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It is known that if the Peccei-Quinn symmetry-breaking field is displaced from its minimum during
inflation, the axion isocurvature spectrum is generically strongly blue tilted with a break transition to a flat
spectrum. We fit this spectrum (incorporated into the “vanilla” Λ-CDM cosmological model) to the Planck
and BOSS DR11 data to assess how much the existing data can accommodate the presence of axionic blue-
tilted isocurvature perturbations. We find that the preferred parameter region is consistent with all of the
dark matter being composed of QCD axions in the context of inflationary cosmology with an expansion
rate of order 108 GeV, the axion decay constant of order 1013 GeV, and the initial misalignment angle of
order unity. The data are consistent with there being no isocurvature perturbations at the level of just above
one sigma. Intriguingly, isocurvature with a spectral break may at least partially explain the low-l vs high-l
anomalies seen in the CMB data.
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I. INTRODUCTION

QCD axions [1–8] are well motivated because they
represent a simple elegant solution to the strong CP
problem and can be embedded in UV completions such
as string theory [9]. A huge body of literature exists
regarding the cosmological implications of the axions in
which the field responsible for Peccei-Quinn (PQ) sym-
metry breaking has not been displaced from its minimum
(see e.g., [10–16]). In such cases, the isocurvature spectral
index nI is very close to 1 which is often referred to as scale
invariant. However, if the PQ symmetry-breaking field is
displaced from its minimum during inflation, blue spectral
tilted isocurvature perturbations are naturally generated
[17]. Indeed, the Goldstone theorem does not apply in such
cases because the axions do not represent perturbations
away from the vacuum [18]. The dyanamical mechanism of
the η problem [19–22], in which small corrections to the
curvature of the inflaton potential violate the slow-roll
conditions and hence the scale-invariance of the power
spectrum, is a beneficial feature in the case of a rolling
spectator field. It makes the isocurvature spectral index
nI − 1 ∼Oð1Þ generic in this class of models. Furthermore,
because the radial field eventually reaches its minimum,
this class of models generically predicts a break in the
spectrum where the spectral index transitions to that of
scale invariance. Indeed, since nI > 2.4 cannot be gener-
ated with a spectator scalar field degree of freedom (d.o.f.)
with a time-independent mass [23], a large spectral index in
the context of inflationary cosmology predicts a break in

the spectrum for strongly blue-tilted isocurvature pertur-
bations, independently of the axion paradigm. This means
interesting robust information about the physics beyond the
standard model of particle physics (i.e., the existence of a
time dependent mass of a new particle) can be gained from
finding observational evidence for a strongly blue tilted
spectrum with a break. Because the axions are arguably the
best motivated underlying model for this class of scenarios
producing a break spectrum, we will call this strongly blue
tilted isocurvature spectrum with a break an axionic blue
isocurvature (ABI) spectrum.
The break region in the ABI spectrum cannot be

computed analytically using the standard techniques
[18]. Recently, an efficient 3-parameter fit function
Δ2

Sðk; k⋆; nI;Q1Þ was constructed from generalizing a
numerical investigation [24] of the model of [17], and this
fit function has a bump feature that can be numerically
significant at an Oð1Þ level. In this paper, we use this fit
function in the context of Λ-CDM cosmological model to
fit 9 parameters to the PLANCK [25,26] and Baryon
Oscillation Spectroscopic Survey Data Release 11
(BOSS DR11) [27,28]. We find that the data prefer a
nonzero ABI spectrum at the 1-sigma level with expect-
ation values of about fk⋆=a0 ¼ 4.1þ14

−2.7 × 10−2 Mpc−1;
nI ¼ 2.76þ1.1

−0.59; Qn ¼ 0.96þ0.32
−0.93g where k⋆=a0 is the spec-

tral location of the break, nI is the isocurvature spectral
index, and Qn × 10−10 is approximately the isocurvature
power on BAO scales that can be compared to Δ2

ζ ∼
Oð10−9Þ of the usual adiabatic perturbations. This preferred
parameter region can be consistent with an initial axion
angle of θþðtiÞ ¼ 0.1 and all of the dark matter being made
up of axions. For example, with this fiducial parameter
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choice, the scale of inflation is given by the expansion rate
during inflation of H ≈ 2 × 108 GeV and the axion decay
constant of Fa ∼ 1013 GeV. In this parameter range, the
bump that was computed numerically in [24] contributes at
the level of about 10% for the values of the fit parameters
and changes the shape of the fit contours only slightly. We
also carried out a fit with nI ¼ 3.9 and k⋆=a0 ¼ 0.5=Mpc
and find a 2σ preference for a highly blue-tilted isocurva-
ture with a power-law spectrum on observable scales.
Since the smallest length scales probed by current CMB

and galaxy surveys are similar, we find the CMB data to be
more constraining due to their higher precision, though of
course the two sets of observables have different parametric
degeneracies. There are no substantial tensions between the
two data sets; the most significant changes in the vanilla
parameters due to the BOSS data are the decreases in σ8
and τ along their mutual degeneracy direction preserving
σ8e−τ. In the isocurvature sector, we find that BOSS data
increase the preference for blue-tilted models with spectral
breaks below observable length scales.
The order of presentation will be as follows. In the next

section, we review the fitting function Δ2
Sðk; k⋆; nI;Q1Þ

and a model that inspired this. In Sec. III, we present
the ABIþ Λ-CDM fit. In Sec. IV, we interpret the fit
results in terms of the model of [17]. We conclude with a
summary of the work and speculations about this work’s
connection to the low-l and high-lCMB data mismatch
noted in [29].

