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We investigate the effects of a disformal coupling between dark energy and dark matter in the predictions
of the spherical collapse and its signatures in galaxy cluster number counts. We find that the disformal
coupling has no significant effects on spherical collapse at high redshifts, and in particular during matter
domination epoch. However, at lower redshifts, the extrapolated linear density contrast at collapse close to
redshift z ≲ 1 and overdensity at virialization can be strongly suppressed by a disformal coupling between
dark energy and dark matter. We also find that disformal coupling can have different imprints on cluster
number counts compared with conformal coupling, such that the disformal coupling can strongly suppress
the predicted number of clusters per redshift interval at z > 0.1 while enhance the number of cluster at
z < 0.05. Using the specifications of eROSITA survey, we find that the disformal coupling between dark
energy and dark matter can be tightly constrained by cluster number counts.
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I. INTRODUCTION

The observational data of Supernova Type Ia (SN Ia)
[1–3], cosmic microwave background radiation [4–6],
large-scale structure surveys (LSS) [7,8] indicate that
currently the Universe is in the phase of accelerating
expansion. In order to explain this phenomenon, we can
assume that dynamics of the present universe is dominated
by dark energy. The observations strongly indicate that the
dark energy component corresponds to 70% of the total
energy density of the universe. Currently, properties of the
dark energy are still unknown. There are many candidates
to the dark energy, for instance cosmological constant [9]
and scalar fields or quintessence models [10].
Since the nature of dark matter and scalar field candidates

to the dark energy are obscure, we can explore properties of
dark energy by supposing that dark energy can be coupled
with dark matter [11–14]. Although the couplings between
dark energy and darkmatter arewellmotivated from theories
of particle physics and high energy physics [15–18], it could
be more convenient to gain our understanding in general
how coupling between dark energy and dark matter can
influence the observed universe using phenomenological

forms of the couplingwhich havebeenvariously proposed in
literature [19–29], However, it is also interesting to study the
coupling which arises from theoretical motivation. The
couplings between dark energy and dark matter can be a
consequence of frame transformation of the gravity action.
The general transformation of frame which preserves causal
structure of the theories is disformal transformation [30–33],
and the coupling resulting from this transformation is known
as disformally coupled. Influences of the disformal coupling
between dark energy and dark matter on evolution of the
background universe have been investigated in [34–37],
while influences of the couplings on perturbations in the
universe, i.e., CMB anisotropies, growth of structures, have
been studied in [38–41].
In order to investigate structure formation of matter

(ordinary and dark matter), several authors have used
N-body simulations to simulate formation of structure
[42–44]. Another easier method for studying the structure
formation and the influences of the dark energy to the
overdense regions is the spherical collapse model [45–51].
Using spherical collapse model together with Press-
Schechter or Sheth-Torman formalism, cluster number
counts of halos can be estimated. The cluster number
counts can be used to study influence of the dark energy to
overdense regions, test and discriminate among the dark
energy models. In [52], evolution equations for nonlinear
perturbations for coupled dark energy models have been
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derived, and linear as well as nonlinear density contrast at
virialization for ΛCDM and the coupled dark energy
models have been analyzed using spherical collapse. The
influences of the coupling between dark energy and dark
matter on cluster number counts are investigated in [53,54].
In [55], the effect of power law f(T) gravity to spherical
collapse and cluster number counts is studied by comparing
the results with ΛCDM model. The number density of
galaxy clusters is investigated for various form of the
potential of dark energy in [56].
In this work, we investigate influences of disformal

coupling between dark energy and dark matter on spherical
collapse and cluster number counts. The covariant form
of the disformal coupling between dark energy and dark
matter is presented in Sec. II. In Sec. III, the necessary
evolution equations for the background universe, linear,
and nonlinear perturbations for studying spherical collapse
in disformally coupled dark energy model are shown.
Effects of disformal coupling on spherical collapse and
cluster number counts are investigated in Secs. IV and V,
respectively. The conclusions are given in Sec. VI.

II. DISFORMAL COUPLING BETWEEN DARK
ENERGY AND DARK MATTER

Under the disformal transformation the metric tensor is
transformed as

ḡμν ¼ CðϕÞgμν þDðϕÞϕ;μϕ;ν; ð1Þ
where subscript ;μ denotes partial derivative with respect
to xμ. Here, we consider the case where the conformal and
disformal coefficients C and D depend on ϕ only. The
inverse of the above metric is

ḡμν ¼ 1

C2
ðCgμν −Dϕ;μϕ;νÞ: ð2Þ

Let us now suppose that the field ϕ plays a role of dark
energy, so that the interaction between dark energy and
dark matter can occur when the Lagrangian of dark matter
depends on metric ḡμν given in Eq. (1). Thus we write the
action for gravity in terms of metric gμν and write the action
for dark matter in terms of ḡμν as

S¼
Z

d4x
� ffiffiffiffiffiffi

−g
p �

1

2
RþPðϕ;XÞ

�
þ ffiffiffiffiffiffi

−ḡ
p

Lmðḡμν;ψ ;ψ ;μÞ
�
;

ð3Þ

where we have set reduced Planck massmp¼1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼1,
Pðϕ; XÞ≡ X − VðϕÞ is the Lagrangian of the scalar field,
X ≡ −ϕ;μϕ

