
 

Linear point standard ruler for galaxy survey data:
Validation with mock catalogs

Stefano Anselmi*

LUTH, UMR 8102 CNRS, Observatoire de Paris, PSL Research University, Université Paris Diderot,
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Due to late-time nonlinearities, the location of the acoustic peak in the two-point galaxy correlation
function is a redshift-dependent quantity, and thus it cannot be simply employed as a cosmological standard
ruler. This has motivated the recent proposal of a novel ruler, also located in the baryon acoustic oscillation
range of scales of the correlation function, dubbed the linear point. Unlike the peak, it is insensitive at the
0.5% level to many of the nonlinear effects that distort the clustering correlation function and shift the peak.
However, this is not enough to make the linear point a useful standard ruler. In addition, we require a
model-independent method to estimate its value from real data, avoiding the need to deploy a poorly known
nonlinear model of the correlation function. In this manuscript, we precisely validate a procedure for
model-independent estimation of the linear point. We also identify the optimal setup to estimate the linear
point from the correlation function using galaxy catalogs. The methodology developed here is of general
validity and can be applied to any galaxy correlation-function data. As a working example, we apply this
procedure to the LOWZ and CMASS galaxy samples of the Twelfth Data Release of the Baryon Oscillation
Spectroscopic Survey, for which the estimates of cosmic distances using the linear point have been
presented by Anselmi et al. [Phys. Rev. Lett. 121, 021302 (2018)].
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I. INTRODUCTION

Baryon acoustic oscillations (BAO) in the late-time
matter power spectrum result from primeval acoustic waves
propagating in the coupled baryon-photon plasma before
decoupling [1–3]. These manifest as a peak in the two-point
correlation function (CF) of galaxies, located at the scale of
the sound horizon at the so-called drag epoch, when the
acoustic waves stop freely propagating through the plasma.

This provides a natural comoving standard ruler to con-
strain the cosmic expansion history [4–6].
Ideally, one would estimate cosmic distances by measur-

ing the location of the BAO peak directly from CF data,
without the need to model the processes that shape the CF.
Unfortunately, on BAO scales, the late-time distribution of
matter is sensitive to the nonlinear dynamics of matter’s
gravitational clustering. Several studies, using both high-
precision cosmological simulations and analytic models,
have shown that nonlinearities distort the BAO pattern:
smearing the BAO peak, lowering its amplitude and shifting*stefano.anselmi@iap.fr
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its position [7–10]. Therefore, peak-finding algorithms
cannot be just blindly applied to the data to extract cosmic
distance information, but rather the opposite—one should
use cosmology-dependent fits of the full CF [11,12]. This
would be a minor inconvenience if we knew how to predict
the full nonlinear galaxy CF as a function of only the
cosmological parameters. Unfortunately, we are far from
achieving that goal.
In the past ten years, several approximate methods have

been developed to extract cosmic distance information
from BAO measurements. The most widely accepted
technique defines the BAO scale in terms of a fiducial-
model template CF, where the cosmological parameters are
kept fixed at the fiducial values. Ad hoc nuisance param-
eters are added, to capture the effects of nonlinearities and
with the intent of “marginalizing over” the chosen fiducial
cosmology [13,14]. This model template is then used to
infer the cosmic distance from the statistical data analysis.
Moreover, since nonlinearities suppress the amplitude of
the BAO, the observed galaxy positions are adjusted, using
approximate nonlinear model algorithms, to enhance the
signal-to-noise of the BAO peak in the CF. This is done
with the intent of restoring the pristine information on the
acoustic scale; however, this reconstruction procedure
explicitly depends on the choice of a fiducial cosmology
and on the specification of a heuristic model of nonlinear
effects [15]. Hence, in both the treatment of the data and the
statistical analysis, model-dependent assumptions inter-
vene. These carry the inherent risk of underestimating
the uncertainties on cosmic distances and potentially
introduce a source of systematic bias in the cosmologi-
cal-parameter inference.
In order to overcome these limitations, a new promising