II. A BRIEF REVIEW OF THE ABI SPECTRUM
PARAMETRIZATION

Most of the axionic isocurvature literature focuses on the
scenario in which the Peccei-Quinn symmetry-breaking
field fPQ has already relaxed to theminimumof the effective
potential [10–13,15,16]. However, in situations in which the
radial direction has a mass of orderH, such an assumption is
notwell justified since the inflaton itself is out of equilibrium
during that time, and it may take many e-folds for fPQ to
relax to the minimum of the effective potential [17]. In such
cases, a strongly blue-tilted isocurvature spectrum is generi-
cally generated. Particularly in supersymmetric extensions
of the standard model, flat directions abound, and fPQ
realized as a flat direction field will generically have masses
of OðHÞ [17,18] generating dynamics suitable for the
creation of ABI perturbations.1

Although the ABI spectrum computed in [17] is quali-
tatively valid, it was noted in [18] that there is generically a
spectral gap in analytic computability (with the standard
techniques) surrounding the break region. In [24], we
computed numerically the ABI spectrum of the model
analytically analyzed in [17,18] and found that the spec-
trum indeed has a nontrivial bump in the break region
between the constant blue tilt region and the scale invariant
region with the transition spectral width consistent with the
predictions of [18]. The ABI spectrum including the bump
is fit well with the following function defined by three
parameters k⋆, nI , and Q1:

Δ2
Sðk; k⋆; nI;Q1Þ ≈Q1

1þ αðnIÞL
h

1
σðnIÞ ln

�
e−μðnIÞ k

k⋆

�i
S
h
λðnIÞ
σðnIÞ ln

�
e−μðnIÞ k

k⋆

�i
h
1þ

�
ρ̃ðnIÞ22

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
−cþðnIÞ

p
Γ2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
−cþðnIÞ

p
Þ

2π

�
1þ cþðnIÞ

0.9

��
k
k⋆

�
nI−1

�−1=wiw ð1Þ

LðxÞ ¼ 1=ð1þ x2Þ ð2Þ

SðxÞ ¼ 1þ tanhðxÞ ð3Þ

cþðnIÞ ¼
1

4
ðnI − 1Þð7 − nIÞ: ð4Þ

The parameters fα; σ; μ; λ; w; ρ̃g are numerical factors that
can be deduced from an interpolation of a table of numbers
given in Table 1 of [24]. Here, Δ2

S is the usual isocurvature
power spectrum defined in Eq. (11) of [18] and Eq. (31) of
[24]. The fitting function itself is accurate to 20%, with this
error concentrated in the bump region. Since our best-
fitting models have isocurvature power less than about 10%
of adiabatic power, this amounts to about less than 2% error
in the total power spectrum. We tested the sensitivity of our

constraints to these errors by removing the bump entirely,
through the NB models, and found very similar parameter
values.
The broad features of the isocurvature power spectrum

are described by the large-scale spectral index nI , the break
position k⋆, and the break width w. On top of this
monotonic power spectrum is a peak of height α, width
σ, position μ, and skewness λ, resulting from the axionic
field sloshing around the minimum of its potential during
the spectral transition. For example, for nI ¼ 3, the
parameter set is fα¼ 0.56;σ¼ 0.46;μ¼ 0.126;λ¼−0.035;
w¼ 0.84; ρ̃¼ 1.2g. The number 0.9 in Eq. (1) corresponds
to making a choice for a model dependent parameter that
gives an approximate fit to model-dependent numerically
computed results when this number is in the range [0.5, 1].
To test if theABI spectrum shows up in the current data and

to see how it is constrained, we fit in Sec. III the standard six
“vanilla” cosmological parameters (Λ-CDM) plus up to three
more parameters describing the ABI power spectrum. The

1Indeed, this is a situation in which the η-problem of inflation
turns into an advantage.
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standard vanillaΛ-CDMparameters can be given as follows:
(1) ns, the spectral index of adiabatic scalar perturbations;
(2) σ8, the root-mean-squared power in 8 Mpc=h spheres
where (3) h ¼ H0=ð100 km= sec =MpcÞ, the Hubble param-
eter; (4) ωc ¼ Ωc;0h2, where Ωc;0 is the density fraction of
cold darkmatter (CDM) at the present time; (5)ωb ¼ Ωb;0h2,
where Ωb;0 is the baryon density fraction; and (6) τ, the
optical depth to the cosmic microwave background. Since
neglecting the neutrino mass can lead to parameter biases,
we fix ων ¼ Ωνh2 ¼ 0.0006 for the fits unless specified

otherwise. For efficientMarkov chainMonteCarlo (MCMC)
samplingwith a flat prior (i.e., tominimize degeneracies), it is
useful to sample

Qn ≡ 1010
Q1

1þ
�
k⋆
k0

�
nI

ð5Þ

and

κ⋆ ¼ ln
k⋆
k0

; ð6Þ
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FIG. 1. Variation of the ABI parameters about the central values of Qn ¼ 50, nI ¼ 3, and κ⋆ ¼ 0. Note that Qn has been set to a very
large value in order to exaggerate the effects. (left) CMB TT and TE power spectra. (right) Matter power spectra.
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(where k0 is a fiducial wave vector which we will set as
k0=a0 ¼ 0.05 Mpc−1) instead of the parameters Q1 and k⋆.
Figure 1 illustrates the effects of varyingQn,nI , and κ⋆, using
a large value of Qn in order to make the isocurvature
contribution more apparent.

III. DATA FIT

In this section, we fit the mixed adiabatic-isocurvature
cosmological model presented in Sec. II to Planck and
BOSS data. We broadly classify three different ABI
parameter regions as follows:

(i) KK: the model of Kasuya and Kawasaki, Ref. [17],
with the bump fit by Ref. [24];

(ii) NB: a no-bump version of KK, with the bump height
α set to zero and the break width parameter fixed
to w ¼ 1=3;

(iii) PWR: a simple power-law spectrum, which we
implement by fixing κ⋆ ¼ lnð200Þ in the NB model.

We are especially interested in models with the bluest tilts
nI ≲ 4 over much of the observable parameter space k ∼ k0.
Hence we also consider the following lamppost models
partially restricting the allowed values of nI and κ⋆:

(i) BLUE: the KK model with nI ¼ 3.9;
(ii) HI-BLUE: the BLUE model with the further re-

striction κ⋆ ¼ lnð10Þ.
(iii) LAMP-N: the KK model with κ⋆ ¼ lnðNÞ;

At small N, LAMP-N approaches an ordinary flat iso-
curvature model, while at large N it approaches a power
law. We will constrain LAMP-1, LAMP-2, and LAMP-10.

