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We investigate the weak lensing corrections to the cosmic microwave background temperature and
polarization anisotropies. We consider all the effects beyond the leading order: post-Born corrections, LSS
corrections, and, for the polarization anisotropies, the correction due to the rotation of the polarization
direction between the emission at the source and the detection at the observer. We show that the full next-to-
leading order correction to the B-mode polarization is not negligible on small scales and is dominated by
the contribution from the rotation; this is a new effect not taken into account in previous works. Considering
vanishing primordial gravitational waves, the B-mode correction due to rotation is comparable to cosmic
variance for Z 2 3500, in contrast to all other spectra where the corrections are always below that threshold
for a single multipole. Moreover, the sum of all the effects is larger than cosmic variance at high multipoles,
showing that higher-order lensing corrections to B-mode polarization are in principle detectable.
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I. INTRODUCTION

The temperature and polarization anisotropies of the
cosmic microwave background (CMB) are the most pre-
cious cosmological data sets. It is fair to say that virtually
all high precision cosmological measurements involve the
CMB. The reason for this is twofold: on the one hand there
is excellent data available [1-8], and on the other hand
CMB fluctuations are theoretically well understood and can
be calculated perturbatively. The CMB success story is by
no means over; we expect more precise data to arrive,
especially for polarization and reconstruction of the cosmic
lens map [9,10].

As is well known, CMB fluctuations are lensed by
foreground large scale structures (LSS) and this effect is
rather large (up to 10% and more) on small scales [11-13].
Therefore, the question is justified whether higher-order
contributions to lensing might be relevant. We naively
expect them to be of the order of the square of the first-
order contribution, hence 1%, and therefore it is necessary
to include them as numerical CMB calculations [14—17]
aimed at a precision of 0.1%. On the other hand, present
CMB codes do take into account some of the nonlinearities
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by summing up a series of “ladder diagrams” into an
exponential [12,13]. It is easy to check that including these
nonlinearities is requested to achieve the precision goal.
The question which we address in this paper is: What
about the other nonlinearities which are not included in this
sum? Might they also be relevant? These are mainly con-
tributions coming from the fact that the deflection angle of
the photons at higher order can no longer be computed
assuming the photons move along their unperturbed path, but
rather the perturbation of the photon path has to be taken into
account. These are the so-called “post-Born corrections.” We
have already studied this problem for the temperature
anisotropies in a previous paper [18]. The present paper is
a follow-up on that work. We complete the previous study by
calculating also the effects on polarization. Furthermore, here
we treat also the nonlinearities of the matter distribution
perturbatively. This is more consistent than just using a
Halofit model [19,20], as it allows us to correctly take into
account the higher-order statistics (3- and 4-point functions),
assuming Gaussian first-order perturbations. We neglect the
radial displacement corrections induced by the time delay
effect (which indeed is not a lensing contribution). As shown
in [21], these corrections are at most of the order O(1074),
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apart from the temperature-E-mode cross correlation power
spectrum for which can reach the order of O(1073). We do,
however, take into account all effects of second- and third-
order lensing. This includes also the induced vector and
tensor modes. These modes are especially important for B
polarization as they effectively rotate the photon polarization.

In addition to our work, there have been three other
publications on this topic [22-24]. In the first paper, an
important cancellation which reduces the final result by more
than an order of magnitude has been missed. In [23] our so-
called “third group” terms, which vanish when assuming
Gaussian statistics and are very relevant for the final result,
are not included. In the most recent publication [24], these
terms are included, but the rotation of the polarization which
is induced by second-order lensing is not considered. We
discuss it here for the first time and we actually find that it is
the dominant correction for B polarization.

In this paper, we present the methodology of our calcu-
lations and numerical results for the corrections of CMB
temperature and polarization anisotropies by next-to-leading
order lensing. In an accompanying letter [25], we discuss the
relevance of our findings for future CMB experiments.

The paper is organized as follows. In the next section, we
summarize the small deflection angle approximation for
CMB lensing beyond linear order and present the expres-
sions for the deflection angle up to third order. In Sec. III, we
translate the results into harmonic space, “€ space.” We also
compare the expressions for temperature anisotropies with
the corresponding terms for the polarization spectra at all
orders in perturbation theory. In Sec. IV, we briefly recollect
the results for the post-Born corrections to the lensed power
spectrum of the CMB temperature anisotropies first given in
[18], considering also the non-Gaussian nature of the
deflection angle at higher order. In Sec. V, we evaluate the
contributions from higher orders in the gravitational potential
(or equivalently in the matter density) to corrections of the
lensed power spectrum of the CMB temperature and polari-
zation anisotropies. Following [23,24], we call them “LSS
corrections.” In Sec. VI, we derive the last missing contri-
bution coming from the fact that parallel transported polari-
zation direction changes along the path of the photon from
the source to the observer. This contribution which turns out
to be very substantial has been missed in previous work. Our
results are summarized in Sec. VII, where we evaluate the
different contributions numerically considering a Halofit
matter power spectrum. In Sec. VIII, we conclude. Several
technical aspects and calculations are presented in four
appendices.

II. WEAK LENSING CORRECTIONS BEYOND
LEADING ORDER IN REAL SPACE

We want to determine the effect of lensing on the
CMB temperature and polarization anisotropies beyond
the well-studied leading order from first-order perturbation
theory [12,13].

Following the derivation of the post-Born correction to
temperature anisotropies in [18], we first generalize the
results of [12,13], writing the following relation between
the lensed and unlensed temperature anisotropies M and
polarization tensor P,,, of the photon field valid up to
fourth order in the deflection angles #%() [the superscript (i)
denotes the order].

4
M(x%) = M(x® +507) = M(x) + 3 0"V, M(x)
i=1

1 ) )
+5 > 00DV, V M (x)
i+j<4
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i+j+k<s
1
+ 500N IV, 9,V VM (),
2.1)

Pn(x) = Py (x* + 66

4
2 Py(x4) + > 0"V, P, (x7)
i=1
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i+j<4
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42 z gh(l)ec‘(ﬂgd(k)vbvcvdpmn(xa)
i+j+k<4
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(2.2)

A consistent treatment of the polarization in the form of
P..n or, using the Stokes parameters Q and U, in the form
of P=Q+ild and P = Q — il4, has to consider that the
polarization tensor is parallel transported along the per-
turbed photon geodesics. Neglecting this effect (we shall
add it at a second stage in Sec. VI) we can substitute P,,,
with P and P. An overbar denotes complex conjugation.
Following [18], we can then write

~

() 2 A0 (x) + 37 AD(6) + 3 A ()

+ ZA(U")(X“)—FA(““)(X“),

(2.3)
i+j+k<4
1<i<j<k
i 4
,P(xa) ~ D(()) ()Ca) + Z D) (xa) + ZD(U) (xa)
i=1 f*-/’iﬁ
i Z DR (xa) 4 DI () (2.4)

i+j+k<4
1<i<j<k

where
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Alinizeiy) (xa) = Perm(i‘l;z”“i”) gblingeti)
n!
xV,Vi....... M(x), (2.5)
Dliia- i) (ya) = Perm(’l? )gbm)gC(lz)
n!
x V, V... P(x%), (2.6)
where A0 (x%) = M(x?), DO(x?) =P(x%), and

X
Perm(i,i,... ln) denotes the number of permutation of
the set (iyi,....1,).
We introduce also the Weyl potential
1
in terms of the Bardeen potentials @ and V. The lensing

potential y to the last scattering surface is then determined
by

=2 Mo =1
w(n,z,) = / dn Oy ((n—1n,)m, 1)
Ho =My Sy Mo—1 "
_—2\/rjdr/rs_r/
0 I"SI"/

where n is the direction of photon propagation, # denotes
conformal time and r the comoving distance, r = 5, — 1,
where 7,, stands for present time. The index , indicates the
corresponding quantity evaluated at the last scattering
surface. The first-order deflection angle is simply the
gradient of the lensing potential [13,26]. Beyond the linear
order, we need to account also for the lensing of the
direction n on the path of the photon. Then one obtains the
following expressions for the deflection angle up to third
perturbative order [27]:

Oy (—rm,n, — 1), (2.8)

ga(l) — _Z/r“ dr Ts _/r Vaq)w(r/), (2.9)
0 rsr
a(Z) — _ / a
0 ) A ar 5 e
+v,,vaq>w(r)9b( ()], (2.10)

60 = =2 / ar 5= {vacp (r)
0 I r
Y, V9D, (716" () + V, Ve ()07 ()

—|—%VhVCV“q)W(r’)Gb(')(r’)ec(”(r’)] . (2.11)
Latin letters a, b, ¢, d run over the two directions on
the sphere. In Egs. (2.9)—(2.11) we consider the terms with
the maximal number of transverse derivatives, including the
ones that come from expanding the Weyl potential, ®@y,, to
higher order. Note that 8?) as well as #*) are not purely
scalar perturbations; they also contain vector contributions
as, for example, the curl of VbV“(I)WQh“) does not vanish.

But for our purpose a decomposition of the higher-order
deflection angle into scalar and vector parts is of no
particular use. On the other hand, let us point out that
we have neglected the second-order vector and tensor
perturbations of the metric appearing as a consequence
of the nonlinear coupling among scalar, vector, and tensor
in the Einstein equation. These corrections are subleading
with respect to the ones discussed here.

Let us also recall that the Taylor expansion in Eqgs. (2.1)
and (2.2) holds in the approximation of small deflection
angles, i.e., when the deflection angle is much smaller than
the angular separations related to a given C,. This is valid
for an angular separation of about 4.5 arc minutes, which
corresponds to 7 <2500 (see [11-13]). In this work, we
adopt the small deflection angle approximation for the
second- and third-order deflection angles only, which are
much smaller than this value; as a consequence, our results
are valid to much higher £ values and we can safely present
them up to £ = 3500.

III. WEAK LENSING CORRECTIONS
OF THE POWER SPECTRA

We evaluate the lensing correction to the angular power
spectra cM, C;M, Ci, and Cff in the flat sky limit. In this
approximation (see, e.g., [13]) we replace the combination
(Z,m) with a 2-dimensional vector #. Therefore, the
angular position is then the 2-dimensional Fourier trans-
form of the position in £ space at redshift z. For a generic
variable Y(z,x), we have

Y(z.x) = % / d*¢Y(z,€)e™ X, (3.1)
and
(Y(21.0)¥(22.2")) = 6(€ = ¢')CU(21.22).  (3.2)

while for polarization we have (¢, denotes the polar angle
in € space)

P(z,x) = —%/Jlf[g(z, ) + iB(z, €)]e 20 =il X

(3.3)
with
(E(z;. OOM(z,.8")) = 5(¢ - ') CM ().
(£(z5. O)E (2, 2")) = 8( =€) Co(z,),
(B (Zwt,) (z5.8") = 8(€ = £)CP(zy).
(B(z,. €)M(z,,2')) = 0.
(B(z,,€)E(z,, ")) = 0. (3.4)

We follow the notation of [28,29] to determine the
angular power spectra defined above and we introduce
the (3-dimensional) initial curvature power spectrum
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(Rin(K)Rip (k")) = 6p(k —k')Pg(k).  (3.5)

[In both 2- and 3-dimensional Fourier transforms we adopt
the unitary Fourier transform normalization, so there are no
factors of 2z in this formula, nor in Egs. (3.2) and (3.4).]