BAO standard ruler in the galaxy CF, dubbed the linear
point (LP), was suggested by some of us [16]. Its position,
defined as the midpoint between the positions of the peak
and dip in the monopole CF, is located at ∼95 Mpc=h in
comoving units [16]. Using results from N-body simula-
tions of ΛCDM models, it has been shown that the LP is
insensitive to nonlinear effects at 0.5% relative to the linear-
theory prediction. This holds for the matter-density field as
well as for the spatial distribution of halos. Moreover,
analytic arguments suggest that the LP remains stable (in
both position and amplitude) with respect to the effects of
redshift-space distortions and scale-dependent bias [16].
An additional advantage of the LP is that it is a purely
geometrical standard ruler; i.e., its position is independent
of the amplitude and slope of the spectrum of primordial
density fluctuations (at least for models similar to the
ΛCDM scenario). Hence, unlike any other known BAO
analysis, the LP can provide estimates of cosmic distances
without the need for theoretical modeling of the CF data.
Recently, we have presented [17] a cosmological relation

that allows us to infer the isotropic-volume distance DV
using estimates of the LP from galaxy data. In particular,

we focused on the CMASS and LOWZ galaxy samples
from the Twelfth Data Release (DR12) of the Baryon
Oscillation Spectroscopic Survey (BOSS),1 and found

DLP
V ðz̄LOWZ-DR12 ¼ 0.32Þ ¼ ð1264� 28Þ Mpc;

DLP
V ðz̄CMASS-DR12 ¼ 0.57Þ ¼ ð2056� 22Þ Mpc; ð1Þ

thus providing distance estimates that are competitive
with those obtained from standard assumption-rich BAO
methods.
In this manuscript, we aim to validate the LP parametric

model-independent estimation already applied in Ref. [17]
to the actual LOWZ and CMASS galaxy samples. To this
end, we employ the Quick Particle Mesh (QPM) mock
catalogs (“mocks”) [18] built by the BOSS Collaboration
explicitly to mimic the LOWZ and CMASS clustering
properties. They were largely used by the collaboration to
test their DR12 BAO data analysis [19].
Our approach relies on a simple polynomial interpolation

of the CF in the BAO range of scale. In this paper, we first
validate the polynomial fit. Then, for each galaxy mock
catalog, the best-fit polynomial parameters and uncertain-
ties provide the LP estimate and error. We find the optimal
values of the polynomial order, the fitted range of scales,
and the bin size to use for LP estimation on this data set.
Optimization for future, larger-volume or higher-precision
data sets would yield different values, but remarkably, our
preliminary tests suggest that it will be sufficient just to
shrink the fitted range of scales.
The paper is structured as follows. In Sec. II, we detail the

methodology employed to validate the linear point estima-
tion through the polynomial fit: we summarize the character-
istics of the QPMmocks, we define the systematic bias, and
we provide a checklist that the optimal fitting setup should
pass to be validated. In Sec. III, we perform the previously
introduced tests, discussing step by step the results of the
analysis. In Sec. IV, we present our conclusions.

II. METHODOLOGY

In this section, we present the procedure developed to
estimate the linear point from galaxy data. Our goal is to
show that a simple model-independent parametric fit,
applied to the monopole clustering correlation function,
recovers the LP position without introducing systematic
biases. We test this on mock catalogs, generated by the
BOSS Collaboration to reproduce the Luminous Red
Galaxies (LRG) DR12-BAO clustering properties and used
to test the BOSS BAO analysis [18,19]2

1https://www.sdss3.org/surveys/boss.php.
2Since we want to test the LP estimation procedure for

different survey volumes, we do not focus on the final galaxy
clustering analysis performed by the BOSS Collaboration [20].
We consider instead the CF analysis presented in Ref. [19] where
the LOWZ and CMASS galaxy samples are taken into account.
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A. QPM mocks

QPM mocks [18] were employed for the BOSS cluster-
ing analysis. The QPM method uses a low-resolution
particle-mesh N-body solver. The halo catalog and its
properties were built to match the mass function and
large-scale bias of halos of high-resolution simulations.
The halo catalog was then populated with galaxies using a
halo occupation distribution (HOD) modeling, where the
HOD parameters were adjusted for each mock by fitting the
observed small-scale projected two-point galaxy correla-
tion function for the LRGs. Each mock matches the angular
and radial selection functions of the survey and the
observed number density of galaxies. The final galaxy
catalog consists of 1000 realizations of the LOWZ sample
and 956 for CMASS [17]. For each of these mocks, the CF
has been computed using the Landy-Szalay algorithm [21].
The fiducial cosmology of the QPM mocks is a flat