;μ=2, VðϕÞ is the potential of the scalar field and
Lm is the Lagrangian of dark matter. We will neglect baryon
and radiation in our consideration, because we will concen-
trate on the evolution of the universe during matter and dark
energy dominated epochs and baryon has no direct coupling

with dark energy. Varying this action with respect to gαβ,
we get

Gαβ ¼ Tαβ
ϕ þ Tαβ

m ; ð4Þ

where Gαβ is the Einstein tensor computed from gμν, and
the energy momentum tensor for scalar field and dark matter
are defined in unbarred frame as

Tμν
ϕ ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

Pðϕ; XÞÞ
δgμν

; ð5Þ

Tμν
m ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi

−ḡ
p

LmÞ
δgμν

: ð6Þ

Using these definitions of the energy momentum tensor,
Eq. (4) implies ∇αðTαβ

ϕ þ Tαβ
m Þ ¼ 0. However, we see that

the energy momentum tensors of dark energy and dark
matter do not separately conserve because the Lagrangian of
dark matter depends on field ϕ. The energy momentum
tensor in the barred frame is related to that in the unbarred
frame defined in Eq. (6) as

Tαβ
m ¼

ffiffiffiffiffiffi
−ḡ

pffiffiffiffiffiffi−gp δḡρσ
δgαβ

2ffiffiffiffiffiffi
−ḡ

p δð ffiffiffiffiffiffi
−ḡ

p
LmÞ

δḡρσ
¼

ffiffiffiffiffiffi
−ḡ

pffiffiffiffiffiffi−gp δḡρσ
δgαβ

T̄ρσ
m : ð7Þ

Varying the action (3) with respect to ϕ, we obtain

ϕ;α
;α − V;ϕ ¼ ∇β

� ffiffiffiffiffiffi
−ḡ

pffiffiffiffiffiffi−gp T̄αβ
m Dϕ;α

�

−
1

2

ffiffiffiffiffiffi
−ḡ

pffiffiffiffiffiffi−gp T̄αβ
m ðC;ϕgαβ þD;ϕϕ;αϕ;βÞ

≡Q; ð8Þ

where ; denotes the covariant derivative and a subscript ;ϕ

denotes derivative with respect to ϕ. Multiplying the above
equation by ϕ;λ, we get

Qϕ;λ ¼ ∇αTαλ
ϕ ¼ −∇αTαλ

m : ð9Þ

According to [37,39], the barred quantities in the interaction
termQ can be written in terms of unbarred quantities, so that
Q can be written as

Q ¼ 1

2C2
½ðCD;ϕ − 2C;ϕDÞϕ;αϕ;βT

αβ
m

− CðC;ϕgαβT
αβ
m − 2Dðϕ;αβT

αβ
m þ ϕ;α∇βT

αβ
m ÞÞ�: ð10Þ

III. EVOLUTION EQUATIONS

In this section, we will present necessary evolution
equations for studying spherical collapse in coupled dark
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energy model. The spherical collapse model is a simple tool
to follow the growth of nonlinear overdensity of matter
inside spherical region embedded in the background uni-
verse where in the usual case the overdensity inside the
region is assumed to be uniformly distributed. The uniform
distribution of overdensity can be described by the top hat
density profile in which the overdensity ρðt; r0Þ ¼ ρðtÞ
when the distance from the center of the region r0 does not
exceed radius of the region, but zero otherwise. Evolution
of the radius of the region is governed by magnitude of the
overdensity inside the region ρðtÞ which is time-dependent.
In the spherical collapse model, dynamics of the spherical
region containing overdensity ρ obey the following
“Friedmann equation”:�

_r
r

�
2

¼ 1

3
ρ −

K
r2

¼ 1

3

X
α

ρα −
K
r2
; ð11Þ

̈r
r
¼ −

1

6
ðρþ 3pÞ ¼ −

1

6

X
α

ðρα þ 3pαÞ; ð12Þ

where a dot denotes derivative with respect to time t, index
α runs over the matter component evolving the evolution of
the region, r is the radius of the spherical region, p is the
total pressure of the matter inside the region, ρα and pα are
the energy density and pressure of the αth component of
matter. The parameter K defines the critical energy density
which is the minimum density required to make the region
collapse. Practically, processes of spherical collapse can
be studied by computing the evolution of the overdensity
inside the spherical region from evolution equation for
nonlinear density perturbation. For the case where the dark
energy is in the form of scalar field with canonical kinetic
term and has no direct interaction with dark matter, the dark
energy is not expected to cluster on small scales because its
effective sound speed for density perturbations equals to
speed of light. In coupled dark energy models, the
interaction between dark energy and dark matter may alter
the effective sound speed of density perturbation of dark
energy, and consequently the dark energy can cluster on
small scales. However, According to Eq. (10), the effective
sound speed of dark energy is not modified by the
disformal coupling because the coupled term does not
contain the term that is proportional to second order spatial
derivative of ϕ when dark matter is a pressureless perfect
fluid. Hence, only the dark matter and baryon density
contribute to the dynamics of the spherical collapse in this
case. Since the interaction between dark energy and dark
matter modifies the growth rate of the density perturbation
of dark matter compared with baryon which is not expected
to have direct interaction with dark energy, the overdensity
of dark matter and baryon collapse with different rate in
coupled dark energy models. As a result, the ratio of baryon
density to dark matter density in the clusters is influenced
by the interaction between dark energy and dark matter

[57,58]. However, to avoid the complexities of the col-
lapsing processes, we do not consider this influence and
ignore baryon in our consideration similar to the analysis in
[27,52]. Before introducing the evolution equation for
nonlinear perturbation in disformally coupled dark energy
model, let us first present evolution equation for the
background universe in the following section.