A. Analysis procedure

The data analysis used here is that of Ref. [30], modified
to include isocurvature perturbations. Briefly, we combine
the publicly-available Planck likelihood code of
Refs. [25,26] with the BOSS DR11 redshift-space galaxy
power spectrum of Refs. [27,28], and explore the likelihood
using a Metropolis-Hastings Markov Chain Monte Carlo
algorithm with a set of flat priors given in Table I. We now
summarize this analysis procedure below.
Our flat priors are chosen to be broad to allow adjust-

ments to the vanilla parameters in response to the addition
of isocurvature parameters. In particular, the priors on h,
ωb, and τ in Table I are the largest ranges allowed by the
CAMB code of Ref. [31]. Requiring that the KK spectator
fields have slow-roll solutions in the early universe restricts
the range of isocurvature indices to 1 ≤ nI < 4. Our

slightly narrower priors reflect the range of the fitting
function of Ref. [24]. Poorly-constrained isocurvature
parameters could be sensitive to our choice of flat priors
through the effect pointed out in [32]. Since we do not
claim significance in the fit results, we will not investigate
here the fit’s dependence on the different choices of priors.
Meanwhile, the prior on κ⋆ is based not on fundamental

physical arguments, but on the range of scales probed by
current surveys. In the limit of large positive κ⋆, the
isocurvature spectrum reduces to a simple power law,
and the data are insensitive to κ⋆. For very negative κ⋆,
the spectral break is pushed to scales with large sample
variance, and the data become insensitive to nI as well as
to κ⋆. Thus we set the minimum k⋆ to be a few times the
horizon scale a0H0 ¼ 3.3 × 10−4h=Mpc, and the maxi-
mum k⋆ to be a few times the largest wave numbers probed
by Planck and BOSS. Since more advanced surveys will be
able to measure larger κ⋆, we use the LAMP-10 and HI-
BLUE test models to look for hints of a κ⋆ just beyond the
currently-observable range.
The Planck likelihood computation is divided into low-l

and high-l components. Since the low-l polarization
likelihood is computationally expensive, we restrict our
l < 30 analysis to the temperature power spectrum. For
l ≥ 30 we employ the simplified plik-lite function
of Ref. [26], which we marginalize over the absolute
calibration parameter APlanck as recommended. CMB power
spectra are computed using the CAMB cosmology code of
Ref. [31] modified to include isocurvature power spectra
described by the fitting function of Ref. [24] appropriate to
models with blue-to-flat spectral breaks. For mixed models
combining adiabatic and isocurvature perturbations, we ran
CAMB separately for adiabatic and isocurvature initial
conditions, then added to find the combined linear power
spectra. Since CMB lensing is a nonlinear process, we also
compiled a stand-alone version of the CAMB CMB lensing
function, which we used to lens the combined linear power
spectra.
The BOSS DR11 analysis of Ref. [27] measures the

monopole and quadrupole of the redshift-space galaxy
power spectrum at an effective redshift of z ¼ 0.57 over a
range of wave numbers 0.01h=Mpc ≤ k ≤ 0.2h=Mpc. That
reference provides the window functions and covariance
matrices necessary for comparing power spectra to the
BOSS data. Beginning with CAMB inputs, we compute the
power spectra for mixed adiabatic and isocurvature models
using a modified version of the redTime nonlinear

TABLE I. The prior probability distribution is uniform in the parameters ns, nI , lnðσ8Þ, Qn, θ100, ωc, ωb, τ, and κ⋆, with the above
bounds. θ100, an approximation to the angular scale of acoustic oscillations which is related to the parameter h, is described in Sec. III of
Ref. [30].

ns nI σ8 Qn h ωc ωb τ κ⋆
>0 [1, 3.94] >0 >0 [0.2, 1] >0 >0.001 >0.01 ½ln 0.001=Mpc

k0
; ln 0.5=Mpc

k0
�
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redshift-space perturbation code of Refs. [30,33], based
upon the Time-Renormalization Group method of
Ref. [34]. Since the growth of large-scale structure after
decoupling is well described by a single CDMþ baryon
fluid, mixed initial conditions can easily be accommodated
by adding the linear adiabatic and isocurvature power
spectra computed by CAMB at the redshift zin at which
the nonlinear perturbative computation is initialized. We
choose zin ¼ 200, as tested against N-body dark matter
simulations in [33,35].
Galaxies are biased tracers of the underlying density

field. Since blue-tilted isocurvature changes the shape of
the matter power spectrum, we must accurately model
the scale-dependence of galaxy bias. Reference [36]
describes a five-parameter model of galaxy bias, which
is simplified to a three-parameter model in Ref. [37]. We
use this three-parameter model unless otherwise noted. At
each chain point, we marginalize numerically over these
bias parameters as in Ref. [30] in order to compute the
likelihood.
For each model and data combination, we run 5 chains,

with a total of at least 500 000 MCMC points for each
Planckþ BOSS analysis and 1 000 000 for each Planck-
only analysis. Given the large number of points in a chain to
produce independent samples and sufficient computing
resources, we forgo the chain-thinning procedure.
MCMC convergence is tested using the potential scale
reduction factor

ffiffiffiffi
R

p
, which approaches unity from above as

the variance of the means of several chains becomes much
smaller than the mean of the individual chain variances
[38,39]. We judge each set of 5 chains to have converged
when

ffiffiffiffi
R

p
< 1.05 for fixed ων and

ffiffiffiffi
R

p
< 1.1 for variable

ων; these are more stringent than the convergence require-
ment

ffiffiffiffi
R

p
< 1.2 recommended in Ref. [39].

