jℓ−ℓ 1jjℓ−ℓ 1þℓ 2jℓ2ðr; r0; r00Þ; ð5:18Þ

where bΦΦΦð2Þ
ℓ1ℓ2ℓ3

is a reduced bispectrum and is defined by

hΦð2Þ
W ðr1; ℓ 1ÞΦWðr2; ℓ 2ÞΦWðr3; ℓ 3Þic þ perm: ¼ δDðℓ 1 þ ℓ 2 þ ℓ 3Þ

1

2π
bΦ

ð2ÞΦΦ
ℓ1ℓ2ℓ3

ðr1; r2; r3Þ: ð5:19Þ

Following Sec. 3.4 of [38] and using the Limber approximation, we obtain the following expression for the reduced
bispectrum:

bΦ
ð2ÞΦΦ

ℓ1ℓ2ℓ3
ðz1; z2; z3Þ ¼ −

1

12
½Hðη1Þ2ðΩmðη1Þ�−1

δDðr2 − r3ÞδDðr1 − r3Þ
r23

ν22ν
2
3

1

ðℓ1 þ 1=2Þ2

× PRðν2ÞPRðν3ÞT2
ΦþΨðν2; η3ÞT2

ΦþΨðν3; η3ÞF2

�
ℓ1 þ 1=2

r3
; ν2; ν3

�
þ perm; ð5:20Þ

where νi ≡ ℓiþ1=2
ri

, ri ¼ rðziÞ as well as ηi ¼ ηðziÞ, and we define (see [38])

F2ðk1; k2; k3Þ ¼
5

7
þ 1

4

k21 − k22 − k23
k2k3

�
k2
k3

þ k3
k2

�
þ 1

14

�
k21 − k22 − k23

k2k3

�
2

: ð5:21Þ

The first contributions to Eqs. (5.17) and (5.18) take care of when we take into account higher-order contributions to the
gravitational potential in Cψ

ℓ (a higher-order power spectrum) and, therefore, it is included when we consider a Halofit
model in evaluating the leading first-order contribution (in the sense that if we add this contribution to the first-order
contribution evaluated via Halofit we would effectively do a double counting). The second terms in Eqs. (5.17) and (5.18)
depend on the reduced bispectrum. In the Limber approximation given in Eq. (5.20), these contributions vanish due to the
Dirac-delta function, δðr0 − r00Þ.

B. Third group

We now evaluate the LSS corrections to our third group. In this group no third-order perturbations occur and it is
sufficient to consider the LSS contribution in the deflection angle up to second order.
From the definitions in Eqs. (3.20) and (3.26) the LSS contribution to our third group is due to the contribution of Φð2Þ

W

present in Að2Þðℓ Þ and Að12Þðℓ Þ. The expression for Að2Þ
LSSðℓ Þ is given in Eq. (5.11). Following [18], we obtain

Að12Þ
LSSðℓ Þ ¼

1

2π

Z
d2xθað1Þθbð2ÞLSS∇a∇bMeiℓ·x

¼ −
1

π2

Z
d2ℓ2

Z
d2ℓ3½ðℓ þ ℓ 2 − ℓ 3Þ · ℓ 3�ðℓ 2 · ℓ 3Þ

Z
rs

0

dr
rs − r
rsr

×
Z

rs

0

dr0
rs − r0

rsr0
ΦWðr; ℓ þ ℓ 2 − ℓ 3ÞΦ̄ð2Þ

W ðr0; ℓ 2ÞMðrs; ℓ 3Þ: ð5:22Þ
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Using Eqs. (5.11) and (5.22), the expressions for Að1Þðℓ Þ
and Að11Þðℓ Þ given in [18], and Eq. (3.20), we then obtain
the following LSS contribution to the third group:

Cð1;12Þ
ℓ;LSSþCð2;11Þ

ℓ;LSS¼−8
Z

d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ðℓ 1 ·ℓ 2Þ

× ½ðℓ −ℓ 1Þ ·ℓ 1�½ðℓ þℓ 2−ℓ 1Þ ·ℓ 1�

×CM
ℓ1
ðzsÞ

Z
rs

0

dr
rs−r
rsr

Z
rs

0

dr0
rs−r0

rsr0

×
Z

rs

0

dr00
rs−r00

rsr00
bΦ

ð2ÞΦΦ
jℓ−ℓ 1jjℓ−ℓ 1þℓ 2jℓ2ðr;r0;r00Þ:

ð5:23Þ

Note that this result remains finite in the Limber approxi-
mation for the reduced bispectrum as there is no factor
r0 − r00 in the integrand. Our expression (5.23) for the LSS
correction agrees with the corresponding result of Ref. [24].

VI. CONTRIBUTION FROM ROTATION

When considering the next-to-leading order corrections
to the CMB polarization, another new effect has to be taken
into account: polarization is oriented along a given direc-
tion at emission and this direction may rotate along the path
of the photon to the observer position due to the presence of
structure. Since this has been debated in the literature [39],
we first give a thorough introduction to the physics of the
effect before entering into the computation.
The problem that appears here is that parallel transport

relates the lensed polarization tensor P̃nmðnÞ with the
unlensed polarization Pnmðn0Þ, where n ¼ xa ¼ ðθ1o; θ2oÞ
is the direction of the image and n0 ¼ xa þ δθa ¼ ðθ1s ; θ2sÞ
is the direction of the source (which is equal to the unlensed
position of the image). To obtain P̃nmðnÞ, we have to
parallel transport the polarization from the source position
defined by n0 ≠ n to the observer, see Fig. 1. However, we
must compare P̃nmðnÞ with the unlensed polarization as it
would be observed in the same direction, n, if no pertur-
bation was present. The most elegant way to take this
subtlety into account is the use of the so-called geodesic
light cone (GLC) coordinates [40]. In these coordinates the
direction of a photon ðθ̃1; θ̃2Þ is constant by definition,
n≡ n0, and we can compare the lensed and unlensed
polarization from the same direction. To find out whether
the lensed polarization is rotated, we therefore just have to
study whether the parallel-transported Sachs basis is rotated
with respect to the directions ðθ̃1; θ̃2Þ. We do exactly this in
Appendix C, where we determine the rotation angle −β of
the Sachs basis with respect to these directions.
Of course, one can also study the problem in Poisson

gauge. A short calculation actually shows that when
expressing the polarization in terms of the directions
defined by Poisson gauge, it does not rotate. (This is not

exactly true; there actually is a small amount of rotation due
to the fact that the photon is not emitted into the direction
given by the emission point, n0, but in a somewhat different
direction, see Fig. 1. This is discussed in detail in [39], but
since this effect is much smaller than the one discussed
here, we neglect it.) In Poisson gauge the directions n and
n0 are different and to compare the lensed polarization seen
from direction n with the unlensed polarization from the
same direction, we have to move the unlensed Pmn from n0
to n. In general, this is done with the Jacobi map, ð∂n=∂n0Þ,
but since we express the polarization in terms of an
orthonormal basis, only the rotation ω of this map con-
tributes. In Appendix C, we show that for scalar perturba-
tions β ¼ ω up to second order and one obtains the same
result in both ways, as it should be.
Therefore, comparing the lensed and the unlensed

polarization from the same direction n doing the calcu-
lation in GLC gauge or in Poisson gauge gives the same
result. But the rotation of the unlensed Pnmðn0Þ into the
unlensed result at n must be taken into account. This effect
has been overlooked in the previous literature [23,24,39]
and we show in the following that it is quite substantial.
Another way to understand that β ¼ ω is to consider two

nearby photons with connection vector e. Assume that one of
the photons be polarized in direction ϵ enclosing an angle α
with e. Here e provides a natural reference direction with
respect to which we measure the rotation of polarization.
Lensingwill change this angle because e and ϵ are differently
transported (rotated) along their path towards the observer.
Indeed, for small separation, ewill be Lie transported, like an
image, while ϵwill be parallel transported as the Sachs basis,
i.e., the natural basis with respect to which rotation of the
image is defined. It is natural to expect that the relative
rotation coincides withω. Indeed, in GLC coordinates, since
the photon directions are not modified, e remains unchanged
while the polarization is rotated by an angle −β so that the
angle between ϵ and e becomes α − β. In Poisson gauge
coordinates, ϵ is not modified but the vector connecting the
two photons is rotated byω ¼ β; hence, again α changes into
α − β (see Fig. 2).
To further explain the difference of our result to those of

[23,24,39], which do not take this rotation into account, let

FIG. 1. The (incoming) source direction n0 and the image
direction n are shown. In a generic coordinate system n ≠ n0,
while in GLC angular coordinates follow the photon direction so
that n≡ n0.
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us also mention that when fixing a coordinate system at the
observer, it is the direction of the source of the incoming
photons which is rotated w.r.t. this fixed coordinate system
by lensing. However, the only directions intrinsic to the
problem are those of incoming photons, and the orientation
of the polarization w.r.t. one of the neighboring incoming
photons, as shown in Fig. 2, does rotate due to lensing. In
this sense, CMB lensing generates frame dragging on
cosmological scales as discussed in [25].
Note also that this rotation is the only modification of the

polarization tensor which does not involve any derivatives
of Pnm. Thus, it cannot be confounded with any other term
which we have considered before.
Let us now calculate the effects on the polarization

power spectra. We consider the rotation angle β, the effect
of this rotation on Eq. (2.4) is given by a rotation matrixRB

A
[see Eq. (C8)] acting on the Sachs basis, as defined in
Appendix C. To evaluate it, the polarization tensor Pmn is
projected on a screen at the observer position given by
Eq. (C17), which is rotated by an angle βwith respect to the
screen at the source. Because the screen basis vectors
appear twice in the projection of the polarization tensor, a
rotation on it will change P by 2β. This is simply a
consequence of the spin-2 nature of the polarization tensor.
Starting from [41,42]

P̃mnðxaÞ2s̃ðþÞ
m s̃ðþÞ

n ¼ Pmnðxa þ δθaÞ2s̃ðþÞ
m s̃ðþÞ

n ; ð6:1Þ

with s̃ðþÞ
m ðxa þ δθaÞ ¼ e−iβsðþÞ

m ðxa þ δθaÞ and sð�Þ
m ¼

1ffiffi
2

p ðs1m � is2mÞ, we obtain1

P̃ðxaÞ ¼ e−2iβPðxa þ δθaÞ: ð6:2Þ
This rotation has not been included inRefs. [23,24].Note that
P is a scalar with respect to the indices ðmnÞ but has helicity
−2with respect to the Sachs basis vectors s̃� ¼ 1ffiffi

2
p ðs̃1 � s̃2Þ.