For a given linear perturbation variable A, we define its
transfer function 7,(z, k) normalized to the initial curva-
ture perturbation by

A(z.k) = Ty (2. k)Riy (K), (3.6)

and an angular power spectrum will be then determined by

dk
€ (ar.22) = dn [ P81 DAY 2.

2

2 / kKPP R(k) A (21, K)AE (20, k), (3.7)

where Pg(k) = zk—;PR(k) is the dimensionless primordial

power spectrum, and A% (z, k) denotes the transfer function
in angular and redshift space for the variable A. For
instance, by considering A =B =®y and A =B =y,

we obtain that [setting C\:W(Z,Z’) = CV(z,7)]

CYe#) =5 [ dHPR® T o (k.2 (kr)

T

X [Tk, 2)je(kr')], (3.8)

C?(m’)z% / dkk?Pg (k)
[A drl " T\P+<1>(k Z])]f(krl):|

XM an" "

where j, denotes a spherical Bessel function of order . As
before, r =5, — n is the comoving distance to redshift z,
and analogously 7/, r, r, denote the distances to redshifts
7/, zy, 7. Above and hereafter, we define z = z(r),
7 =z(7), etc.

Hereafter, in order to numerically evaluate the next-to-
leading order lensing contributions to the CMB temper-
ature and polarization anisotropies, we will apply the
Limber approximation [30-32]. We remark that this
approximation works very well for CMB lensing.
Indeed, CMB lensing is appreciable only for # > 100,
where the Limber approximation is very close to the exact
solution.

Following [33], the Limber approximation can be written

T‘P+<I>(k Zz)Jf(krz)] (3.9)

as

% / dkk® f (k) jo(kxy) j (kx;)
Sp(x; —x7) (f—i—l/Z)
~ f ,

- 2
)Cl X1

(3.10)

where f(k) should be a smooth, not strongly oscillating
function of k which decreases sufficiently rapidly for k —
oo [more precisely, f(k) has to decrease faster than 1/k for
k > £/x]. Using this approximation, one can then obtain
the Limber-approximated C ;V and CIL’Z (see [18] for details).

Starting with the definitions (3.1) and (3.3), we can
transform Egs. (2.3) and (2.4) into # space where they
become (see [18] for details)

4
M(z,, ) =~ AO(#) + Z )+ ZA i (#)

+ ZAuk +A”“ ( ), (3.11)
e
~ 4
Py, 8) 2 DO(&) + > D) + > DI ()
i=1 i+j<4
1<i<j
+ Z DUk (£) + DI (), (3.12)

i+j+ksd
1<i<j<k

where we drop the redshift dependence for simplicity on
the right-hand side, and we have

1 ,
D(O)(ZS’ f) = P(ZS, f) = 2_71'/ deP(Z, X)e”’ﬂ'x

—[E(z, &) + iB(z, €)]e %,
(3.13)

To evaluate the lensing corrections at next-to-leading
order we now have to calculate the £-space expressions for
the terms AU~ and DU-). The expressions for AU)
considering at next-to-leading order only the post-Born
corrections were determined in [18]. Starting from these
results (see Appendix A of [18]), and from the results of
Sec. V for the LSS corrections, one can easily find the
corresponding expressions for D) both at leading and
next-to-leading order. They are obtained from the A by
the substitution

M(z,, €) = —[E(z5, €) + iB(z,, €)]e7 2%, (3.14)
performed for any M(z,,¢) inside the integrals. For
completeness, we report them in Appendix A. This is very
useful as it means, comparing Eq. (3.12) with Eq. (3.11)
and using Eq. (3.4), that the lensing corrections at the next-
to-leading order of CﬁM, C¢, and C? can be obtained, as the
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leading lensing corrections (see [12,13]), by using the
results for Cj,}" by a series of simple substitutions (see also
[24]). Namely, we find that the corrections to CiM are
obtained by substituting

CH(z) = CFM(zy).

CM(z,) = CEM(z,) cos2(pp, — )], (3.15)
the corrections to C? by substituting
CH'(z,) = Colzy),
CH(z) = €, (2)eos’2(0r, = 00)
+ C?I (z,)sin?[2(@y, — @f)].  (3.16)
and, finally, the corrections to CZ by substituting
C5'(z5) = C(zy),
Crl(zy) = €5, (zo)sin*[2(ge, — 0r)]
+ 8 (z)c0s2(gy, = 0o)). (3.17)

where we use a ~ to indicate the CQ/’ that are inside an
integral (for completeness, we present more details in
Appendix B).

At this point, let us briefly recall our approach to obtain
the lensing correction to the temperature anisotropies
beyond leading order (see [18] for details). Following
[18], we have that

(MEM(E) = (AB)AL)), (3.18)
where
s
mwzmww+23 +2M~
+ZAW +Amw) (3.19)
We now introduce C( """" ) defined by
5 = &) CF1 ) = (Al () AU (),
8¢ — &) C ) = (A () AT (1))
+ (AW () AU (£1)), (3.20)

where the last definition applies when the coefficients
(ij...) and (i'j'...) are not identical. The delta Dirac
function 6(¢ — ¢’) is a consequence of statistical isotropy.
By omitting terms of higher than fourth order in the Weyl
potential and terms that vanish as a consequence of Wick’s
theorem (odd number of Weyl potentials), we obtain

M =My PP+ P 4 Y 4 P 4 P

n C(ozz) n C(onz) n C(o1111) —|—C( 3y C(f, )

i C(l 12) C(l S C(z S C(“ 1), (3.21)
where C(fo,o) = CM is the unlensed power spectrum. The

terms CZ(/,O’Z), C, 04 and C, (0.112) , containing an odd number
of deflection angles from only one direction, are identically
zero as a consequence of statistical isotropy. This was

(0.112) o [18]

and for the second-order contribution C; in [34].
Furthermore, making use of the Gaussian statistics of the

first-order deflection angle, the full correction from first-

order deflection angles alone, to the unlensed CM, je., all

the terms above containing only 0’s and 1’s, can be fully

resummed [11-13]. Denoting this sum by CN‘?/M)

~ a*¢ )
C?/l(l) —/drrjo(fr)/(z 7 CM it
n

shown explicitly for the post-Born part of C,

, we have

cexp | =5 (40(0) = o) + As(r) cos (200).
(3.22)
with
3
Ao(r) —/djf ClJ(r?),
Mm_/ffcMM) (3.23)

and where J, and J, are the Bessel functions of order zero
and two.
We now write

M=y ac? +acy, (3.24)

where (neglecting vanishing contributions)
ACY =P 4 P Y 4 e (3.25)
ACY) =MD ¢, (3.26)

As already mentioned, C‘Lﬂ M(1) denotes the well-known
resummed correction from the first-order deflection angle
[11-13], which is computed in standard CMB codes

[14,15]. ACEZ) and ACZ(/,3> denote corrections involving
two or three deflection angles respectively, at least one
of them beyond the Born approximation or with a higher-
order Weyl potential. With a slight abuse of language we
call them the Gaussian and non-Gaussian contribution of
the deflection angle or, as in [18], the second and third
groups, respectively. Even though the contributions to the
second group are not Gaussian, they would be present also
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if the higher-order deflection angles would be Gaussian.
Terms of the third group, however, would vanish for
Gaussian higher-order deflection angles. Note that even
though the number of deflection angles is odd in the third
group, statistical isotropy does not require it to vanish as (in
the correlation function picture) there is, in addition, the
angle between the two directions n; and n,, which can be
employed to “pair up” all the angles. If the deflections are
all attached to one of these two directions, this additional
angle is no longer present and a term of the form

C(f ) has to vanish due to statistical isotropy, while

a term of the form C(fn""nk'n”'m”m') with & > 0 does not.

Here we of course always assume that CMB anisotropies
and deflection angles are uncorrelated as the latter come
from much lower redshifts.

Furthermore, within the Limber approximation, which is
very accurate for these small corrections relevant only at high

(0.13) (0.22)

¢, the two contributions C and C,” coming from the
post-Born part of the deflection angle exactly cancel,

C(KO,B) = _C(fo,zz). This is no longer so when we consider

the LSS contributions to these terms; see Sec. V below.

IV. POST-BORN CONTRIBUTIONS

Let us first recall the results for the post-Born lensing
corrections obtained in [18] for the temperature anisotro-
pies. The results for polarization spectra can then be
obtained as illustrated in the previous section.

A. Second group

The second group, where we study the leading post-Born
corrections coming from the deflection angles up to third
order when these appear in pairs like (6%26") and
(6°(MgPB3))  is given by

ci== [ 50, [T -2 -ePite -2 2 C )

(2x)* ) (27)?

s —r)? v-¢ 1/2 v-°¢ 1/2 2
< [Ttk C‘}fz(z’,z’)PR<—| T /ﬂmm(—' pas z)] ,

rgr

(4.1)

I%

d*¢ d*¢ A
Cimp= [ ot [ sl =21+ e e P~ + ) PNz

(2z)* ) (2m)?

X

o r r/4

r/

r —7r)? C-C, +7 1/2 C-¢, +7 1/2 2
PR e A e e N ) | I

I%

B. Third group

The third group, where we consider terms with three deflection angles which do not vanish due to the non-Gaussian

statistic of 84, is given by

¢,

2
el == o / %@m (et 6F

. ry re—r')? -0 +1/2 ¢—-¢|+1/2
XC?;I(ZS)A dl”/( 2 /4) PR<| l|/ / >|:T\P+<I><|]|//’

rgr r

2
z’)} Cy (25,7),

I%

d*¢ d*¢
ey = 2/—1/—2@?1 (-, +8,) C)[(E - +8,) )

(2z)* ) (27)?