B. CMB constraints

Marginalized constraints on the vanilla and isocurvature
parameters from Planck data alone are shown in Table II.
Since Refs. [40,41] caution that low-level T → E leakage
may contaminate the polarization data in a way which
mimics isocurvature, we begin by evaluating the effects of
such leakage on our parameter constraints. The first two
columns of Table II compare constraints using CTT

l only to
those using CTT

l , CTE
l , and CEE

l . Since all parameter shifts
are substantially less than 1σ, we conclude that the
isocurvature model considered here is insensitive to any
residual T → E leakage. Henceforth we use Planck temper-
ature and polarization data.
Comparing the vanilla parameters in Table II to those in

Table 3 of Ref. [40], we see that parameter shifts are less
than 0.6σ except for σ8 and τ, which both increase by ≈1σ
when isocurvature is included. However, these increase
together along their mutual degeneracy direction. Since the
CMB constrains the combination σ8 expð−τÞ more tightly
than either of these parameters individually, we expect σ8
and τ to change in such a way that Δσ8=σ8 ≈ Δτ, which is
consistent with the shifts seen in Table II.
SinceQn ¼ 0 is allowed at the 1σ level for theKKandNB

models, and slightly more than 1σ for the PWR model, we
conclude that Planck data alone do not significantly prefer
any of the isocurvature models in the table. While there is a
slight preference for nI ≈ 2.7 and κ⋆ ≈ −0.5, the 95%
allowed regions for both of these parameters include nearly
the full ranges 1 ≤ nI ≤ 3.94 and lnð1=50Þ ≤ κ⋆ ≤ lnð10Þ.
Figure 2 shows marginalized two-dimensional constraints
on the isocurvature parameters in the KK model. Note that
for the smallest κ⋆ values, the isocurvature spectrum is flat
over most of the observable range, meaning that nI is poorly
constrained.

TABLE II. Constraints on ΛCDM with isocurvature using Planck 2015 data (P) alone. The first column uses only the TT data in order
to test for the effects of T → E leakage on parameter constraints. For each parameter, the mean value as well as 68% and 95% upper and
lower bounds are shown. In some cases, both lower bounds on Qn are equal due to the prior Qn ≥ 0, implying that our results only
provide an upper bound.

KK, P(TT-only) KK, P NB, P PWR, P

ns 0.9684þ0.0073
−0.0071

þ0.014
−0.014 0.9658þ0.0056

−0.0051
þ0.011
−0.01 0.9656þ0.0049

−0.0054
þ0.011
−0.01 0.9646þ0.0049

−0.0053
þ0.009
−0.0092

σ8 0.851þ0.023
−0.022

þ0.043
−0.045 0.844þ0.019

−0.016
þ0.036
−0.038 0.843þ0.018

−0.017
þ0.035
−0.036 0.841þ0.021

−0.015
þ0.036
−0.042

h 0.6799þ0.011
−0.011

þ0.022
−0.022 0.6765þ0.0075

−0.0071
þ0.014
−0.014 0.6761þ0.0067

−0.007
þ0.014
−0.014 0.6762þ0.0058

−0.007
þ0.015
−0.013

ωc 0.1184þ0.0022
−0.0023

þ0.0046
−0.0046 0.119þ0.0015

−0.0017
þ0.0031
−0.0031

0.119þ0.0015
−0.0015

þ0.0031
−0.003 0.119þ0.0015

−0.0013
þ0.0029
−0.0033

ωb 0.02236þ0.00027
−0.00025

þ0.00053
−0.00049 0.02228þ0.00016

−0.00017
þ0.00032
−0.00033 0.02227þ0.00017

−0.00017
þ0.00032
−0.00033 0.02228þ0.00018

−0.00016
þ0.00032
−0.0003

τ 0.108þ0.034
−0.028

þ0.06
−0.063 0.0976þ0.026

−0.023
þ0.049
−0.051 0.0968þ0.025

−0.023
þ0.049
−0.049 0.0904þ0.026

−0.021
þ0.048
−0.049

Qn 1.2þ0.3
−1.2

þ2.4
−1.2 1.0þ0.3

−1.0
þ1.4
−1.0 1.1þ0.3

−1.1
þ1.5
−1.1 0.010þ0.003

−0.010
þ0.012
−0.010

nI 2.75þ1.19
−0.44

þ1.19
−1.3 2.74þ1.2

−0.66
þ1.2
−1.2 2.63þ0.78

−0.65
þ1.3
−1.2 2.43þ0.6

−0.53
þ1.2
−1

κ⋆ −0.57þ1.4
−1.1

þ2.5
−2.9 −0.51þ1.2

−1
þ2.6
−2.5 −0.52þ1.3

−1.1
þ2.6
−2.5
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C. Galaxy survey constraints

Next we combine the BOSS DR11 galaxy survey data
with the Planck data. We begin by testing the robustness of
our constraints with respect to the inclusion of additional
parameters describing the scale-dependent bias. The first
three columns of Table III constrain the KK model using
Planck and BOSS data, marginalizing over the 5-parameter
bias model of Ref. [36] for the first two columns and
3-parameter bias model for the other columns. Comparing
the first and the third column, the constraints on h and ωc
shift by ≈0.3σ, while all remaining parameters shift by less
than 0.15σ, and the isocurvature parameters by ≤0.03σ,
suggesting that the 3-parameter bias model used henceforth
(unless specified otherwise) provides robust constraints.
Note that although allowing variations in the sum of the
neutrino masses leads to an increase in the expectation
value of κ�, as can be seen in the second column, the shift is
statistically insignificant since it is much smaller than a 1σ
variation.

Comparing Planckþ BOSS isocurvature constraints
(e.g., the third column of Table III) to the Planck-only
constraints of Table II, we see that κ⋆ increases by ≈0.3
with the addition of galaxy survey data, while lnðσ8Þ and τ
both drop by ≈0.03 in a way that leaves σ8 expð−τÞ nearly
constant. As with the Planck-only analysis, we see that
Qn ¼ 0 is allowed at 1σ in the KK and NB models, and at
somewhat more than 1σ in the PWR model, indicating no
significant preference for these isocurvature models. Once
again, nearly the entire range of nI and κ⋆ are within the
95% confidence regions. Comparing the two-dimensional
constraints in Fig. 3 to those in Fig. 2, we see slight hints of
a preference for higher κ⋆, nI , and Qn when galaxy survey
data are included.
As another method of testing the significance of this

preference, we compare the full set of chain points for each
analysis to a negligible-isocurvature subset for which
Qn < 0.1 and κ⋆ < 0. Although χ2=degrees-of-freedom
does not make sense as a goodness-of-fit test for
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FIG. 2. Constraints on the KK model using Planck data. Light (yellow), medium (green), and dark (blue) shaded regions identify 68%,
95%, and 99.7% confidence contours, respectively.