Therefore, it does not matter whether we use Poisson gauge
or GLC gauge to computeP. As the perturbed Sachs basis is
rotated by an angle βwith respect to the unperturbed one, the

invariance of the scalar P̃mnðxaÞ2s̃ðþÞ
m s̃ðþÞ

n requests that P̃ is
rotated by −2β. In this work, we have actually used Poisson
gauge to compute P̃.
Because we are interested in next-to-leading order cor-

rections,wemust in principle take into account the expansion
of β up to fourth order, β ≃ βð0Þ þ βð1Þ þ βð2Þ þ βð3Þ þ βð4Þ.
As explained in [41,42], in their framework this angle is also
connected to the angle ω determined by the antisymmetric
part of the amplification matrix. Qualitatively, ω and β refer
to different physical rotations: the vorticity ω takes into
account the rotation of a bundle of light rays which travel
together, whereas β is meaningful also just for a single
photon. Nevertheless, in Appendix C we show that these
angles are equal to lowest nonvanishing order also for scalar
fluctuations and they are both sourced by the curl potentialΩ
in the amplificationmatrixΨa

b (see [18] for definitions).More
precisely,

βð2Þ ¼ −
1

2
ΔΩð2Þ; ð6:3Þ

which is exactly the vorticity ωð2Þ. In Appendix C we
calculate β from scalar perturbations without reference to
the amplification matrix by directly solving the parallel
transport equation for the Sachs basis, and we show the
equality ω ¼ β up to second order. Indeed, we find that βð0Þ

and βð1Þ are constant along the geodesic, so there is no
rotation of polarization between source and observer up to
first order. With a global rotation of the Sachs basis, we can
achieve βð0Þ ¼ βð1Þ ¼ 0. This is perfectly consistent with
Eq. (6.3) since also ωð0Þ ¼ ωð1Þ ¼ 0 for purely scalar first-
order perturbations. Then we derive explicitly the nontrivial
equality βð2Þ ¼ ωð2Þ [see Eq. (C38)] and its derivation in
Appendix C for details).
In principle, we should take into account also βð3Þ and

βð4Þ. However, because of the structure of the rotation, we
can neglect all the terms which contain only one angle βðiÞ
(this is again a consequence of statistical isotropy). The fact
that βð0Þ ¼ βð1Þ ¼ 0 then implies that βð3Þ and βð4Þ can only
appear alone in the spectra; hence they do not contribute at
next-to-leading order.
Before proceeding with the calculation of the rotated

polarization spectra, let us comment about the nature of the
angle β. At the observer, a natural Sachs basis is simply the
angular directions θ̃a ¼ θao. On the path of the photon back
to the source, this basis is perturbed and at second order it is
also rotated by an angle β. The angle β is induced when the

FIG. 2. The angle between two close by photons and the
direction of polarization is modified by lensing. Depending on
the coordinate system used this is due to the rotation of the
connecting vector e or due to the rotation of the polarization ϵ.

1Note that, to know the rotation β, the screen basis vector at the
source has to be compared with the one at the observer parallel
transported to the source following the background geodesic that
connects observer and source. Let us point out that this is totally
equivalent to what is stated above; the only crucial point is that
the two vectors have to be expressed with respect to the same
angles when compared.
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photon passes close to a structure but of course does not disappear even if the source and the observer are far away from any
structure. Once the Sachs basis is rotated due to the presence of a structure, it stays rotated.
In general, the full expansion of the polarization up to fourth order reads

P̃ðxaÞ¼ e−2iðβð2Þþβð3Þþβð4ÞÞPðxaþθað1Þ þθað2Þ þθað3ÞÞ
≃ ½1−2iβð2Þ−2iβð3Þ−2iβð4Þ−2ðβð2ÞÞ2�

×

�
Dð0ÞðxaÞþ

X4
i¼1

DðiÞðxaÞþ
X
iþj≤4
1≤i≤j

DðijÞðxaÞþ
X

iþjþk≤4
1≤i≤j≤k

DðijkÞðxaÞþDð1111ÞðxaÞ
�

≃Dð0ÞðxaÞþ
X4
i¼1

DðiÞðxaÞþ
X
iþj≤4
1≤i≤j

DðijÞðxaÞþ
X

iþjþk≤4
1≤i≤j≤k

DðijkÞðxaÞþDð1111ÞðxaÞ

−2iβð2Þ
�
Dð0ÞðxaÞþ

X2
i¼1

DðiÞðxaÞþDð11ÞðxaÞ
�
−2iβð3Þ½Dð0ÞðxaÞþDð1ÞðxaÞ�− ½2iβð4Þ þ2ðβð2ÞÞ2�Dð0ÞðxaÞ: ð6:4Þ

According to what we explained above, only two more terms containing βð2Þ contribute, namely

−2iβð2ÞDð0Þ and − 2ðβð2ÞÞ2Dð0Þ: ð6:5Þ

Expressing the result for βð2Þ given in Appendix C, in ℓ space, we obtain

Rð2Þðℓ Þ ¼ −
2i
2π

Z
d2xβð2ÞDð0Þeiℓ·x

¼ −
4i

ð2πÞ2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

Z
d2ℓ1

Z
d2ℓ2½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�ΦWðz; ℓ 1Þ

×ΦWðz1; ℓ 2ÞDð0Þðℓ − ℓ 1 − ℓ 2Þ; ð6:6Þ

Rð22Þðℓ Þ ¼ −
2

2π

Z
d2xðβð2ÞÞ2Dð0Þeiℓ·x

¼ −
8

ð2πÞ4
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

Z
rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

×
Z

d2ℓ2

Z
d2ℓ3

Z
d2ℓ4

Z
d2ℓ5½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�½n · ðℓ 4 ∧ ℓ 3Þðℓ 3 · ℓ 4Þ�

×ΦWðz; ℓ 1ÞΦWðz1; ℓ 2ÞΦWðz2; ℓ 3ÞΦWðz3; ℓ 4ÞDð0Þðzs; ℓ − ℓ 1 − ℓ 2 − ℓ 3 − ℓ 4Þ: ð6:7Þ

Here, as in Appendix C, n is the unit vector normal to the ℓ plane. Using these expansions, we can now evaluate the
contribution of βð2Þ to polarization. The new nonvanishing terms are (see Appendix B for similar calculations for post-Born
and LSS contributions)

δðℓ − ℓ 0ÞΔðCE
ℓ þ CB

ℓÞð22;0Þ ¼ hRð22Þðℓ ÞD̄ð0Þðℓ 0Þi;
δðℓ − ℓ 0ÞΔðCE

ℓ þ CB
ℓÞð2;2Þ ¼ hRð2Þðℓ ÞR̄ð2Þðℓ 0Þi;

e−4iϕℓδðℓ þ ℓ 0ÞΔðCE
ℓ − CB

ℓÞð22;0Þ ¼ hRð22Þðℓ ÞDð0Þðℓ 0Þi;
e−4iϕℓδðℓ þ ℓ 0ÞΔðCE

ℓ − CB
ℓÞð2;2Þ ¼ hRð2Þðℓ ÞRð2Þðℓ 0Þi;

−e−2iϕℓδðℓ − ℓ 0ÞΔCEMð22;0Þ
ℓ ¼ hRð22Þðℓ ÞĀð0Þðℓ 0Þi: ð6:8Þ

Inserting our expressions for Rð22Þ, Rð2Þ, Dð0Þ, and Að0Þ, we find

MAROZZI, FANIZZA, DI DIO, and DURRER PHYS. REV. D 98, 023535 (2018)