ΛCDM model, with cosmological-parameter values close
to the best-fit Planckþ BOSS cosmology: Ωm ¼ 0.29,
ΩΛ ¼ 0.71, Ωbh2 ¼ 0.02247, Ωνh2 ¼ 0.0, h ¼ 0.7,
ns ¼ 0.97, and σ8 ¼ 0.8.

B. Estimating the linear point position with
a model-independent parametric fit

In order to extract the LP position from the galaxy
monopole correlation function ξ0ðsÞ (s being the redshift-
space coordinate in comoving units), we first estimate the
positions of the maximum and the minimum of the CF in
the BAO range of scales. This can readily be accomplished
using a model-independent parametric fit. A simple, but (as
we will see) efficient and robust, way to do so consists of
first interpolating the CF data with a polynomial,

ξfit0 ðsÞ ¼
Xn

i¼0

aisi; ð2Þ

where n is the order of the polynomial fitting function. The
solutions of dξfit0 =ds ¼ 0 are then computed, to find
the location of the peak (ŝfitpeak) and dip (ŝfitdip) in the CF.3

The estimated location of the LP is the midpoint between
the computed dip and peak locations

ŝfitLP ¼
1

2
ðŝfitpeak þ ŝfitdipÞ; ð3Þ

which can be expressed in terms of the best-fit polynomial
coefficients to the CF data.4 This allows us to estimate the
uncertainty on the LP location, by propagating the uncer-
tainties in the polynomial coefficients.
We would like to stress two considerations concerning

the use of the polynomial interpolation of the CF. First, it
provides an effective way of smoothing the noisy data
points, thereby enabling the LP estimation. Indeed, the
more parameters we allow (i.e., the higher the order of the
polynomial), the less effectively the polynomial fit smooths
the CF. Nevertheless, we expect that the fitting procedure
does not introduce a systematic bias in the determination of
the LP, as we will show in Sec. III B. Second, the authors
of Ref. [16] found that, in the BAO range of scales, the CF
is nearly antisymmetric with respect to the LP. As we will
show in Sec. III C, this provides us with a guideline to
choose the optimal range of scales over which to interpolate
the CF.
In principle, the order of the CF polynomial-fitting

function may depend on the range of scales considered,
the redshift, and the survey volume. Here, we find that an
unbiased estimator of theLP requiresn ≥ 5. In the case of the
LOWZ and CMASS mocks, we find that a quintic poly-
nomial fit the CFs well over the range of scales considered.
We will show this in Sec. III B, by comparing to the LP
estimate obtained using a seventh-order polynomial.

C. Linear point estimation: Bias definition

Our analysis has two goals: on the one hand, we want to
show that a simple polynomial fit to the CF can provide an
unbiased estimate of the LP; on the other hand, we want
to determine the optimal combination of polynomial order,
range of scales, and binning that minimizes the LP
statistical error. To this end, we introduce a measure of
the LP systematic bias:

bLP ¼ s̄LP − strueLP : ð4Þ

Here, s̄LP is the mean of the LP positions estimated from the
mocks, and strueLP is our reference LP value, which we set to
the value of the LP estimated from the average CF over the
mocks. This is because we are interested in evaluating only
the uncertainty in the LP estimation due to the polynomial-
interpolation procedure, and not any small uncertainty
that arises due to the nonlinear clustering of matter [16].
As already mentioned in the Introduction, that nonlinear
clustering systematically shifts the location of the LP
relative to the linear CF up to 0.5% [16], but this can be
mitigated by shifting the definition of the LP estimator
relative to Eq. (3). [This shift leaves Eq. (4) unaffected,
since it affects s̄LP and strueLP equally.] We therefore take strueLP
to be the value estimated from the CF averaged over all the

3It is worth noting that, in the analysis of real (rather than
simulated) galaxy-survey data, one should account for the Al-
cock-Paczynski effect [22,23], which distorts the CF. In such a
case, one can conveniently express the CF in terms of the
dimensionless distance y≡ s=constant [12,16]. However, the
procedure to extract the LP is the same whether the correlation
function is expressed as a function of y or s. Therefore, to ease the
reading of the present article, we work in comoving coordinates.

