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We present a complete formulation of the scalar bispectrum in the unified effective field theory (EFT) of
inflation, which includes the Horndeski and beyond-Horndeski Gleyzes-Langlois-Piazza-Vernizzi classes,
in terms of a set of simple one-dimensional integrals. These generalized slow-roll expressions remain valid
even when slow-roll is transiently violated, and encompass all configurations of the bispectrum. We show
analytically that our expressions explicitly preserve the squeezed-limit consistency relation beyond slow-
roll. As an example application of our results, we compute the scalar bispectrum in a model in which
potential-driven G-inflation at early times transitions to chaotic inflation at late times, showing that our
expressions accurately track the bispectrum when slow-roll is violated and conventional slow-roll

approximations fail.
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I. INTRODUCTION

Superhorizon curvature perturbations in the cosmic
microwave background imply a period of exponential
expansion before nucleosynthesis [1]. Moving beyond this
simple phenomenological picture to understand the physics
driving the exponential expansion requires finding other
observable signatures of inflation.

The non-Gaussianity of the primordial fluctuations is a
powerful such probe [2—12]. That the bispectrum is as small
as current upper limits require is not a priori given in well-
motivated constructions of inflation (see, e.g., Ref. [13]) and
already significantly constrains the inflaton sound speed and
the presence of features during inflation [14].

Testing the single-field hypothesis requires making these
statements precise by studying the general predictions of
single-field inflation as well as the specific predictions of
individual single-field models. The effective field theory
(EFT) of inflation is a powerful framework in which to do
so [15-17]. References [18-22] recently extended the EFT
of inflation to include a complete set of ADM operators for
which the lapse and shift remain nondynamical. Scalar and
tensor power spectrum observables of this “unified” EFT of
inflation were studied beyond slow-roll for terms that lead
to metric perturbations with a standard dispersion relation
in Ref. [22].

In this paper, we extend Ref. [22] to study the scalar
bispectrum beyond slow-roll approximation in the unified
EFT of inflation using techniques developed in Ref. [23].
Because inflation need not obey this approximation during
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its entire course, there is a rich range of phenomenological
possibilities in the bispectrum of single field inflation
[24-29].

We structure our results such that existing models,
such as those in the Horndeski [30] or Gleyzes-Langlois-
Piazza-Vernizzi (GLPV) classes [21], can be straightfor-
wardly plugged into our expressions, and we write our
results in such a way as to manifestly preserve the model-
independent consistency relation between the squeezed-
limit of the bispectrum and the slope of the power spectrum
in and beyond slow-roll.

This paper is organized as follows. In Sec. II, we
construct the unified EFT of inflation, derive the corre-
sponding cubic action for scalar metric perturbations, and
study the structure of the cubic action in the Horndeski and
GLPV subclasses. The explicit EFT coefficients which
make up the cubic action are provided in Appendix A. In
Sec. III, we construct an integral formulation of the
bispectrum to first order in the generalized slow-roll
(GSR) formalism and show that the consistency relation
between the power spectrum and the squeezed limit of the
bispectrum is explicitly preserved beyond slow-roll for
sharp features. The full set of integral sources, windows,
and configuration weights which make up our bispectrum
formulation are provided in Appendix B. In Sec. IV, we
provide an example application of our bispectrum formu-
lation by explicitly computing the bispectrum in a specific
inflationary model, transient G-inflation [31]. We conclude
in Sec. V by discussing our results in the context of
related works.

We use the (— + +-+) metric signature and set Mp; = 1
throughout.
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I1. UNIFIED EFT OF INFLATION

In this section we derive the cubic action for scalar metric
perturbations in the unified EFT of inflation. We begin in
Sec. II A by reviewing and generalizing the construction of
the Lagrangian of the EFT of inflation, which we then
expand to cubic order in scalar metric perturbations in
Sec. I B. We rewrite this action to make the squeezed-limit
consistency relation manifest in Sec. II C. Finally, we study
the structure of the EFT in the Horndeski and beyond-
Horndeski GLPV limits in Sec. I D.

In general, we find that the cubic action for scalar
perturbations can be written in terms of ten operators
and manifestly leads to the squeezed-limit consistency
relation during slow-roll. In the Horndeski and GLPV
subclasses, six of the ten operators are present.

A. Lagrangian

The unified EFT of inflation was presented in Ref. [22]
with the complete set of quadratic operators that contribute
to theories where the metric perturbations obey a second-
order equation in both time and space and temporal
components of the metric remain nondynamical. These
restrictions ensure that the power spectra of scalar and
tensor metric fluctuations obey their usual form. We
summarize here some of the essential features of that
construction while extending it to include the complete
set of cubic operators that contribute to the bispectrum.

In the EFT construction, we seek the most general form
for the action that is consistent with unbroken spatial
diffeomorphisms and a preferred temporal coordinate that
represents the “clock” during inflation. Using this preferred
slicing, we decompose the metric into its 3 + 1 ADM form,

dS2 = —detz + hij(dxi + N’dt)(de + N]dt), (1)

with the lapse N, the shift N', and the spatial metric &, i

This metric and a unit timelike vector n, orthogonal to
constant ¢ surfaces define the spatial tensors that compose
the EFT action. We construct an action invariant under

oL 0L
L] = | =y :
(L] =C, [axg] Cx&i, [Wj o7
L : Cvs . ‘
{8Xi oYk,ozm } = Car20109, + Xzyza;(‘sf‘si + 8y67") +
J 1 n

spatial diffeomorphisms out of a general scalar function of
these quantities,

S = / d*xNVRL(N,K';,R'}, 1), (2)

in which K, = n,,, + nynﬂ;/,vn/’ is the extrinsic curvature,
R;; is the three-dimensional Ricci tensor with trace
R=R! ;» and A is the determinant of the three-dimensional
metric h;;. Semicolons here and throughout denote covar-
iant derivatives with respect to the metric g,,. Latin indices
denote spatial coordinates, which are raised and lowered
using /;;. We use the shorthand summation convention

Si T

=S, T (3)

g
for any two spatial tensors S and 7.

We have not allowed additional spatial derivatives in
Eq. (2) since they lead to equations of motion that are
beyond second order in spatial derivatives. Thus we do not
encompass the spatially covariant gravity [32,33] or the
Horava-Lifshitz theories [34—36]. We have also not allowed
the lapse or shift to be dynamical, and thus we do not
encompass the full set of degenerate higher-order scalar
tensor (DHOST) [37,38] theories.

Next we perturb the action (2) around a spatially flat
FLRW background,

[N] =1,

[N] =0, [hij] = a*6y;. (4)

on which the extrinsic and intrinsic curvature are

k') = HS,  [R] =0, (5)
with H =dIna/dt. Here and below the notation |[...]
denotes evaluation on the background.

In order to keep all terms that are at most cubic in metric
perturbations, we expand the Lagrangian to cubic order in
the ADM variables around the background. We define the
Taylor coefficients

. Cxy : .
71] = Cxy6/8 + % (616}, + ud’").

C o ) C, = . .
L8 (B5 + 8,u8") + =5 5,315 + 81,

Covvs . . . . ; . i
+ ELZ (55,87 + 8168, + 81818, + 6184, 81 + 5y 010 + 8} 505! + 53,88, + 55m5™),  (6)

8

where X, Y, Z € {N,K,R} and the index structure is
determined by the symmetry of the background. We treat
scalars and traces with the same notation, so that the
tensor N'; = (N/3)8,. Thus Cygxy = Cyxy =0 for any

I
X, Y. Otherwise, these coefficients are arbitrary functions
of time which are invariant under subscript permutation
in the EFT; they take different concrete forms in different
specific inflationary models. Notationally, our Cyy is
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equal to the Cyy of Ref. [22]. Up to cubic order, we can
write

1 . .
L= 5);Z(cmax(sy(sz + Cyy 720X8Y' 67/,

+ Cxyz0X' [ 6YSZ/; + Cx 7 26X’ ;6Y/,6Z
+ Cx 7 20X';6Y1,6ZF)

1 o
+3 YZZ:(CYchY(SZ + Cy28Y' 1677}

+qm+qw+%—@, (7)

with the sums running through all variable permutations
with replacement. We have followed Ref. [22] in using
integration by parts to eliminate the linear 6K term up to
a total derivative term as well as in using the background
equation of motion to simplify some of the terms which
are constant or linear in geometric quantities.

Finally, to ensure only second-order spatial derivatives in
the equation of motion of perturbations we impose

Ckk = —Ckk»
Ckr = —2Ckg,
8
Crr = —§CRR (8)

This includes the Horndeski and GLPV classes.

B. Scalar perturbations

We now restrict our attention to scalar metric perturba-
tions and derive the quadratic and cubic actions for their
dynamical field, the curvature perturbation. For scalar
perturbations, the ADM metric (1) takes the form

N=1 +5N, N[' :ail//, hlj :azezcéij, (9)
where we have fixed the residual gauge freedom associated
with spatial diffeomorphism invariance by taking a diago-
nal form for &;; [39]. We call this choice unitary gauge.

In unitary gauge, the perturbed geometric quantities are

4 1 . e
5Klj :m 5l](§—H5N)+a 26 2§(5k8kcajl//
+ 5’k8]é‘3kl;/ — 5ik8k8jl// - 6ij5ab6aC6bW) s

SR, = —a~2e (5% 0,0,¢ + 8,0°¢ + 8(0¢)?
— %0202, (10)

Here and throughout, (9¢)* =50,0,{ and 0*(=
50,0,¢. Variation of the quadratic action with respect

to the lapse and shift yields the Hamiltonian and momen-
tum constraints
SN=Di{.  w=Dy+aDy. (1)

where y is an auxiliary variable satisfying 0%y = Z_,’ and the
parameters Dy, D,, and D5 are

D, —__ kKK
D, — 4(Cyg +Cg — HCgp)
2 2HCxx — Cnk
D, - 3C3x — 2Ckk(2Cy + Cyy) (12)

(ZHCKK - CNK>2

Since we are interested in the action to cubic order in
perturbations, the lapse and shift should a priori be
expanded beyond linear order. However, direct computa-
tion shows that the O(£?) lapse and shift parameters do not
contribute to the cubic action. This is an example of the
general result that the O(¢?) lapse and shift parameters
multiply the order O({) constraint equations and therefore
do not contribute to the cubic action [2,3,40].