A. Evolution equations in the FLRW universe

Using the Friedmann-Lemaître-Robertson-Walker
(FLRW) line element,

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð13Þ

Eq. (4) yields

H2 ≡
�
_a
a

�
2

¼ 1

3

�
ρm þ 1

2
ð _ϕÞ2 þ VðϕÞ

�
; ð14Þ

where ρm is the energy density of dark matter. Furthermore,
the interaction terms Q in Eq. (10) becomes

Q ¼ 1

2C2
f2ðCD;ϕ − 2C;ϕDÞXρm

þ C½C;ϕρm þ 2Dðϕ̈ρm þ _ϕð_ρm þ 3HρmÞÞ�g; ð15Þ

In the above expression, all quantities are evaluated in the
background universe, such that X ≡ ð _ϕÞ2=2. Inserting this
expression for the interaction terms into Eq. (9), we can
compute the expression for _ρm. Substituting the expression
for _ρm back into Eq. (15), and then inserting the result into
Eq. (8), we get [37,39]

ϕ̈þ 3H _ϕþ V;ϕ

¼ 4CC;ϕDX þC2½2Dð3H _ϕþ V;ϕÞ − ðC;ϕ þD;ϕXÞ�
2C2½CþDðρm − 2XÞ� ρm

≡ −Q0; ð16Þ

Using the above results, it can be shown that the evolution
equations for ρm is

_ρm þ 3Hρm ¼ Q0
_ϕ: ð17Þ

B. Evolution equations for the perturbations
on small scales

In order to obtain evolution equations for spherical
collapse, we first compute the evolution equations for
density contrast δm ≡ δρm=ρm and velocity perturbation
vim for dark matter on small scales. Since the dark matter is
usually modeled by pressureless perfect fluid which has no
anisotropic perturbation, and disformal coupling between
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dark energy and dark matter cannot generate anisotropic
perturbations [39], the line element can be written in the
weak field limit as

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ð1 − 2ΦÞδijdxidxj: ð18Þ

On small scales, the Einstein theory of gravity converges to
Newtonian limit in which the component μν ¼ 00 of the
perturbed Einstein equation yields [52,59,60]

∂i∂iΦ≡∇2Φ ≃
1

2
δρm: ð19Þ

On sufficiently small scales, we have ∇2δϕ ≫ δϕ̈, Hδ _ϕ,
where δϕ is the perturbations in ϕ, so that Eq. (8) yields
[38,52,59,60]

∇2δϕ ¼ δQ; ð20Þ

where δQ is the perturbation in the coupling term Q. Since
δQ is time-dependent, the above equation suggests that
the perturbations in dark energy field as well as density
perturbation of dark energy are also time-dependent.
However, this temporal variation of the field perturbations
is negligible compared with the spatial variation on small
scales on which spherical collapse model is operated. In the
situation where the dark energy does not cluster on small
scales, the density perturbations of dark energy are always
negligible compared with density perturbations of dark
matter on small scales inside the collapsing region. Hence,
the temporal variation of perturbations in dark energy field
does not affect the metric perturbation given in Eq. (19) and
the perturbations in coupling term δQ. As a result, the
nonlinear growth of matter perturbation inside the collaps-
ing region weakly depends on temporal variation of
perturbations in dark energy field. The dark energy mainly
influences processes of spherical collapse through the
background evolution in our consideration. The evolution
equations for δm and vim can be computed from Eq. (9) by
using the energy momentum tensor for dark matter of
the form

Tm
αβ ≡ ðρm þ δρmÞUαUβ; ð21Þ

where ρm is the background energy density of dark matter,
Uα ¼ ð1 −Φ; vimÞ is the four velocity of dark matter and vim
is the 3D comoving velocity of dark matter. Applying the
small scales approximation to Eq. (9), the component λ ¼ 0
of Eq. (9) on small scales becomes

_δm ¼ −ð1þ δmÞ∂ivim − vim∂iδm − fQ0
_ϕ δm þ δQ

ρm
_ϕ; ð22Þ

where δm ≡ δρm=ρm and

fQ0 ≡Q0

ρm

¼ −
4C;ϕDX − CðC;ϕ − 2Dð3 _ϕH þ V;ϕÞ þ 2D;ϕXÞ

2C½CþDðρm − 2XÞ� :

ð23Þ

Similarly, the component λ ¼ i of Eq. (9) on small scales
becomes

_vim ¼ −ð2H þ fQ0
_ϕÞvim − vjm∂jvim − ð∂iΦþ fQ0∂iδϕÞ:

ð24Þ

The perturbations in the interaction term δQ appearing in
Eqs. (20) and (22) can be computed by applying the small
scales approximation to Eq. (10). On small scales, the
dominant contributions in δQ computed from Eq. (10) are

δQ
ρm

¼ D _ϕ

C
½_δm þ ð1þ δmÞ∂ivim þ vim∂iδm� þ fQ0δm: ð25Þ

Substituting the above equation into Eq. (22), we get

_δm ¼ −ð1þ δmÞ∂ivim − vim∂iδm: ð26Þ

Inserting Eq. (26) into Eq. (25), the term _δm can be
eliminated and the resulting interaction term is