4To simplify the notation hereafter, we omit the hat and the
“fit” subscripts.
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mocks. This has negligible cosmic-variance and sampling-
variance error compared to the individual mocks but
(deliberately) shares with them any potential systematic bias
in s̄LP.

5

We would like to recall that measuring the LP position
(or the BAO feature) is really a two-part process: detecting
the LP and estimating its location. Indeed, given the finite
volume of the mocks, the BAO feature in the CF might not
be detected (by the chosen BAO estimator) in a given mock,
due to cosmic variance. In our specific case, the polynomial
estimator might fail to “detect” the peak and dip in the BAO
range of scale; i.e., dξfit0 =ds ¼ 0 could have no solutions.
Clearly, only the mocks where the LP is detected can be
used to estimate its error. To estimate it, we thus need to
condition the analysis to the mocks in which the LP is
detected (for each configuration of the polynomial-fit
estimator, i.e., order of the polynomial, bin size, and range
of scales). We therefore compute the conditional CF data
covariance recursively: we perform a first polynomial fit
of the CF of each mock using the covariance from the entire
mock data set, and, if the LP is not detected, we discard the
mock and recompute the CF data covariance from the
selected mocks. Depending on the polynomial-fit configu-
ration, the fraction of retained mocks [mock acceptance
rate (MAR)] is ≳80% for LOWZ and ≳90% for CMASS.
Notice that, since in the corresponding real data the LP is
detected, the specific value of the MAR is not relevant for
the present analysis [17]. As stated above, the bias and
statistical error on the LP position are calculated using only
the retained mocks. The rejected mocks contain no infor-
mation on the LP position but contribute only to the false
negative rate for LP detection. The need to separately
minimize false negative rates, bias, and statistical error
contributes to the design of all estimators of cosmological
quantities, including other estimators of the BAO [26–28].
This is not widely discussed in the literature. Rather than

looking at false negative rates, what is often done is imposing
a threshold significance of BAO detection—typically taken
to be 2σ.
Given the finite size of the mock samples, we correct the

LP error budget according to Refs. [29,30]. Similarly, we
follow Ref. [30] for estimating errors on the determination
of the fitting-polynomial coefficients for each mock’s CF.
In summary, our validation of the LP estimation will

assess the following points:
(A) Gaussianity of the correlation function and linear

point distributions: we show that both the CF and the
LP are consistent with a Gaussian distribution.

(B) Optimal polynomial estimator: we consider poly-
nomials of different orders as LP estimators and
discuss their suitability.

(C) Optimal BAO range of scales: we analyze the BAO
range of scale fit for the CF and identify the optimal
one for LP estimation.

(D) Optimal bin size: we identify the bin sizes that return
an unbiased LP estimate.

III. LINEAR POINT ESTIMATION TESTS

As mentioned in the Introduction, the advantage of the
LP is that it is a geometric standard ruler on the BAO
scale that is preserved by nonlinear effects. LP estimation
therefore does not require the use of reconstruction meth-
ods to be applied to galaxy catalogs. Hence, we test the
LP estimation procedure on prereconstructed QPM mocks
from the BOSS Collaboration.
The results of the error evaluation, whichwill be presented

below, indicate that the optimal setup for LP estimation
consists of fitting the galaxy CF with a quintic polynomial
estimator, in the rangeof scales60 < s ½Mpc=h� < 130, with
bins of size Δs ¼ 3 Mpc=h.