023535-12



ΔðCE
ℓ þ CB

ℓÞð22;0Þ ¼ −8½CE
ℓðzsÞ þ CB

ℓðzsÞ�
Z

d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i
; ð6:9Þ

ΔðCE
ℓ − CB

ℓÞð22;0Þ ¼ −8½CE
ℓðzsÞ − CB

ℓðzsÞ�
Z

d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i
; ð6:10Þ

ΔðCE
ℓ þ CB

ℓÞð2;2Þ ¼ 16

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CE
jℓ−ℓ 1−ℓ 2jðzsÞ þ CB

jℓ−ℓ 1−ℓ 2jðzsÞ
i

×
h
CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i
; ð6:11Þ

ΔðCE
ℓ − CB

ℓÞð2;2Þ ¼ −16
Z

d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CE
jℓ−ℓ 1−ℓ 2jðzsÞ − CB

jℓ−ℓ 1−ℓ 2jðzsÞ
i

×
n
cos2½2ðϕℓ − ϕjℓ−ℓ 1−ℓ 2jÞ� − sin2½2ðϕℓ − ϕjℓ−ℓ 1−ℓ 2jÞ�

o

×
h
CW
ℓ1ðz; z2ÞCW

ℓ2ðz1; z3Þ − CW
ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i
; ð6:12Þ

ΔCEMð22;0Þ
ℓ ¼ −8CEM

ℓ ðzsÞ
Z

d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i
: ð6:13Þ

From ΔðCE
ℓ � CB

ℓÞ, we can easily obtain the corrections to CE
ℓ and CB

ℓ ,

ΔCEð22;0Þ
ℓ ≡ 1

2
½ΔðCE

ℓ þ CB
ℓÞð22;0Þ þ ΔðCE

ℓ − CB
ℓÞð22;0Þ�

¼ −8CE
ℓðzsÞ

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i
; ð6:14Þ

ΔCEð2;2Þ
ℓ ≡ 1

2
½ΔðCE

ℓ þ CB
ℓÞð2;2Þ þ ΔðCE

ℓ − CB
ℓÞð2;2Þ�

¼ 16

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i

×
n
CE
jℓ−ℓ 1−ℓ 2jðzsÞsin2½2ðϕℓ − ϕjℓ−ℓ 1−ℓ 2jÞ�þCB

jℓ−ℓ 1−ℓ 2jðzsÞcos2½2ðϕℓ − ϕjℓ−ℓ 1−ℓ 2jÞ�
o
; ð6:15Þ
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ΔCBð22;0Þ
ℓ ≡ 1

2
½ΔðCE

ℓ þ CB
ℓÞð22;0Þ − ΔðCE

ℓ − CB
ℓÞð22;0Þ�

¼ −8CB
ℓðzsÞ

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

½CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ�; ð6:16Þ

ΔCBð2;2Þ
ℓ ≡ 1

2
½ΔðCE

ℓ þ CB
ℓ Þð2;2Þ − ΔðCE

ℓ − CB
ℓÞð2;2Þ�

¼ 16

Z
d2ℓ1

ð2πÞ2
Z

d2ℓ2

ð2πÞ2 ½n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

h
CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

i

×
n
CE
jℓ−ℓ 1−ℓ 2jðzsÞcos2½2ðϕℓ − ϕjℓ−ℓ 1−ℓ 2jÞ�þCB

jℓ−ℓ 1−ℓ 2jðzsÞsin2½2ðϕℓ − ϕjℓ−ℓ 1−ℓ 2jÞ�
o
: ð6:17Þ

In a final step we apply the Limber approximation to our integrals. We note that we always encounter the same time
integrals; therefore, we can evaluate this approximation once and then apply it to all our terms. Within the Limber
approximation, the Cℓ’s for the Weyl potential become

CW
ℓ1
ðz; z2ÞCW

ℓ2
ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ

¼ δðr2 − rÞδðr3 − r1Þ − δðr3 − rÞδðr2 − r1Þ
16r2r21
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��
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r
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��
2
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��
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��
2

; ð6:18Þ

so
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ðz1; z3Þ − CW

ℓ1
ðz; z3ÞCW

ℓ2
ðz1; z2Þ�
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: ð6:19Þ

This simplification applies to all the contributions evaluated above.

VII. NUMERICAL RESULTS

In this section we present the numerical evaluation of the results given above. For the numerical results, we consider
nonlinear (Halofit model [19,20]) power spectra for the gravitational potential. All the figures have been generated with the
following cosmological parameters: h ¼ 0.67, ωcdm ¼ 0.12, ωb ¼ 0.022, and vanishing curvature. The primordial
curvature power spectrum has the amplitude As ¼ 2.215 × 10−9, the pivot scale kpivot ¼ 0.05 Mpc−1, the spectral index
ns ¼ 0.96, and no running. The transfer function for the Bardeen potentials, TΦþΨ, has been computed with CLASS [16],
using Halofit [20]. In analyzing the contribution of Rβð2Þ (see below), we compare the nonlinear and the linear results. The
latter has been obtained with the same cosmological parameters as the linear power spectrum computed with CLASS [16].
First of all, let us note that all the contributions ΔCXð22;0Þ

ℓ from the rotation of polarization contain the same constant
factor multiplying simply the unperturbed spectrum. Let us call it Rβð2Þ , so we have that

ΔCEð22;0Þ
ℓ

CE
ℓ

¼ ΔCBð22;0Þ
ℓ

CB
ℓ

¼ ΔCEMð22;0Þ
ℓ

CEM
ℓ

¼ Rβð2Þ ð7:1Þ
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with

Rβð2Þ ¼−
1

16
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2π

Z
dℓ2

2π
ðℓ1ℓ2Þ5
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0
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0
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��
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×
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��
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; ð7:2Þ

where we have performed the angular integration. From
Eq. (C41), one infers that Rβð2Þ is proportional to the
variance of the rotation angle,

hðβð2ÞÞ2i ¼ −Rβð2Þ=2: ð7:3Þ

Using the linear power spectrum [16], we obtain
Rlin

βð2Þ ¼ −7.8 × 10−6, whereas using Halofit [20] for the

matter power spectrum, the term becomes more than one
order of magnitude larger, with RHalofit

βð2Þ ¼ −2.5 × 10−4.

This corresponds to rotation angles of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðβð2ÞÞ2i

q
¼ 6.80

and ¼ 380, respectively. This is a large effect which cannot
be neglected, even though the Halofit approximation may
overestimate it (see below). The rotation βð2Þ is due to
successive shearing processes along the ray [43].
Parametrically, it is of second order in the shear (or the
convergence), but since these quantities are second deriv-
atives of the potential they are parametrically of the same
order as density fluctuations and can become large,
especially on small scales.
The universality of the above coupling and its independ-

ence from ℓ are due to the fact that, in the related
correlators in Eqs. (6.8), no derivatives of P appear and

the two-point correlation function of βð2Þ is evaluated at the
same direction. On the other hand, Eqs. (6.15) and (6.17)
still have no angular derivatives of P, but they involve the
two-point correlation function of βð2Þ in two different
directions leading to a dependence on ℓ of the correspond-
ing terms.
The integrals over ℓ 1 and ℓ 2 in Rβð2Þ converge very

slowly and are highly UV sensitive. In particular, a cutoff-
independent evaluation involves integration domains in ℓ

space where perturbation theory is no longer valid; there-
fore, numerical results using Halofit are also not reliable.
Nevertheless, these corrections just lead to an overall shift
of ΔCℓ=Cℓ’s and this contribution is negligible in cosmo-
logical parameter estimation (see, for instance, Fig. 3). For
this reason, we do not consider these terms in what follows.
In Fig. 4, we compare the different higher-order con-

tributions. The non-Gaussian (third group) contributions
from the post-Born and LSS corrections are relevant for all
spectra. They dominate the temperature (for ℓ < 3000), E-
mode, and temperature–E-mode cross correlation spectra,
whereas they are of the same order of magnitude as the
post-Born second group corrections for the B modes. This
post-Born second group is also non-negligible in the
temperature spectrum on very small scales (ℓ > 3000).
Moreover, the corrections due to rotation are very important
for B modes in a large range of scales (dominant for
ℓ > 1500) and give non-negligible corrections to E modes
for ℓ > 2500.
In Fig. 5, we present the ratio between these corrections

and cosmic variance, cXℓ , ðσXℓ Þ2, given by

σMℓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2ℓþ 1

r
CM
ℓ ; ð7:4Þ

σEℓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2ℓþ 1

r
CE
ℓ; ð7:5Þ

FIG. 3. Fisher forecast (see Appendix D for details) for a cosmic variance limited survey. The blue (red) points show the shift in the
best fit parameter for the dark matter density ωcdm ¼ h2Ωcdm and the effective number of relativistic species Neff induced by the terms in
Eqs. (6.13) and (6.14) (we consider vanishing primordial B modes) using the linear power spectrum (using Halofit). The unshifted best
fit value is covered by the blue point. The ellipses denote 1, 2, and 3 sigma contours. The parameters not shown in the panels are fixed to
the fiducial cosmology. For both panels, we consider B mode up to ℓmax ¼ 1500 to be consistent with the conservative specifications of
CMB-S4 [9].
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σME
ℓ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ℓþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCME

ℓ Þ2 þ CM
ℓ CE

ℓ

q
; ð7:6Þ

σBℓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2ℓþ 1

r
C̃Bð1Þ
ℓ : ð7:7Þ

Note that, for B modes, we have taken into account the first-
order resummed correction since we consider no primordial
gravitational wave, i.e., the unlensed spectrum vanishes.
Therefore, lensed B modes do not have Gaussian statistics.
For this reason, its cosmic variance can be significantly larger
than the one from Eq. (7.7) [44]. Considering Gaussian

FIG. 4. Higher-order lensing contributions from the post-Born second group (red curves), post-Born third group (blue curves), LSS
third group (orange curves), and rotation angle βð2Þ [green curves, contributions (2,2)]. Black curves sum up the total correction. We
consider the lensing CMB spectra for temperature (top left panel), E modes (top right panel), cross TE spectra (bottom left panel), where

C̄MEð1Þ
ℓ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC̃MEð1Þ

ℓ
Þ2þC̃Mð1Þ

ℓ
C̃Eð1Þ
ℓ

2

q
), and B modes (bottom right panel).