TABLE III. Constraints on ΛCDM with isocurvature using Planck 2015 (P) and BOSS DR11 (B) data. The first column analyzes the
KK model using two extra scale-dependent bias parameters in order to test the robustness of our constraints, and the second column
varies the sum of neutrino masses

P
mν ¼ 93.14ων eV as well as these extra bias parameters. For each parameter, the mean value as

well as 68% and 95% upper and lower bounds are shown. In some cases, both lower bounds on Qn are equal due to the prior Qn ≥ 0,
implying that our results only provide an upper bound.

KKþ b5, PB KKþ ων þ b5, PB KK, PB NB, PB PWR, PB

ns 0.9653þ0.0041
−0.0042

þ0.0081
−0.0086 0.9668þ0.0048

−0.0047
þ0.0095
−0.01 0.965þ0.0042

−0.0045
þ0.0085
−0.0084 0.9651þ0.0041

−0.0043
þ0.0086
−0.0086 0.9639þ0.0043

−0.0044
þ0.0089
−0.0086

σ8 0.821þ0.018
−0.017

þ0.034
−0.035 0.809þ0.021

−0.015
þ0.036
−0.036 0.818þ0.018

−0.018
þ0.034
−0.034 0.819þ0.018

−0.018
þ0.033
−0.037 0.814þ0.016

−0.02
þ0.032
−0.032

h 0.6768þ0.0052
−0.0045

þ0.0093
−0.0098 0.6717þ0.0069

−0.0057
þ0.012
−0.013 0.6764þ0.0048

−0.005
þ0.0099
−0.0098 0.6762þ0.005

−0.005
þ0.01
−0.01 0.6767þ0.0047

−0.0052
þ0.01
−0.0095

ωc 0.1188þ0.001
−0.0011

þ0.0021
−0.002 0.1183þ0.0011

−0.0014
þ0.0029
−0.0025 0.1189þ0.0011

−0.0011
þ0.0021
−0.0022 0.119þ0.0011

−0.0012
þ0.0022
−0.0022 0.1189þ0.0012

−0.0011
þ0.0021
−0.0023

ωb 0.02226þ0.00013
−0.00014

þ0.00028
−0.00028 0.0223þ0.00015

−0.00016
þ0.0003
−0.0003 0.02227þ0.00014

−0.00014
þ0.00029
−0.00028 0.02225þ0.00013

−0.00015
þ0.00028
−0.00028 0.02226þ0.00014

−0.00015
þ0.00029
−0.00028

ων 0.0014þ0.0005
−0.0011

þ0.0016
−0.0014

τ 0.071þ0.024
−0.02

þ0.043
−0.045 0.082þ0.032

−0.027
þ0.049
−0.058 0.067þ0.025

−0.022
þ0.043
−0.051 0.067þ0.025

−0.024
þ0.044
−0.047 0.054þ0.021

−0.03
þ0.042
−0.044

Qn 1.0þ0.3
−1.0

þ1.3
−1.0 1.1þ0.3

−1.0
þ1.5
−1.1 0.96þ0.32

−0.93
þ1.3
−0.96 1.1þ0.3

−1.0
þ1.4
−1.1 0.012þ0.005

−0.009
þ0.012
−0.012

nI 2.72þ1.2
−0.69

þ1.2
−1.2 2.78þ1.1

−0.59
þ1.2
−1.2 2.76þ1.1

−0.59
þ1.2
−1.2 2.65þ0.75

−0.7
þ1.2
−1.2 2.65þ0.69

−0.4
þ0.92
−1.1

κ⋆ −0.37þ1.5
−0.98

þ2.6
−2.7 −0.21þ1.3

−1.1
þ2.5
−2.5 −0.21þ1.5

−1.1
þ2.5
−2.4 −0.31þ1.5

−1.2
þ2.6
−2.4

DANIEL J. H. CHUNG and AMOL UPADHYE PHYS. REV. D 98, 023525 (2018)

023525-6



marginalized likelihoods such as the Planck likelihood, we
can still ask whether varying 3 isocurvature parameters
lowers the χ2 by substantially more than 3. Allowing non-
negligible isocurvature in the KK model reduces χ2 by 2.4
in the Planck-only analysis and by 4.4 in the Planckþ
BOSS analysis. (A similar comparison to the vanilla
Planckþ BOSS analysis of Ref. [30] shows a χ2 reduction
of 4.8.) If we additionally allow all 5 bias parameters to
vary in the Planckþ BOSS analysis, the χ2 reduction falls
to 3.5. Thus there is not a strong preference for axionic blue
isocurvature in the current data.
KK-type isocurvature models with different κ⋆ are

qualitatively very different. In the small-κ⋆ limit, the KK
model reduces to a flat isocurvature, with weak constraints
on nI coming only from cosmic-variance-limited measure-
ments at horizon scales. Thus we consider a few specific
lamppost models in which κ⋆ is fixed to larger values, in
which current data can probe the blue-tilted region of the
power spectrum. Table IV and Fig. 4 show the resulting
constraints. We have chosen the maximum κ⋆ to be
lnð0.5=Mpc=k0Þ ¼ 2.3, just beyond the largest wave num-
bers probed by Planck and BOSS data. In all three cases

considered, with κ⋆ ≥ 0, we see a > 1σ preference for
Qn > 0.
Finally, since we are specifically interested the bluest-

tilted models, we consider lamppost models in which
nI ¼ 3.9 is fixed (this value is 2σ allowed by the third
column of Table III and lies at the maximum of the allowed
MCMC sampling). Constraints on BLUE (variable-κ⋆) and
HI-BLUE (κ⋆ ¼ lnð10Þ) models are shown in the final
two columns of Table IV. Intriguingly, the HI-BLUE model
has a 2σ preference for Qn > 0. We investigate this further
in Table V, showing constraints with and without BOSS
data. The corresponding one-dimensional probability den-
sity is shown in Fig. 5. Even though this is encouraging,
this does not represent a statistically significant hint since
there is no a priori reason to prefer the HI-BLUE spectrum
for the fits.
Since κ⋆ ¼ lnð10Þ corresponds to k⋆=a0 ¼ 0.5=Mpc≈