A. Gaussianity of the correlation function
and linear point distributions

We verify that the distribution of the mock CF is always
well described by a Gaussian function. Hence, we can
perform a statistical analysis of the CF assuming a Gaussian
likelihood and find the coefficients of a polynomial fitting
function by simple χ2 minimization.
We check that the distribution of the χ2min values from the

polynomial fit to the CF of the mocks is consistent with a χ2

distribution, while the distribution of inferred values of sLP
is consistent with a Gaussian. The latter is shown in Fig. 1,
where we plot the LOWZ (upper panel) and CMASS
(bottom panel) normalized histograms of ðsLP − s̄LPÞ=σsLP .
The unit normal probability distribution function is over-
plotted. We perform the Kolmogorov-Smirnov test for the
LOWZ and CMASS mocks. The p values are respectively
0.22 and 0.86, indicating reasonable probabilities that the
posterior of sLP is Gaussian distributed. Therefore, we can

5In Ref. [16], we have shown that the LP position in the CF, for
both high-resolution N-body simulations and theoretical models,
shifts with respect to the linear-theory prediction by no more than
1%. This shift is secular, and its effect is halved with a simple
redshift-independent correction. In the case of the LOWZ and
CMASS mocks, we find the “true” LP position to deviate by
1.3% and 1.2% with respect to the linear-theory prediction
respectively. This disagreement could be due to the approximate
treatment of clustering in the modeling used to build the QPM
mocks [18]. Alternately, it might be due to the way the HOD
model is implemented in the QPM mocks. For instance, rather
than adjusting the HOD parameters separately for each mock, one
should properly fit the projected CF on small scales once for all
the mocks (see, e.g., Ref. [24]). Furthermore, the parameter
uncertainties due to the HOD fitting should be correctly propa-
gated to the BAO scales. We plan to properly address these points
with further investigations to be carried out with high-resolution
and large-volume N-body simulations [25] and improved im-
plementations of the HOD [24]. Nevertheless, for the purpose
of the present analysis, which is validating the nonlinear LP
extraction, we can safely ignore this issue.
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assign the usual Gaussian meaning to the rms of the LP
distribution.6

The mean sLP errors for the two simulated galaxy samples
are σLOWZ

sLP ¼ 2.4 Mpc=h and σCMASS
sLP ¼ 1.5 Mpc=h. There-

fore, the intrinsic 0.5% deviation of sLP with respect to slinLP
(found in Ref. [16]) is subdominant.

B. Optimal polynomial estimator

For LP estimators, we analyze polynomials of cubic or
higher order.7 For the LOWZ and CMASS galaxy surveys,
we find that the cubic and the quartic polynomials return a
LP systematic bias that is comparable to the statistical error
budget. Therefore, since they are biased estimators, we do
not analyze them any further in this manuscript.
To test the dependence of the LP estimation on the

choice of the order of the polynomial fit to the CF, we
consider a quintic polynomial and a seventh-order one.
For each of these cases, we estimate sLP from Eq. (3) and
evaluate the bias as in Eq. (4). The results of the comparison
are summarized in Table I, where we quote, for each mock
catalog, both the value of the bias and the average error on
the LP estimator. In all cases, the absolute systematic shift
is much smaller than the mean error estimated from the
likelihood, i.e., bLP < 0.2 × σ̄LP. As expected, σ̄s5thLP

< σ̄s7thLP
,

since the quintic-polynomial interpolation needs to fit a
smaller number of parameters.
In Fig. 2, we show the scatter plots of the recovered LP

position for the two polynomial orders, using the LOWZ
(upper panel) and CMASS (lower panel) mocks.
The scatter along the solid diagonal line is an indication

of the cosmic-variance error; indeed, due to cosmic
variance, the LP value shows some scatter around its mean
value. If two estimators would be completely correlated,
that would be the only source of scatter. The presence of
some scatter perpendicular to the solid line indicates a
contribution from estimator error—the difference between
the “true” value of the quantity being estimated (which we
cannot know) and its estimated value. Quantitatively,
Pearson’s correlation coefficient r for the two samples,
rLOWZ ¼ 0.67 and rCMASS ¼ 0.63, reveals that cosmic
variance is the dominant error. We have checked that the
combined use of the two estimators does not significantly
reduce the statistical error compared with using only the

FIG. 1. Normalized histograms of the rescaled linear point
positions recovered from the LOWZ (upper panel) and CMASS
(lower panel) mock catalogs. The unit normal proba-
bility distribution function is overplotted. The p values of the
Kolmogorov-Smirnov test show that, for both catalogs, there is a
reasonable probability that the LP values are drawn from a
Gaussian distribution.