FIG. 5. Comparison between next-to-leading order corrections and cosmic variance for the temperature [Eq. (7.4), top left panel], E
modes [Eq. (7.5), top right panel], TE cross correlation [Eq. (7.6), bottom left panel] and B modes [Eq. (7.7), bottom right panel]. Red
curves refer to post-Born second group, blue curves to post-Born third group, orange to LSS corrections third group, and green curves
represent the (2,2) term of βð2Þ. Dashed lines are negative values and the black lines trace the sum of all the terms.
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variance also for B modes, the corrections due to rotation
alone are comparable to cosmic variance for ℓ≳ 3500, in
contrast to all other spectra where all the corrections are
always below that threshold. Moreover, the sum of all the
effects can be even larger than cosmic variance at these
multipoles, showing that higher-order lensing corrections to
B-mode polarization at high multipoles have the best chance
to be detectable.
Finally, in Fig. 6 we show the cumulative signal-to-noise

ratio defined as

�
S
N

�
2

¼
Xℓmax

ℓ¼30

�
ΔCℓ

σℓ

�
2

; ð7:8Þ

where σℓ are defined like in Eqs. (7.4)–(7.7) but adding a
noise contribution to the cosmic variance term, i.e., by
replacing CX

ℓ with CX
ℓ þ NX

ℓ , where

Nℓ ¼ ðΔXÞ2 exp
�
ℓðℓþ 1Þθ2FWHM

8 ln 2

�
ð7:9Þ

and ΔX¼ 1 μK×arcmin for temperature, ΔX ¼ ffiffiffi
2

p
μK ×

arcmin for polarization, and an angular resolution of
θFWHM ¼ 1 arcmin. Our results are comparable with
Ref. [45]. We predict a lower signal-to-noise ratio for
the contribution to temperature anisotropies because we
limit our analysis to ℓmax ¼ 3500, while they have a

smaller contribution for E mode, which seems due to
nonperturbative effects we do not consider in our approach.

VIII. CONCLUSIONS

In this paper we have computed all the next-to-leading
order corrections to the CMB power spectra of temperature
and polarization anisotropies from gravitational lensing of
the photons along their path from the last scattering surface
into our telescopes. We have found that most terms apart
from those already taken into account in present codes
[12,15,16] are smaller than cosmic variance for a single ℓ
mode. The only exception to this rule are the B-mode
corrections at very high ℓ. This can be understood from the
fact that cosmic variance is proportional to the amplitude
of the signal which is by far smallest for the B modes.
Nevertheless, by considering the lensed B modes as
Gaussian, we may underestimate their variance [44].
Several of the terms calculated in this paper have already

been determined before [18,23,24], and our results are in
good qualitative agreement, where comparable, with pre-
vious findings. This is a nontrivial consistency check,
especially for [23,24], which use quite different methods.
Apart from rotation, the only other difference between our
results and [24] comes from the second group, which has
been neglected in [24]. This leads to quite relevant
differences for temperature at small scales (ℓ > 3000)
and for the B-mode spectrum on all scales, whereas it
does not change EE and TE spectra. The largest correction

FIG. 6. The signal-to-noise estimates of the total next-to-leading order effects for different sky coverage (fsky ¼ 0.25, green curves;
fsky ¼ 0.5, orange curves; and fsky ¼ 1, blue curves) are shown as functions of ℓmax. We consider the specifications of CMB S4 [9]:

1 μK × arcmin noise for temperature and
ffiffiffi
2

p
μK × arcmin for polarization with an angular resolution of 1 arcmin.
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to the B modes comes, however, from the rotation of the
polarization direction, which is new. It is very remarkable
that our analytical results, including rotation, have been
confirmed recently by N-body simulations with multiple-
lens raytracing technique [45,46]. Considering the different
procedures, the level of agreement between the results is
impressive.
It will be interesting to investigate whether these cor-

rections are observable. Even though for an individual
value ℓ the corrections are below cosmic variance, this is no
longer so for sufficiently large bins of ℓ’s, as we have
shown in Fig. 6. Let us only note here that the rotation of
the polarization is due to the vector-degree of freedom
(d.o.f.) of the gravitational field, an effect like frame
dragging. Its detection would therefore represent a highly
nontrivial test of general relativity, testing its elusive spin-
1 sector. Recently, it has been proposed to measure this
rotation with radio cosmic shear surveys [47].
However, the other terms are also not negligible if a

precision of 0.1% wants to be achieved as announced in
Ref. [17]. For example, for ℓ between 2000 and 2100,
cosmic variance amounts to about 2.2%. Hence, as one
easily infers from Figs. 4 and 5, our corrections with respect
to the unlensed spectra are up to 0.1% for the E-polarization
spectrum and for the TE cross correlation, while they are
at most 0.04% for the temperature anisotropy. For the
B-polarization spectrum, the correction is close to 0.5%.
It is clear that a systematic change even below cosmic

variance can affect cosmological parameters, and it must be
studied whether next-to-leading order corrections from
lensing can indeed influence CMB parameter estimation
in the future; this is the topic of an accompanying letter
[25]. While it is unlikely that the tiny corrections of the
temperature will be relevant alone, parameters depending
strongly on polarization can be affected. Indeed, in [25] we
show how neglecting higher-order lensing terms can lead to
misinterpreting these corrections as a primordial tensor-to-
scalar ratio of aboutOð10−3Þ, and leads to a non-negligible

shift of the estimated value of the effective number of
relativistic species.
The fact that ωð2Þ can significantly affect the CMB

spectra has important consequences for delensing and
lensing reconstruction. Those techniques, indeed, rely on
the fact that lensing is mainly sourced by a scalar lensing
potential, such that an (almost) exact remapping can be
done between the intrinsic CMB maps at the last scattering
surface and the lensed ones nowadays. However, if ωð2Þ
contributes significantly, new estimators for lensing
reconstruction would have to be developed. This task is
highly nontrivial and requires a proper analysis. We shall
postpone this investigation for future work.
However, independent of parameter estimation, detecting

higher-order corrections from CMB lensing would be
extremely interesting and allow not only a handle on non-
linear corrections to the gravitational potential, but also new
tests of general relativity on cosmological scales.
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APPENDIX A: Dði…:Þðℓ Þ TERMS

In ℓ space, and starting from the result of [18] and of
Sec. V, we obtain the corresponding expressions to evaluate
the lensing corrections to the CMB polarization anisotro-
pies up to fourth order,

Dð1Þðℓ Þ ¼ 1

2π

Z
d2xθað1Þ∇aPeiℓ·x

¼ −
1

π

Z
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Z
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0
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rs − r
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d2ℓ4½ðℓ − ℓ 2 − ℓ 3 − ℓ 4Þ · ℓ 4�ðℓ 4 · ℓ 2Þðℓ 3 · ℓ 2Þ