After eliminating the lapse and shift, the quadratic action
for the curvature { becomes

2
. CY
S, = /d4xa3Q[Z_,’2 —a—‘z

(8:)2], (13)
in which Q and ¢? are

0— Cxx(2Ckx (2Cy + Cyy) — 3Ci)
(2HCkx — Cnk)*

2 {i <a 2Ckk (Cng +Cr) = CKRCNK> _ aCR}

“= aQ |dt 2HCkk — Cnk

3

(14)

In terms of the b, parameter defined in Ref. [22],
Q = eyb,/c2. Here and throughout, e, = —H/H?. The
quadratic action provides the linearized equation of motion:

0y L od 5

P = ag(aed). (15)

We now plug in the perturbed geometric quantities (10)
into the action (2) with the Lagrangian (7), eliminating the
lapse and shift using the constraint equations (11) and
retaining terms up to cubic order in . We can also simplify
the resulting action using integration by parts. Spatial
boundary terms will not contribute to the in-in bispectrum,
by momentum conservation, and will be omitted. Temporal
boundary terms can contribute significantly and therefore
must be retained [41,42].
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Finally, we can also use the linear equation of motion
(15) to eliminate Zf—type terms [9,29,43]. The resulting
cubic action is

S5 SBoundary /d3xdt{a3FlCé’2+aF2§(8C)2

Fa. .
tat a3F4z:8acaax +a’FsoP(9y)?

—364“82:826 + (8,0,0)20%¢

H43

8 32§82§82§+ 9 82§(a 3bC)(3 ab)()

(16)

in which F| through Fy are dimensionless time-dependent
functions presented in Appendix A. The temporal boundary
terms are

S?oundary _ /d%dl% |:a3G1é‘3 + a3G2€éZ
+ aGs{(90)* + a*Gald. L0y
. G
+ aGsE(I0)? + 76 (9¢)*0%¢
+ a’G,0%¢(9y)? + aGg,£0,(D,0ux

+f@am@mﬂ, (17)

in which G, through G¢ are time-dependent functions.
The G5 and G¢ terms contain no time-derivatives of the
fields and therefore do not contribute to bispectrum in the
in-in formalism regardless of the behavior of their coef-
ficients [29,44].
The remaining terms are suppressed relative to the usual

a3¢%¢ boundary operator, which shall appear later in our
construction, by the presence either of spatial derivatives,
which yield relative factors of k/aH <1, or by the

presence of additional factors of é’ , which is suppressed
outside the horizon. Therefore none of these terms con-
tribute unless G, grows sufficiently quickly, so long as the
boundary is taken when all modes are outside the horizon.

We restrict our attention to scenarios which satisfy these

mild conditions on the EFT parameters and therefore we

Boundary

hereafter discard S5 entirely.

C. Cubic action and consistency relation

We can use to our advantage our ability to reorganize the
cubic action using integration by parts and the equation of
motion for ¢ derived from the quadratic action. In particu-
lar, it is well known that in inflation with a single dynamical
degree of freedom and a curvature perturbation which
remains constant outside the horizon, the bispectrum in the

squeezed limit should satisfy the consistency relation
[3.8,17,45],

(kS’ kLa kL)

. dinAY(k,)
ks—0 Py (kg)Pe(ky)

dlnkL ’

(18)

where B denotes the curvature bispectrum (see Sec. III for
notation). Here the power spectrum P; is related to the
dimensionless power spectrum A? by

k3 5 H2

—Pr=Ar~— 19
272 ¢ ¢ 872003 (19)

where here and below ~ denotes a slow-roll relation. In
slow-roll approximation, the local slope of the power
spectrum is nearly constant and is called the tilt,

~n,—1=(-2¢4 —q—30), (20)

where g = Q/(HQ), 0 = ¢,/ (Hc).

We expect the consistency relation to hold here, but at
first glance—or, in the language of Sec. III, when plugging
in zeroth-order modefunctions—the squeezed-contributing
interactions ¢¢% and ¢ (9¢)? with their sources F; and F,
are not obviously related to the tilt (20). We can rewrite
these terms in such a way as to make the consistency
relation manifest by generalizing the procedure in
Refs. [8,23].

We first rewrite the squeezed-contributing action in
terms of the quadratic Hamiltonian density,

Hrmgk+<%ﬁ (21)

and the quadratic Lagrangian density

. 2
i 22)
such that
S :/d%cdti (Ho + Ly)Fy + (H —E)&
squeezed 2 Q 2 2)41 2 2 C% .
(23)

Next we note that several terms can be grouped into a
vanishing boundary term. For a general function of time F,
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1d/(F
f&( 2—[2> :%EZ_C(Hz-FZﬁz) —(q+0){Ly
F
+ <ﬁ+€H+6>CH2- (24)

Reference [23] uses a similar relation with F = 1/¢? to
simplify the action in k-inflation. Here we generalize this
grouping using

1 F, F,
F=—(2-2L4_ 22}, 25
2+q+a< 2Q+2C§Q> (25)

such that the total {£, term on the right-hand side of
Eq. (24) corresponds to the {£, term in Eq. (23), plus an
additional factor of 2{L,.

Making this substitution and using the specific func-
tional forms of F'; and F,, we find a significant cancellation
among the {’H, terms which results in the squeezed action
taking the form
|

2

S5 :/d%dr[cﬁQ%<eH+§a+%)Czé—% [a3Q<€H+§a+g)Czé'] +(o+ey)l(Hy +2L,) 4+ (1 = F) I

2

F . d (F
Ssqueezed—/dfd3x [C(H2+252)—HCQ +E <ECH2>]'

(26)

The boundary term here does not contribute to the
bispectrum (see Ref. [23]), and therefore we discard it.
The ¢£, term does not contribute to the squeezed limit. In
order to make the consistency relation more manifest, we
undo the grouping by using Eq. (24) with ' = 1. We also use

d .. .
2GCL, = 7 (Ga’0¢%¢) - Ga® Q¢*¢, (27)

which holds for all functions of time G, and in particular we
use it with G = ey + 30/2 + q/2.

After these substitutions and including the terms in
Eq. (16) that do not contribute to the squeezed limit, we
obtain the cubic action for metric perturbations

{L
2

Fa. . F¢ . F F
+a 8+ @ Fil0. 000 + @ FsPL(Op) + 15 LOCOE + 5 PL0,040) + 5 5 PLOPLO

F
o PLO,0)(0.002) |

References [8,23] show explicitly in the context of more
restricted inflationary models that the boundary term yields
the slow-roll squeezed-limit consistency relation, while the
first term on the first line contributes to the squeezed-limit
at higher order in slow-roll, as does the first term on the
third line (which can be seen by reapplication of Eq. (24).
No other term contributes to the squeezed limit at lowest
order in slow-roll, and therefore we can immediately see
from Eq. (28) that the squeezed-limit consistency relation
holds in the unified EFT of inflation during slow-roll. In
Sec. III, we will show that the consistency relation holds
even beyond slow-roll.

While the cubic action (28) ensures the consistency
relation holds in slow-roll, no assumption of slow-roll has
been made in its derivation.

D. Horndeski and GLPV subclasses

Though we write the EFT directly in terms of the metric,
the EFT can also be viewed as a four-dimensional scalar-
tensor theory by transforming out of unitary gauge using
the Stuckelburg trick [16,32]. In this way, the EFT of
inflation presented in Sec. IT A encompasses a large space
of fully covariant models. In this section, we study the
structure of the cubic action (28) derived in Sec. II C in the
Horndeski and GLPV model classes.

H*a?
(28)

The Horndeski and GLPV classes are constructed to
avoid the Ostrogradsky instability [46,47]. The Horndeski
class [30] is the most general four-dimensional scalar-
tensor theory with second-order equations of motion for the
scalar field ¢. The Horndeski class can be broadened to
include models which have higher than second-order
equations of motion yet due to a degeneracy condition
do not propagate an Ostrogradsky mode. This is the
beyond-Horndeski GLPV class [21], of which the
Horndeski class is a subset. The GLPV class is an example
of a DHOST theory [37]. While the GLPV model can be
represented with an action of the form (2), writing the other
DHOST theories in our EFT would require generalizing
Eq. (2) to include time derivatives of the lapse func-
tion [38].

The cubic action (28) and the resultant bispectrum takes
on a restricted form in the Horndeski and GLPV classes.
This restriction follows from the ADM representation of the
action for Horndeski and GLPV models [19],

L =Ay)+ A3K + A, (K> — K';K7;) 4+ B4R
+ As(K* —3KK';K/; + 2K' ;K7 K¥;)

o
+ Bs (K’_,-Rf =3 KR) . (29)
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Here A,(X,¢) and B,(X,¢) are functions of the kinetic
term X = V#¢V ¢ and field ¢. In the unitary gauge of
ADM, ¢ — ¢(¢) and thus X = —¢$* /N2, so these quantities
may also be considered as functions of N and 7. In the
GLPYV class, these functions are completely general, while
in the Horndeski class they satisfy

CN == —2X(A2X + 3A3,XH + 6A4.XH2 + 6A5’XH3),

Ay =2XB,x — By,
1
AS - —gXBix. (30)

We then take the appropriate partial derivatives in Eq. (7)
to get the various C variables in the Horndeski and GLPV
theories. We find

BsH

Cun = 6X(Agx + 3A3xH + 6A4 xH? + 6As xH) + 4X*(As xx + 3A3 xxH + 6A4 xx H* + 6As xxH’),

CK == A3 + 4A4H + 6A5H2,
BsyH Bs

7 5

= 2(Bux =57 )5 =

CKK - 2(144 + 3A5H),

CNK - _2(A3,X + 4A4an + 6A5’XH2)X,

CNNN = —24X(A2X + 3A3ny + 6A4’XH2 + 6A5ny3) - 36X2(A2$)(X + 3A3.XXH + 6A4,XXH2
+ 6As xxH?) — 8X3(Ag xxx + 3As xxxH + 6A4 xxxH? + 6As xxxH?),
Cynk = 6X(Asx + 4A4 xH + 6As xH?) + 4X? (A3 xx + 4A4 xxH + 6As xxH?),

CNNR = 6X <B4.X - 2

Cyvikk = 4X(Ayx +3As xH), Cnkr = XBsx,
Ckkk = —6As, Ckkk = 1245,

Cnkr = —2XBs,

B vH B H
5? > +4X? <B4,xx -= ) Cnkx = —4X(A4x + 3AsxH),

Ckkx = 6As,
(31)

in which, X = d/dX and all other coefficients are either zero or determined by Eq. (8).
Using these coefficients, one can show that in the Horndeski and GLPV cases Fg, F7, Fg, and Fy are identically zero
using the expressions in Appendix A. Thus the cubic action reduces to

d 3 q . d
GLPV _ 3 3 h g\ 3
83 —/dxdt[a th<€H+26+2)CC dt[a Q(

Fx. .
+d’ ﬁé’s +a*F (0,60, + a3F58ZC(8)()2] .

It can also be shown that the F4 and F5 operators are
suppressed by an additional factor of slow-roll parameters
relative to the other operators. This result was shown for the
Horndeski class in Ref. [48], and holds also for the
GLPV class.