δQ
ρm

¼ fQ0δm: ð27Þ

Hence, Eq. (20) becomes

∇2δϕ ¼ fQ0δρm: ð28Þ

In order to derive the nonlinear evolution equation for δm,
we apply the assumption for top hat density profile [52] to
Eqs. (24) and (26), and differentiate these equations with
respect to time. After eliminating ∂i _vim from the resulting
equations, we get

δ̈m ¼ −ð2H þ fQ0
_ϕÞ_δm þ 4

3

_δ2m
1þ δm

þ ð1þ δmÞð∇2Φþ fQ0∇2δϕÞ: ð29Þ

Substituting Eqs. (19) and (20) into the above equation,
one can see that the evolution of δm on small scales is
independent of length scales which is compatible with top
hat density profile. In spherical collapse model, the non-
linear growth of δm on small scale inside the collapsing
region can depend on the length scales when sound speed
of dark energy is much smaller than unity but significantly
larger than zero [61]. For this case, the overdensity inside
the collapsing region is not compatible with the top hat
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density profile, and the calculation in the standard spherical
collapse model is required to be modified.
To connect the evolution of the radius r of the top hat

region containing nonlinear density contrast δm with the
evolution of δm, we use the assumption that the energy-
momentum transfer between dark energy and dark matter
due to direct interaction modifies effective mass of dark
matter particle rather than changes the number of dark
matter particle. Hence, the top hat number density n of
dark matter inside the region with radius r relates to the
number density n̄ of dark matter in the background universe
as n ∝ n̄ða=rÞ3. Let MðtÞ be an averaged effective mass of
dark matter particle inside the top hat region, and M̄ðtÞ
be an effective mass of dark matter particle in the back-
ground universe, the ratio between the overdensity inside
the top hat region and the energy density of dark matter in
the background universe can be written as ρm=ρ̄m ¼
MðtÞn=ðM̄ðtÞρ̄mÞ ∝ ðMðtÞ=M̄ðtÞÞða=rÞ3. In the standard
spherical collapse model, the ratio MðtÞ=M̄ðtÞ can be
computed by integrating the conservation equations with
coupling terms for ρm, while the evolution of r still obeys
Eqs. (11) and (12) [52,62]. Alternatively, the influence of
the coupling between dark energy and dark matter on the
evolution of the radius r can be presented in terms of the
extra force in the evolution equation for r if the contribution
from dark energy interaction is not taken into account in
the relation between overdensity and radius of the top hat
region. Setting MðtÞ=M̄ðtÞ ¼ 1, we have [52]

1þ δm ¼ ð1þ δm;inÞ
�
a
r

�
3

; ð30Þ

where δm;in ≪ 1 is the initial values of δm and we have set
r ¼ a initially. Differentiating the above equation with
respect to time and comparing the result with Eq. (29), we
will obtain the modified version of Eq. (12) which contains
the extra force terms associated with the coupling between
dark energy and dark matter. The derivation of the
evolution equation for r with extra force term from
Eqs. (29) and (30) is performed in [52]. This evolution
equation is equivalent to that is used in [57]. Comparison
between the standard spherical model and alternative
approach is presented in [52,62].

IV. SPHERICAL COLLAPSE

In order to perform further study, we use

C ¼ eλ1ϕ; D ¼ M−4
d eλ2ϕ; V ¼ M4

veλ3ϕ; ð31Þ

where λ1, λ2, and λ3 are the dimensionless constant
parameters, while Md and Mv are the constant parameters
with dimension of mass. Using the dimensionless variables

x21 ≡
_ϕ2

6H2
; x2 ≡ V

3H2
; x3 ≡DH2

C
; ð32Þ

we can write the evolution equations for the background
universegiven inSec. III A in the autonomous formas [36,37]

x01 ¼
1

2
ðx1ð3x21 − 3x2 þ 1Þ − 2ð

ffiffiffiffiffiffiffiffi
3=2

p
λ3x2 þ 2x1ÞÞ

−
ffiffiffi
3

p

2
ffiffiffi
2

p ðx21 þ x2 − 1Þ

×
λ1ð12x21x3 − 1Þ − 6x3ðλ2x21 −

ffiffiffi
6

p
x1 − λ3x2Þ

1 − 3x3ð3x21 þ x2 − 1Þ ; ð33Þ

x02 ¼ x2
	 ffiffiffi

6
p

λ3x1 þ 3x21 − 3x2 þ 3


; ð34Þ

x03 ¼ −x3
h
3x21 þ

ffiffiffi
6

p
ðλ1 − λ2Þx1 − 3x2 þ 3

i
; ð35Þ

where a prime denotes derivative with respect to N ≡ lna.
The evolution of the background universe is completely
described by the above equations. The density parameter of
darkmatterΩm is related to the above dimensionless variables
through Eq. (14) as