×
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
r0

0

dr00
r0 − r00

r0r00
ΦWðr; ℓ − ℓ 2 − ℓ 3 − ℓ 4Þ

× ½ΦWðr0; ℓ 2ÞΦð2Þ
W ðr00; ℓ 3Þ þΦð2Þ

W ðr0; ℓ 2ÞΦWðr00; ℓ 3Þ�½Eðrs; ℓ 4Þ þ iBðrs; ℓ 4Þ�e−2iφℓ4

−
1

π4

Z
d2ℓ2

Z
d2ℓ3

Z
d2ℓ4

Z
d2ℓ5

�
½ðℓ − ℓ 2 − ℓ 3 − ℓ 4 − ℓ 5Þ · ℓ 5�ðℓ 2 · ℓ 5Þðℓ 2 · ℓ 3Þðℓ 3 · ℓ 4Þ

×
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
r0

0

dr00
r0 − r00

r0r00

Z
r00

0

dr000
r00 − r000

r00r000
ΦWðr; ℓ − ℓ 2 − ℓ 3 − ℓ 4 − ℓ 5ÞΦWðr0; ℓ 2Þ

×ΦWðr00; ℓ 3ÞΦWðr000; ℓ 4Þ½Eðrs; ℓ 5Þ þ iBðrs; ℓ 5Þ�e−2iφℓ5

þ 1

2
½ðℓ − ℓ 2 − ℓ 3 − ℓ 4 − ℓ 5Þ · ℓ 5�ðℓ 2 · ℓ 5Þðℓ 2 · ℓ 3Þðℓ 2 · ℓ 4Þ

Z
rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
r0

0

dr00
r0 − r00

r0r00

×
Z

r0

0

dr000
r0 − r000

r0r000
ΦWðr; ℓ − ℓ 2 − ℓ 3 − ℓ 4 − ℓ 5ÞΦWðr0; ℓ 2ÞΦWðr00; ℓ 3ÞΦWðr000; ℓ 4Þ

× ½Eðrs; ℓ 5Þ þ iBðrs; ℓ 5Þ�e−2iφℓ5

�
; ðA8Þ

Dð1111Þðℓ Þ ¼ 1

2π

Z
d2x

1

24
θað1Þθbð1Þθcð1Þθdð1Þ∇a∇b∇c∇dPeiℓ·x

¼ −
1

24

1

π4

Z
d2ℓ2

Z
d2ℓ3

Z
d2ℓ4

Z
d2ℓ5½ðℓ − ℓ 2 − ℓ 3 − ℓ 4 − ℓ 5Þ · ℓ 5�

× ðℓ 2 · ℓ 5Þðℓ 3 · ℓ 5Þðℓ 4 · ℓ 5Þ
Z

rs

0

dr
rs − r
rsr

Z
rs

0

dr0
rs − r0

rsr0

Z
rs

0

dr00
rs − r00

rsr00

Z
rs

0

dr000
rs − r000

rsr000

×ΦWðr; ℓ − ℓ 2 − ℓ 3 − ℓ 4 − ℓ 5ÞΦWðr0; ℓ 2ÞΦWðr00; ℓ 3ÞΦWðr000; ℓ 4Þ½Eðrs; ℓ 5Þ þ iBðrs; ℓ 5Þ�e−2iφℓ5 : ðA9Þ
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We do not write the terms Dð4Þ and Dð112Þ because the
associated contributions to the angular power spectra of the
lensed polarization tensor vanish as a consequence of
statistical isotropy (see Sec. III).

APPENDIX B: LENSED ANGULAR POWER
SPECTRA FOR POLARIZATION

Following Sec. III and [18], we now present the
evaluation of the next-to-leading order corrections to
E- and B-mode polarization spectra. More details are given
in Ref. [18], where we compute, however, only the temper-
ature anisotropy spectrum. Therefore, for completeness, we
repeat the procedure here for the polarization spectra and
for the temperature polarization cross correlation.

1. Results C̃EM
ℓ

Let us begin by evaluating the lensed cross correlation,
C̃EM
ℓ . Up to next to next-to-leading order, we have

−e2iφℓhP̃ðℓ Þ ¯̃Mðℓ 0Þi¼δðℓ −ℓ 0ÞC̃EM
ℓ

¼δðℓ −ℓ 0ÞCEM
ℓ −e2iφℓhDðℓ ÞĀðℓ 0Þi;

ðB1Þ

where Aðℓ Þ is given in Eq. (3.19) and we introduce

Dðℓ Þ ¼ Dð0Þðℓ Þ þ
X4
i¼1

DðiÞðℓ Þ þ
X
iþj≤4
1≤i≤j

DðijÞðℓ Þ

þ
X

iþjþk≤4
1≤i≤j≤k

DðijkÞðℓ Þ þDð1111Þðℓ Þ; ðB2Þ

the 2-dimensional Fourier transforms of DðxaÞ defined in

Eq. (2.4). We now introduce the expectation values F̂ði…Þ
ℓ

and F̂ði…;j…Þ
ℓ by

δðℓ − ℓ 0ÞF̂ðij…;ij…Þ
ℓ ¼ hDðij…Þðℓ ÞĀðij…Þðℓ 0Þi;

δðℓ − ℓ 0ÞF̂ðij…;i0j0…Þ
ℓ ¼ hDðij…Þðℓ ÞĀði0j0…Þðℓ 0Þi

þ hDði0j0…Þðℓ ÞĀðij…Þðℓ 0Þi; ðB3Þ

where the last definition applies when the coefficients
ðij…Þ and ði0j0…Þ are not identical. The Dirac delta
function δðℓ − ℓ 0Þ is a consequence of statistical isotropy.
By omitting terms of higher than fourth order in the Weyl
potential and terms that vanish as a consequence of Wick’s
theorem (odd number of Weyl potentials), we obtain

C̃EM
ℓ ¼ CEM

ℓ þ Fð0;2Þ
ℓ þ Fð0;11Þ

ℓ þ Fð1;1Þ
ℓ þ Fð0;4Þ

ℓ þ Fð0;13Þ
ℓ

þ Fð0;22Þ
ℓ þ Fð0;112Þ

ℓ þ Fð0;1111Þ
ℓ þ Fð1;3Þ

ℓ þ Fð2;2Þ
ℓ

þ Fð1;12Þ
ℓ þ Fð1;111Þ

ℓ þ Fð2;11Þ
ℓ þ Fð11;11Þ

ℓ ; ðB4Þ

where Fði…;j…Þ
ℓ ¼ −e2iφℓF̂ði…;j…Þ

ℓ .
As the termsDði…Þ are simply related to theAði…Þ terms,

also the terms F̂ði…;j…Þ
ℓ can be easily evaluated from the

Cði…;j…Þ
ℓ . In fact, using Eq. (3.13) and the results for the

Dði…Þ and Aði…Þ terms (see Sec. V, Appendix A, and [18]),

one finds that the F̂ði…;j…Þ
ℓ are given by the Cði…;j…Þ

ℓ simply
by substituting

CM
ℓ ðzsÞ → −CEM

ℓ ðzsÞe−2iφℓ : ðB5Þ

The substitution is performed for any CM
ℓ ðzsÞ inside and

outside the integrals.

2. Results C̃E
ℓ + C̃

B
ℓ

Let us also evaluate C̃E
ℓ þ C̃B

ℓ . Proceeding as in the
previous subsection we have

hP̃ðℓ Þ ¯̃Pðℓ 0Þi¼ δðℓ −ℓ 0Þ½C̃E
ℓþ C̃B

ℓ �
¼ δðℓ −ℓ 0Þ½CE

ℓþCB
ℓ �þhDðℓ ÞD̄ðℓ 0Þi: ðB6Þ

We now introduce Mði…Þ
ℓ and Mði…;j…Þ

ℓ given by

δðℓ − ℓ 0ÞMðij…;ij…Þ
ℓ ¼ hDðij…Þðℓ ÞD̄ðij…Þðℓ 0Þi;

δðℓ − ℓ 0ÞMðij…;i0j0…Þ
ℓ ¼ hDðij…Þðℓ ÞD̄ði0j0…Þðℓ 0Þi

þ hDði0j0…Þðℓ ÞD̄ðij…Þðℓ 0Þi; ðB7Þ

where again the last definition applies when the coefficients
ðij…Þ and ði0j0…Þ are not identical. The delta Dirac
function δðℓ − ℓ 0Þ is a consequence of statistical isotropy.
As before, by omitting terms of higher than fourth order in
the Weyl potential and terms that vanish as a consequence
of Wick’s theorem, we obtain

½C̃E
ℓ þ C̃B

ℓ � ¼ ½CE
ℓ þ CB

ℓ � þMð0;11Þ
ℓ þMð1;1Þ

ℓ þMð0;2Þ
ℓ

þMð0;13Þ
ℓ þMð0;22Þ

ℓ þMð0;112Þ
ℓ þMð0;1111Þ

ℓ

þMð1;3Þ
ℓ þMð2;2Þ

ℓ þMð1;12Þ
ℓ þMð1;111Þ

ℓ

þMð2;11Þ
ℓ þMð11;11Þ

ℓ : ðB8Þ

As for the case of the Fði…;j…Þ
ℓ terms, also in this case we

can obtain the Mði…;j…Þ
ℓ terms starting from the results for

the Cði…;j…Þ
ℓ . These will be obtained by the Cði…;j…Þ

ℓ via the
substitution
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CM
ℓ ðzsÞ → CE

ℓðzsÞ þ CB
ℓðzsÞ; ðB9Þ

performed for any CM
ℓ ðzsÞ inside and outside the integrals.

3. Results C̃E
ℓ − C̃B

ℓ

Let us finally move to the evaluation of C̃E
ℓ − C̃B

ℓ .
Proceeding as in the previous subsections, we have

hP̃ðℓ ÞP̃ðℓ 0Þi ¼ δðℓ þ ℓ 0Þ½C̃E
ℓ − C̃B

ℓ �e−4iφℓ

¼ δðℓ þ ℓ 0Þ½CE
ℓ −CB

ℓ �e−4iφℓ þ hDðℓ ÞDðℓ 0Þi:
ðB10Þ

We now introduce N̂ði…;j…Þ
ℓ defined as follows:

δðℓ þ ℓ 0ÞN̂ðij…;ij…Þ
ℓ ¼ hDðij…Þðℓ ÞDðij…Þðℓ 0Þi;

δðℓ þ ℓ 0ÞN̂ðij…;i0j0…Þ
ℓ ¼ hDðij…Þðℓ ÞDði0j0…Þðℓ 0Þi

þ hDði0j0…Þðℓ ÞDðij…Þðℓ 0Þi; ðB11Þ
where the last definition applies when the coefficients
ðij…Þ and ði0j0…Þ are different. The δðℓ þ ℓ 0Þ is a
consequence of statistical isotropy and of the fact that,
in general, Aðℓ Þ ¼ Āð−ℓ Þ. As before, by omitting terms of
higher than fourth order in theWeyl potential and terms that
vanish as a consequence of Wick’s theorem, we obtain

½C̃E
ℓ − C̃B

ℓ � ¼ ½CE
ℓ − CB

ℓ � þ Nð0;2Þ
ℓ þ Nð0;11Þ

ℓ þ Nð1;1Þ
ℓ

þ Nð0;4Þ
ℓ þ Nð0;13Þ

ℓ þ Nð0;22Þ
ℓ þ Nð0;112Þ

ℓ

þ Nð0;1111Þ
ℓ þ Nð1;3Þ

ℓ þ Nð2;2Þ
ℓ þ Nð1;12Þ

ℓ

þ Nð1;111Þ
ℓ þ Nð2;11Þ

ℓ þ Nð11;11Þ
ℓ ; ðB12Þ

where Nði…;j…Þ
ℓ ¼ e4iφℓN̂ði…;j…Þ

ℓ

Like for the other terms, we can obtain the N̂ði…;j…Þ
ℓ

terms starting from the results for the Cði…;j…Þ
ℓ by sub-

stituting

CM
ℓ ðzsÞ → ½CE

ℓðzsÞ − CB
ℓðzsÞ�e−4φℓ ; ðB13Þ

for any CM
ℓ ðzsÞ inside and outside the integrals.