This is the same form of the action as shown in
Refs. [43,49,50], after undoing our grouping of the F;
and F, terms. Our novel squeezed-action grouping of F
and F, also confirms the result of Ref. [48] that the
squeezed-limit consistency relation holds in slow-roll in
Horndeski models and corroborates the result in Ref. [51]
that GLPV leads to no new scalar bispectrum shapes
relative to Horndeski. By writing it in this form we show
that the squeezed-limit consistency relation holds in GLPV
models in slow-roll.

ITII. GENERALIZED SLOW-ROLL BISPECTRUM

We present in Sec. III A the in-in and generalized slow-
roll formalisms, which we use to construct a complete

3
€y +—6—|—g

, gs
Jo )] + e 26+ 1- P2

(32)

integral formulation of the bispectrum beyond slow-roll
resulting from the cubic EFT action derived in Sec. II. In
Sec. I B, we study the squeezed-limit of the bispectrum
and show that the consistency relation holds beyond slow-
roll. We relegate the explicit forms for the components to
Appendix B.

A. In-In and GSR formalisms

The tree-level three-point correlation function in the in-in
formalism is given by [3,11,23,52]

<5k1 ([*)8k2 ([*)2k3 (t*)>
_2Re[_i [ a0 B 0.
—oo(1+ie)
(33)

with H; ~ — [ d®xL; at cubic order [53].
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The field operators ¢! are in the interaction picture,
which means their corresponding modefunctions satisfy the
free Hamiltonian’s equation of motion (15). c_?f( is the
Fourier transform of the operator. We define the corre-
sponding modefunctions {(t) as

() = Gunak) + Ga'(-k), (34)
where the creation and annihilation operators satisfy

la(k).a" (k)] = (27)°5(k — k') (35)
as usual. Using these relations the power spectrum can be

evaluated from the modefunctions at a time 7, taken to be
after all the relevant modes have left the horizon

(Ch(1)8 (1)) = )8 (k + k') |5 (1)
= (27)38*(k + K') P (k). (36)
Translational and rotational invariance requires that the

three-point correlators be encapsulated in the bispectrum
By as
¢

(G, 8xCx) = (2738 (ky + Ky + k3)By (ki kp, k3),  (37)
in which we have suppressed the evaluation at f,. The
dimensionless parameter conventionally constrained by

experiment is

§ Bé'(klkaakfi) ( 8)

In(ky ko ks) =

Here and throughout ‘+perm.” denotes the two additional
cyclic permutations of indices.

In order to evaluate the in-in integral (33) and compute
B¢(ky., ky, k3), we need to solve the equation of motion (15)
for the interaction picture modefunctions {; (7). However,
beyond slow-roll approximation, there is no general ana-
lytic solution to the equation of motion. The generalized
slow-roll approach is to solve the equation of motion
iteratively [23,54-58]. It is convenient to express the
modefunction in dimensionless form as

_ KPS
y= ﬁ;gkv (39)

f =2ras\/20c;, (40)

x = ks and the sound horizon

where

s= / “a da c, (41)

a aH’

with a.,q denoting the end of inflation.
The formal solution to Eq. (15) is

TGS OOl (42)

) = yole) = [

X

in which X = k3, g(Ins) = (f” —3f')/f and 1 =d/dIns.
The zeroth-order solution with Bunch-Davies initial con-
ditions 1is

Yolx) = <1 + é) e, (43)
The first-order solution is obtained by plugging in the
zeroth-order solution into the right-hand side of Eq. (42).

Every order in the GSR hierarchy of solutions is sup-
pressed relative to the previous order by the g factor, whose
time integral is assumed to be small but whose value can
evolve and become transiently large unlike in slow-roll
approximation—we call such a case “slow-roll sup-
pressed.” When operators in the cubic action are also slow-
roll suppressed, as is the case for the (2 and ¢ (H, +2L,)
terms, it suffices to use the zeroth-order solution for
the modefunctions in computing the bispectrum to first
order in slow-roll parameters. Operators with general EFT
coefficients, however, are not necessarily slow-roll sup-
pressed and therefore the first-order modefunction solution
must be used in order to maintain a consistent first-order
solution.

In the GSR formalism, the power spectrum to first order
in slow-roll parameters is [22,59]

InA? = G(lns,) + / ) % W(ks)G'(Ins), ~ (44)

Sy

with the power spectrum window function

3sin(2u) 3cos(2u) 3sin(2u)
pu— - - 4
W(w) 2u? u? 2u (43)
and the power spectrum source
2 !
G:—21nf—|—§(lnf). (46)

The first-order bispectrum result follows the same
schematic form as the first-order power spectrum result:
a windowed integral over a source. Each operator i in the
cubic action contributes a set of sources and windows to the
bispectrum which are indexed by j according to their
asymptotic scalings at x < 1 and x > 1. Thus we denote

these sources and windows as S;;, W;.
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At zeroth order in GSR modefunctions, the bispectrum
integrals depend only on the triangle perimeter K = k;+
ky + k3, and all shape dependence is held outside the
integrand by corresponding k-weights 7';;. The integrals
take the form

1;;(K) = S;j(Ins,)W,;;(Ks,)

o (s
+[ 7S§j(lns)W,-j(Ks). (47)

At first order in the GSR modefunctions, each operator
yields a shape-dependent boundary contribution resulting
from the removal of certain nested integrals using integra-
tion by parts [23]. These contributions are of the form
[T;pl;5(2k3) + perm]. Together, the perimeter-dependent
and shape-dependent integrals enable computation of the
complete bispectrum of the effective field theory of
inflation to first order in slow-roll parameters,

Bé'(kl B k21 k3)
_ (21 A (ki) Ag (ko)A (k3)
1 [eyere

X {ZTijll/ +
ij

9
(Tipli5(2k3) +perm]}
—

1

(48)

We provide the sources, windows, and k-weights that
each operator in the cubic action contributes to this
expression in Appendix B. In Table I, we give summary
information for each operator. The following section

TABLE I. GSR bispectrum operators, sources, whether they
contribute to the squeezed-limit, and their status in the GLPV
class and its subset the Horndeski class. “Supp.” denotes an
operator which is slow-roll suppressed, while “Free” an operator
which is not. The i =6, i =7, i =8, and i = 9 operators are
identically zero in the GLPV and Horndeski classes.

i Operator Source Squeezed GLPV
0 22 g“ ZGH?HQ yes Supp.
1 C(Hy +2L5) oten yes Supp.
2 ¢c, h% no Free

3 s _1l.¢ Fs no Free

. QaHs f

4 S(0)ox —55 7 no Supp.
5 0L (9y)? é% no Supp.
6 Lorcore oa i) o 0

7 (8.00$)20%¢ o G no 0

8 (@PO@00@) et no 0

9 (PO Ou0) LGP o 0

focuses on establishing the squeezed-limit consistency
relation beyond slow-roll from these results.

B. Consistency relation

In Sec. I C, we argued from the cubic action that the
squeezed-limit consistency relation (18) holds during slow-
roll inflation. Now that we have the complete integral forms
of the bispectrum to first order in slow-roll parameters, we
can examine the squeezed-limit consistency relation in
more detail, in particular focusing on its form beyond
slow-roll.

We first confirm our expectation from Sec. II C that only
the i = 0 and i = 1 operators contribute in the squeezed-
limit. In Appendix B, we show that in the squeezed-limit
xp/xg > 1, xg < 1, we have that

9

z [ZTUIU + [Tiglip(2k3) + perm]| =0, (49)

i=2

and therefore the operators i = 2 to 9 have no net squeezed
contribution.

As for the i = 0 and i = 1 operators, only Iy, 1o, 117,
and 7, contribute to squeezed triangles as k; /kg. We can
then generalize a calculation from Ref. [23] to show that the
consistency relation holds even beyond slow-roll. The GSR
expression for the squeezed bispectrum is

Squeeze ~ 1
f L = Jim s Ay 20 k) + 40 2k
+ 2141 (2k,) = 2115(2k,)]. (50)

To leading order, we can substitute 1/A(kg) — f,,
where s, is an epoch during slow-roll, resulting in
—f NL R =27

ods | ey’
7 S*‘l‘f*[* 7{(7) W(k.s)

n (%)'W(;(km + (%)’WAkLs)] (s1)

f/

where
1.
W.(x) = —sin(2x),
X

W,(x) = )Z—Csin(Zx) — cos(2x),

W, (x) = %sin(Zx) — cos(2x), (52)

and we have evaluated the boundary term during slow-
roll as
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U

(2ey + 36 + q)|,, =~ —2]% ) (53)

We need to compare this GSR expression for the
squeezed bispectrum to the GSR expression for the tilt
of the power spectrum [60],

dll’lA2 © s
[ iR 144 /
dink |, [ g W (kys)G'(Ins)
i /°°ds 7\
=2= — (=) W,(krs), (54
fs*+ v n(kps), (54)
where
2.
W, (x) = =2 cos(2x) + —sin(2x). (55)
x

We see immediately from comparing the boundary terms
in Eqgs. (51) and (54) that the squeezed limit consistency
relation holds in slow-roll. The integral contributions
become significant during slow-roll violations. For a sharp
feature at k; s > 1, the parameters with the highest num-
bers of derivatives dominate and

I\ 1 /1 /
Gyt
f f 2\ f
which, when combined with the windows in the desired
limit, establishes consistency beyond slow-roll between
Egs. (51) and (54).

We have made two assumptions in deriving the con-
sistency relation beyond slow-roll. First, we have assumed
that the net change in the power spectrum between two
different scales is slow-roll suppressed and thus that we can
send 1/A(kg) to f,. Implicitly, this requires that any slow-
roll violation is highly transient so that the integrated effect
of transient violations remains small. Therefore second, we
assume that the sources of slow-roll violation are sharp in
their temporal structure using Eq. (56). The inflationary
model we consider in the following section can violate
these approximations by allowing large changes in the
power spectrum outside the well observed regime.
Nonetheless, we expect that the consistency relation when
computed exactly holds in general as long as { freezes out
after horizon crossing.

IV. TRANSIENT G-INFLATION

In this section, we illustrate the calculation of the scalar
bispectrum in our general formalism for the unified EFT of
inflation with a specific model with cubic Galileon inter-
actions in which slow-roll is transiently violated. We briefly
review this transient G-inflation model in Sec. IVA and
present its bispectrum in Sec. [V B.

A. Model

The transient G-inflation model is presented in detail
along with its scalar and tensor power spectra in Ref. [31].
We briefly review it here.

We assume that the Lagrangian density takes the form

L=-X/2-V#) + /)5 00+5. (57

with the chaotic inflation potential V(¢) = m*¢*/2. In
Ref. [61], this model is considered with a constant
f3 =—M73. The constant f; model suffers from two
problems: for the measured value of the scalar tilt ng, it
predicts too large a tensor-to-scalar ratio r; and for some
values of m and M the inflaton has a gradient instability
2 < 0 during reheating whose resolution would lie beyond
the scope of the perturbative EFT.