1 ¼ x21 þ x2 þΩm: ð36Þ

Using the definition in Eq. (32), x3 can be expressed in terms
of x2 as

x3 ¼
DM2

pH2

C
¼ M2

pH2

M4
d

eðλ2−λ1Þϕ=Mp

¼ M2
pH2

0E
2

M4
d

�
3M2

pH2
0

M4
v

E2x2

�ðλ2−λ1Þ=λ3
; ð37Þ

where E≡H=H0 andH0 is the present value of the Hubble
parameter. The reduced Planck mass is restored in the above
expression to avoid confusion. From observations, we have
M2

pH2
0 ≃ 2.7 × 10−47 GeV4 ≃ 27 meV4. We choose Md ¼

Mv ≃ 1=0.55 meV [38]. It follows from Eqs. (33)–(35) and
(37) that the evolution equations for x1, x2 and E also form a
complete set of evolution equations for the background
universe. Since the evolution of E is required to compute
cluster number counts in the next section, we solve the
evolution equations forx1, x2 andE instead of those for x1, x2,
and x3. The evolution equation for E can be computed by
differentiating Eq. (14) with respect to N yielding the result

E0

E
¼

_H
H2

¼ 3

2
ðx2 − 1 − x21Þ: ð38Þ

In order to numerically solve evolution equations for the
background universe, we set initial conditions for x1 and x2
such that the density parameter of dark energyΩd takes value
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0.7 at present and equation of state parameter of dark energy
wd lies within the range −1 < wd < −0.9. The initial values
for E is chosen from the requirement that E ¼ 1 at present.
We now discuss evolution of the background universe. The
coupling term fQ0 can be written in terms of dimensionless
variables as

fQ0 ¼
λ1 − 6ð2λ1 − λ2Þx3x21 − 6λ3x2x3 − 6

ffiffiffi
6

p
x3x1

6ð1 − 3x21 − x2Þx3 þ 2
: ð39Þ

Inserting Eq. (39) into Eq. (17), we get

_ρm þ 3H

�
1 −

ffiffiffi
2

3

r fQ0x1

�
ρm ¼ 0: ð40Þ

During matter domination, we have x1, x2 ≪ 1, so that
Eq. (39) becomes

fQ0 ¼
λ1

2þ 6x3
: ð41Þ

This suggests that during matter domination, the effects of
the conformal coupling quantified by λ1 are suppressed by the
amplitude of disformal coefficient quantified by x3. For
the case where 0 < λ1, jλ2j, jλ3j≲ 1, and Md ∼ 1 meV,
the expressions in Eq. (37) gives x3 ∼ E2 ≫ 1 during matter
domination. Hence, the disformal coupling can strongly
suppress effects of the conformal coupling as well as the
total magnitude of the coupling during matter domination. In
addition to the suppression due to the disformal coupling, the
effect of the coupling term in Eq. (40) can be reduced if dark
energy slowly evolves, i.e., x1 ≪ 1. The magnitude of x1 is
mainly controlled by slope of the potential of dark energy
which depends on the parameter λ3. The other main different
feature of the disformally coupled models compared with
pure conformally coupled models is that the disformal
coupling can lead to largemagnitude of the coupling between
dark energy and dark matter at late timewhile the coupling is
negligible during matter domination. It follows from the
Eq. (39) that for λ3 < 0, the third term in the numerator can
enhance the magnitude of the coupling when x2 ∼ 0.7 and
x3 ∼ 1 at late time. For the pure conformally coupled model,
Q̃0 ¼ λ1=2 during both dark energy and matter domination,
so that the evolution of the universe duringmatter domination
may become unphysical if λ1 ∼ 1. Duringmatter domination,
if λ1 ∼ 1 and ρd ≪ ρm, where ρd is the background energy
density of dark energy, the last two terms on the left-hand side
(LHS)ofEq. (16)will bemuch smaller than the coupling term
on the right-hand side (RHS). Consequently, the dark energy
field ϕ will be strongly driven by “external force” Q0, and
thereforematter dominated epochwill stop quickly andusuall
acceleration epoch cannot start properly. However, if ρd is not
too small compared with ρm during matter domination, the
universe can evolve properly although λ1 > 1. This situation
occurs, for example, when dark energy establishes scaling

solution during matter domination in the quintessence model
with exponential potential (see, e.g., [53]). In this case, dark
energy in the matter dominated epoch can give a significant
contribution to the spherical collapse and cluster number
counts [63]. Inour consideration,we suppose that dark energy
slowly evolves throughout the whole evolution of the uni-
verse, so that ρd ≪ ρm during matter domination. To check
influences of the coupling term fQ0 on the evolution of ρm, we
plot in Fig. 1 evolution of ρ̃m ≡ a3ρm=ρm0. Here, ρm0 is the
present value of ρm. From the plot, we see that ρm ∝ a−3 at
high redshifts. For a fixedρm0,ρm at a given redshift decreases
when λ1, −λ2 increase for λ3 ¼ −1, because fQ0 increases in
this situation. It follows fromEq. (39) that fQ0 increases when
λ1 increases. According to Eq. (37), a negative λ2 can enhance
x3 at late time for negative λ3, because3M2

pH2
0E

2x2=M4
v > 1.

In the case where λ3 ¼ −1, the third term in the numerator of
Eq. (39) can give a dominant contributionwhen−λ2 increases
due to an enhancement of x3. From Eq. (37), we see that the
increasing of λ3 fromnegativevalue towards zero can enhance
x3 at late time, consequently fQ0 can become negative due to a
large contribution from the fourth term in the numerator
of Eq. (39). When fQ0 becomes negative, ρm will decay faster

TABLE I. Values of parameters λ1, λ2 and λ3 for each model.
Model A, E, and F are pure conformally coupled, uncoupled and
ΛCDM models respectively. Model B, C, D are disformally
coupled models. For disformally coupled models, Md defined in
Eq. (31) is set to Md ≃ 1=0.55 meV, while Md ¼ 0 for other
models.