0.7h=Mpc, a few times larger than currently-accessible
scales, this constraint can be interpreted as a 2σ preference
for a highly blue-tilted isocurvature with a power-law
spectrum on observable scales if there is some reason to
expect nI ¼ 3.9 a priori. While a 2σ hint is hardly
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FIG. 3. Constraints on the KK model using Planck and BOSS DR11 data. Light (yellow), medium (green), and dark (blue) shaded
regions identify 68%, 95%, and 99.7% confidence contours, respectively.

TABLE IV. Constraints on lamppost models using Planck and BOSS data. LAMP-N is KK with κ⋆ ¼ lnðNÞ, BLUE is KK with
nI ¼ 3.9, and HI-BLUE is BLUE with κ⋆ ¼ lnð10Þ. For each parameter, the mean value as well as 68% and 95% upper and lower
bounds are shown. In some cases, both lower bounds on Qn are equal due to the prior Qn ≥ 0, implying that our results only provide an
upper bound.

LAMP-1, PB LAMP-2, PB LAMP-10, PB BLUE, PB HI-BLUE, PB

ns 0.9653þ0.0044
−0.0044

þ0.0086
−0.0085 0.9651þ0.0041

−0.0044
þ0.0086
−0.0083 0.9637þ0.0039

−0.0045
þ0.0084
−0.0084 0.9649þ0.0041

−0.0044
þ0.0085
−0.0085 0.962þ0.0045

−0.0038
þ0.0078
−0.0082

σ8 0.819þ0.019
−0.018

þ0.033
−0.035 0.817þ0.017

−0.019
þ0.034
−0.034 0.814þ0.015

−0.019
þ0.033
−0.033 0.819þ0.019

−0.019
þ0.034
−0.038 0.812þ0.014

−0.018
þ0.032
−0.027

h 0.6761þ0.0047
−0.0051

þ0.0097
−0.0096 0.6766þ0.0051

−0.0051
þ0.01
−0.0099 0.6765þ0.0047

−0.0051
þ0.01
−0.0096 0.6762þ0.0049

−0.0048
þ0.0099
−0.0096 0.6771þ0.0047

−0.0052
þ0.0098
−0.0095

ωc 0.119þ0.0011
−0.0011

þ0.0022
−0.0022 0.1189þ0.0011

−0.0011
þ0.0022
−0.0022 0.1189þ0.0012

−0.001
þ0.0021
−0.0022 0.119þ0.001

−0.0011
þ0.0021
−0.0021 0.1188þ0.001

−0.0012
þ0.0022
−0.0021

ωb 0.02226þ0.00014
−0.00014

þ0.00028
−0.00028 0.02228þ0.00014

−0.00014
þ0.00029
−0.00028 0.02228þ0.00014

−0.00015
þ0.0003
−0.00029 0.02226þ0.00015

−0.00015
þ0.0003
−0.00029 0.02227þ0.00016

−0.00013
þ0.00028
−0.00028

τ 0.068þ0.024
−0.023

þ0.044
−0.044 0.065þ0.023

−0.024
þ0.043
−0.046 0.056þ0.021

−0.028
þ0.041
−0.046 0.067þ0.025

−0.024
þ0.044
−0.049 0.046þ0.018

−0.032
þ0.04
−0.036

Qn 1.4þ0.7
−1.0

þ1.4
−1.4 0.93þ0.42

−0.58
þ0.85
−0.93 0.19þ0.062

−0.15
þ0.2
−0.19 1.1þ0.3

−1.0
þ1.3
−1.1 0.062þ0.026

−0.03
þ0.049
−0.052

nI 2.75þ0.8
−0.67

þ1.2
−1.1 2.77þ0.85

−0.61
þ1.2
−1.1 2.75þ0.77

−0.65
þ1.2
−1.1

κ⋆ −0.45þ1.2
−0.89

þ2.2
−2.2
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conclusive and there is no compelling reason to expect
nI ¼ 3.9, if we interpret this really as a hint, there is some
reason to be optimistic about its case being strengthened by
data in the near future. Planned CMB and large-scale
structure surveys promise more sensitivity over a larger
range of scales. Surveys mapping the neutral hydrogen in
the universe using the 21 cm line are expected to reach
k=a0 ∼ 10h=Mpc in the coming decades. Such probes will
shed light on physics at the highest energies through their
sensitivity to ABI models.
Regardless of this fit result being interpreted as a hint,

note that this class of models also “predicts” k⋆, the break
point in the spectrum, to be in the observable range if one
restricts the theoretical bias to having sub-Planckian scalar
field values and more importantly the total number of
e-folds of inflation not being smaller than around 50. More
specifically, one can see from generalizing the model
dependent Eq. (19) that

k⋆
a0

∼
�

φinit

0.3Mp

�2
3

e−ðNe−50Þ
�
Trh=H
10−1

�
1=3

�
H=φfin

10−3

�
2=3

× ð10 Mpc−1Þ ð7Þ

whereMp is the reduced Planck mass, H is the expansion
rate during inflation, and φ is a model dependent order
parameter that controls whether the isocurvature pertur-
bation modes are massive or massless (when compared to
H) at the time of mode horizon exit. In an axion model
specific to Eq. (19), φ has the order of magnitude of the
PQ symmetry-breaking field jΦþj. The variable φinit is the
φ value at Ne e-folds before the end of inflation, and
the variable φfin is the φ value at the time when the modes
are first massless at horizon exit.
Another positive indication for future observability of