Transient G-inflation shuts off the G-inflation term
before the end of inflation by using a tanh steplike feature

in f3
Fa(f) = -3 {1 + tanh (@)} (58)

Prior to the step, the inflaton is in a G-inflation regime,
while after the step, the inflaton follows the slow-roll
attractor solution of chaotic inflation. Because the f3X[l¢
term in the Lagrangian becomes negligible after the step,
the gradient instability at the end of inflation is avoided. By
having the transition start just as the CMB scale exits the
horizon, the tilt n, is decoupled from the tensor-to-scalar
ratio r and therefore the model can be consistent with
observations.

We consider two parameter sets for the transient G-
inflation model, a “large-step” model and a “small-step”
model. The large-step model is the fiducial model of
Ref. [31]. The inflaton mass scale m = 2.58 x 1070 is
chosen to satisfy the Planck 2015 TT + lowP power
spectrum amplitude. The Galileon mass scale M = 1.303 x
10~* suppresses the tensor amplitude relative to the scalar
amplitude when the CMB mode kcyp = 0.05 Mpc™! exits
the horizon 55 e-folds before the end of inflation. The
remaining parameters ¢, = 13.87 and d = 0.086 control
the step and are chosen such that the tilt and running satisfy
observational constraints.

The small-step model is chosen by the same procedure,
save for the parameter M which is selected for a larger
tensor amplitude. The other parameters are adjusted to keep
the tilt and amplitude of the power spectrum fixed.
The resultant parameter set is {m,M,p,,d} = {6.50x
1076, 48.25 x 107*, 14.67,0.021}. In this model, the power
spectrum evolution before and after the step is much
smaller as inflation is never in a fully G-inflation dominated
phase, and thus we are closer to the regime of validity of the
argument in Sec. III B.
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FIG. 1. The GSR power spectra for the transient G-inflation

models we consider. In the small step model, the transition has a
small amplitude but rapid variation whereas in the large step
model, it has a large amplitude and slow variation.

In both models, slow-roll is transiently violated as the
inflaton traverses the step, and thus the GSR formalism
should be used in place of the traditional slow-roll approach
for power spectrum and bispectrum observables. We show
the GSR power spectra for these models in Fig. 1. In the
small-step model, the deviations from scale invariance are
small in amplitude but rapidly varying in k (see inset). In
the large-step model, they are large in amplitude but
smoother in scale. We shall see next that these properties
also apply to the bispectrum.

B. GSR bispectrum for transient G-inflation

We now compute the bispectrum for the transient
G-inflation models of Sec. IV A using the GSR formulas
from Sec. III.

We begin by computing the squeezed bispectrum, where
the consistency relation allows us to check our computa-
tions by comparing the bispectrum result in the squeezed
limit to the slope of the GSR power spectrum using
Eq. (18). We choose to fix the ratio kg/k; = 1072, From
the analytic analysis in Sec. III B, we know that the only
operators which contribute to the squeezed limit are the
i =0 and i = 1 operators, and their sources are manifestly
related to the local slope of the power spectrum. Thus we
expect these operators to enforce the consistency relation.

The accuracy of the GSR approximation in the squeezed-
limit for the small-step case is shown in Fig. 2. The GSR
bispectrum result closely tracks the consistency relation
result before, during, and after the step in the power
spectrum. Slow-roll violations during the transition appear
as sharp features in the sources which, when integrated
against the windows, induce oscillatory features in the
squeezed bispectrum and in the tilt of the power spectrum.

While the GSR bispectrum calculation and the power
spectrum based consistency relation expectation agree on
the period and phase of these features, there is a small
amplitude difference between the curves before, during,
and after the transition. This error occurs because the

0.03 p-———-Consistency
GSR Corrected

-é 002 kT GSR Original
2
2 T ——
0.01 f
0.00 i I \
1073 1072 107! 10° 10*
kr

FIG. 2. Squeezed bispectrum for small-step transient G-
inflation. We see excellent agreement between the GSR bispec-
trum and the consistency relation curve, though with a slight
amplitude error. By applying a simple correction to account for
modefunction evolution outside the horizon, we can eliminate
this error completely.

bispectrum and power spectrum are calculated to first order
in slow-roll suppressed quantities. In particular the con-
sistency relation check of Sec. III B ignores corrections due
to the evolution in f which would be picked up in the next
order of the GSR iteration. Since there is some slow-roll
suppressed evolution in f between the epochs when kg and
k; freeze out, or equivalently in the power spectra at the
two scales, a correspondingly small error is induced in the
bispectrum.

In this case, where the change in the power spectrum
between kg and k; is insignificant, this error is minor.
Nonetheless, in the upcoming large-step example the power
spectrum will significantly evolve across freeze-out epochs
and this error will become large. In Refs. [23,60], it is
shown that next-order terms in the GSR hierarchy provide a
correction factor,

ns—l ks
Ry =1 In( -3
=1t >

assuming that the squeezed bispectrum integrals receive
most of their contributions at horizon crossing for ;.

This correction multiplies the zeroth-order bispectrum
contributions from the i = 0 and i = 1 terms and corrects
for the leading-order integrated evolution of f. Since in the
following example the power spectrum evolution will be
large, we generalize this correction to the nonleading
integrated evolution of f by choosing

R = A(ks)/A(ky). (60)

We show in Fig. 2 that this correction eliminates the
small amplitude error, improving the consistency between
the squeezed bispectrum and the derivative of the power
spectrum. This correction does not impact triangle shapes
where all three modes are comparable in scale. For a
formulation of GSR which avoids this type of error by
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FIG. 3. Squeezed bispectrum for large-step transient G-

inflation. Despite the large evolution of the power spectrum in
this model, the corrected GSR bispectrum tracks closely the
consistency relation. The discrepancy between the corrected
bispectrum result and the consistency relation at the peak
indicates that the next-order term in the GSR hierarchy becomes
important there.

maintaining order-by-order modefunction freeze-out, see
Ref. [62].

We show in Fig. 3 the squeezed bispectrum for the large-
step model. In the large-step model, the i =0 and i = 1
sources are much wider than in the small-step case and thus
the bispectrum appears as a single peak rather than an
oscillatory function. In addition, for this choice of model
parameters the power spectrum evolution is large and thus
the GSR squeezed bispectrum makes a significant error
across the step. Nonetheless, correcting the bispectrum for
the integrated evolution f between kg and k; with Eq. (60)
succeeds in explaining most of this discrepancy.

The residual errors in Fig. 3 at the peak of the squeezed
bispectrum can be understood as a reflection of other
iterative corrections in the GSR hierarchy, modes which
converge only slowly in this large-step case. These terms
are associated with the dynamics of the k; modes and
similar corrections are required for the power spectrum as
well. In fact, it is explicitly shown in Ref. [31] that the ¢
terms in the power spectrum expansion reach order unity
during the transition, which explains why higher-order
GSR contributions are necessary to ensure the consistency
relation holds at the bispectrum peak.

We next turn to the equilateral bispectrum. Only the
i = 2 and i = 3 operators yield contributions which are not
slow-roll suppressed (see Table I). In slow-roll approxi-
mation one would take their sources to be constant in
Eq. (48) and obtain

cequil 39 5 (F
lead; equil 3
(1= F)ep +— [ =2 1
NL 08 1~ Fse g <Q>SR’ (61)

in which the “SR” subscript denotes that the functions
should be expanded to zeroth order in slow-roll. This can be
shown to agree analytically with the result for the leading-
order equilateral bispectrum in the literature for Horndeski

models, Eq. (97) of Ref. [48]. In the specific case of
transient G-inflation, Eq. (61) takes the form

SAHA P (1749413 Hp— 1715 49°)
81(1 +4f3H¢'5—f3,4)§252)2(1 +6f3H€b—f3,(/)¢2),
(62)

SR, equil ~
NL -

in which, p=d/d¢.

When |f5] is large, as in pure G-inflation, the leading-
order equilateral bispectrum dominates over slow-roll
suppressed terms and leads to a larger bispectrum than
in canonical inflation. However, when |f3| is small, as
occurs in the small step model and after the transition in the
wide step model, the leading-order contribution to the
equilateral bispectrum is subdominant to the slow-roll
suppressed contributions from the i =0 and i = 1 oper-
ators. For this case, Ref. [48] computes a next-to-leading-
order contribution to the bispectrum, which results from
considering the contributions from slow-roll suppressed
operators, the next order in slow-roll contributions from the
i = 2 and i = 3 operators, as well as SR corrections to the
modefunctions.

In Figs. 4 and 5, we compare the total equilateral
bispectrum in GSR with the leading-order slow-roll expres-
sion (62) as well as Egs. (97) and (100) of Ref. [48], formulas
which include the next-to-leading-order contributions.

In the small-step case, inflation before and after the
transition is nearly canonical and thus the equilateral bispec-
trum is dominated by the i = 0 operator. At the transition the
i =1,i=2,and i = 3 operators contribute, while the i = 4
and i =5 operators remain subdominant throughout. As
expected, the leading-order slow-roll bispectrum is subdomi-
nant throughout, while the slow-roll formula including the

0.10 F
— GSR |
== = SR Lead+Next I \
o 0051 -—-"SR Lead
2Aa
Q&\Z
0.00 [ o o e
—0.05 E i
1073 102

FIG. 4. Equilateral bispectrum for small-step transient G-
inflation. For this set of parameters, |f3| <1 and thus the
leading-order slow-roll contribution Eq. (62) remains nearly O.
The next-to-leading-order SR contribution, Eq. (100) of Ref. [48],
dominates, and agrees with the GSR computation before and after
the step. During the transition, the SR hierarchy is violated and
the SR expression fails to accurately track the GSR bispectrum.
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FIG. 5. Equilateral bispectrum for large-step transient G-
inflation. In this case the leading-order SR contribution
Eq. (62) dominates prior to the transition where |f3] > 1. After
the transition, the leading-order SR contribution goes to zero while
the next-to-leading-order terms in Eq. (100) of Ref. [48] come to
dominate. The GSR result again agrees with the SR results before
and after the transition, while the SR result shows an erroneous

double-peak feature during the transition. Despite the enhance-

ment due to the slow-roll violation, [f53""| < 1 at all times.

next-to-leading-order contributions agrees well with GSR
before and after the transition. However, during the transition
it displays radically different behavior from the GSR curve
and fails to reproduce the oscillatory equilateral bispectrum
resulting from the sharp sources.

In the large-step case, inflation before the step is in a
G-inflation dominated phase. During this phase, the i =2
and i = 3 operators dominate the equilateral bispectrum. In
the G-inflation dominated limit, f3; — —oo, the leading-
order contribution in slow-roll to the equilateral bispectrum
(62) approaches 235/3888 ~0.06. The slow-roll sup-
pressed contribution only yields a small adjustment to this
value. This is significantly smaller than might be expected
from the k-inflation scaling, for example in DBI inflation

sauil 7% (1 = 1/c?), which with the G-inflation ¢ ~2/3
yields 3" ~ —0.16. Note also the difference in sign.