Model

λi A B C D E F

λ1 0.1 0.1 0.1 0.1 0 …
λ2 0 0 −2 −1 0 …
λ3 −1 −1 −1 −0.1 −1 …

Conformal Disformal Uncoupled ΛCDM

A
B
C
D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

FIG. 1. Plots of ρ̃m ≡ a3ρm=ρm0 as a function of redshift z. The
lines A, B, C, D, and F represent the models A, B, C, D, and F in
Table I respectively.
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than a−3 as presented by lineD in the Fig. 1. To study how the
disformal and conformal coupling influence growth of
density perturbations, we insert Eqs. (19) and (28) into
Eq. (29), and then write the resulting equation in terms of
the dimensionless variables as

δ00m ¼ −
�
1

2
ð1þ 3x2 − 3x21Þ þ

ffiffiffi
6

p fQ0x1

�
δ0m þ 4

3

ðδ0mÞ2
1þ δm

þ 3

2
ð1 − x21 − x2Þð1þ δmÞð1þ 2fQ0

2Þδm: ð42Þ

The linearized version of this equation is

δ00m ¼ −
�
1

2
ð1þ 3x2 − 3x21Þ þ

ffiffiffi
6

p fQ0x1

�
δ0m

þ 3

2
ð1 − x21 − x2Þð1þ 2fQ0

2Þδm: ð43Þ

During matter domination, fQ0 obeys the approximation
given in Eq. (41). Hence, for the case where x3 ¼ 0, i.e.,
pure conformally coupled model, Eq. (43) is satisfied by the
following growing solution:

δm ∝ epN; where p ¼ −
1

4
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 12λ21

q
: ð44Þ

This shows that the conformal coupling can enhance the
growth of δm during matter domination. As discussed above,
this enhancement can be disappeared due to disformal
coupling which is in agreement with the plots of δm=a in
Fig. 2. In theplot, the ratio δm=a for pure conformally coupled
model at a given redshift during matter domination is larger
than that for uncoupled model, and this ratio for disformally
coupled and uncoupledmodels are not significantly different.
The enhancement of the growth rate of δm during matter
domination due to the conformal coupling between dark

energy and dark matter is clearly followed from Eq. (44).
Nevertheless, this enhancement is not visible in a plot of δm
versus a scale factor as presented in Fig. 7 in [39], so that we
plot δm=a rather than δm in Fig. 2. At late time, the ratio δm=a
for disformally coupled model can decrease slower than that
in theuncoupled andpure conformally coupledmodelswhich
is in agreement with [38]. The decreasing rate of δm=a for
coupled models at late time depends on fQ0

2 term which
controls “growing rate” of δm in Eq. (43). In Fig. 2,we see that
the dependence of decreasing rate of δm=a on λ1, λ2, and λ3
can be understood from the dependence of fQ0 on these
parameters at late time discussed above. In the spherical
collapsemodel, a region of overdensity with radius r expands
at initial stage due to the expansion of the background
universe because magnitude of overdensity is small.
However, the expansion of the radius r is slower than the
Huble expansion, because the gravitational attraction of the
overdensity inside the region. As a result, the overdensity
can grow non-linearly and therefore gravitational attraction
will be strong enough to stop the expansion of the radius r.
This is a turn around stage at which the radius r is maximum
and starts to reduce due to gravitational attraction. In the
process of structure formation, a region of overdensity will
not collapse to a singularity at r ¼ 0 and δm ¼ ∞ due to a
balance between kinetic and gravitational potential of the
region. This balance is a virialization of a collapsing region.
Roughly speaking, structures are formed when the virializa-
tion is taken place.
In spherical collapse model, we are interested in a

minimum magnitude of density contrast required for over-
density region to collapse at particular redshift. This
quantity is the extrapolated linear density contrast at
collapse which is required in a calculation of mass function
of halo. To compute this quantity, we numerically solve
Eq. (42) and search for the initial conditions for δm that lead
to the collapse, i.e., δm → ∞, at a given redshift z. In our
calculation, we fix the initial redshift at z ¼ 105 and vary
the initial value of δm within the range δm ≲ 10−3. Hence,
we can suppose that initially δm obeys linear evolution
equation given in Eq. (43), and therefore we can set
δ0m ¼ δm at initial time. Then the extrapolated linear density
contrast at collapsing redshift z, denoted by δcðzÞ, is
computed by solving Eq. (43) from the initial redshift to
the collapsing redshift using the initial value of δm that lead
to the collaps at redshift z. plots of δcðzÞ are shown in
Fig. 3. From the plots, we see that increasing the influences
from disformal coupling can enhance the decay rate of δc
at late time. This is a consequence of higher growth rate
of density perturbation of dark matter and small energy
density of dark energy for disformally coupled model, i.e.,
less amount of density perturbations is required for col-
lapsing when growth rate and energy density of matter are
large, which suggests that over dense regions can be
efficiently collapsed at late time due to disformal coupling.
The figure also shows that at high redshifts, δc for

A
B
C
E
F

0.01 1 100 104
0.7

0.8

0.9

1.0

1.1

FIG. 2. Plots of δm=a as a function of redshift z. The lines A, B,
C, E, and F correspond to models A, B, C, E, and F in Table I
respectively.
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conformally coupled model is larger than that for the other
models which is in agreement with [52]. This is a con-
sequent of large energy density of dark energy in con-
formally coupled model during 1 < z < 3. Using the
gravitational potential of dark energy derived in [49] with
an approximation wd ¼ −1,

Φd ¼ −
4πGMρd

5
r2 ð45Þ

where M≡ 4πρmr3=3 is the total mass of dark matter
inside spherical collapsing regions. We compute overden-
sity of dark matter at virialization δvir and plot the results
in Fig. 4. From the figure, we see that the overdensity at
virialization is suppressed in disformally coupled models
compared with pure conformally coupled and uncoupled
models. According to our calculation, this is a consequence
of low overdensity at turn around in disformally coupled
models.