TABLE I. We show the results of the estimator test. Both the
quintic and the seventh-order polynomials are unbiased (i.e.,
negligible-bias) linear point estimators. The quintic polynomial is
the chosen LP estimator, as it provides the smallest errors and is
preferred by the model-selection criterion.

Estimator test

Polynomial bLP σ̄sLP Mean AICc

-LOWZ
Quintic −0.41 Mpc=h 2.4 Mpc=h 34
7th order −0.37 Mpc=h 2.7 Mpc=h 41
-CMASS
Quintic −0.25 Mpc=h 1.5 Mpc=h 35
7th order −0.20 Mpc=h 1.7 Mpc=h 41

6We recall that, in this manuscript, we always use the error
estimated from the likelihood and not from the distribution.
However, after applying the corrections for the small number of
mocks [30], the two agree to better than 7%.

7Notice that lower-order polynomials are not LP estimators as
they do not have both a maximum and a minimum.
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quintic-polynomial fit. Therefore, using only the quintic
polynomial is sufficient for our purposes.
Since both of the estimators are unbiased, to choose

between them, we adopt a simple model-selection criterion:
the finite-sample-corrected Akaike information criterion
AICc [31]. We report its formula here for convenience
(dropping an irrelevant additive constant),

AICc ≡ χ2min þ
2ðnþ 1ÞN
N − n − 2

; ð5Þ

where n was introduced in Eq. (2) and N is the number of
points fit. The idea behind the AICc is to balance the quality
of fit to the observed data against the complexity of the
model. The polynomial fit that gives the minimal AICc
value is selected. From Table I, we see that the smallest
mean AICc belongs always to the quintic polynomial. This
motivates its choice for the optimal setup.

C. Optimal BAO range of scales

We focus next on determining the optimal range of scales
from which to extract the LP from measurements of the CF.
The values of the coefficients of the best-fit polynomial

to the CF, and their associated errors, depend on the range
of scale over which the CF is fit. This calls for selecting
an optimal range of scales that minimizes the statistical
uncertainty, while introducing negligible systematic bias
in the estimated LP location. We recall that the CF is
antisymmetric with respect to the linear point over the BAO
range of scales [16]. This motivates interpolating the CF
with a quintic polynomial over a range that is symmetric
with respect to 95 Mpc=h.
In Fig. 3,weplot the statistical error (upper panel) and bias

(lower panel) in the LP position, as functions of the interval
of scales over which the CF is interpolated. We observe that,

FIG. 2. Scatter in the LP estimator for the quintic vs the
seventh-order polynomial fits to the CF of the LOWZ (upper
panel) and CMASS (lower panel) mock catalogs. The scatter
along the continuous black line indicates the cosmic-variance
error, while the scatter perpendicular to the line represents the
estimator error. The larger values of the correlation coefficients
quoted in the panels suggest that the errors on the LP estimator
are dominated by cosmic variance.

FIG. 3. LP-estimation error (upper panel) and bias (lower
panel) as functions of the range of scales used to fit the CF.
As we can see, the bias is always negligible, since bLP ≤
0.2 × σ̄sLP .
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when the CF is interpolated over ðsmax − sminÞ ¼ 70 Mpc=h,
the statistical error in the LP is minimized, while the
systematic bias is negligible, bLP ≤ 0.2 × σ̄sLP . This trend
is expected, as the fitting parameters are better determined
when more information from the data is included.
We do not explore wider ranges of scale, since for the

LOWZ real galaxy data, due to the low signal-to-noise, the
LP is detected only for ðsmax − sminÞ ≤ 70 Mpc=h [17].
For the CMASS mock data, extending the fit over a larger
range of scales does not result in a further reduction of
the statistical errors. Thus, we conclude that the optimal
range of scales is ðsmax − sminÞ ¼ 70 Mpc=h.