After the transition, f3 — 0 and the leading-order
contribution goes to zero while next-to-leading order
contributions become important. Once more, while the
leading-order and next-to-leading order SR formulas can
accurately track the GSR bispectrum when the usual slow-
roll hierarchy is maintained, they fail during the transition
when this hierarchy is violated. In particular, the next-to-
leading order SR formula predicts an erroneous double
peak structure in the equilateral bispectrum.

V. DISCUSSION

In this paper, we develop an effective field theory
approach for the study of the bispectrum in single-
clock inflation beyond the usual slow-roll approximation.
This approach begins with the most general action which
breaks temporal diffeomorphisms but preserves spatial
diffeomorphisms. In addition, we require that the scalar

degree of freedom obeys a standard dispersion relation at
leading order so that power spectra behave in the usual way.

Our approach of studying the action directly in unitary
gauge yields a wider set of terms in the action than
explicitly considered in previous work [10,13,16,63],
and in particular our action encompasses the Horndeski
[30] and GLPV [21] classes.

From this starting point, we derive the cubic action for
scalar curvature perturbations, making use of integration by
parts and the equation of motion while discarding boundary
terms which are suppressed outside the horizon. By appro-
priately grouping the operators, we isolate the ones that
contribute in the squeezed limit and highlight the consistency
relation between the power spectrum and the squeezed
bispectrum. The resultant cubic action contains ten operators,
of which six are present in the Horndeski and GLPV classes,
and of these six operators four are slow-roll suppressed.

We then compute the tree-level bispectrum contribution
for each operator using the in-in and GSR formalisms
which are valid beyond slow-roll limit. Our GSR results
enable computation of any bispectrum configuration for all
the operators in our action from a set of simple one-
dimensional integrals.

In particular the GSR expressions confirm that the
consistency relation holds not just in slow-roll approxima-
tion but also in the case of rapidly varying sources. This
result extends works which show that the consistency
relation explicitly holds in slow-roll, for specific models,
or for certain subclasses of EFT operators [17,23,48,64].

As an explicit example, we compute the bispectrum for a
specific inflationary model in the Horndeski class in which
slow-roll is transiently violated, the transient G-inflation
model [31]. For this model, our first-order GSR results for
the equilateral bispectrum show qualitatively different
behavior from the slow-roll results in the literature during
the slow-roll violating phase. This model also highlights
corrections for squeezed configurations from the nonlead-
ing GSR terms which can be important in models in which
the power spectrum deviates dramatically from scale-
invariance between freeze-out epochs.

The large number of time-dependent coefficients in the
EFT of inflation allows a rich range of behavior for the
bispectrum beyond slow-roll. By condensing this large
family of coefficients into a small number of integrals, we
have provided the tools with which the bispectrum for a
very general class of inflation models can be easily studied.
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APPENDIX A: CUBIC ACTION COEFFICIENTS

In this Appendix, we provide the EFT coefficients that
appear in the cubic action (28). For compactness, we first
define some intermediary variables. Prior to temporal
integration by parts and equation of motion simplifications,
but after spatial integration by parts, the lapse- and shift-
eliminated EFT action (2) is

Sy = / dxdt [a3P1c:52 AP0 + @PE + WP DL 0ur) + aPsPLD, D) + 2 L0PC

FITRC0,0,07 + S OPLPCPL + 2 PLO,00) (D) + aP 1P + aPyiE(20)?

) Pos. P )
+ aP (0% + %C(aaabg)z + f (98)*0%¢ + aP58(8,058)(0,0px) + aP169°5(9,0)(0ux)

+aP0PL(0r)? + P15 (0,0,2)? . (A1)
in which
Py = =3CggDs,
P2 - 2CR’
1
Py =135 [6Ck g k(1 — HD,)(9 +9H?D? +9HD (D3 —2) —9D3 +2D3) + Cg g k(6 — 6H>D3 — 6H?D3 (D5 — 3)

—6D3 + D3 + 6HD(2D3 — 3)) — 2(Cxxx (=3 + 3HD| + D3)* + D{(=27Cygk + 5S4HCnxx D1 — Cyng D1
- 27I—IZCNKKD% - 3CNND% + 9HCNNKD% - CNNND% + 18CNKKD3 - 18[—ICNKKDIDS + 3CNNKDID3
—3CngxD3 —3Cyk g (HD; = 1)(3HD| — 3 + 2D3) + 3Cxx (6 + 6H>D? + 4HD (D3 — 3) — 4D3 + D3)))],

1
P4 :ECKKD%’
D3
Ps == [8Ckir + 3Ck k& + 2Ck kD2 + Ci gk D2):

Po— 1
°7 12

192Cg rr +30Ck rr + 90Cki & + 288Cxrr — 192HCg g gDy — 30HCg g gD — 90HC kg Dy

— 288HCyrrD1 + 30Cxi gDy + 96CyrrD; + 16CkrD; + 48Ck & kD + 12Cx & kD + 84Ci k2D
4 144CxrDy — 48HCi g xD1 Dy — 12HCy g kD1 Dy — 84HCi k2D Dy — 144HCxx Dy Dy + 12Cyz :Dy D,
+ 48CykrD Dy + 12Cx g kD3 + 18Cxxx D3 — 6Cxx D1 D2 — 12HCk g ¢ D1 D2 — 18HCpyexc Dy D3

+ 6CykxD1D3 — 48Cx rrD3 — 3Cg gz D3 — 30Ckg g D3 — 96Ckrr D3 + 6Ck g gkD2 D3 — 24Cg kDo D3

— 48CkgrDyDs3 + 3Cx gk D3D3 — 6Cx gk D3Ds3],

1
Py = [-8Ckir = 3Ckik — 16Ck krD2 = TCk Rk D2 = 2Cxr D> = 8Ck k kD3 — 5Ck k #D3 — 4CxkrD3

— 2Cx g kD3 — Cx kD3],

1
Py = ——[120Cz g g + 11Cx g & + 128Crrr + 48C g g D2 + 3Cik g D2 + 30Ckz g D2 + 96Ckrr Dy — 3Ck k RD3

12

+ 12Cx g D3 + 24CxkrD3 — Ci g kD3 + 2Ckxk D3]

D5
Py = ——>
? 2

[8Cxkrr + 3Ckir + 8Cr ik rD2 + 4Cxk kgD + 2Cxx D2 + 2Ck g kD3 + Cr g D3],

023526-13



SAMUEL PASSAGLIA and WAYNE HU PHYS. REV. D 98, 023526 (2018)

1
Z[—24C1'(;(R —8Crir —48Cixr — T12Ckxr + 48HCr g rD| + 16HCg g gDy + 96HCgxrDy + 144HCgxr D

— 16Cyg gDy —48CyxrD; — 24H2CKKRD% - SHZCKKRD% - 48H2CKKRD% - 72H2CKKRD% + 16HCNKRD%
+ 48HCygrD7 — 8CyygD} — 16CygD} — 18Cx g kDy — 2Ci g kD2 — 18Ck gDy + 8Cx D1 D,
+36HCg g kDD, +4HCg g kD1 D> + 36 HC kD 1Dy — 4Cng kD 1Dy — 12Cygx D1 D> — 8HCKKD%D2

- 18H2C,-(,-(KD%D2 - ZHQC,-(,-(,-(D%DZ - 18H2CKKKD%D2 + 4HCN,-(,-(D%D2 + IZHCNKKD%DZ

— 2CynkD3IDy + 16Ck g g D3 + 4Ck g kD3 + 28Cx D3 + 48CxxrD3 — 16HCk g gD D3 — 4HCj g gD D3
—28HCgxrD D3 —48HCgxrD D3 + 4Cyg gD 1D3 + 16CygrD D3 + 8C g kD2D3 + 12Cx gk D2 D5
—4Ckx D\ DyD3 = 8HC g kDD, D3 — 12HC g Dy D2 D3 + 4Cygg D1 D, D3 + Cr g g D3 — 4CrgrD3

— 8CkkrD3 + Cx g xD2D3 — 2Cxkx D2 D3],

Py =

1
Py = 5 [—4Ckg +4HCxrD| —4CypD| — 4CrDy — 4Cxg Dy + 4HCg gD Dy — 2Cyx DDy + Cxg Do D3],

_ 4CkgCyk — 8Ckk(Cyg + Cg)

- 1
12
+18Cg g kD3 + 6Cg g kD3 + 6CxxD D3 — 18HCg g kD1 D3 — 6HCg g g D1 D3 + 6Cyg kD1 D3
— 6Cx g kD2D3 — 12CxgrDyD3 — 6Cx g kD3D3 — 3Ci g kD3D3 — 3Cx pr(—2 + 2HD; + D5)
- 6CKRR(_3 + 3HD1 + D3)],

[6Cyr D1 — 16CrrDy + 12Cx g kD2 + 36Cr kD> — 12HCg g kD D> — 36 HC kgD 1Dy + 12Cyg gD 1 D,

1
Py = D [8Crr — 3Ckx D3],

D
Pis = —73 [=2Cyg D1 = 6Cx g kD2 — 2Ci g kD2 — 2Cxx D1 D, + 6HCg g kDD, + 2HCg g gD D,

—2CygkD1Dy + 2Cx g xkD2D3 + Ci g kD2D3 + Ci g r(—=2 +2HD | + D) + 2Cxxr(=3 + 3HD| + D3)],

3
Pys = —CggD;,Ds, Py = _ZCKKDg,
1
Py = _ZDg[_z(CKK +Cyig)D1 +Crgg(=2+42HD; + D3) + 2Cx g x (=3 + 3HD, + D;)], (A2)

where D, D,, and D5 were defined in Eq. (12).
The cubic action (16) then results from performing a series of time integrations by parts and equation of motion
simplifications on Eq. (A1). The resulting operator coefficients are

H
Fl = Pl —Z—CA(ZC'%H(?)O + 10q2 — SQZ —+ 10€H +26U+ 2€H0'+4O'2 + q(35 +5€H + 146) - 20'2)P5

N

+2¢2(3 +2q 4 26) Py — 3¢iP1y — 2¢2qPy — 2¢i6Py + 6H? P53 + TH?qP 5 + 2H*¢* P13 — H*q, P13

+ TH?ey P53 + 4H?qey Py — 2H?5 €5 P13 + 14H?6P 5 + 8H?qoP 5 + 8H?*cyoP 5 + SH?>6? P13 — 2H?6, P15
+ 12HP, + 14HqP, + 4Hq* Py — 2Hqy P14y + 4Hey Py + 2Hgey Py + 28 HoPyy + 16HqoP 4 + 4HeyoPyy
+16Ho?Pyy — 4Hoy Py — 12¢2HP s — 14c2HgP s — 4c2Hg*Pys + 2c2Hq, P15 — 4c2Hey Pys — 2c2Hqep Py s
—8¢ZHoP5 —4c2HqoPys — 6¢2P g — 4c2qP g — 4c26P ¢ + 6P g + 4ctqP g — 38¢2H ps — 22¢2Hqps