Using these results, we obtain the corrections to the
different polarization power spectra. The general rules to
follow are specified in Eqs. (3.15)–(3.17).

APPENDIX C: ROTATION ANGLE USING THE
SACHS FORMALISM

In this Appendix we determine the rotation angle of the
Sachs basis described in the main text, and show that
the result obtained is equivalent to the rotation angle of the
amplification matrix (the Jacobian of the lens map).
For this purpose, we work in GLC coordinates [40]

where photon directions are fixed and given by the
direction of the incoming photons at the observer. GLC

coordinates consist of a timelike coordinate τ (which can
always be identified with the proper time in the synchro-
nous gauge [48]), a null coordinate w, and two angular
coordinates θ̃a (a ¼ 1, 2). The GLC line element depends
on six arbitrary functions (ϒ; Ua; γab ¼ γba), and takes the
form

ds2¼ϒ2dw2−2ϒdwdτþ γabðdθ̃a−UadwÞðdθ̃b−UbdwÞ
ðC1Þ

with a, b ¼ 1, 2, where γab and its inverse γab lower and
raise 2-dimensional indices. In GLC coordinates, the
past light cone of a given observer is defined by
w ¼ wo ¼ constant, and null geodesics stay at fixed values
of the angular coordinates θ̃a ¼ θ̃ao ¼ constant (with θ̃ao
specifying the direction of observation). In these coordi-
nates, photon geodesics are given by kμ ¼ ∂μw, or, equiv-
alently, kμ ¼ ϒ−1δμτ . On the one hand, w represent the fully
nonlinear potential for the photon four-momentum kμ. On
the other hand, the fact that θ̃a remain constant along the
photon path implies that they can be identified, up to some
internal d.o.f.2 [50,51], with the incoming photon direc-
tions, i.e., the observed direction of the source. This fact
ensures that observables evaluated in GLC coordinates are
already functions of the observed angles, as required.
To clarify the geometric meaning of these variables, let

us consider the limiting case of a spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) Universe with scale
factor aðtÞ. In this case, the geodesic light-cone variables
are

w¼ rþη; τ¼ t; ϒ¼ aðtÞ; Ua ¼ 0;

γabdθ̃
adθ̃b ¼ a2ðtÞr2ðdθ2þ sin2θdϕ2Þ; ðC2Þ

where η is the conformal time of the FLRW met-
ric: dη ¼ dt=a.
Let us now introduce the so-called Sachs basis fs̃μAg

[52,53], namely the two 4-vectors s̃μA (A ¼ 1, 2) defined by
the conditions [54,55]:

gμνs̃
μ
As̃

ν
B ¼ δAB; ðC3Þ

s̃μAuμ ¼ 0; s̃μAkμ ¼ 0; ðC4Þ

Πμ
νkλ∇λs̃νA ¼ 0 ðC5Þ

with Πμ
ν ¼ δμν −

kμkν
ðuαkαÞ2

−
kμuν þ uμkν

uαkα
; ðC6Þ

2These internal d.o.f. can lead to some misalignment with the
observed angles if not properly addressed [49]. However, this
misalignment can just appear as some corrections at the observer
position and these are completely subleading with respect to the
lensing terms here considered.
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where Πμ
ν is a projector on the 2-dimensional space

orthogonal to the four velocity uμ and to the spatial
photon direction nμ ¼ uμ þ ðuαkαÞ−1kμ with nαnα ¼ 1 and
nαuα ¼ 0.
Following [51], it can then be shown that in GLC

coordinates the screen space, normal to incoming photon
geodesics and the observer’s worldline, is simply given by
the 2-dimensional subspace spanned by the angles θ̃a. We
can then restrict the discussion to the angular part of the
Sachs basis, which is determined up to a global rotation by
the equations [51]

γabs̃aAs̃
b
B ¼ δAB; kμ∇μs̃aA ¼ ∇τs̃aA ¼ 0: ðC7Þ

Let us underline that this implies that the angular part of the
Sachs basis is parallel transported in GLC gauge. This is a
property of the GLC coordinates and is a consequence of
the way in which the angles are defined in this gauge.
The second condition of (C7) can be rewritten as

ϵAB∂τs̃aAs̃aB ¼ 0, where ϵAB is the Levi-Civita symbol in
flat space. Note that an arbitrary orthonormal basis of the
screen allows a residual freedom of rotation given by
R ∈ SOð2Þ. Indeed, if saA is a solution of γabsaAs

b
B ¼ δAB,

s̃aA ¼ RA
BsaB is also a solution, where

RA
B ¼

�
cos β sin β

− sin β cos β

�
; ðC8Þ

with an arbitrary rotation angle β. Therefore, the expression
of the time-dependent rotation angle β is uniquely given by
the second condition in (C7). Starting from a generic
orthonormal zweibein ðsBÞ, in order to satisfy also the
second condition of (C7), we choose the rotation R such
that the rotated zweibein is parallel transported along
lightlike geodesics. To achieve this, the rotation angle β
has to satisfy the relation

∂τβ ¼ 1

2
ϵAB∂τsaAsaB; ðC9Þ

see also Appendix A of [51]. In [56], an exact expression
for β is obtained in this context [see Eqs. (A3)–(A4)]. Let us
underline that the value of β is gauge invariant. Even
though we are performing the calculation in GLC gauge,
Eq. (C9) was obtained from the covariant Eq. (C5). This
covariant equation will always result in the same rotation
angle β to lowest nonvanishing order, irrespective of the
gauge used. In fact, as a consequence of the higher-order
Stewart-Walker lemma [57,58], βð2Þ is gauge invariant since
both βð1Þ and βð0Þ vanish.
Here we are interested in solving (C7) up to second order

in perturbation theory. In doing this we make use of
Poisson gauge, in particular we follow the approach of
[27] where Poisson gauge quantities are written in terms
of the GLC coordinates. Having this in mind, let us define
the background Sachs basis by

�
s̄a1
s̄a2

�
¼ ½aðτÞrðτ; wÞ�−1

�
1 0

0 sin−1θ̃1

�
; ðC10Þ

and to zeroth order

	
γð0Þab



¼ a2ðτÞr2ðτ; wÞ

�
1 0

0 sin2θ̃1

�
: ðC11Þ

We decompose the perturbed Sachs basis s̃aA uniquely into a
symmetric part and a rotation as follows:

s̃aA ¼ χabs̄bBR
B
A ¼ saBRB

A; ðC12Þ

where χab is symmetric and RB
A is the 2-dimensional

rotation matrix defined above. The matrix χab is chosen
to ensure γabsaAs

b
B ¼ δAB. Moreover, this decomposition is

very helpful because, as long as we expand χab and β up to
the desired order, their d.o.f. decouple, and we obtain χab
and β respectively from the first and second conditions in
(C7). In this way, we obtain, to zeroth order

sð0ÞaA ¼ γð0Þab s̄
b
A ðC13Þ

whereRB
A can be fixed equal to δBA. Due to the factorization

of the time dependence, we have that ∂τðsaAÞð0Þ ∝ ðsaAÞð0Þ
and ∂τγ

ð0Þ
ab ∝ γð0Þab . At first order, γab ¼ γð0Þab þ γð1Þab and

saA ¼ ðsaAÞð0Þ þ ðsaAÞð1Þ, and the normalization condition
yields

ðscAÞð1Þ þ γð0Þab ðsaAÞð0ÞðsbBÞð1ÞðscBÞð0Þ ¼ −γcbð0Þγ
ð1Þ
ba ðsaAÞð0Þ:

ðC14Þ

From this equation, after some algebra, by expanding χab
and β in Eq. (C12) to first order, we uniquely obtain

χð1Þab ¼ γð1Þab =2: ðC15Þ

For our purpose, we expand β in Eq. (C8) up to fourth
order, since in principle we require the rotation of the Sachs
basis up to fourth order to compute all the contributions to
the next-to-leading order of the polarization spectra, i.e.,
β ¼ βð0Þ þ βð1Þ þ βð2Þ þ βð3Þ þ βð4Þ. Since the background
is isotropic and first-order perturbations are purely scalar
perturbations which do not induce rotation, βð0Þ and βð1Þ do
not induce a local rotation of the basis and can be set to
zero. For completeness, we show this explicitly below.
Therefore, we can write the rotation matrix up to fourth
order as