this class of models can be seen as follows. According
to column 4 of Table V, the 95% confidence level
upper bound on Qn is 0.11, which corresponds to
Q1 ≈ 9 × 10−8. This implies that the isocurvature power
at k=a0 ≳ 0.5 Mpc−1 primordially can be 40 times larger
than the adiabatic power (in contrast with the percent
level power of a scale-invariant spectrum). Moreover,
because the data set used here is already insensitive to the
spectrum at this large k=a0 ≳ k⋆=a0 ≈ 0.5 Mpc−1, it is
possible to dramatically further increase the isocurvature
power relative to the adiabatic power by increasing
k⋆=a0.
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FIG. 4. Constraints on the LAMP-1 (left), LAMP-2 (middle), and LAMP-10 (right) models using Planck and BOSS DR11 data. Light
(yellow), medium (green), and dark (blue) shaded regions identify 68%, 95%, and 99.7% confidence contours, respectively.

TABLE V. Constraints on extremely blue-tilted lamppost models with nI ¼ 3.9. BLUE allows κ⋆ to vary while HI-BLUE fixes it at ln
(10). Constraints are from Planck data alone (P) or Planck plus BOSS (PB). For each parameter, the mean value as well as 68% and 95%
upper and lower bounds are shown. In some cases, both lower bounds onQn are equal due to the priorQn ≥ 0, implying that our results
only provide an upper bound.

BLUE, P HI-BLUE, P BLUE, PB HI-BLUE, PB

ns 0.9657þ0.0051
−0.0052

þ0.01
−0.01 0.9628þ0.0046

−0.0048
þ0.0099
−0.01 0.9649þ0.0041

−0.0044
þ0.0085
−0.0085 0.962þ0.0045

−0.0038
þ0.0078
−0.0082

σ8 0.844þ0.019
−0.017

þ0.035
−0.037 0.838þ0.022

−0.02
þ0.035
−0.042 0.819þ0.019

−0.019
þ0.034
−0.038 0.812þ0.014

−0.018
þ0.032
−0.027

h 0.6764þ0.0069
−0.007

þ0.014
−0.014 0.6767þ0.0069

−0.0064
þ0.014
−0.014 0.6762þ0.0049

−0.0048
þ0.0099
−0.0096 0.6771þ0.0047

−0.0052
þ0.0098
−0.0095

ωc 0.119þ0.0015
−0.0016

þ0.0031
−0.0031 0.1189þ0.0014

−0.0015
þ0.003
−0.003 0.119þ0.001

−0.0011
þ0.0021
−0.0021 0.1188þ0.001

−0.0012
þ0.0022
−0.0021

ωb 0.02228þ0.00017
−0.00016

þ0.00033
−0.00033 0.0223þ0.00017

−0.00016
þ0.00032
−0.00032 0.02226þ0.00015

−0.00015
þ0.0003
−0.00029 0.02227þ0.00016

−0.00013
þ0.00028
−0.00028

τ 0.098þ0.026
−0.023

þ0.048
−0.051 0.081þ0.03

−0.026
þ0.05
−0.057 0.067þ0.025

−0.024
þ0.044
−0.049 0.046þ0.018

−0.032
þ0.04
−0.036

Qn 1.1þ0.3
−1.1

þ1.5
−1.1 0.047þ0.024

−0.028
þ0.044
−0.047 1.1þ0.31

−1
þ1.3
−1.1 0.062þ0.026

−0.03
þ0.049
−0.052

κ⋆ −0.68þ0.99
−0.79

þ2.2
−2.2 −0.45þ1.2

−0.89
þ2.2
−2.2
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IV. A MODEL INTERPRETATION

In this section, we interpret the fit results of the last
section in terms of the axion model of [17]. We will find
that the fit is consistent with a very plausible supersym-
metric QCD axion model. In particular, we will find that the
result is consistent with a scenario in which all of the dark
matter is composed of axions and the initial misalignment
angle is of order unity.
The supersymmetric model [17] has its axion residing in

a linear combination of PQ-charged beyond-the-Standard-
Model fields Φþ and Φ− where the subscripts refer to the
PQ charges. As explained in [17] (and [18]), the relevant
effective potential during inflation is

V ≈ h21jΦþΦ− − F2
aj2 þ cþH2jΦþj2 þ c−H2jΦ−j2 ð8Þ

where fh1; c�; Fa;Hg are numerical constants. The vari-
able H has the interpretation of the expansion rate during
inflation, and Fa is related to the usually quoted axion
decay constant fa through

fa ¼
ffiffiffi
2

p
ðjΦþðtfÞj2 þ jΦ−ðtfÞj2Þ1=2 ð9Þ

where

jΦ�ðtfÞj ¼ Fa

�
c∓
c�

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p
H2

h21F
2
a

s
: ð10Þ

Because of the insensitivity of the ABI spectrum with h1-
variation in the parameter region of interest, we can set
h1 ¼ 1 as long as h1Fa ≫ H. The initial condition for Φ�
is parameterized by

Φ�ðtiÞ ¼ jΦ�ðtiÞje∓iθþðtiÞ ð11Þ

where θþðtiÞ ∼Oð0.1Þ for “natural” scenarios.