— 6ciHeyps — 16c;Hops = 2¢ipy + ¢ipiy = LIH pi3 = 10H?qp 3 = 2H?q* pi3 + H>qyp1s — 10H? €3
—4H?qeypi3 + 2H*616yp13 — 20H 0 p13 — 8H?qop13 — 8Heyopi3 — 8H 6% py3 + 2H?0,p13 — 10Hpy4
—6Hqp4 = 2Heypiy — 12Hopyy + 10ciHpys + 6¢;Hgpys + 2ciHeppys + 4ciHopys +2¢5pis — 2¢{pis
+6¢iHpsy +6H?pi3s +3H?qpisp + 3H ey pisp + 6H 0p i3, + 2Hpias — 2¢Hpys, — Hpis3),
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H
F,=P, +2—62(2C%H(SQZ_SQ(_1+€H)+2(5+5—€H(5+5)+52))P5+2C?P11 +2H*P\3+ H*qP3 + H?*q, P13

—3H?ey P13 —2H?gey P13+ 2H?5 €y P13 — 2H?*6P 5 — 2H?q6P |5 — 6H?€ 0P 5 — 4H?6% P15 + 2H?6, P13
+4HP,, +2HqP,, +2Hq,P,4 —4Hey Py, —2Hgey Py — 4HoP,, — 4HqoP,, — 4HeyoPy, — 8H6> Py,
+4Ho,Piy—4cIHP s —2c2HgP s —2c2Hg,Ps +4c2Hey Pys + 2c2Hgey Pys — 2¢2P g + 2¢Pig + 4ctoPyg
+ 14¢iHps +10c;Hgps + 6¢Hey ps +4c;Hops +2¢5pyy — H>pi3 — Hqapis + 6H ey pi3 +2H gy pis
—2H?8 ey p13 +6H?0p 3 +2H*qop 3 + 6H?eyopis +4H? 6% pi3 — 2H?6,p13 + 2Hp 4 +2Hqp 4 + 2Heypiy

N

+8Hopiy —2ciHps —2cHgpis — 2ciHey pis — 2¢ipig + 2¢i pig — 6 Hps , — 2H? p3 5 — H*qpys3 5
—3H%eypi32 —4H*0p130—2Hp1ao +2¢Hpy s, + H pi33),

H
ot (48c2HPs +24c2HqPs + 10c2HoPs + 12c2HP o + 6¢2HqP o + 4c2HoPy + 6¢2Py —3¢2P),
s

F3:HP3+

+ 12H2P13 + 6H2qP13 +4H2€HP13 + 1OH2(7P13 +24HP14 + 12H(,]P14 +20HO'P14 —_ 6C%HP15 —_ 3C§HqP15
+ C?HJP]S - 3C§P16 + 6C§P18 — 14C?Hp5 — 2C_%Hp10 — 16H2p13 — 6H2qp13 _4H2€le3 — 10H20'p13 — 8Hp14
+4ciHpys +4H?py3,),

H

s

+8HO'2P5 —4H62P5—6HP15 —7HqP15 —2Hq2P15 +HqZP15—2H€HP15—Hq€HP15 —4HGP15—2HQGP15
—6P16—4qP16—46P16+6C§P18 +4C§qP18 —28Hp5 — 16qu5 —4H€Hp5— 12H(7p5 +5Hp15 +3qu15
+Heypis +2Hopis +2pig—2¢ipig +4Hpsy — Hpis ),

d (H H?P H Hp
Fs=Py +E<@(P5—P5(6+3‘]+20')>> + 2C25(3+ZCI)(6+3Q+20)_5<p18_P18(3+2‘D+ C25(3+2‘]))v
Fo=H*(Ps+ P13),
F7:H4P7,
F8:H4P8,
F9:H3P9, (A3)

in which p,,=dp,;_1/dN and p,,=p,=dP,/dN; o,=do;_1/dN and o, =0; q,=dq;_1/dN and g, =gq;
and 6, = (1/2)(dIney)/(dN) —ey.

APPENDIX B: BISPECTRUM SOURCES, WINDOWS, AND CONFIGURATION WEIGHTS

In this Appendix, we provide the full set of sources, windows, and configuration weights which make up Eq. (48), the
GSR integral formulation for the bispectrum,

1.i=0: &% and i=1: £(H,+ L))

These operators correspond to the interaction Hamiltonians
i= d 3 q . d 3 q .
H™ = —/d3xa3Qa (eH +§o+§> ¢+ /‘P’CE [a3Q<eH +§a+5)cz(:],
H™ = - / dx(0 + ey)C(Ha +2L,). (BI)

and as we shall see are slow-roll suppressed. Therefore the zeroth-order GSR modefunction result is first order in slow-roll
parameters. These operators are considered to the desired GSR order in the context of canonical and k-inflation theories in
Refs. [23,44]. The results there hold with the source substitutions
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(2€H + 30 + q)

Soo = So1 = S0 =
00 01 02 2f
o+te
Si0= 811 =Sp = ——" (B2)
f
These sources have corresponding windows
WOO = Wl() = xsinx, W01 = Wll = COS X,
sin x
W =W = " (B3)
and k-weights
S igshik
Too = —1 Toy = —=—1,
00 01 ki koks
I o> S U o7
02_kk2kg’ 10—2 K2
272 213
= g [+ 8 - e
i# i>j i#]
Zi i (B4)

2 T ok koks

These operators enforce the squeezed-limit consistency
relation, as shown in detail in Sec. III B.

2.i=2: ¢L, and i=3: &

These operators correspond to the interaction
Hamiltonians

., {L,

H7? =— | &#x(1-F .

P [axi-nS,

. J F

HP = - [ $xa® 28 B5

P [ e 2 (B3)

These operators, and all subsequent operators, are
not slow-roll suppressed in the EFT. These operators are
also not slow-roll suppressed in the k-inflation or
Horndeski subclasses. The first-order GSR result therefore
requires computing the contributions from first-order mod-
efunction corrections, which is done in Ref. [23]. The
results there hold with the source substitutions

Cy (F_]) 1 Cs F3

aHs f 5= QaHs f (B6)

) =

In particular, the contributions which are first order in
GSR due to the time variation of the sources have the
sources

S0 = S =55, S30 = 831 = S5,
S =8, S3 =83, (B7)
with the windows
Wy = W39 = xsinx,
Wy = Woy = W3 = W3y = cosx, (B3)

and the k-weights

doiki = 2Zi>jkikj
2K? '

T = kzk% [ Zk 2 ——ZkaZ = Zkzkﬂ -

i>j

Ty =

T kK —— k2k2 k23|,
2= ke k2k3 [ Z z ; i 1]
T%l T'§2 3klk2k'§
Tig=— = —= = — =, B9

while the contributions which are first order in GSR due to
the time variation of the source have the sources

—q ! Q]
952— 23 — 24_S25_SQ6’ gS3_ 33 34_535’

(B10)
the windows
Wy = W33 = xsinx + cos x, W,4 = cos x,
sin x
W25 = W34 = 27 — COS X,
sinx cosx Sinx
Wi = Wis = Wop = Wap = 12 —5-——5—— '
X X 4x
(B11)

and the k-weights

’

— ko) (ki + ky) (kT + 6kiky + k3 )ks

320 i kik; (K — 2k;) (K = 2ky) (K — 2ks)
Tyy=5—-——715 > 24 =
2 K 4k, koks
1
Tys =~ K2 = I2)2(K2 + 6k ky + K2) + 4(k
2 8k, kyky(K — 2k;) K2 [(k7 — k3)* (k7 + 6kiky + k3) + 4(k,

+ 2(3k{ + 23k3ky + 64Kk3K3 + 23k k3 + 3k3)K3 + 16k ko (ki + ky)Kk3 —

— 4(ky + ky)K3] + perm,

(7k3 + 20k, ky + 7K3) k3
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1
12k, kyks (K — 2k3)2K>

Ty =

[(ky = ky)? (ky + ko) (kT + 6kky + k3) + 3 (k7

— k3)*(k3 + 6k1ky + k3 ) k3

+ 2(ky + k) (6kT + 35k3ky + 106k3k3 + 35k, k3 + 6k3)k3 + 2(2kT + Skiky — 26k3k3 + Skik3 + 2k3)k3

— (ky + ky) (19Kk3 + 44k ky + 19k3)k3 +

_— 1
B 6k koks (K — 2ks)?
— (ky + ky) (3k3 + Skiky + 3k3)k3 + (3k3

(=9k? + 4k, k,

[(ky = ky)* (ky + ko) (kT + 3kik + k3)

—9k3)k3 + 6(k; + ky)kS + 2k]] + perm,

= 2(ky = ka)* (kT + 3k ky + k3) ks

—2kiky + 3K3)K3 + 2(ky + ko) ks — K3,

3k ko ks 3kikoks
T33 :m+pem’ T34 = —m[7(kl +k2) —3k3] +perm,
4y kyks 2k kaks
15 = Rk — kg P TRV 3 R 2T e T =y B2

The k-weights satisfy the relations

ZTZJ [T+ perm| = ZT3J T3 +perm] =0,

Jj=

(B13)

which ensures that the outside-the-horizon boundary terms
in I,; and I3; for these contributions cancel and therefore
that ¢S, and ¢S5 do not need to be integrated.

In the squeezed-limit x; /xg > 1, xg < 1, these oper-
ators satisfy

ZszIZj +
J

Typl5p(2ks) + perm| = 0,

ZT3j13j + [T35135(2k3) + perm| = 0, (B14)
J
and therefore these operators have no squeezed
contribution.
3.i=4: £8,60,x

This operator corresponds to the interaction Hamiltonian

Hi= = — / dBx a3F, L0y (B15)

This operator is considered in Ref. [23] to zeroth order in
GSR modefunctions because it is slow-roll suppressed in k-
inflation, Horndeski, and GLPV models. It is not neces-
sarily slow-roll suppressed in the general EFT. Therefore
we present it here to first order in GSR modefunctions.

We define the source

1 F,
S4=_E7’ (B16)

[
in which the factor of 2 here facilitates comparison
with Ref. [23].