RA
B ¼

�
1 −

ðβð2ÞÞ2
2

�
δBA þ ðβð2Þ þ βð3Þ þ βð4ÞÞϵAB: ðC16Þ

Hence, the parallel transported Sachs basis is
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s̃aA¼RA
BsaB¼

��
1−

ðβð2ÞÞ2
2

�
δBAþðβð2Þ þβð3Þ þβð4ÞÞϵAB

�

× ½ðsaBÞð0Þ þðsaBÞð1Þ þðsaBÞð2Þ þðsaBÞð3Þ þðsaBÞð4Þ�

¼ saA−
ðβð2ÞÞ2

2
ðsaAÞð0Þ þβð2ÞϵAB½ðsaBÞð0Þ þðsaBÞð1Þ þðsaBÞð2Þ�

þβð3ÞϵAB½ðsaBÞð0Þ þðsaBÞð1Þ�þβð4ÞϵABðsaBÞð0Þ; ðC17Þ

where ðsaBÞ is an arbitrary orthonormal zweibein
on the screen and we have used the fact that, up to first
order, ðsaBÞ can be chosen such that there is no rotation,
hence s̃aB ¼ saB. In the main text, we note that βð3Þ

and βð4Þ do not contribute at next-to-leading order for
reasons of statistical isotropy; we can thus just focus on
determining βð2Þ.
Before that, we prove that the solution (C15) combined

with Eq. (C9) implies βð1Þ ¼ constant. Of course, βð0Þ is
constant since our background is isotropic. Indeed,
Eq. (C9) for the background yields

∂τβ
ð0Þ ¼ 1

2
ϵAB∂τðsaAÞð0ÞðsaBÞð0Þ

∝ ϵABðsaAÞð0ÞðsaBÞð0Þ ¼ ϵABδAB ¼ 0; ðC18Þ

because ϵAB is antisymmetric whereas δAB is symmetric.
With a global rotation we can choose βð0Þ ¼ 0, so
RB

A
ð0Þ ¼ δBA, as we already said above. In the same way,

we can show that ∂τβ
ð1Þ vanishes. We have that

∂τβ
ð1Þ ¼ −

1

4
ϵAB∂τγ

ab
ð0Þγ

ð1Þ
bc ðscAÞð0ÞðsaBÞð0Þ

−
1

4
ϵABγabð0Þ∂τγ

ð1Þ
bc ðscAÞð0ÞðsaBÞð0Þ

−
1

4
ϵABγabð0Þγ

ð1Þ
bc ∂τðscAÞð0ÞðsaBÞð0Þ

þ 1

4
ϵAB∂τðsaAÞð0Þγð1Þab ðsbBÞð0Þ: ðC19Þ

Considering that the last two terms cancel and using
ϵABðsaAÞð0ÞðsbBÞð0Þ ∝ ϵab [56], we obtain

∂τβ
ð1Þ ¼ −F

1

4
ϵcd∂τγ

ab
ð0Þγ

ð1Þ
bc γ

ð0Þ
da −G

1

4
ϵcb∂τγ

ð1Þ
bc ; ðC20Þ

which vanish separately for arbitrary functions F and G
because in both cases the epsilon tensor is contracted with a
symmetric expression. This means that βð0Þ þ βð1Þ can also
be set equal to zero, RB

A
ð0þ1Þ ¼ δBA, and

s̃ð1ÞaA ¼ 1

2
γð1Þab ðsbAÞð0Þ; ðC21Þ

or

ðs̃cAÞð1Þ ¼ −
1

2
γcbð0Þγ

ð1Þ
ba ðsaAÞð0Þ: ðC22Þ

Let us now determine the second-order contribution to
the Sachs basis. The orthogonality condition at the second
order is

ðscAÞð2Þ þ γð0Þab ðsaAÞð0ÞðsbBÞð2ÞðscBÞð0Þ

¼ 3

4
ðsaAÞð0Þγð1Þab γ

bd
ð0Þγ

ð1Þ
de γ

ec
ð0Þ − ðsaAÞð0Þγð2Þab γ

bc
ð0Þ; ðC23Þ

which gives

χð2Þab ¼ 1

2
γð2Þab −

1

8
γð1Þac γcd0 γð1Þdb ; ðC24Þ

so

ðs̃AaÞð2Þ ¼ ðsAaÞð2Þ þ βð2ÞðsaBÞð0ÞϵBA
¼

�
1

2
γð2Þad −

1

8
γð1Þab γ

bc
0 γð1Þcd

�
ðsdAÞð0Þ

þ βð2ÞðsaBÞð0ÞϵBA: ðC25Þ
We now compute the rotation angle using Eq. (C9). At
second order, it yields

∂τβ
ð2Þ ¼ 1

2
ϵAB½∂τðsaAÞð2Þsð0ÞaB

þ∂τðsaAÞð0Þsð2ÞaB þ ∂τðsaAÞð1Þsð1ÞaB �: ðC26Þ
It is easy to verify that the first and second terms on the rhs
of Eq. (C26) cancel just as for the first-order rotation angle.
We focus on the remaining term,

ϵAB∂τðsaAÞð1Þsð1ÞaB ¼ −
1

4
ϵAB∂τγ

ab
ð0Þγ

ð1Þ
bc ðscAÞð0Þγð1Þad ðsdBÞð0Þ

−
1

4
ϵABγabð0Þ∂τγ

ð1Þ
bc ðscAÞð0Þγð1Þad ðsdBÞð0Þ

−
1

4
ϵABγabð0Þγ

ð1Þ
bc ∂τðscAÞð0Þγð1Þad ðsdBÞð0Þ:

ðC27Þ
Using the identities ϵABðsaAÞð0ÞðsbBÞð0Þ ¼ γ−1=2ð0Þ ϵab, with

det γð0Þab ≡ γð0Þ and ∂τðsaAÞð0Þ ¼ − 1
4

∂τγð0Þ
γð0Þ

ðsaAÞð0Þ, as well as

the antisymmetry of ϵcd, Eq. (C27) simplifies to

ϵAB∂τðsaAÞð1Þsð1ÞaB ¼ −
1

4
γ−1=2ð0Þ γabð0Þ∂τγ

ð1Þ
bc ϵ

cdγð1Þda : ðC28Þ

Hence,

∂τβ
ð2Þ ¼ −

1

8
γ−1=2ð0Þ γabð0Þ∂τγ

ð1Þ
bc ϵ

cdγð1Þda : ðC29Þ

The first-order perturbations of the angular part of the

metric, γð1Þab , can be expressed in terms of the first-order
deflection angle in Poisson gauge as follows (see [27]):

MAROZZI, FANIZZA, DI DIO, and DURRER PHYS. REV. D 98, 023535 (2018)

023535-24



γð1Þab ¼ γð0Þac ∂bθ
cð1Þ þ γð0Þcb ∂aθ

cð1Þ: ðC30Þ

Using also ∂τγ
ð0Þ
ab ¼ 1

2

∂τγð0Þ
γð0Þ

γð0Þab , we obtain the second-order

rotation in terms of first-order deflection angles,

∂τβ
ð2Þ ¼ −

1

8
γ−1=2ð0Þ ∂c∂τθ

að1Þϵcdγð1Þda

−
1

8
γ−1=2ð0Þ γabð0Þγ

ð0Þ
ce ∂b∂τθ

eð1Þϵcdγð1Þda

−
1

16

∂τγð0Þ
γ3=2ð0Þ

∂cθ
að1Þϵcdγð1Þda

−
1

16

∂τγð0Þ
γ3=2ð0Þ

γabð0Þγ
ð0Þ
ce ∂bθ

eð1Þϵcdγð1Þda : ðC31Þ

We finally express the rotation angle in term of the Weyl
potential. Using the expression for the deflection angle
given in the main text, Eq. (2.9), we obtain

∂τβ
ð2Þ ¼ a2γ−1=2ð0Þ ϵabγð0Þbc γ

de
ð0Þ∂d

Z
ηo

η
dη1a2ðη1Þγcfð0Þðη1Þ

×
Z

ηo

η1

dη2∂fΦWðη2Þ∂e∂a

Z
ηo

η
dη3ΦWðη3Þ

þa2γ−1=2ð0Þ ϵab∂b

Z
ηo

η
dη1a2ðη1Þγcdð0Þðη1Þ

×
Z

ηo

η1

dη2∂dΦWðη2Þ∂c∂a

Z
ηo

η
dη3ΦWðη3Þ: ðC32Þ

Note that here ΦWðηiÞ≡ΦWðηi; nðηo − ηiÞ, where ηo is
present time and n is the directions of the geodesic given by
θ̃a. This expression can be further simplified using ri ≡
ηo − ηi and γabð0Þ ¼ ½aðτÞrðτ; wÞ�−2γ̂abð0Þ ¼ ½aðηÞr�−2γ̂abð0Þ. We
then find3