A re o (rg—
XC%(Zs)/O dr' 2,4

I%

7, <|t’ — 2+ 8| + 1/2) {T (It’ —f + 6| +1/2
R ; Y+o ’

; z’)] ZCZZ2 (z5,7). (4.4)

I%

As for the temperature anisotropies (see [18]) and also for the polarization spectra, the contributions above, within each

group, partially erase each other. In the range of integration where |£ — €, + &,| ~ |€ — ¢,

, the integrands in Eqs. (4.1)

and (4.2) [as well as the ones in Egs. (4.3) and (4.4)] are nearly identical and the corresponding contributions partially

cancel (see [18] for details and a physical interpretation).
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V. LSS CONTRIBUTIONS

In this section we determine the next-to-leading order
corrections to CMB lensing coming from higher-order
corrections of the Weyl potential (the so-called LSS
contributions, see also [24]).

We want to determine the LSS contributions to the
deflection angle up to third order. As one sees from
Egs. (2.10) and (2.11), this requires ®\ and ®{’. We
use the Newtonian approximations to ®y,, which are very
accurate on largely subhorizon scales, k/H > 1, and in a
matter-dominated regime. They are given by (see, for
example, [35])

3H*Q,,(n
OfF (k) = == 35 ) 50k ), (5.1)
1
5P (k,n) :W/cﬂklaﬁkzﬁl)(k—kl -k,)
X Fy (k. ky)d(ky,n)d(ky. 1), (5.2)
5 1k, -ky [k k) 2 /K -ky\2
K k) =2+~ it
(kiko) =243 <k2+k1 AT A
(5.3)
and [36,37]
3H2Q,, (1)
O (k) = = =26 (). (5.4)
5O (K, /d3k LPhydk
( 11) (2 ) 2 3
xdp(k—k; -k, —K3)
x F3(ky.ky,K3)6(ky,n)d(K,.1)0(ks,n),
(5.5)
1
Fi(ky. ky k3) = Q{Gz(kukz)wa(kl +kj, kj)
+4p(k; +ky, kj)]
+7a(k;. ky + k3)Fy(ky, k3) b,
(5.6)

LSS /dz'fﬂ/ (vy(rl»f)e_iﬂx
—/dzfl/dzfz/ d}"
/d2f1/d2f2/ dr

Lt @2 (7. 8))e —fer)/rdr'r

f flbq)w(r f]) 1f]»x)A d”' rr qu) (I"/,fz)e_ifz.x.

with
(k +Kk')-k
a(k,k/): kz )
(k +k')’k - k'
PRk ="—sm (5.7)
3 lkl-k2<k1 k2> 4<k1-k2)2
Gy(ky.ky) == += Z+2) 4= .
2k ko) =3 2 kiky \ky k) 7\ kk
(5.8)

We now write explicit formulas for the case of temper-
ature anisotropies, the corresponding expressions for E and
B modes are obtained from the temperature results using
the substitutions in Eqgs. (3.15)—(3.17).

A. Second group

Let us first evaluate the impact of the LSS corrections on
our second group. As we will show explicitly in the
following, within the Limber approximation the LSS
contribution to the second group is already included when
we consider a Halofit model in evaluating the leading first-
order contribution. Namely, it is equivalent to taking the
leading lensing correction, obtained from a first-order
deflection angle, and considering in the C% the higher-
order contributions to the gravitational potential (i.e.,
considering an higher-order power spectrum).

To show this, we write the deflection angles up to third
order in terms of the 2-dimensional Fourier transform of the
Weyl potential including also the LSS contributions from

<I>E,‘2,) and <D§,‘3,>. In general, an angle 0*") contains a part
which depends only on the first order Weyl potential and a
second part which depends on higher-order corrections to
the Weyl potential, up to third order these are <I>$,12,) and @%‘3,).

The first part is the one evaluated in [18], let us call it 0‘5’(”)

t
while we call the second part QE(S"S) Up to third order, the
second part is given by

LSS /dzf/ g‘%)(},’ f)e—if-x’

(5.9)

/
—r .
L by (7 £)e
0

(5.10)
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022)  ~(0.13) ~(22)

The LSS corrections to the second group contribute to C,”", C,”™, C,;”, and C ;1’3). To evaluate them we calculate the

contribution of @} and ® to A (£), AB)(£), A1 (£), and A (#). Following [18], we obtain

re—r

) (r, € — L) M(r, ),

1 p o] ry
A(Lzs)s(f) —ﬂ/dzxeL(szs)vaMelf ;/dzfz[(f—fz)‘fz]A dr

rer

3 1 a3 ifx
A0~ [ e e

1 ry —
= ﬂ/ L~ ¢)) ) / dr =00 (r 8 — ) M(r,. )
0

rer

rg—r

_%/d2f2/d2f3[(f+fz—f3)-f’3][(f+f2_f3)'52] /rYdr

0 rgr

r — 7 _ _
x /O dr rrr,’ [@y(r, €+ €5 — C3)DD (7. 8,) + D (1.8 + €, — €3) Dy (F. :) | M(r,. €3),
1 )
ALS(@#) =5 / Px0°VOIV Y, Meitx

——%/dzfz/dzfﬂ(f-kfz—fﬁ'fs]wz't’S)

r\ S r.\' . / —_
x/‘dr"‘ r/ dr By (r b + €, - 63)00) (7 ) M1, 3)
0 0

rgr rgr

1
Y K Ry KA T R AR A AT AICAES

rooorg—=r [ro L rg=v (7 ¥ —=71"
X/ dr / dr—/ dr T T (Dw(r,f—fz—f3—f4>
0 0 0 rr

rer rgr

X [Dy (7, 8,) DY (7, €3) + O (, €2) Dy (", €3) | M (1, 3),

2 1 L a@) b2 2(2) pb(2 irx
AR (@) =5 / 3 0140053 + 20" 0 IV .V, Me'?

:_%%/JZK2/JZK3[W+’5’2—£3)'53](f2'f3)

rY - rS - / -
X / “drls r/ dr/¥q>§5>(r,f+ ) — f3)<1>§42,)(r’, ) M(rg, €3)
0 0

ryr rgr

+%/d2f2/d2f3/d2f4[(f—£2—£3—£4)~£4](£4~f2)(t’3 )

rvorg—=r [rs rg—=71 7 r—=r"
X‘/O dr /O' dr//A drﬂ ] ®$)(r,f—f2—f3—f4)

rgr rgr rr

X Oy (1, €) DOy (1", €3) M(ry, ).

(5.11)

(5.12)

(5.13)

(5.14)

With these results and using also the AU (£ ) containing only the first-order Weyl potential given in [18], we can now
determine the LSS contribution to the second group by following the procedure outlined in [18]. We first introduce

(@ (2, 0)®) (2. €)) = 8(¢ — €)C) (2, 2),
(D (2. 0)D) (2, €)) = 8(¢ — €)C) (2, 2),

and

, _ v / _
/' (z.2) :4A dry - rlA dry——2C}® (2),2,),

rrq rry
v(13),_ o= [T P = w3
Cf (Z,Z) =4 dr1 er 7 Cf (ZI’ZZ)'
0 rry 0 rry
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With this we obtain

022 0.13 d*¢ y(22 w(13)
iR+ ==z [ e B EVICE 2z + 201 22
d*¢ d*¢
—16C"(z,) / (zﬂ)lz / 2 )2 (&2 +5) - £](2, - €)(¢5 - %)
reorg—r [t rg—=r [7 r—=r 2
XA dr rgr [) dr rsr’ [) dr//WbF;fff%\fz 3(r,r’,r”), (517)
e

2,2 y p(13
Clids+Clids = [ Gab I =20 PO (202 + AL 2

16 [£0 [ Lo v ti-0) il -) et -2 21

(277 ) (2n)?
M rsoorg—r [ rg—7r - 2
e (ZS)/O ar rer /o dr rer’! /o d'ﬂ rr bﬁ”d’? le—e e, (12T 1"), (5.18)
where 6222 is a reduced bispectrum and is defined by
<(I)$/12/)(r],f])q)w(r2,f2)¢w(r3,f3)> +peIm _5D(£1 +f2+f3) b?ff;:b(r],rbﬁ). (519)

Following Sec. 3.4 of [38] and using the Limber approximation, we obtain the following expression for the reduced
bispectrum:

Op(ra—1r3)op(ri—r3) 5 , 1
= BN YE
3 |

1
DRI (21, 22.23) = =35 [Hlm)A(Qu )]

£+ 1)2
X Pr(2)Pr(3)T% (2. 113) To g (v3.13) F <lra’/2,’/3> + perm, (5.20)
3
where v; = ’fft}/z, r; = r(z;) as well as n; = 5(z;), and we define (see [38])
5 1k2—k2—k2 ky, k 1 (k2 — k2 — k3\2
ki, ko, k . R (e S R S 5.21
Falki ko ks) =547 koks <k3+k2 T4 koks (5:21)

The first contributions to Egs. (5.17) and (5.18) take care of when we take into account higher-order contributions to the
gravitational potential in C% (a higher-order power spectrum) and, therefore, it is included when we consider a Halofit
model in evaluating the leading first-order contribution (in the sense that if we add this contribution to the first-order
contribution evaluated via Halofit we would effectively do a double counting). The second terms in Egs. (5.17) and (5.18)
depend on the reduced bispectrum. In the Limber approximation given in Eq. (5.20), these contributions vanish due to the
Dirac-delta function, §(r' — ).

B. Third group

We now evaluate the LSS corrections to our third group. In this group no third-order perturbations occur and it is
sufficient to consider the LSS contribution in the deflection angle up to second order.
From the definitions in Egs. (3.20) and (3.26) the LSS contribution to our third group is due to the contribution of d)( )

present in A (£) and A2 (#). The expression for ALSS( ) is given in Eq. (5.11). Following [18], we obtain
Ay = x0eVeP AV ¥, Mei
LSS Z;r LSS b

:—%/Jlfz/aaf3[(f+t’2—f3)‘f3](t’2'f3)/rxdrrs_r

0 rgr

rJ - / —_
x/ A"y (.8 4 8, = )8 (7 ) MU ). (5.22)
0 K
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Using Egs. (5.11) and (5.22), the expressions for A (#)
and AU (#) given in [18], and Eq. (3.20), we then obtain
the following LSS contribution to the third group:

d*¢ d*¢

112 211

C;,LSS>+CE”,LS§:_8 / (2”)12 / —(2ﬂ)22(f1'f2)
x[(Z=¢,)-C\][(€+E€,—-¢) O]

s - Iy _r,
XC%(ZS)[) dr’ rrA ar’s

T ror’

rjd ”r‘f_r//bcpukpcl) .y
- 0 " \f—f,|\f—fl+f2|fz(r,r,r )-

A (5.23)

Note that this result remains finite in the Limber approxi-
mation for the reduced bispectrum as there is no factor
¥ — " in the integrand. Our expression (5.23) for the LSS
correction agrees with the corresponding result of Ref. [24].