The contributions which are first order in GSR due to the
time variation of the source have the sources

Ss0 = Sa1 =S4, (B17)
the windows
Wy = xsinx, W4, = cos x, (B18)
and the k-weights
Ty = _%#[(kl -K3)k3 (ki + k) + perm],
K2 &y ks
T = =g (ki KaJGK — ko) + perm. (B19)

The contributions which are first order in GSR from first-
order modefunction corrections have the sources

Sip = Siz = Siy = Sip = 9S4 (B20)
the windows
nx
Wy = cosux, Wy =2———cosux,
X
sinx  cosx sin x
Wi = 12( 3 7 T4 ) Wi = Wy,
X X X
(B21)

and the k-weights
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1 1
T =———[(ky - Ky)K2
42 2Kk1k2k3[( 1 - k2)k5 + perm),
1 1 1

Ty =—
BT 2K (K = 2k ) (K — 2ky) (K — 2k3) ky ks

[(Ky - Ky)K3(5K3 — 5k3ky — 5kik3 + 5k3 — 3k3ks

+ 6k1k2k3 - 3k%k3 — klk% — kzk% - k%) + perm],

[(ky - ka)R3(OKS — 245 (9%, -+ 8ky)

+ 4Kk3(9K3 — kak3 + 4K3) + k3 (=9k3 + 14k3Kk3 — S5K3) — 2k, (93 — 8Kk3ks + 2k3Kk3 — 3kqk3))

1 1 1
Toy=—
T 3K (K = 2k))2(K = 2k>)2 (K = 2k3)? kykoks
+ k(=9K3 + 16kyk3 — 3k3) + (ko — k3)*(9K3 + 11k3k3 + 3kok3 + K3)
+ perm],
11 1
Typ=—=

6 (K — 2k3)? kykoks

The k-weights satisfy the relation

4
> Ty + [Tys + perm] =0, (B23)
Jj=2

which ensures that the outside-the-horizon boundary term
in 14; for these contributions cancel and therefore that gSy
does not need to be integrated.

In the squeezed-limit x; /xg > 1, xg < 1, this operator
satisfies

ZT4jI4j + [T4pl4(2k3) + perm| =0,  (B24)
J

and therefore this operator has no squeezed contribution.

4.i=5: 8%¢(0y)*

This operator corresponds to the interaction Hamiltonian

HIP = —/d3xa3F502§(8)()2. (B25)

This operator is slow-roll suppressed in GLPV and
Horndeski models and even more so in k-inflation models.
In the general EFT, it is not necessarily suppressed and

therefore we compute it to first order in GSR modefunc-
tions. We define the source

(B26)

2(k; - K3)K3(3ky + 2k, — 3k3) + (Kq - ky)K2(3K — 5k3)] + [1 < 2).

(B22)

The contributions which are first order in GSR due to the
time variation of the source have the sources

S50 = S51 = S5, (B27)
the windows
Wso = xsinx, Ws, = cos x, (B28)
and the k-weights
Tso = Lz# [(ky - K2)A3 + perm],
K2k kyks
s = e ki KK + k) + perml. (829

The contributions which are first order in GSR from first-
order modefunction corrections have the sources

5/52 = S/53 = 85, = S5p = 9Ss, (B30)
the windows
sin x
Ws, = cos x, Ws3 =2—— —cos x,
X
sinx cosx sinx
W54 =12 3 5 5 WSB = W54’
X X 4x
(B31)

and the k-weights
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7.1 1
27 4K kikoks
1 1 1

[(ky - k2)k3 + perm],

Ty =—
P T 4K (K — 2k (K — 2ky) (K — 2k3) ky ks

[(Ky - Ky)K3(k} — kky — ki k3 + &3 + 3kiks

- 6k1k2k3 - 3]{%](3 + 7k1k§ =+ 7k2k§ — 11](2) + perm},

1 1

Tsy =—
76K (K = 2k )2(K = 2k2)2(K = 2k3)? kykoks

[(ky - kp)k3 (kS — 2k (ks — ks)

— k} (k3 + 6kyky — 11K3) + 4k3 (k3 + k3ks — kok3 — 9K3)
+ (ky = k3)* (k3 + 5k3ks + 23kak3 + 19K3) + k3 (—k3 + 4k3ks — 14k3K3 + 4kok3 + TkS)
— 2k, (k3 + 3k3ks + 2k3k2 — 2k3k3 + 13k,k% — 17k3)) + perm],

oL 1 1
P60 (K = 2k3)? kykoks

The k-weights obey

4
> Ts; + [Tsg + perm] = 0, (B33)
Jj=2

which ensures that ¢S5 does not need to be integrated.
In the squeezed-limit x; /xg > 1, xg < 1, this operator
satisfies

> Ts;ls; + [Tsglsp(2ks) + perm] =0, (B34)
J

and therefore this operator has no squeezed contribution.

5.i=6: £9XO%¢

This operator corresponds to the interaction Hamiltonian

. F. .
=6 _ _ 3 6 Fo2r92
Hi=6 = /d x - LPLPL. (B35)

This operator, and all subsequent operators, is not
present in the Horndeski or beyond-Horndeski GLPV
class. We define the source

1 Cg 3F6
Se=—— —.
Qci \aHs) f

The initial windows in this case have high powers of x
and are therefore challenging to integrate numerically, so
we follow the approach used by Ref. [23] in the i = 3 case
and integrate them by parts, at the expense of placing
additional derivatives on the sources, such that we have the
sources,

(B36)

(B32)
|
S6O = Sg/’ S61 = Sg’ 562 = S/6’ S63 = S67
(B37)
the windows
W6O = W6l = W62 = W63 = .XfSiHX+ COS X, (B38)
and the k-weights
kykaks
Teo = e Zkikj ,
i>j
kykaks
Tor =5 {21(2 - 9Zk,»k.,},
i>j
_ 13kikoks |,
Top=—45 {K +2;kikj ,
6k kyks
Toy =13 3K2 + 4Zkik] (B39)
i>j

The contributions which are first order in GSR from first-
order modefunction corrections have the sources

/64 = S/65 = S/66 = S/67 = Sy = S/63 = 956, (B40)
the windows
Wey = x> sinx, Wes = x% cos x,

. sin x
Wee = cosx 4 xsinx, We; =2———cosux,
X
sinx cosx sinx
W68 =12 3~ 5 T 5 WGB = W68’
X X 4x
(B41)

and the k-weights
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1 ky ks
~ 2K* (K = 2k)(K = 2ky)(K — 2ks)
1 kykoks

K* (K = 2k))X(K = 2k;)*(K — 2k3)?

> RiGk; = 22K + k2kjky).
i#j#h

> K] + 2kSk; — S0KIK3 + 46k{K
i#j#h
+ 8Kksky + 14k kG, — 324Kk, + 2k KTk,

1

1 ki ks 3
Tes = —5 ~ K10+ 26k%k; — 361kEK2 + 600k] K
7 K (K =2k )} (K — 2ky) (K — 2k3)? i;h [2 AR R

+358k0KY — 626KTKT + TTKEk K, + 344KkT K3k, — 1064k0K Ky, + SA0KKAK,

L 1

+ 170KSK2KE + 168K3K3KE — 491K} KAAT + 340k;‘k}kg] ,

1 3k, ksks 11
Ter = — ~ > |5k 4 47k [2k; - 646k K3
o7 K4(K—2k1)4(K—2k2)4(K—2k3)4##h[2 AR £

+ 1130k[%k3 + 601k Kk} — 3059k8k3 + 1916k] kS + 54k/ 'k k), + 686k k3 k)
— 2884k K3k, + 1953kEk k), + 2776k] k3 k), — 2686k kSky, + 51k} k3 k;, + 418KS kK,

1 1

— 5180k]kjky, 4 4620k2k>k;, + 1832k} k3 k) + S00kPkky — 2828k} kky, + 551k7 Kk |,

1 4k, koks 9
Tes = — Z kO 4 18Kk, — 436Kk14k2 + 1030k!33
8 7 K4 (K = 2k, )3 (K = 2ky)3 (K = 2k3)° ;, 2 it i KT i

+ 196k;*k} — 3198k} k3 + 2996k kS 4 2150k} k] — 2765k kS + 9k} *k k), + T90k} k3K,

— 2890k/?k3k, + 2802k} kky, + 3282Kk]° k3 kyy, — 104907 KOk, + 6470k K] kyy — 114k[2 K3k,
+ 1484k} I ki — T452k1°k k. 4 8458k k3 k; + 8116kFkOk; — 10732k] k] k7, + 2502k kS ks,
+ 970k} kjkj, — 15814k} k3K + 10216k] kSKkj, + 4T10kP K} kj, + 836k ko kjy — 6772k kS,

+ 3730k k5K |

2k koks

Teg =———
= (K - 2k)°

The sums here are over the six permutations of k, k, k5.
The k-weights obey

8
Z Te; + (Tep + perm) = 0, (B43)
=6

which ensures we do not have to integrate gSg.
In the squeezed-limit x; /xg > 1, xg < 1, this operator
satisfies

ZT6j16j + (Toplep(2k3) + perm) = 0, (B44)
J

and therefore this operator has no squeezed contribution.
We do not integrate by parts the windows Wg, and Ws
because this would obscure the above cancellation.

[3(k? + k3 + k3) + 10(k ks — kyks — kik3)]. (B42)

6. i=7: (8,0,¢)20%

This operator corresponds to the interaction Hamiltonian

- F
H == [ 000,07 (B45)

We define the source

_ 1 Cs 4 F7

The contributions from the variation of the source again
require significant integration by parts. The sources become

/11
S70 == S7 N

!
S73 - S7,

S71 = S/7”, S72 = S/7/,
S74 = S7, (B47)
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with the windows

W70 = W71 = W72 = W73 = W74 = xsinx + COS Xx,

(B48)
and the k-weights
T
T30 = ?76 [k1k2k3],
I,
Ty = = 14k, kyks + szikj i
i>j
T, =7 |3 + Tlkikoks + 9K kik;
27 6 1K2K3 2 ikl
T: [, 4
Tr3 = 25 |3K° + TThikoks + 131{2@/9. ,
i>j
T
Ty = 8?76 {KS + 15k kyks + 3szikj:| , (B49)

i>j

i Tk koks
2K (K = 2k))(K = 2k,) (K - 2k;) 2=,
~1 T,

Toe = —
2K (K = 2k )2 (K — 2ky)* (K — 2k3)* 5=,

wherein

1

;= kkoks [(ky - k3)?k3 + perm].

(B50)

The contributions which are first order in GSR from first-
order modefunction corrections have the sources

S/75 = S/76 =S85 = S/78 = S/79 =8, =S5 = 957, (BS1)
the windows
Wos = x*cos x, W = x° sinx, W4, = x*cos x,

. sin x
Wi = cosx + xsinx, W59 = 2———cosx,
X
sinx Ccosx sinx
W7a:12< 3 .2 )7 Wig = Wi,
X X 4x

(B52)

and the k-weights

Z [k} — 2kik;],

D [2k]k; — 4KOKE = 2k3K3 + Aktk!