D. Optimal bin size

The CF is measured in bins of finite width from data sets,
whether simulated or real. In principle, the binning pro-
cedure can affect the LP estimation. To assess this effect,
we have considered bins of varying size, from Δs ¼
1 Mpc=h to Δs ¼ 10 Mpc=h, and rebinned the CF mock
data accordingly. In Fig. 4, we plot the values of σsLP and
bLP corresponding to the most biased result among all the
possible CF sampling possibilities for that bin size. While
the LP statistical uncertainty is largely independent of the

bin size, for Δs ≥ 5 Mpc=h, the mean LP value recovered
from the mocks can be significantly biased. A too-large bin
size introduces uncertainties in the bin positions, it does
not provide enough sampling of the CF in the BAO range
of scales, and it introduces a dependence on the sampling
choice.
In Fig. 5, we show that the recovered LP position

exhibits small scatter for small bin sizes and, consequently,
a high correlation coefficient r between the Δs ¼ 2 Mpc=h
and the Δs ¼ 3 Mpc=h LP estimators.
We conclude that, for Δs ≤ 4 Mpc=h, the LP systematic

bias is negligible; hence, recalling that a larger bin size
allows us to reduce the covariance matrix noise [30], we
choose Δs ¼ 3 Mpc=h for the optimal setup.

FIG. 4. LP-estimation error (upper panel) and bias (lower
panel) as functions of the bin width. We see that the bias in
the LP estimate induced by the choice of the binning of the CF is
negligible (i.e., bLP ≤ 0.2 × σ̄sLP ) for Δs ≤ 4 Mpc=h.

FIG. 5. LP-estimator scatter plot, for a quintic-polynomial fit to
the CF, with bins of width Δs ¼ 2 and 3 Mpc/h, for the LOWZ
(upper panel) and CMASS (lower panel) mock catalogs.
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IV. CONCLUSIONS

Equipping the baryon acoustic oscillations with a cos-
mological standard ruler is a highly desirable goal. It must
be independent of the parameters characterizing the pri-
mordial fluctuations (within inflationary ΛCDM) and
insensitive to nonlinearities that develop during the late-
time dark-energy-dominated era. The linear point provides
such a ruler.
Another feature of the LP was not previously considered:

its simple definition allows a model-independent BAO
analysis. In this work, using mock galaxy catalogs, we
have presented a validation of LP estimation through a
theory-free parametric fit to the galaxy CF. In Ref. [17], we
applied such an estimator to galaxy data and showed that
the method presented here holds, even when the Alcock-
Paczynski distortion is present. We thus discovered that
cosmological distances can be estimated without any need
to model the nonlinear physics that affects the galaxy
correlation function at the BAO range of scales.
In this paper, we have determined the optimal setup to

extract, by means of the LP, distance information from the
BOSS-DR12 LOWZ and CMASS galaxy samples, justify-
ing the methodology applied in Ref. [17]. This consists of
using a quintic polynomial to fit the galaxy CF over the
range of scales 60 < s < 130 Mpc=h, with a bin width
of Δs ¼ 3 Mpc=h.
We found that the peak and the dip are not detected in a

fraction of the available mocks. In forecasting for a future
survey, one would want to design both the survey and
estimator to minimize the probability of such false neg-
atives. Fortunately, with a judicious choice of estimator
parameters, both LOWZ and CMASS data exhibit the
needed peak and dip [17]. We consequently consistently
condition our analysis to the mocks compatible with these

observations, a practice followed by those characterizing
other BAO estimators [26–28], although this is often not
explicitly discussed.
We plan to perform a LP-standard-ruler forecast analy-

sis for future galaxy surveys such as Euclid (http://sci.esa
.int/euclid/), DESI (http://desi.lbl.gov) and WFIRST
(https://wfirst.gsfc.nasa.gov). The LP is also promising
as a probe of the growth of structure, given that the
amplitude of the CF at the LP is insensitive to non-
linearities [16]. Also worth investigating is the effect on
the LP of massive neutrinos [32,33], which is still not
considered even in standard BAO analysis. The LP may
also serve as a smoking gun of modified gravity, espe-
cially if the BAO-LP antisymmetric feature [16] is altered
in candidate models (such as Quasidilaton Massive
Gravity Theory [34,35]). Alternatively, one could con-
struct a maximal-deviation test where, in the context of
the concordance ΛCDM, the maximal allowed deviation
from the predicted CF antisymmetry feature (in the BAO
regime) is quantified.
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