VI. CONTRIBUTION FROM ROTATION

When considering the next-to-leading order corrections
to the CMB polarization, another new effect has to be taken
into account: polarization is oriented along a given direc-
tion at emission and this direction may rotate along the path
of the photon to the observer position due to the presence of
structure. Since this has been debated in the literature [39],
we first give a thorough introduction to the physics of the
effect before entering into the computation.

The problem that appears here is that parallel transport
relates the lensed polarization tensor P, (n) with the
unlensed polarization P,,,(n'), where n = x* = (6., 62)
is the direction of the image and n' = x* + 66 = (6!, 6?2)
is the direction of the source (which is equal to the unlensed
position of the image). To obtain P,, (1), we have to
parallel transport the polarization from the source position
defined by n’ # n to the observer, see Fig. 1. However, we
must compare P,,,, (r) with the unlensed polarization as it
would be observed in the same direction, n, if no pertur-
bation was present. The most elegant way to take this
subtlety into account is the use of the so-called geodesic
light cone (GLC) coordinates [40]. In these coordinates the
direction of a photon (8',6%) is constant by definition,
n=n', and we can compare the lensed and unlensed
polarization from the same direction. To find out whether
the lensed polarization is rotated, we therefore just have to
study whether the parallel-transported Sachs basis is rotated
with respect to the directions (6", 6%). We do exactly this in
Appendix C, where we determine the rotation angle —f of
the Sachs basis with respect to these directions.

Of course, one can also study the problem in Poisson
gauge. A short calculation actually shows that when
expressing the polarization in terms of the directions
defined by Poisson gauge, it does not rotate. (This is not

FIG. 1. The (incoming) source direction n’ and the image
direction n are shown. In a generic coordinate system n # n’,
while in GLC angular coordinates follow the photon direction so
that n =n'.

exactly true; there actually is a small amount of rotation due
to the fact that the photon is not emitted into the direction
given by the emission point, 7/, but in a somewhat different
direction, see Fig. 1. This is discussed in detail in [39], but
since this effect is much smaller than the one discussed
here, we neglect it.) In Poisson gauge the directions n and
n' are different and to compare the lensed polarization seen
from direction n with the unlensed polarization from the
same direction, we have to move the unlensed P,,, from n’
to n. In general, this is done with the Jacobi map, (Or/0n’),
but since we express the polarization in terms of an
orthonormal basis, only the rotation @ of this map con-
tributes. In Appendix C, we show that for scalar perturba-
tions # = w up to second order and one obtains the same
result in both ways, as it should be.

Therefore, comparing the lensed and the unlensed
polarization from the same direction n doing the calcu-
lation in GLC gauge or in Poisson gauge gives the same
result. But the rotation of the unlensed P, (r’) into the
unlensed result at » must be taken into account. This effect
has been overlooked in the previous literature [23,24,39]
and we show in the following that it is quite substantial.

Another way to understand that f = @ is to consider two
nearby photons with connection vector e. Assume that one of
the photons be polarized in direction € enclosing an angle «
with e. Here e provides a natural reference direction with
respect to which we measure the rotation of polarization.
Lensing will change this angle because e and € are differently
transported (rotated) along their path towards the observer.
Indeed, for small separation, e will be Lie transported, like an
image, while € will be parallel transported as the Sachs basis,
i.e., the natural basis with respect to which rotation of the
image is defined. It is natural to expect that the relative
rotation coincides with w. Indeed, in GLC coordinates, since
the photon directions are not modified, e remains unchanged
while the polarization is rotated by an angle —f so that the
angle between € and e becomes a — . In Poisson gauge
coordinates, € is not modified but the vector connecting the
two photons is rotated by @ = f#; hence, again a changes into
a — p (see Fig. 2).

To further explain the difference of our result to those of
[23,24,39], which do not take this rotation into account, let
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R Lensed PG
Unlensed € —_—
a
nq 3 Ny
Lensed GLC ¢
:
! =l
I € ,
I B a'=a-
I a'
e

FIG. 2. The angle between two close by photons and the
direction of polarization is modified by lensing. Depending on
the coordinate system used this is due to the rotation of the
connecting vector e or due to the rotation of the polarization €.

us also mention that when fixing a coordinate system at the
observer, it is the direction of the source of the incoming
photons which is rotated w.r.t. this fixed coordinate system
by lensing. However, the only directions intrinsic to the
problem are those of incoming photons, and the orientation
of the polarization w.r.t. one of the neighboring incoming
photons, as shown in Fig. 2, does rotate due to lensing. In
this sense, CMB lensing generates frame dragging on
cosmological scales as discussed in [25].

Note also that this rotation is the only modification of the
polarization tensor which does not involve any derivatives
of P,,,. Thus, it cannot be confounded with any other term
which we have considered before.

Let us now calculate the effects on the polarization
power spectra. We consider the rotation angle f, the effect
of this rotation on Eq. (2.4) is given by a rotation matrix R
[see Eq. (C8)] acting on the Sachs basis, as defined in
Appendix C. To evaluate it, the polarization tensor P,,, is
projected on a screen at the observer position given by
Eq. (C17), which is rotated by an angle  with respect to the
screen at the source. Because the screen basis vectors
appear twice in the projection of the polarization tensor, a
rotation on it will change P by 2f. This is simply a
consequence of the spin-2 nature of the polarization tensor.
Starting from [41,42]

Pron(x)2355 500 = prn(xa 4 509)2557550 . (6.1)
with §£n+)(x“ +664) = e=iBglh) (x* +66%) and s —

. -1
\/Li (s}, £1is2,), we obtain

"Note that, to know the rotation 3, the screen basis vector at the
source has to be compared with the one at the observer parallel
transported to the source following the background geodesic that
connects observer and source. Let us point out that this is totally
equivalent to what is stated above; the only crucial point is that
the two vectors have to be expressed with respect to the same
angles when compared.

P(x?) = e 2PP(x? 4 50%). (6.2)
This rotation has not been included in Refs. [23,24]. Note that
P is a scalar with respect to the indices (mn) but has helicity

—2 with respect to the Sachs basis vectors §* = % (3! £32).

Therefore, it does not matter whether we use Poisson gauge
or GLC gauge to compute P. As the perturbed Sachs basis is

rotated by an angle f with respect to the unperturbed one, the

invariance of the scalar P™" (x“)2§fn+ )EELH requests that Pis

rotated by —2/. In this work, we have actually used Poisson
gauge to compute P.

Because we are interested in next-to-leading order cor-
rections, we must in principle take into account the expansion
of 8 up to fourth order, g ~ ) + p1) 4 p2) 4 p3) 4 p*),
As explained in [41,42], in their framework this angle is also
connected to the angle @ determined by the antisymmetric
part of the amplification matrix. Qualitatively, @ and f refer
to different physical rotations: the vorticity @ takes into
account the rotation of a bundle of light rays which travel
together, whereas f is meaningful also just for a single
photon. Nevertheless, in Appendix C we show that these
angles are equal to lowest nonvanishing order also for scalar
fluctuations and they are both sourced by the curl potential €
in the amplification matrix W'}, (see [18] for definitions). More
precisely,

1
2 = ——AQ®
p = —7 800,

(6.3)
which is exactly the vorticity @®. In Appendix C we
calculate f from scalar perturbations without reference to
the amplification matrix by directly solving the parallel
transport equation for the Sachs basis, and we show the
equality @ = /8 up to second order. Indeed, we find that ()
and V) are constant along the geodesic, so there is no
rotation of polarization between source and observer up to
first order. With a global rotation of the Sachs basis, we can
achieve f© = p(1) = 0. This is perfectly consistent with
Eq. (6.3) since also @(®) = 1) = 0 for purely scalar first-
order perturbations. Then we derive explicitly the nontrivial
equality f® = o [see Eq. (C38)] and its derivation in
Appendix C for details).

In principle, we should take into account also ) and
. However, because of the structure of the rotation, we
can neglect all the terms which contain only one angle (%)
(this is again a consequence of statistical isotropy). The fact
that (¥ = 1) = 0 then implies that ) and g can only
appear alone in the spectra; hence they do not contribute at
next-to-leading order.

Before proceeding with the calculation of the rotated
polarization spectra, let us comment about the nature of the
angle . At the observer, a natural Sachs basis is simply the
angular directions ¢ = 6%. On the path of the photon back
to the source, this basis is perturbed and at second order it is
also rotated by an angle . The angle f is induced when the
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photon passes close to a structure but of course does not disappear even if the source and the observer are far away from any
structure. Once the Sachs basis is rotated due to the presence of a structure, it stays rotated.
In general, the full expansion of the polarization up to fourth order reads

P(x4) = e 2PV p(xa 4 gall) 4 gal2) 4 ga3))
~[1=2ip® =2ip®) —2ip®) —2(p)?]

4
X {D(O)(xa)+Zp(z’)(xa)+21)(ij)( Zpuk )+D 1111)( @)
i—1

itj<d it k<a
1<i<j 1<i<j<k
4
<0>(xa)—I—Z;DO)()C“)—I—;D(”)( ;42) 1]k _|_D(llll)( )
i= i+j< ks
1<i<) 1<i<j<k

2
~2ip® {D(O) (x)+ Y DO (x) +D(”)(X“)] =2ifI DO (x) + DO (x)] = 2% +2(@) DO (x4).  (6.4)
i—1
According to what we explained above, only two more terms containing 4 contribute, namely

—2ipPDO and —2(8?)*DO. (6.5)

Expressing the result for #?) given in Appendix C, in # space, we obtain

R<2) (f) = —g d2)Cﬂ<2>D(O) it-x
2
4i Ts ]"s —r
= - (271_)2[) dr ror / dr ry 1/d2f1 /dzfz fz A fl)(f fZ)](I)W(nyl)
q)W(Zl, fz) (t’ - fl - t’z), (66)
R (¢) = 2 2 (B2)2DN0) pitx
() == | @x(p?)’DVe

__ B / dr” /dn rl/ dry ™ r2/ dry 25
2z)* rsrp rr3
/dzfz/d2f3/d2f4/d2f5 @2 N O)ln- (€4 AE3)(E5- )]
X (DW(Zvfl)(DW(Zl’fZ)(DW(ZZ,fS)q)W(Zbf4) (Zs,f—fl —C,—C3—t,). (6.7)