V. CLUSTER NUMBER COUNTS

In the Press-Schechter (PS) formalism, the mass
function which describes the comoving number density
of collapsed objects with mass in the range of M and
M þ dM is given by

nðMÞdM¼−
ffiffiffi
2

π

r
ρ̃m

�
δc
σ

�
dlnσ
d lnM

exp

�
−

δ2c
2σ2

�
dM
M2

; ð46Þ

where ρ̃m is defined in Fig. 1, δc is the extrapolated linear
density contrast at collapse computed in the previous
section and σ is the variance in spheres of radius R which
can be approximately computed from [64]

σðR; zÞ ¼ σ8

�
R

8h−1 Mpc

�
−γðRÞ

DðzÞ: ð47Þ

Here, DðzÞ≡ δmðzÞ=δð0Þ is the growth factor, δð0Þ is the
linear density contrast of matter perturbation at present, and

γðRÞ¼ð0.3Ωmhþ0.2Þ
�
2.92þ log10

�
R

8h−1Mpc

��
: ð48Þ

For a better fit with N-body simulation for ΛCDM, an
improved form of mass function is proposed using the
assumption of ellipsoidal collapse of halo rather than
the assumption of spherical halo collapse in PS formalism.
This mass function is the Sheth-Tormen (ST) mass
function [65],

nðMÞdM ¼ −0.2709
ffiffiffi
2

π

r
ρ̃m

d ln σ
d lnM

�
1þ 1.1096

�
δc
σ

�
0.6
�

× exp

�
−
0.707
2

�
δc
σ

�
2
�
dM
M2

: ð49Þ

The number of clusters per redshift interval dz with mass
larger than threshold mass M ≥ Mmin can be computed
from the comoving number density of collapsed objects
given in Eq. (46) or (49) by

dN
dz

¼ fsky
dVe

dz

Z
∞

Mmin

nðMÞdM; ð50Þ

where fsky is the observed sky fraction, dVe=dz≡
4πrðzÞ2=ðH0EðzÞÞ is the comoving volume element per
unit redshift and rðzÞ is the comoving distance. In order to
understand influences of the disformal coupling on the
cluster number counts, we first study how the disformal
coupling affects dVe=dZ and δc=ðσDðzÞÞ. In Fig. 5, we
plot the evolution of ðdVe=dZÞ=ðdVe=dZÞES where
ðdVe=dZÞES is the comoving volume element per unit
redshift for Einstein-de Sitter model. From the plot, we see
that the disformal coupling raises dVe=dz at all redshift
compared with the pure conformal coupling due to large

A
B
C
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.58

1.60

1.62

1.64

1.66

1.68

1.70

FIG. 3. Plots of linear density contrast at collapse δc as a
function of collapsing redshift zc. The lines A, B, C, and F
correspond to models A, B, C and F in Table I respectively.
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FIG. 4. Plots of δvir as a function of virialized redshift zvir. The
lines A, B, C, and F correspond to models A, B, C, and F in
Table I respectively.
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magnitude of the coupling term fQ0 at late time. To study
effects of disformal coupling on δc=ðσDðzÞÞ, we plot
δc=ðσ8DðzÞÞ as a function of redshift in Fig. 6. For
convenience, σ8 for each model with different set of
parameters λ1, λ2 and λ3 is set such that the ratio
δc=ðσ8DðzÞÞ equals to that for ΛCDM at z ¼ 0, and σ8 ¼
0.83 for ΛCDM [4]. For such setting, the value of σ8 for all
models, except model D, lies within the 2 − σ bound from
PLANCK 2015 results [4]. The plots in the Fig. 6 show that
the ratio δc=ðσ8DðzÞÞ for disformally coupled model is
larger than that for pure conformally coupled and
uncoupled models, which is a consequence of high growth
rate of linear density perturbation and low δc at late time for
disformally coupled models, and δc=ðσ8DðzÞÞ equals to
that for ΛCDM at z ¼ 0. We now plot the cluster number
counts with M ≥ MminðzÞ. In our study, the predicted
cluster number counts from PS and ST mass functions
present the same features of conformal and disformal
couplings on cluster number counts, so that we plot only
the cluster number counts from ST mass function. In order

to make a connection with the results from galaxy surveys,
we use the method presented in [66–68] to compute
MminðzÞ from limiting flux of the survey. According to
eROSITA surveys [69,70], we set the limiting flux Flim ¼
3.3 × 10−14 ergs−1 cm−2 and use a sky coverage fsky ≃
0.485 to plot the expected redshift distribution of clusters in
Fig. 7. From the plots, we see that the number of cluster
per redshift can be strongly suppressed in disformally
coupled models compared with uncoupled model.
Mainly, this is a consequence of large δc=ðσDðzÞÞ in the
disformally coupled models.
In Fig. 8, we plot the different ratio ΔdN ≡