+ 1TKSkjky, — SOK3 K3k, + 14KkE KKy, + 6KHKE + 4263 K2R3

1

| T,
T = —<
K (K = 2k (K — 2ky)3(K — 2k3)° #jz#h{

k!
2

+ 1TkIOk; — 27K = 27KSK

+ 58K]KY — 22K + 42Kk, — 299KE K3k, + 160K] Kk, + 282KS kK,

1

— 24415k ey, — 30K]K3IG, + 324KSICKE + 62Kk + 64K KK, — 585K KK |

1 T,

Tog = —
K (K = 2k ) (K = 2k} (K = 2k3)° i;h

17
{7 ki* + 84Kk, — 333k[2k% — 8k!1 K

+ 8OTk[OKY — T24K2K3 — SSIKSKS + 648KIK] + 138Kk[2k;k;, — 1592k} K3k, + 1992k [0k K,
+ 1452k K4k, — 6292k8 k3K, + A080KTKCK, + T91k[OK3KS + 4072k kK3 — 1923K5kK7
— 2480KTK3K], -+ 6T4KSKSK, + 2796K3K Kk, — 11856k7 kK, + 208KK3K] + 1089KOKA K

+ 9252k?k?k;t ,
1 T,
T79 =5 5 5 5
K> (K — 2k )>(K — 2k,)° (K — 2k3) S

2

6
ki7 +209k[%k; — 1326k} k3 + 1182k/*k;

+ 339813kt — 8054k!2k3 + 346k! kS + 15158K10KT — 10980kIKY + 213K}k k, — 4276k} K3k,
+ 7950k 2k k), + 1316k 2Kk, — 26406k} k3k), + 29876k1°KkSk,, + 18030k2K Tk, — 27125k3K% K,
+ 1804k I3KS + 13074Kk12K3K7 — 21330k} k4k3 + 4896k Ok3K], + 55356k7KSKS, — S0002k$k 7K}
— 306k} K3k} — 94698K1Oktk} + 27666k K3k; + 80442k3kSk; — 35004k] k1k7 — 17880k Kk}

+ 121830k8K3KY + 25244K7KSKS + 6282K7 k3K — 132496K5K4K3 |
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2 T,

Ty = —
74 3K3 (K — 2k, )8 (K — 2k,)O(K — 2k3)° i;h

71
b ki® = 1617k]°k3 + 5600k} k3 — 6420k *k}

— 6720k/* k7 + 28252k}2kS — 23520k} ' k] — 20286k} kS + 24640k} k) + 4788k} * k3 k7 — 6720k} k3 k7
— 27804k} k}k; + 84672k} k3k; — T8120k[kSk; — 77952k k] ky + 97965kE k3 k;, + 2800k, k3 k;
— 23520k} kiky — 6720k;° kS k;, + 49280k7 k0K — 23520k k] kjy + 105126k, kiky — 77952k] K3k,

— 194460k$ K0k} + 119904k] K1k} + 42336k$k3K], — TT952k] KOk + 91000k?k?k2} ,

87T,

Top=—?l
B 3(K = 2ky)°

These k-weights obey:

Z T7] ‘l‘ [T7B + perm} = O, (B54)
=

which ensures we do not have to integrate gS-.
In the squeezed-limit x; /xg > 1, xg < 1, this operator
satisfies

ZTUIU + [T7BI7B(2k3> + perm] = 0, (BSS)
J

and therefore this operator has no squeezed contribution.
We do not integrate by parts the windows W5, W, and
W47 because this would obscure the above cancellation.

7. i=8: (8%¢)(8%¢)(8%)

This operator corresponds to the interaction Hamiltonian

. F
HiS = — / d3xH4ZS (9%¢)°. (B56)
We define the source
1 C 4 FS
Se=— : —. B57
*70c8 (aHs) f (B57)

The contribution from this operator is equal to the
contribution from the i = 7 operator with the substitutions

S7 - S8’ T7 - T8 = 3k]k2k3. (BSS)

Again, in the squeezed-limit this operator satisfies
ZTSjISj + [Tgplgp(2ks) + perm] = 0,  (B59)
J
and therefore this operator has no squeezed contribution.
8.i=9: (8%¢)(0,05%)(8.0px)

The final operator in the cubic action of the unified EFT
of inflation corresponds to the interaction Hamiltonian

(3 4 13 — I3 + 6(K3ky + ki K3 — K3ky — K3k + kK3 + kok2) — 30k, koks).

(B53)

) F
HI= = — / & x—-(00)(0a0,0)(0041). (B6O)

We define the source

1 Cq 3F9
Sg 5—4 —_.
Qci\aHs) f

The contributions from the variation of the source once
again require significant integration by parts, and the
resulting sources are

(B61)

So0=25g, So1=53, Soa=55 So3=089. (B62)
The corresponding windows and k-weights are
Wg() = W91 = W92 = W93 = )CSiHX+ COS X, (B63)
1 1
T90 = ﬁw [(kl . kz)zkg(kl + kz) + perm],
1 1
_ 272
Ty = 3K Kok [(ky - k2)*k5(9(ky + ka)ks
+ K(K + k3)) + perm],
1 1
_ 272
Ty = 3K Kok [(ky - k2)?k5(26(k1 + ky)ks
+ 5K (K + k3) + 2K?) + perm],
11
To; = ———[(ky - kp)2k3(12(ky + ky)k
93 K5k1k2k3[( 1 Ka) k5 (12(ky + ko) ks
+ 3K (K + k3) + 2K?) + perm). (B64)

The contributions which are first order in GSR from first-
order modefunction corrections have the sources, windows,
and weights

Sos = Sos = So5 = So7 = Sog = Sop = gSo, (B65)

3 2

Woy =x"sinx, Woys=x"cosx, Wys=cosx+xsinx,

sinx sinx cosx sinx
Wo; =2———cosx, Wyz= 12( )
X

X3 X2 4x

W9B = W987 (B66)
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Toy =

Tos =

Tos =

Ty; =

Tog =

Top =

-1 1
8k koks K*(K — 2k ) (K — 2ky) (K — 2k3)

9 81,2 614 515
> Kk — 2k8K3 + 2k0kE — k3K
i#j#h
+ 268k Ky, — 3] K3k, — OKOK3 Ky, + TSk, + 4KOK2KG, + 3K K3 kG — 6k} ks + 3k} ks ]
1 1
8k kyks K*(K — 2k )2(K — 2ky)* (K — 2k3)

13 12 1172 107.3 914 815
. Zh[ki + 5k12k; — 55k K2 + 29k10K3 + 109Kk — 68KEKS
i#j#
— 22k7K + 16k} k k), — 38k[k3ky — 128K}k Ky, + 171k} K k), + 96kT K3y — 138KPKSky, + 1197 k3K,
— 23Kk k; — 410k] Kk, 4 288Kk ki 4 160k] k3 ky — 6k Kk, — 192k k3 k;) 4 68k kK]

1 1 1 3
ZkO 4 21k k — 210kM4K2 + 247K13 13
4K4 (K - 2k1)3(K - 2k2)3(K - 2k3)3 klk2k3 ! + 4 J i J + 2 J

i j#h [2
+ 496k >k} — 86Tk} 'k3 — 142k[°kS + 599K k] — 14TKEKS + 52k[*k k), + 6k} K3k,

— 631k}*k3ky, + 703k} Kk, + 422k 10k k), — 2036k7kSk), + 1411k5k] k), + 625k 12 k3K,

— 596k} I3k — 3002k k; + 3354k k3G, + 1962kEkSkG, — 2764k] k] kj; + 1538k} Kk}

— 493Kk, — 5203k$K3K] + 3600K] KOk] + 2412k K4k} — 210k] K3k} — 2318KSKOK} + 1252KK3K3 |

ﬁ e _12k2)4(K e klklzk3 i;ﬂ [223 K19+ 91k!8k; — 1117KITA + 1567K/K]
+2572k[5k4 — 6532k14k3 + 1068k!3KS + 6972k!2k] — 6526k} kS + 1882k!°k? + 102Kk k)

+ 515k10k3ky, — 4224k > I ky, + 3740k} kky, + 5904k13 kS k), — 15220k} k8K, + 11136k} K7k,

+ 10874k kS ky, — 13020k7 k7 k), + 2744k k3 ki, — 5072k} * ki kj; — 19324k P kik 4 32708k} k3K,
+ 15632k} kok; — 63280k]°k] k. + 344507 kS ks + 12768k I k; — T436k[*ktk; — 57408k} Kok,

+ 62608k}0k?k2 + 36096kl9k}k2 - 51667k§k§-k2 + 29166k}1k§k2 - 18996k}0k?k‘}l - 91628k?k?k2
+ 72740k§k;kﬁ + 46008k?k§k2 - 7180k§k?k2 - 40512k,7k}k2 + 17360k,7k?k2 ,

1 1 1
3K* (K = 2k )3 (K = 2k) (K — 2k3)S kykyks

17
[— k2 + 34K2 &, — 49K + 1548k )%k
i L2

+ 1407k} — 6854k!7k7 + 3605k kS + 8464k} k] — 12022k} 4k + 2212k k7 + 7742k} k}°
— S404k1 K3+ 17Kk jky, + 988K} k2 k), — 4132k[8k3 k), + 3706k) ki k), + 7546k [0k k),

— 21936k} kSkj, + 13904k/* k7 k;, + 21092k kS k), — 41628k !k Kk, + 20392k k10K,

+ 1625k!8k2k7 — 3956k k3 k7 — 17609k 10k1k7 + 37216k K3y + 13592k} *k0k7

— 97792k k] k7, + 70838k/*k3 k7 + 63544k kK7 — 69322k[°k 10k + 14222k 10k k;,

— 11648k} klk; — 80480k!*k3k; + 111680k kSk;, + 43616k !k k; — 228872k} kBk;

+ 143800k[0k7k; + 43694k !4 kiky — 37832k k3 k) — 184404k 12 kS ki) + 224512k Kk,

+ 113218k°k8k}; — 178738k Kk}, + 111452k[2k3k;, — 64928k! kSk;, — 290912k Kk k;

+ 2133401‘?"?"2 + 143380k}0k5?k2 - 24816k?k;k2 - 119553k§k§k2 + 61512k§k}k2 ,

—_

1 1

TK 2k kk, K1 ke HA(8K: + 25K (ke = ks) 45k = Ks)°)

1
+5 Ky - K2 )2k3(5(kT + k3) + 8k3 + 10k  ky — 25k;(ky + k2))] + [1 < 2]. (B67)
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These k-weights obey

8
> " Ty; + [Ty + perm] =0, (B68)
j=6

which ensures we do not have to integrate gSy.
In the squeezed-limit x; /xg > 1, xg < 1, this operator
satisfies

ZT9j19j + [Toplop(2ks) + perm] = 0,  (B69)
J

and therefore this operator has no squeezed contribution.
We do not integrate by parts the windows Wy, and Wos
because this would obscure the above cancellation.
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