Here, as in Appendix C, n is the unit vector normal to the £ plane. Using these expansions, we can now evaluate the
contribution of ) to polarization. The new nonvanishing terms are (see Appendix B for similar calculations for post-Born

and LSS contributions)
(€ = ¢")A(CS + C7)30) = (R (£)DO)(¢)),
5(€ = ¢)A(CS + C7)* = (RO (£)RP) (),
e~ §(€ + ¢')A(CE - CF)P0 = (R (2)DO)(¢)),
e~ 5(¢ + ¢ A(CL - CF)>Y) = (RP(£)RP) (¢"))
e~2ibe§(¢ — t")Ach(”‘) = (R2)(£) A0 (£)). (6.8)

Inserting our expressions for R, R, DO and A, we find
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d*¢ d*¢ re—r [r r—r
A(CE + CB)29) = _8[CE(z,) + CB(z,) / ! / 2 (03 A )8, )] / / dr, =0

(2n)? ) (2x)? rer rry
roorg—ry [T Py —F
[Tan " [P an 2R o ) ara) - € )l )|
0 r'st> Jo rar3

2 2 T ro—r [r r—r
A(CE - CB)?20) = —8[C5(z,) - CE(z,)] / (% / %{ (At D)) / iy / n—r

reorg—ry [ ry—r
x [Man 20 [ an PR e ) a1 - ) Cl a2

rars

d*¢ d*¢ e ro—r [r  r—r
A(CE BY(2.2) — | / 1 / 2 . . 2/ s / 1
(Cf + Cf) 6 (271_)2 (27[)2 [n (fz A f])(fl fZ)] 0 dr ror 0 drl rr

— T I
x /0 dr, =2 /0 ar 22D [ct () + Chp gy (2]

rgry

x {C?’l(z,zz)C?’Z(Zl,@) - cg,vl(z,@)c;g(zl,m},

d*¢ d*¢ N =1 [ .
A(Ci B Cg)(z’z) N _16/ (271-)12 / (2,,)22 n- (€, A€ (2, 'fz)}z/o dr e /) dry . !
— I < 5
/ rsra / ar 3 rar3 [le’—fl t’zl(zs) - C\t’—t’l—t’z\(zs>]

2pr = Pre—e,-e,))] — sin*[2(py — ¢|f—f1—f2|)]}

X [C% 2.22)CHh(z1,23) — C?f(z,@)Cé‘i‘;(zl,zz)},

EM(220) _ o EM ¢, [ d*¢, . 2/” ”s—r/’ r—r
Acf - SC ( )/(2”) /(27[) [ (szfl)(fl f2)] 0 dr ror ) drl rry

s re —1rp 2 Iy —r3
X / dry= / drs [C:{ (z, Z2)C¥Z(Z1v 23) — CZ}: (z, Z3>C;‘; (21,Z2)]
0 rsrz2 Jo rars

From A(CE + CE), we can easily obtain the corrections to C¢ and CZ,

£(220) _ 1
ACTY =S IA(CE+ €0+ A(CE = )2
d*¢ d*¢ rvoro—r [r r—r
= —8C%(z, —1/ 2y N f-t’z/ds /d ‘
f(z.&)/(zﬂ)z ( ) [ ( 2 1)( 1 2)] 0 r ror 0 " rr
s [ Can T [ g, T e (4 ) e — Y (z.25)CY
2 3 £, \& 22) ;2(21,23) fl(Z’Z3) KZ(ZI’ZZ) ’
0 stz Jo rars
1
Aci(Z,Z) EE[ (C£+CB)(22)+A(C CB)(ZZ)}

d*¢, d*¢, s rg—r [r r—r
=1 hl
6/(23)2/( e [ (Cy A€ 8] A dr e A dr =

s rg —rp 2 ry W 1% 1% 1%
XA dry rory A dry rals |:Cf](z Zz)sz(ZhZ3)—Cf](z,23)cf2(zl,22)]

X {Cﬁf’_fl_t’z\ (z,)sin?[2(y — Plo—e, —t’z\)]—"_cﬁ’_t’l_fz\ (2,)c08*[2(s — Dip—p,—2))] }
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1
MG =S [A(C) + CA)RO - A(CE - )20
d*¢ d*¢ rvooro—r [r  r—r
:—SCB,—l—Z-fff-fZ/dS/d ‘
f(z“)/(2ﬂ)2/(2ﬂ)2 [n ( 2 N 1)( 1 2)] 0 r ror 0 r rr
—-r rh —
x / dr, 2 / drs 22 (CW (2, 2)C¥ (21, 23) — O (2,23)CY (21, 22), (6.16)
0 rera Jo rars
B2 1
ACTHY = Z[A(CE + C5)22 — A(CE - CH)2)

& [ @ I
= ]6/—(2”)2 / (277:)2 [n . (fz A f])(f] . fz)] [) dr ror [)' drl rry

—-r ry—1T1
XA dr2 2% drs 2 [C%(Z’ZZ>C%(ZLZ3)_C%(sz3)C%(Z1’ZZ):|

IN) ryrs

X {Cﬁf-gl 0,(25)008* 2(¢r = Dip—g, -2, )|+ Clo_p_p, ()81 [2(r = Blo—p,2,))] } (6.17)

In a final step we apply the Limber approximation to our integrals. We note that we always encounter the same time
integrals; therefore, we can evaluate this approximation once and then apply it to all our terms. Within the Limber
approximation, the C,’s for the Weyl potential become

C;‘:(Z:Zz)C%(Zu@) - CfWI (z, Z3)C,;W2(Z1, )

_ 6(ry = r)6(rs —r1) = 8(r3 = r)é(r, — 1)
161217

1
e S S Y [ G

rvoorg—=r [t r—r [7s re—ry [ ry—r
Adr /dr1 IA dry ZA dr; = 3[C%(Z’Zz)c,%(zl,@)—CZ(ZvZﬁCZ(Zl,Zz)]

Fsa rars
Ty dr/ dry <r—r1>2<rs—r>2 <51+1/2>
rry rer r
£, +1/2 £+ 1/2 2 C,+1/2 2
Ryt A R o
1 1

This simplification applies to all the contributions evaluated above.

SO

VII. NUMERICAL RESULTS

In this section we present the numerical evaluation of the results given above. For the numerical results, we consider
nonlinear (Halofit model [19,20]) power spectra for the gravitational potential. All the figures have been generated with the
following cosmological parameters: i = 0.67, ., = 0.12, @, = 0.022, and vanishing curvature. The primordial
curvature power spectrum has the amplitude A, = 2.215 x 107°, the pivot scale kpivor = 0.05 Mpc~!, the spectral index
ng = 0.96, and no running. The transfer function for the Bardeen potentials, T'¢y, has been computed with cLASS [16],
using Halofit [20]. In analyzing the contribution of R 4. 50) ) (see below), we compare the nonlinear and the linear results. The
latter has been obtained with the same cosmological parameters as the linear power spectrum computed with CLASS [16].

First of all, let us note that all the contributions AC X220) from the rotation of polarization contain the same constant
factor multiplying simply the unperturbed spectrum. Let us call it Rye), so we have that

f = =
cS o ciM

£(22,0) B(22,0) EM(22,0)
AC AC AC
=== z =Rye (7.1)
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with
1 [dt, [dt, redr [rdry (r—r;\2
=—— [ — | ==(¢,6,)° — | —
Rﬂ(z) 16/ 27[/27r( ! 2) A r2/0 r% ( rry
—A\2
X(rs r) PR(flJr]/Z)
rer r
Cr+1/2 Z+1/2 2
<re(PE) [ron(522)
ry r
‘r+1/2 2
X|:Tq>+\y<%»zl>:| )

where we have performed the angular integration. From
Eq. (C41), one infers that Rye is proportional to the

(7.2)

variance of the rotation angle,

((BP)) = Ry /2. (7.3)
Using the linear power spectrum [16], we obtain
Ryh = —7.8 x 107, whereas using Halofit [20] for the

matter power spectrum, the term becomes more than one
order of magnitude larger, with RHaofit — 25 % 1074,

/}(2)

((B9)) =68
and = 38, respectively. This is a large effect which cannot
be neglected, even though the Halofit approximation may
overestimate it (see below). The rotation ﬁ(z) is due to
successive shearing processes along the ray [43].
Parametrically, it is of second order in the shear (or the
convergence), but since these quantities are second deriv-
atives of the potential they are parametrically of the same
order as density fluctuations and can become large,
especially on small scales.

The universality of the above coupling and its independ-
ence from ¢ are due to the fact that, in the related
correlators in Egs. (6.8), no derivatives of P appear and

This corresponds to rotation angles of

{max=2000

0.1208

0.1206

0.1204

Wedm

0.1202

0.1200

3.030 3.035 3.040 3.045 3.050 3.055 3.060 3.065

Ner

FIG. 3.

the two-point correlation function of %) is evaluated at the
same direction. On the other hand, Egs. (6.15) and (6.17)
still have no angular derivatives of P, but they involve the
two-point correlation function of ) in two different
directions leading to a dependence on ¢ of the correspond-
ing terms.

The integrals over #; and 7, in Rye) converge very
slowly and are highly UV sensitive. In particular, a cutoff-
independent evaluation involves integration domains in ¢
space where perturbation theory is no longer valid; there-
fore, numerical results using Halofit are also not reliable.
Nevertheless, these corrections just lead to an overall shift
of AC,/C,’s and this contribution is negligible in cosmo-
logical parameter estimation (see, for instance, Fig. 3). For
this reason, we do not consider these terms in what follows.

In Fig. 4, we compare the different higher-order con-
tributions. The non-Gaussian (third group) contributions
from the post-Born and LSS corrections are relevant for all
spectra. They dominate the temperature (for £ < 3000), E-
mode, and temperature—E-mode cross correlation spectra,
whereas they are of the same order of magnitude as the
post-Born second group corrections for the B modes. This
post-Born second group is also non-negligible in the
temperature spectrum on very small scales (£ > 3000).
Moreover, the corrections due to rotation are very important
for B modes in a large range of scales (dominant for
¢ > 1500) and give non-negligible corrections to E modes
for £ > 2500.