ðdN=dzÞ=ðdN=dzÞf − 1 for disformally and conformally
coupled models, where ðdN=dzÞf is dN=dz for either
ΛCDM or uncoupled model. From the plots, we see that
at z > 0.3 the number of cluster per redshift for uncoupled
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1.0

1.5
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3.0

3.5

4.0

4.5

FIG. 5. Plots of dV ≡ ðdVe=dZÞ=ðdVe=dZÞES as a function of
redshift z. The lines A, B, C, E, and F correspond to models A, B,
C, E, and F in Table I, respectively.
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FIG. 7. Plots of number of cluster per redshift interval dN=dz as
a function of redshift z. The lines A, B, C and F correspond to
models A, B, C and F in Table I respectively.
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FIG. 6. Plots of δc=ðσ8DðzÞÞ as a function of redshift z. The
lines A, B, C, and F correspond to models A, B, C, and F in
Table I respectively.
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FIG. 8. Plots of different ratio ΔdN ≡ ðdN=dzÞ=ðdN=dzÞf − 1
from dN=dz presented in the Fig. 7. Here, lines A1 and A2
represent the different ratio of line A in the Fig. 7 with ΛCDM
and uncoupling model respectively. Lines B1 and B2 represent
the different ratio of line B in the Fig. 7 with ΛCDM and
uncoupling model respectively. Line E corresponds to the differ-
ent ratio of uncoupled model with ΛCDM model.
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dark energy model is larger than that for ΛCDM model.
From line A2, we see that the number of cluster is
suppressed for all range of redshift by pure conformal
coupling between dark energy and dark matter. However,
at z > 0.3, the number of cluster for ΛCDM is smaller than
that for pure conformally coupled model because the
suppression of cluster number due to pure conformal
coupling is not strong enough. In contrast, the disformal
coupling can strongly suppress number of cluster at high
redshifts such that the number of cluster for disformally
coupled model is always less than that for ΛCDM and
uncoupled models at z > 0.1. The number of cluster can be
enhanced at z < 0.1 in disformally coupled models due to a
large fQ0 at late time. The enhancement of the number of
cluster at low redshifts is mainly a result from a large
dVe=dz in disformally coupled models, so that the choice of
σ8 does not significantly affect this enhancement. Moreover,
the features of number counts suppression at high redshifts
does not significantly depend how the value of σ8 is chosen,
in the sense that the conformal and disformal couplings can
suppress the cluster number counts and the strong suppres-
sion can occur in disformally coupled models.
Combining Fig. 8 with Fig. 7, we find a difference of

∼6850 clusters at z ≃ 0.3 between pure conformally
coupled and ΛCDM models. At z ¼ 1, a difference of
number of cluster between these models is 158. The
difference of number of cluster between disformally
coupled and ΛCDM models is 26089 at z ¼ 0.3 and
241 at z ¼ 1 respectively. These differences of number
of cluster for disformally coupled model are larger than the
estimated eROSITA uncertainty, which are ΔN ∼ 470 and
ΔN ∼ 14 at redshifts 0.3 and 1, respectively. These uncer-
tainties are computed from the Poisson error of the dN=dz
for ΛCDM model plotted in Fig. 7. The difference of
number of cluster between disformally coupled and ΛCDM
models at z ∼ 0.3 is also larger than the estimated eROSITA
uncertaintyΔN ≃ 500 clusters presented in [68]. Moreover,
at redshifts around the peak of dN=dz the differences of
number of cluster between uncoupled model and disfor-
mally as well as pure conformally coupled models are also
larger than uncertainty of eROSITA surveys. These suggest
that the cluster number counts can be used to distinguish
cosmological consequences of disformal and conformal
coupling between dark energy and dark matter and put a
tight constraint on disformally coupled models.

VI. CONCLUSION

We investigate influences of disformal coupling
between dark energy and dark matter on large scale
structure by using the spherical collapse model and the
Press-Schechter/Sheth-Torman mass function to estimate
cluster number counts. During matter domination, the
disformal coupling has no significant effect on the growth
rate of density perturbations of dark matter, so that the
collapsing properties of an overdense region (radius,
virialization, critical density) is not altered by this type
of coupling.
The growth rate of density perturbations of dark matter

can be enhanced at late time due to a large coupling
between dark energy and dark matter in disformally
coupled models, as a result, overdense regions can collapse
more efficiently at late times, which is suggested by low δc
at low redshifts. Moreover, the overdensity at virialization
in the disformally coupled models can be suppressed at
low redshifts compared with conformally coupled and
uncoupled models.
Based on the Press-Schechter and Sheth-Torman mass

functions, we have found that the predicted number of
cluster per redshift interval in disformally coupled models
is strongly suppressed compared with conformally coupled
and uncoupled models at redshift larger than 0.1 due to a
large δc=ðσ8DðzÞÞ. However, the disformal coupling
between dark energy and dark matter can enhance number
of cluster at redshift lower than 0.05 due to a large
comoving volume element per redshift. Using the speci-
fications of eROSITA survey, we find that it is possible to
discriminate signatures of disformal and conformal cou-
pling between dark energy and dark matter on cluster
number counts, and put tight constraint on disformally
coupled models by cluster number counts.
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