∂ηβ
ð2Þ ¼ 2

γ̂−1=2ð0Þ
r2

ϵabγ̂cdð0Þ

Z
r

0

dr1
r21

Z
r1

0

dr2∂b∂dΦWðr2Þ

×
Z

r

0

dr3∂a∂cΦWðr3Þ: ðC33Þ

Here we have used ΦWðriÞ ¼ ΦWðηo − ri; nriÞ. This result
can be integrated to yield [we use

R
ηo
ηs

dη ¼ R rs
0 dr and

adopt the boundary condition βð2ÞðηoÞ ¼ 0]

βð2ÞðrsÞ ¼ 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1
r21

Z
r1

0

dr2∇b∇cΦWðr2Þ

×
Z

r

0

dr3∇a∇cΦWðr3Þ; ðC34Þ

where, in going from partial to covariant derivatives, we go
from standard angular derivatives to normalized angular
derivatives [e.g., ∂φ̃ → ð1= sin θ̃Þ∂φ̃].
Of course a global (time-independent) rotation is irrel-

evant; what has physical meaning is just the difference of
this angle between the source and the observer position,
namely Δβ ¼ βðηsÞ − βðηoÞ. Therefore, the choice βð0Þ ¼
βð1Þ ¼ 0 is irrelevant.
We now show that βð2Þ agrees with the rotation angle in

the amplification matrix, which is of the form [see, e.g.,
Eq. (2.9) of [18]]

ðAa
bÞ ¼

�∂θas
∂θbo

�
¼

�
1 − κ 0

0 1 − κ

�
þ
�−γ1 −γ2
−γ2 γ1

�

þ
�
0 −ω
ω 0

�
:

At first order ω vanishes for scalar perturbation. At second
order, scalar perturbations induce nonvanishing vector and
tensor perturbations and therefore also a nonvanishing ωð2Þ.
In order to compute ωð2Þ, we insert the expression for Ψð2Þ

ab
given in Eq. (2.15) of Ref. [18],

ωð2Þ ¼ −
1

2
γ̂−1=2ð0Þ ϵabΨð2Þ

ab

¼ 2ϵab
Z

rs

0

dr
rs − r
rsr

�
∇a∇cΦWðrÞ

Z
r

0

dr1
r − r1
rr1

∇b∇cΦWðr1Þ
�

¼ 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1

�
∇a∇cΦWðr1Þ

Z
r1

0

dr2
r22

Z
r2

0

dr3∇b∇cΦWðr3Þ
�
; ðC35Þ

where we have used the relationZ
rs

0

dr
rs − r
rsr

fðrÞ ¼
Z

rs

0

dr
r2

Z
r

0

dr1fðr1Þ − lim
r→0

�
rs − r
rsr

Z
r

0

dr1fðr1Þ
�

ðC36Þ

3Hereafter, we move between the proper time in GLC and the conformal time η in Poisson gauge simply considering the background
relation ∂τ ¼ a−1∂η. In theory, we should go from the τ variable to the background variables corresponding to our observed redshift, but
the effect of neglecting this is always subleading in the number of angular derivatives.
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for both inner and outer integrals. The third line of Eq. (C35) can be further transformed as follows:

ωð2Þ ¼ 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1

�
d
dr1

�Z
r1

0

dr4∇a∇cΦWðr4Þ
�Z

r1

0

dr2
r22

Z
r2

0

dr3∇b∇cΦWðr3Þ
�

¼ 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1∇a∇cΦWðr1Þ
Z

r

0

dr2
r22

Z
r2

0

dr3∇b∇cΦWðr3Þ

− 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1

�Z
r1

0

dr4∇a∇cΦWðr4Þ
d
dr1

�Z
r1

0

dr2
r22

Z
r2

0

dr3∇b∇cΦWðr3Þ
��

¼ 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1∇a∇cΦWðr1Þ
Z

r

0

dr2
r22

Z
r2

0

dr3∇b∇cΦWðr3Þ

− 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1
r21

�Z
r1

0

dr4∇a∇cΦWðr4Þ
Z

r1

0

dr3∇b∇cΦWðr3Þ
�

ðC37Þ

¼ βð2Þ − 2ϵab
Z

rs

0

dr
r2

Z
r

0

dr1
r21

½
Z

r1

0

dr4∇a∇cΦWðr4Þ
Z

r1

0

dr3∇b∇cΦWðr3Þ�: ðC38Þ

To obtain (C37), we have performed an integration by parts
in the first and second lines of the previous expression. The
last term in Eq. (C38) vanishes: indeed, the antisymmetric
tensor ϵab multiplies a symmetric expression. This proves
the equivalence of the rotation angles ωð2Þ and βð2Þ.
This is not surprising. While the lens map really

describes the change of the position in the sky due to
lensing by foreground structures, the amplification matrix
gives the variation of this change as a function of direction.
On the other hand, the geodesic deviation equation, which
is solved to obtain the rotation of the Sachs basis, yields to
change of the distance vector between neighboring geo-
desics projected onto the screen. If these maps contain a

nontrivial rotation, to lowest nonvanishing order these
rotations do agree.
We finally express βð2Þ in ℓ space. Using the flat sky

approximation, we expand the Weyl potential in Fourier
space,

ΦWðz; xÞ ¼
1

2π

Z
d2ℓΦWðz; ℓ Þe−iℓ·x: ðC39Þ

As in the main text, to each redshift z there corresponds a
comoving distance rðzÞ. Inserting this expansion into
Eq. (C34), we find

βð2Þ ¼ 2ϵab

ð2πÞ2
Z

rs

0

dr
rs − r
rsr

Z
d2ℓ1ℓ1aℓ

c
1ΦWðz; ℓ 1Þe−iℓ1·x

Z
r

0

dr1
r − r1
rr1

Z
d2ℓ2ℓ2bℓ2cΦWðz1; ℓ 2Þe−iℓ2·x

¼ 2

ð2πÞ2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

Z
d2ℓ1

Z
d2ℓ2ϵ

abℓ1aℓ2bðℓ 1 · ℓ 2ÞΦWðz; ℓ 1ÞΦWðz1; ℓ 2Þe−iðℓ 1þℓ 2Þ·x

¼ 2

ð2πÞ2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

Z
d2ℓ1

Z
d2ℓ2n · ðℓ 2 ∧ ℓ 1Þðℓ 1 · ℓ 2ÞΦWðz; ℓ 1ÞΦWðz1; ℓ 2Þe−iðℓ 1þℓ 2Þ·x: ðC40Þ

Here, we remember, n is the direction of the light ray, orthogonal to the plane containing the ℓ vectors. Then, by applying
Limber approximation and using Eqs. (6.18) and (6.19), we obtain

hðβð2ÞÞ2i ¼
Z

rs

0

dr
r2

Z
r

0

dr1
r21

Z
dℓ1dℓ2

32ð2πÞ2 ℓ
5
1ℓ

5
2

�
r − r1
rr1

�
2
�
rs − r
rsr

�
2

PR

�
ℓ1 þ 1=2

r

�
PR

�
ℓ2 þ 1=2

r1

�

×

�
TΦþΨ

�
ℓ1 þ 1=2

r
; z

�
TΦþΨ

�
ℓ2 þ 1=2

r1
; z1

��
2

: ðC41Þ
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APPENDIX D: FISHER ANALYSIS

We briefly summarise the Fisher formalism adopted in
this work to estimate the theoretical bias introduced by
neglecting next-to-leading order lensing. In the ideal case
of a cosmic variance limited survey, the Fisher matrix is
defined by

Fαβ ¼
X
ℓ

X
X;Y

∂CX
ℓ

∂qα
∂CY

ℓ

∂qβ Cov
−1
ℓ½X;Y�; ðD1Þ

where X and Y denote the corresponding power spectra
ðM; E; EM;BÞ, qα are the cosmological parameters, and
the covariance matrix is [59]

Covℓ ¼ 2

2ℓþ 1

0
BBBBB@

ðCM
ℓ Þ2 ðCEM

ℓ Þ2 CM
ℓ CEM

ℓ 0

ðCEM
ℓ Þ2 ðCE

ℓÞ2 CE
ℓC

EM
ℓ 0

CM
ℓ CEM

ℓ CE
ℓC

EM
ℓ

1
2
ððCEM

ℓ Þ2 þ CM
ℓ CE

ℓÞ 0

0 0 0 ðCB
ℓÞ2

1
CCCCCA
: ðD2Þ

To estimate the impact on the cosmological parameter
estimation induced by neglecting a correction ΔCℓ on the
leading contribution Cℓ, we follow the formalism intro-
duced in Refs. [60–62]. Therefore, the shift of the best fit is
determined by

Δqα ¼
X
β

½F−1�αβBβ; ðD3Þ

with

Bβ ¼
X
ℓ

X
X;Y

ΔCX
ℓ

∂CY
ℓ

∂qβ Cov
−1
ℓ½X;Y�: ðD4Þ

Strictly speaking, a Fisher matrix analysis applies only
for Gaussian distributions, which is not the case for
cosmological parameters in general and even less for
higher-order corrections. But to lowest order in the
deviation from the best-fit value every statistic is
Gaussian, and hence for the tiny deviations that we find
a Fisher analysis is expected to be sufficient. The impact of
deviation from Gaussian statistics of the lensed power
spectra has been studied in [44], concluding that the errors
induced on the ðM; E; EMÞ lensed power spectra are
negligible, while on B modes the Gaussian approximation
may underestimate the variance.
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