In Fig. 5, we present the ratio between these corrections
and cosmic variance, c¥, (6¥)?, given by

2
M M
o, = Cct, 7.4
" Nar+i (7.4)
[ 2
E &
05 = Cs, 7.5
4 2/_’_1 4 ( )
{max=3500
0.1206
0.1205
g 0.1204
3
0.1203
0.1202
0.1201
3.035 3.040 3.045 3.050 3.055

Negt

Fisher forecast (see Appendix D for details) for a cosmic variance limited survey. The blue (red) points show the shift in the

best fit parameter for the dark matter density wegm = Q.4 and the effective number of relativistic species N induced by the terms in
Eqgs. (6.13) and (6.14) (we consider vanishing primordial B modes) using the linear power spectrum (using Halofit). The unshifted best
fit value is covered by the blue point. The ellipses denote 1, 2, and 3 sigma contours. The parameters not shown in the panels are fixed to
the fiducial cosmology. For both panels, we consider B mode up to Z,,,,, = 1500 to be consistent with the conservative specifications of
CMB-54 [9].
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FIG. 4. Higher-order lensing contributions from the post-Born second group (red curves), post-Born third group (blue curves), LSS
third group (orange curves), and rotation angle ﬁ(z) [green curves, contributions (2,2)]. Black curves sum up the total correction. We
consider the lensing CMB spectra for temperature (top left panel), E modes (top right panel), cross TE spectra (bottom left panel), where

~ME(1)\2 | =M
(C”)#), and B modes (bottom right panel).

Meem

Note that, for B modes,

we have taken into account the first-

1 N X . )
oM = /T\/ (CX8)? + cM e, (7.6) orde.r re.summed correction since we consider no pnmgrdlal
+1 gravitational wave, i.e., the unlensed spectrum vanishes.
Therefore, lensed B modes do not have Gaussian statistics.
B 2 &80 (7.7) For this reason, its cosmic variance can be significantly larger
o, = P . . . .
4 20 4+1 ¢ than the one from Eq. (7.7) [44]. Considering Gaussian
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FIG. 5.

{

14

Comparison between next-to-leading order corrections and cosmic variance for the temperature [Eq. (7.4), top left panel], E

modes [Eq. (7.5), top right panel], TE cross correlation [Eq. (7.6), bottom left panel] and B modes [Eq. (7.7), bottom right panel]. Red
curves refer to post-Born second group, blue curves to post-Born third group, orange to LSS corrections third group, and green curves
represent the (2,2) term of 2. Dashed lines are negative values and the black lines trace the sum of all the terms.
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FIG. 6. The signal-to-noise estimates of the total next-to-leading order effects for different sky coverage (fu, = 0.25, green curves;
Sy = 0.5, orange curves; and fg, = 1, blue curves) are shown as functions of #,,,,. We consider the specifications of CMB S4 [9]:

1 uK x arcmin noise for temperature and /2 uK x arcmin for polarization with an angular resolution of 1 arcmin.

variance also for B modes, the corrections due to rotation
alone are comparable to cosmic variance for # 2 3500, in
contrast to all other spectra where all the corrections are
always below that threshold. Moreover, the sum of all the
effects can be even larger than cosmic variance at these
multipoles, showing that higher-order lensing corrections to
B-mode polarization at high multipoles have the best chance
to be detectable.

Finally, in Fig. 6 we show the cumulative signal-to-noise

ratio defined as
(-5
N o\ or )

where o, are defined like in Eqgs. (7.4)—(7.7) but adding a
noise contribution to the cosmic variance term, i.e., by
replacing C¥ with C¥ + N¥, where

(7.8)

(7.9)

2
N, = (Ax)zexp(m>

8In2

and AX =1 K x arcmin for temperature, AX = V2 ukK x
arcmin for polarization, and an angular resolution of
Orwiv = 1 arcmin. Our results are comparable with
Ref. [45]. We predict a lower signal-to-noise ratio for
the contribution to temperature anisotropies because we
limit our analysis to Zp, = 3500, while they have a

smaller contribution for E mode, which seems due to
nonperturbative effects we do not consider in our approach.

VIII. CONCLUSIONS

In this paper we have computed all the next-to-leading
order corrections to the CMB power spectra of temperature
and polarization anisotropies from gravitational lensing of
the photons along their path from the last scattering surface
into our telescopes. We have found that most terms apart
from those already taken into account in present codes
[12,15,16] are smaller than cosmic variance for a single £
mode. The only exception to this rule are the B-mode
corrections at very high #. This can be understood from the
fact that cosmic variance is proportional to the amplitude
of the signal which is by far smallest for the B modes.
Nevertheless, by considering the lensed B modes as
Gaussian, we may underestimate their variance [44].

Several of the terms calculated in this paper have already
been determined before [18,23,24], and our results are in
good qualitative agreement, where comparable, with pre-
vious findings. This is a nontrivial consistency check,
especially for [23,24], which use quite different methods.
Apart from rotation, the only other difference between our
results and [24] comes from the second group, which has
been neglected in [24]. This leads to quite relevant
differences for temperature at small scales (£ > 3000)
and for the B-mode spectrum on all scales, whereas it
does not change EE and TE spectra. The largest correction
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to the B modes comes, however, from the rotation of the
polarization direction, which is new. It is very remarkable
that our analytical results, including rotation, have been
confirmed recently by N-body simulations with multiple-
lens raytracing technique [45,46]. Considering the different
procedures, the level of agreement between the results is
impressive.

It will be interesting to investigate whether these cor-
rections are observable. Even though for an individual
value ¢ the corrections are below cosmic variance, this is no
longer so for sufficiently large bins of £’s, as we have
shown in Fig. 6. Let us only note here that the rotation of
the polarization is due to the vector-degree of freedom
(d.o.f.) of the gravitational field, an effect like frame
dragging. Its detection would therefore represent a highly
nontrivial test of general relativity, testing its elusive spin-
1 sector. Recently, it has been proposed to measure this
rotation with radio cosmic shear surveys [47].

However, the other terms are also not negligible if a
precision of 0.1% wants to be achieved as announced in
Ref. [17]. For example, for £ between 2000 and 2100,
cosmic variance amounts to about 2.2%. Hence, as one
easily infers from Figs. 4 and 5, our corrections with respect
to the unlensed spectra are up to 0.1% for the E-polarization
spectrum and for the TE cross correlation, while they are
at most 0.04% for the temperature anisotropy. For the
B-polarization spectrum, the correction is close to 0.5%.

It is clear that a systematic change even below cosmic
variance can affect cosmological parameters, and it must be
studied whether next-to-leading order corrections from
lensing can indeed influence CMB parameter estimation
in the future; this is the topic of an accompanying letter
[25]. While it is unlikely that the tiny corrections of the
temperature will be relevant alone, parameters depending
strongly on polarization can be affected. Indeed, in [25] we
show how neglecting higher-order lensing terms can lead to
misinterpreting these corrections as a primordial tensor-to-

scalar ratio of about O(1073), and leads to a non-negligible
|

1 .
Di(E) = 5 / 2x04V, et
T

1 Ty =
——1 [eeie-e-e) [Tar T
z 0 For
’D(Z)(f) — % / & xga(z)vup oitX
1 re—r

L[ eele-ee) ["ar

rgr

shift of the estimated value of the effective number of
relativistic species.

The fact that o® can significantly affect the CMB
spectra has important consequences for delensing and
lensing reconstruction. Those techniques, indeed, rely on
the fact that lensing is mainly sourced by a scalar lensing
potential, such that an (almost) exact remapping can be
done between the intrinsic CMB maps at the last scattering
surface and the lensed ones nowadays. However, if o)
contributes significantly, new estimators for lensing
reconstruction would have to be developed. This task is
highly nontrivial and requires a proper analysis. We shall
postpone this investigation for future work.

However, independent of parameter estimation, detecting
higher-order corrections from CMB lensing would be
extremely interesting and allow not only a handle on non-
linear corrections to the gravitational potential, but also new
tests of general relativity on cosmological scales.
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APPENDIX A: D) (£) TERMS

In ¢ space, and starting from the result of [18] and of
Sec. V, we obtain the corresponding expressions to evaluate
the lensing corrections to the CMB polarization anisotro-
pies up to fourth order,

+7:2/dzf2/d2f3[(f+f2—f3)‘f3][(f+fz—f3)'f2]

rfr r—vr
Adr’ - DOy (r,? +

Fg V. —
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0 rsr

Dy (r, € —,)[E(ry, €y) + iB(ry, €3)]e 27, (A1)
O (r, 8 = £,)[E(ry, €3) + iB(ry, €5)] e
£y — E3)By (r, 6,)[E(r,, €3) + iB(ry, €3)]e5%,  (A2)
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We do not write the terms D*) and D!'?) because the
associated contributions to the angular power spectra of the
lensed polarization tensor vanish as a consequence of
statistical isotropy (see Sec. III).

APPENDIX B: LENSED ANGULAR POWER
SPECTRA FOR POLARIZATION

Following Sec. III and [18], we now present the
evaluation of the next-to-leading order corrections to
E- and B-mode polarization spectra. More details are given
in Ref. [18], where we compute, however, only the temper-
ature anisotropy spectrum. Therefore, for completeness, we
repeat the procedure here for the polarization spectra and
for the temperature polarization cross correlation.

1. Results C?M

Let us begin by evaluating the lensed cross correlation,
C‘?M. Up to next to next-to-leading order, we have
— v (P(E)M(E)) =5(¢ —¢')CEM
=35(£—¢')CEM = 2o (D(€) A(L")),

(B1)

where A(#) is given in Eq. (3.19) and we introduce

&)+ ) Dil(e

i+j<4
1<i<j

—|—'D(1111)(f),

D(#) = DO(#) + 24:

+ Zpuk

i+j+k<4
1<i<j<k

(B2)

the 2-dimensional Fourier transforms of D(x*) defined in

Eq. (2.4). We now introduce the expectation values F E,f"“>

(),
()

i), (83)

where the last definition applies when the coefficients
(ij...) and (i'j’...) are not identical. The Dirac delta
function §(¢ — ¢') is a consequence of statistical isotropy.
By omitting terms of higher than fourth order in the Weyl
potential and terms that vanish as a consequence of Wick’s
theorem (odd number of Weyl potentials), we obtain

+F<022) _|_F(0112) +F(oml) +F(f' ) +F;' :
+F<1 ‘2)+F§js“l>+F(2n)+F(”“> (B4)
where F(f """" ) 2"/'fF( ...,j...)
As the terms DU+ )are slmply related to the A+ terms,

also the terms F (e )

Cg”"j ) In fact using Eq. (3.13) and the results for the
D) and Al-) terms (see Sec. V, Appendix A, and [18]),

one finds that the F( “I) are given by the C;""]"') simply
by substituting

can be easily evaluated from the

Crl(zs) > —CEM (z;)e 7. (B5)

The substitution is performed for any Cj,}/’(zs) inside and
outside the integrals.

2. Results C5 +C5

Let us also evaluate C%+ C5. Proceeding as in the
previous subsection we have

(PEYP(£)) =5(£—¢")[CE+CE]

=5(¢—¢")[C;+ C7]+(D(Z)D(#")). (B6)
We now introduce M;i“') and M;i'“’j'“) given by
5(¢ — f/)M(;J'---Jj---) _ <D(ij..‘)<t:)2_)(ij ")(t’/»,
5 — ¢ \My" ) = (D) () DI ()
+ (DT (@D, (BT

where again the last definition applies when the coefficients
(ij...) and (i'j'...) are not identical. The delta Dirac
function 6(¢ — ¢’) is a consequence of statistical isotropy.
As before, by omitting terms of higher than fourth order in
the Weyl potential and terms that vanish as a consequence
of Wick’s theorem, we obtain

+M(£0 1%) +M;022) +M;onz) +M(fo1111)

(1 12) (1,111)

[CE+CP) =

+ M0+ P
(2.11)

+M,

+ MG (1.11).

+M, (B3)
As for the case of the F, (F-fi) terms, also in this case we
can obtam the M, (feesf- ) terms starting from the results for

the C ) These will be obtained by the C)(f
substitutlon

V1a the

023535-21



MAROZZI, FANIZZA, DI DIO, and DURRER

PHYS. REV. D 98, 023535 (2018)

C' () = Chlzy) + CE(zy), (B9)

performed for any C?A (z,) inside and outside the integrals.

3. Results C5-C5

Let us finally move to the evaluation of C&— C%.
Proceeding as in the previous subsections, we have

(P)P(£)) = 5(¢ + €')[CE — CBle4ive
=0(¢+ t’”)[C§ - C?]e“‘iw +(D@)D(¢)).
(B10)

(o)

We now introduce N P defined as follows:

(

+ (D7) (YD) (")), (B11)

where the last definition applies when the coefficients
(ij...) and (i'j'...) are different. The 5(Z +¢') is a
consequence of statistical isotropy and of the fact that,
in general, A(€) = A(—#). As before, by omitting terms of
higher than fourth order in the Weyl potential and terms that
vanish as a consequence of Wick’s theorem, we obtain

165 = 8] = [C5 - €8]+ N9 1 N 4 V1)
n N;OA) i N;O’B) 4 N;o,zz) n N;o,nz)
-l-N(fO’ml) +N;l,3) +N£,,2‘2) _i_N(fl,lZ)
+N;1.111) +N(£2’11> +N;11’11), (B12)
where N(fi...,j...) _ e4i‘/’f'1§/§f""'i"‘)

Like for the other terms, we can obtain the N(fi""j )

terms starting from the results for the C(fi""j )

stituting

by sub-

Ci'(z,) = [Cilz,) = CP(z)le™™,  (BI13)
for any CQ/I (z,) inside and outside the integrals.

Using these results, we obtain the corrections to the
different polarization power spectra. The general rules to
follow are specified in Egs. (3.15)—(3.17).

APPENDIX C: ROTATION ANGLE USING THE
SACHS FORMALISM

In this Appendix we determine the rotation angle of the
Sachs basis described in the main text, and show that
the result obtained is equivalent to the rotation angle of the
amplification matrix (the Jacobian of the lens map).

For this purpose, we work in GLC coordinates [40]
where photon directions are fixed and given by the
direction of the incoming photons at the observer. GLC

coordinates consist of a timelike coordinate 7 (which can
always be identified with the proper time in the synchro-
nous gauge [48]), a null coordinate w, and two angular
coordinates 8 (a = 1, 2). The GLC line element depends
on six arbitrary functions (Y, U%,y,;, = ¥»a), and takes the
form

ds® = T2dw? =2 dwdrt +y,,(d6° — Udw)(d6® — U dw)
(C1)

with a, b = 1, 2, where y,, and its inverse y** lower and
raise 2-dimensional indices. In GLC coordinates, the
past light cone of a given observer is defined by
w = w, = constant, and null geodesics stay at fixed values
of the angular coordinates #* = #% = constant (with 6¢
specifying the direction of observation). In these coordi-
nates, photon geodesics are given by k, = d,w, or, equiv-
alently, k# = Y~'8;. On the one hand, w represent the fully
nonlinear potential for the photon four-momentum k,. On

the other hand, the fact that 8 remain constant along the
photon path implies that they can be identified, up to some
internal d.o.f? [50,51], with the incoming photon direc-
tions, i.e., the observed direction of the source. This fact
ensures that observables evaluated in GLC coordinates are
already functions of the observed angles, as required.

To clarify the geometric meaning of these variables, let
us consider the limiting case of a spatially flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) Universe with scale
factor a(¢). In this case, the geodesic light-cone variables
are

w=r+n, T =a(r),
Yapd0°d0® = a?(1)r*(d6? + sin*0d¢?),

U =0,
(€2)

T=1,

where 7 is the conformal time of the FLRW met-
ric: dn = dt/a.

Let us now introduce the so-called Sachs basis {5}
[52,53], namely the two 4-vectors 3 (A = 1, 2) defined by
the conditions [54,55]:

95455 = Oaps (C3)

Fu, =0, Tk, =0, (C4)
RV ,54 = 0 (C5)

with T = o — K K w0k =)

(uaka>2 uak(l

“These internal d.o.f. can lead to some misalignment with the
observed angles if not properly addressed [49]. However, this
misalignment can just appear as some corrections at the observer
position and these are completely subleading with respect to the
lensing terms here considered.
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where IIj is a projector on the 2-dimensional space
orthogonal to the four velocity u, and to the spatial
photon direction n, = u, + (u%k,)™"k, with nn, = 1 and
nu, = 0.

Following [51], it can then be shown that in GLC
coordinates the screen space, normal to incoming photon
geodesics and the observer’s worldline, is simply given by
the 2-dimensional subspace spanned by the angles 6. We
can then restrict the discussion to the angular part of the
Sachs basis, which is determined up to a global rotation by
the equations [51]

KV, 54 =V.34 =0. (C7)

~awh __
YabS4SE = O,

Let us underline that this implies that the angular part of the
Sachs basis is parallel transported in GLC gauge. This is a
property of the GLC coordinates and is a consequence of
the way in which the angles are defined in this gauge.

The second condition of (C7) can be rewritten as
€*89,545,5 = 0, where €’ is the Levi-Civita symbol in
flat space. Note that an arbitrary orthonormal basis of the
screen allows a residual freedom of rotation given by
R € SO(2). Indeed, if s4 is a solution of y,,s%5% = Sap,
54 = R854 is also a solution, where

R = < c0§ﬂ sinﬁ>,
—sinf cosp

with an arbitrary rotation angle 8. Therefore, the expression
of the time-dependent rotation angle /3 is uniquely given by
the second condition in (C7). Starting from a generic
orthonormal zweibein (sz), in order to satisfy also the
second condition of (C7), we choose the rotation R such
that the rotated zweibein is parallel transported along
lightlike geodesics. To achieve this, the rotation angle j
has to satisfy the relation

(C8)

0. = %EABarsgsaB; (C9)
see also Appendix A of [51]. In [56], an exact expression
for f is obtained in this context [see Egs. (A3)—(A4)]. Let us
underline that the value of f is gauge invariant. Even
though we are performing the calculation in GLC gauge,
Eq. (C9) was obtained from the covariant Eq. (C5). This
covariant equation will always result in the same rotation
angle f# to lowest nonvanishing order, irrespective of the
gauge used. In fact, as a consequence of the higher-order
Stewart-Walker lemma [57,58], ﬂ(z) is gauge invariant since
both A1) and £© vanish.

Here we are interested in solving (C7) up to second order
in perturbation theory. In doing this we make use of
Poisson gauge, in particular we follow the approach of
[27] where Poisson gauge quantities are written in terms
of the GLC coordinates. Having this in mind, let us define
the background Sachs basis by

() worsr (g o). co

and to zeroth order

(75,(3,)>:a2(1)r2(r,w)<(1) sin(;@)' (C11)

We decompose the perturbed Sachs basis 54 uniquely into a
symmetric part and a rotation as follows:

S‘uA :)(abE}éRﬁ = saBRB! (C12)
where y,, is symmetric and R% is the 2-dimensional
rotation matrix defined above. The matrix y,, is chosen
to ensure y,;,s%s% = 8,5. Moreover, this decomposition is
very helpful because, as long as we expand y,;, and f up to
the desired order, their d.o.f. decouple, and we obtain y,,
and f respectively from the first and second conditions in
(C7). In this way, we obtain, to zeroth order

(0) ©)5b

Saa = VapSa

(C13)

where R can be fixed equal to 55. Due to the factorization

of the time dependence, we have that 9,(s¢)® « (5¢)©

(0) (0) (1)

and 8,}/533 Xy, At first order, y,, =7v,, +7v,, and

54 = (sf‘)@) + (sj;)m, and the normalization condition
yields

c 0 a c _ C 1 a
(s5) D + 75 (DO (s5) D (55)©) = —rihrial (s3) .
(C14)

From this equation, after some algebra, by expanding y,;,
and g in Eq. (C12) to first order, we uniquely obtain

Ko = Va2 (C15)

For our purpose, we expand f in Eq. (C8) up to fourth
order, since in principle we require the rotation of the Sachs
basis up to fourth order to compute all the contributions to
the next-to-leading order of the polarization spectra, i.e.,
p=pO + g1 4+ g2 4 g3 1 g Since the background
is isotropic and first-order perturbations are purely scalar
perturbations which do not induce rotation, #*) and V) do
not induce a local rotation of the basis and can be set to
zero. For completeness, we show this explicitly below.
Therefore, we can write the rotation matrix up to fourth
order as

(2))2
_ (ﬁ ) :|5g + (ﬁ(2) _,_/}(3) _|_/)7(4))€AB, (Cl6)

B:1
R[ .

Hence, the parallel transported Sachs basis is
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)2
Ej—RABsﬁ_{[l——(ﬂ;) ]5§+(ﬁ<2>+ﬁ<3>+ﬁ<4>)ef}
x[(s) @+ (s5) O + (s5) + (s5)P) + (s5) )]

a (ﬂ(2>)2 a\(0) (2) . B[(ca\(0) a\(1)
R ) (s) ™ +BPen®[(s5) + (s5)

+B%ea[(s5) 0 + (s5) V] + B e (s5) ),

+(55)®)

(C17)

where (s4) is an arbitrary orthonormal zweibein
on the screen and we have used the fact that, up to first
order, (s%) can be chosen such that there is no rotation,
hence 3% =s%. In the main text, we note that S0
and B do not contribute at next-to-leading order for
reasons of statistical isotropy; we can thus just focus on
determining p?

Before that, we prove that the solution (C15) combined
with Eq. (C9) implies g(") = constant. Of course, )

constant since our background is isotropic. Indeed,
Eq. (C9) for the background yields
0.0 = —eAB@ < (54) % (s45)

& 6 (SZ)(())(saB)(O) = eAB(SAB = O’ (CIS)

because €8

is antisymmetric whereas 45 iS symmetric.
With a global rotation we can choose A© =0, so
REO) = 58 as we already said above. In the same way,

we can show that 9,41 vanishes. We have that

9 = = g0 5) )

— 2B (5 (505) 0

— 2D (5) O (5,5)
e, ()0 sy c19)

Considering that the last two terms cancel and using
B (59) 0 (s5)0) & e* [56], we obtain

L an ap (1) (0 L. 1
.50 — ~F e D~ Ge boy\l, (C20)
which vanish separately for arbitrary functions F and G
because in both cases the epsilon tensor is contracted with a
symmetric expression. This means that 50 + ()
be set equal to zero, RO = 58 and

can also

m_ 1w

gaA - 2},ab (CZl)

or

i 1
(390 = — =yl (s4)©.

2 (0)/ ba (C22)

Let us now determine the second-order contribution to
the Sachs basis. The orthogonality condition at the second

order is
V7D (9O (s5)@ (55)©)

(s5)C
3 a 2 C

= 2 (D Or el v = DOty (C23)

which gives

@_ 1o 1 m 40

Xab =5 ¥ap ~glacto Vap- (C24)
SO
(gAa)(z) = (sAa)(z) +ﬂ<2) (SaB)(O)€§
B G Fa = %ﬁ??ﬁﬁ?) (s)®
+ B (s45) 0} (C25)

We now compute the rotation angle using Eq. (C9). At
second order, it yields

1
0.5 = 2 (0, (55) Vs

+0,(s9)Os5) + 0.(s9)Vsly].  (C26)

It is easy to verify that the first and second terms on the rhs
of Eq. (C26) cancel just as for the first-order rotation angle.
We focus on the remaining term,

1
0, (s3) sty = = B0, i) (55) Oy (s5)

4
1 " ), . 1
~ 2 0urs (55) O (55)©
1 1
_Ze ?’( )ygac)a (sg)(())y(ad)(s%)(())'
(C27)
Using the identities 8 ( 54O (s5)0) =y 01/ 2eab  with
detyi%) =7y and 9,(s4)? = ia(o) (s4)© ), as well as
the antisymmetry of €¢, Eq. (C27) simplifies to
1 _
€ABaT(SA> EzB? 47/(01/2 ab arybce 71(1"1) (C28)
Hence,
1 _
8. = — (1/2 @Oyl (C29)

The first-order perturbations of the angular part of the
(1)

metric, y,,, can be expressed in terms of the first-order
deflection angle in Poisson gauge as follows (see [27]):
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7hn = 16l 00°V + 75 9,0°0 (C30)

Using also 817ab =1 d’y(o yib) , we obtain the second-order

rotation in terms of ﬁrst—order deflection angles,

I _
ezﬂ@>=-—§n$”agzeﬂwemﬁﬁ

1 _ip
EUOR
1 517 1) gedy (1)
16 Yo it Vet
70

1 970

16 3/)2

]/ce 3}) 0, ge(l) ged a)

yi e 0,0 Mectyly). (C31)

We finally express the rotation angle in term of the Weyl
potential. Using the expression for the deflection angle
given in the main text, Eq. (2.9), we obtain

'70 c
05 =ay ey, v 0, / dma®(m)y(3)(m)
n
’70 '7(1
X dn,0;®y(n,)0,0, dn3 @y (173)
m n
_ Mo
+a2}’(01>/2€abab/ dmaz(m)yf(%(m)
n

Mo No
X/ dﬂzad‘bw(ﬂz)aﬁa/ dns @y (n3). (C32)
m n

Note that here @y (;) = @y (n;,n(n, —n;), where 5, is
present time and n is the directions of the geodesic given by
6. This expression can be further simplified using r; =

n, —n; and y(g ) = [a(7)r(z, w)]—Zf,El(l)a) = [a(ﬂ)r]—2?f’()b). We
then find®
(2) 1'\—1/2 ablp(z)
w - _5}/(0) € ab

Y ab/""drr

where we have used the relation

/dr
0

’ {v Vedy (r )/’dr1

_ 2€ab/ dr/ dry |:V & CDW r / ler/ dr}vbv ®W(r3):|
/ dr/ drif(r —hm[

A—l/z

anﬁ( ) —2 abwd/ drl/ drzahad‘bw "2)

X / dr38a8C(I)W(r3).

0

(C33)

Here we have used @y (r;) = @y (1, — r;, nr;). This result
can be integrated to yield [we use [ dp= [y dr and

(’70) = O]
ﬁm(rs) = 2e A”%/ drl/ dr,V,V, (Dw(rz)

X /rdr3vach)w(r3),
0

adopt the boundary condition g2

(C34)

where, in going from partial to covariant derivatives, we go
from standard angular derivatives to normalized angular
derivatives [e.g., 9; — (1/sin 5)8,7,].

Of course a global (time-independent) rotation is irrel-
evant; what has physical meaning is just the difference of
this angle between the source and the observer position,
namely Ap = f(n,) — B(n,). Therefore, the choice ) =
A =0 is irrelevant.

We now show that (> agrees with the rotation angle in
the amplification matrix, which is of the form [see, e.g.,
Eq. (2.9) of [18]]

; 00¢ l-x 0 AN £
=)= (0" 120+
00, 0 1-x -2 71
N ( 0 —w)
o 0)
At first order @ vanishes for scalar perturbation. At second

order, scalar perturbations induce nonvanishing vector and

tensor perturbations and therefore also a nonvanishing w(®.

In order to compute ), we insert the expression for ‘be)

given in Eq. (2.15) of Ref. [18],

r—r

P vacq)w(rl)]

(C35)

/ drlf(rl)}

(C36)

*Hereafter, we move between the proper time in GLC and the conformal time 7 in Poisson gauge simply considering the background
relation 9, = a™! 9, In theory, we should go from the 7 variable to the background variables corresponding to our observed redshift, but
the effect of neglecting this is always subleading in the number of angular derivatives.
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for both inner and outer integrals. The third line of Eq. (C35) can be further transformed as follows:

2) = peab /rSd;/rdrl [d </rl dmvaV"CDW(M)) / l drz/ dr;V,V. ¢W(r3)]
o " Jo dr 0
= Q¢ A"%Ardrlvach)w(”)/ drz/ dr3V,V @y (r3)
, rs dr r r r d}"2
— D¢l / _2/ dr, / dr4VuVCCI>W(r4)— / / driV,V @y (r3)
o Jo 0 dr
= Q¢ /rSd—;/rdiaVCd?W(rl)/ drz/ dr3V,V @y (r3)

_2€ub/ dr/ drl |:/ dr4VaV"<I>W(r4)/ ]dr3vbch)W(r3):|
0

— 2¢b /rr dr/ dry / dr4vach)w(r4)/rl dr;V,V Dy (r3)].
0

To obtain (C37), we have performed an integration by parts
in the first and second lines of the previous expression. The
last term in Eq. (C38) vanishes: indeed, the antisymmetric
tensor €*” multiplies a symmetric expression. This proves
the equivalence of the rotation angles w® and )

This is not surprising. While the lens map really
describes the change of the position in the sky due to
lensing by foreground structures, the amplification matrix
gives the variation of this change as a function of direction.
On the other hand, the geodesic deviation equation, which
is solved to obtain the rotation of the Sachs basis, yields to
change of the distance vector between neighboring geo-
desics projected onto the screen. If these maps contain a

2 s re —
= d s
(2ﬂ)2A " rer
2

rS r
_ dar
(2r)? /) " rer

rrq

_r/dzflfluffq)w(z, f])e_if"x/rdrl
r 0
r/rdﬁr_rl/dzf1/dzfz€“bflaf2b(f £2) Py (2. )Py (z), 8,) e 1HE)x

/ dI"] N /dzfl /dzfzn fz A f])(f fZ)(DW(Z f])‘bw(Z],fz) i(#1+8)x
0

(C37)

(C38)

nontrivial rotation, to lowest nonvanishing order these
rotations do agree.

We finally express f(2) in # space. Using the flat sky
approximation, we expand the Weyl potential in Fourier
space,

1 .
Dy (z,x) = 2—/d2fCI)W(z, £)e . (C39)

T

As in the main text, to each redshift z there corresponds a
comoving distance r(z). Inserting this expansion into
Eq. (C34), we find

v —

rrrl / 25022 Py (21, €)™
1

(C40)

Here, we remember, #n is the direction of the light ray, orthogonal to the plane containing the & vectors. Then, by applying
Limber approximation and using Eqs. (6.18) and (6.19), we obtain

_/rs@/ drl/df 1423 s s (7=
Jo P 32(2x)?

rrq

2 — 2
) (rs r) PR<KI+1/2>PR(L”2+1/2>
ryr r ry
+1/2 tH+1/2 2
X |:Tq>+\11( s , / 7Z>Tq>+\p<—2 " / ,Z[>:| .

(C41)
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APPENDIX D: FISHER ANALYSIS

We briefly summarise the Fisher formalism adopted in
this work to estimate the theoretical bias introduced by
neglecting next-to-leading order lensing. In the ideal case
of a cosmic variance limited survey, the Fisher matrix is
defined by

(C1)?
2 (ciMy?

0 0

To estimate the impact on the cosmological parameter
estimation induced by neglecting a correction AC, on the
leading contribution C,, we follow the formalism intro-
duced in Refs. [60-62]. Therefore, the shift of the best fit is
determined by

A, =Y [F7',By. (D3)
p
with
X 8C; -1
By=> Y ACK S0 Covay, (D4)
7 XY 4p

(1)
(C7)
cy M cicEM

Fy= Y Y GG oy o

[X Yp

where X and Y denote the corresponding power spectra
(M, E,EM, B), q, are the cosmological parameters, and
the covariance matrix is [59]

cy oM
CECEM 0
1 EML‘;2 ‘ M ~E (DZ)
5((CM)° + ¢ Cy) 0
0 (C5)?

Strictly speaking, a Fisher matrix analysis applies only
for Gaussian distributions, which is not the case for
cosmological parameters in general and even less for
higher-order corrections. But to lowest order in the
deviation from the best-fit value every statistic is
Gaussian, and hence for the tiny deviations that we find
a Fisher analysis is expected to be sufficient. The impact of
deviation from Gaussian statistics of the lensed power
spectra has been studied in [44], concluding that the errors
induced on the (M,E&,EM) lensed power spectra are
negligible, while on B modes the Gaussian approximation
may underestimate the variance.
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