The key initial condition is that fjΦþðtiÞj ≫
Fa;ΦþðtiÞΦ−ðtiÞ ≈ F2

ag and Φþ rolls towards the mini-
mum during inflation. With the parameterization

Φ� ≡ φ�ffiffiffi
2

p exp

�
i

a�ffiffiffi
2

p
φ�

�
ð12Þ

where φ� and a� are real, the axion is

a ¼ φþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p aþ −

φ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p a− ð13Þ

and this field will have a mass-squared that is approx-
imately cþH2 during inflation if jΦþj ≫ Fa while
ΦþΦ− ¼ F2

a. The Goldstone theorem is evaded because
the radial field Φþ is rolling and not at its minimum. This
temporary massive behavior of the axion is responsible
for the blueness of the ABI spectrum. The approximate
constant behavior of the mass until Φþ reaches ΦþðtfÞ is
natural within supersymmetric models since the leading
SUSY breaking is controlled through gravity-mediated
contribution H, the expansion rate, which is approximately
constant during inflation.
As explained in [24], the parameter Q1 (related to the

more practical fit parameter Qn through Eq. (5) fixed
through the fit constrains underlying model parameters
through

Q1 ¼
�
H
2π

�
2 ÃðcþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c−=cþ

p
F2
aθ

2þðtiÞð1þ c−=cþÞ
ω2
a ð14Þ

where ωa ≡Ωa=Ωc is the dark matter fraction in axions
and is approximately

ωa ≈Waθ
2þðtiÞ

0
B@

ffiffiffi
2

p
Fa

ffiffiffiffiffiffiffiffiffiffi
c−þcþffiffiffiffiffiffiffiffi
c−cþ

p
q

1012 GeV

1
CA

nPT

: ð15Þ
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FIG. 5. Marginalized probability density of Qn in (left) the HI-BLUE model, and (right) the full KK model, constrained using either
Planck or Planckþ BOSS data.
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Here

Wa ≈ 1.5 nPT ≈ 1.19 ð16Þ

are QCD phase transition physics related parameters [42],
and we have assumed that c� > 0. The ωa parametric
dependence assumes that the axion relic density is domi-
nated by the coherent oscillations after the chiral phase
transition. It also assumes that the coherent oscillations
begin when T ≳ 0.1 GeV such that the axion mass has
the usual nontrivial temperature dependence of ma ∝
ðΛQCD=TÞ3.34 (see Eq. (9) of [42]). In terms of Fa, we
are assuming Fa ≲ 1017 GeV. For larger Fa, the relic
abundance formula needs modifications, but for this
section, this will not be of interest to us because this
parameter region is not phenomenologically viable.
Although one can compute Ã in terms of the interpolating
function of [24], its range is

ÃðcþÞ ≈ 0.92� 0.03 ð17Þ

which means one can obtain a good approximation without
computing this accurately.
Combining Eqs. (5) and (14), we can write all the fit

parameters on the right hand side of the equation

½HθþðtiÞ�2F2nPT−2
a

ð1012 GeVÞ2nPT

¼ð2πÞ2ð1þc−=cþðnIÞÞ1−nPT10−10ð1þenIκ⋆ÞQn

2nPT ÃðcþÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−=cþðnIÞ

p Þ1−nPTW2
a

ð18Þ

where Eqs. (4), (16), and (17) and the parametric choice
fc− ¼ 0.9; nI > 1.68g can be used to complete the speci-
fication of the right hand side.2 For every right hand side of
Eq. (18) specified by the fit, this equation allows us to have
an area of solutions in ðH; θþðtiÞ; FaÞ space. For every
point in the solution space, there is a κ⋆ related constraint
in the inflationary model/initial condition parameter
ðTrh; Ne; jΦþðtiÞjÞ space through the following equation
which relates observable length scales to these inflationary
parameters:

�jΦþðtiÞj
Fa

�1
γ

e−ðNe−54Þ
�

Trh

107 GeV

�
1=3

�
H

7 × 108 GeV

�
1=3

¼ eκ⋆

2 × 10−4

�
cþðnIÞ
c−

�
− 1
4γðnI Þ ð19Þ

where

γðnIÞ ¼
3

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9
cþðnIÞ

r �
: ð20Þ

Here, Trh is the reheating temperature (temperature at
which the universe becomes radiation dominated after
inflation), Ne is the number of e-folds between an initial
time ti and the end of inflation, and g�Sðt0Þ is the effective
number of entropy d.o.f. today. Because of the exponential
on the left hand side of Eq. (19), the exponential variations
in κ⋆ can easily be accommodated in variations in Ne. As
we will see more explicitly shortly, this means that the
break in the spectrum can be placed almost anywhere in the
observable length scales as long as the number of e-folds of
inflation is not strongly constrained. For an example of
assumptions that can lead to constraints, see the discussion
around Eq. (7).
Recall that the mean and 68% CL range for the spectral

index are

nI ¼ 2.8þ1.1
−0.6ð1σÞ ð21Þ

taken from the third column of Table III. Given that the
right hand side of Eqs. (18) and (19) only contain fit
parameters, we plot in Fig. 6 the ðXphen; YphenÞ distribution
generated by MCMC for bins of nI surrounding the mean
spectral index of Eq. (21) where

Xphen ≡ ð2πÞ2ð1þ c−=cþðnIÞÞ1−nPT10−10ð1þ enIκ⋆ÞQn

2nPT ÃðcþÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−=cþðnIÞ

p Þ1−nPTW2
a

ð22Þ

Yphen ≡ eκ⋆

2 × 10−4

�
cþðnIÞ
c−

�
− 1
4γðnI Þ ð23Þ

and the Qn dependence shows up only in Xphen. As
explained in the figure captions, the results suggest that
much of the constraint for the nI ≳ 3 models with the
current data is coming from the bump region and above in k
space since that part of the data is not as sensitive to
the spectral index for κ⋆ < 0. The insensitivity of the
k≳ k0 expðκ⋆Þ part of the spectrum with the spectral index
nI is illustrated in Fig. 7. On the other hand, the likelihood
for the nI < 2.8 region is more sensitive to the data with k
smaller than the break (and hence the likelihood is more
sensitive to the spectral index) since the isocurvature
amplitude there is not as suppressed in the case of the
smaller spectral index. This also explains the asymmetry in
the error bars in Eq. (21). Note that because CMB
observables are not as sensitive to large k isocurvature
primordial spectrum compared to the large k adiabatic
primordial spectrum, the k < k⋆ part of the spectrum in

2See the discussion below Eq. (1) and the discussion in [24] for
more information about the c− parametric choice.
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Fig. 7 is more significant for CMB fits than it naively
appears for shallow nI.
Inspired by the fit results of Fig. 6, Eq. (21), and Sec. III,

we choose two representative parameter sets to investigate

whether interpreting these parameters in terms of the axion
model of [17] leads to a reasonable physical picture. One
set we choose is the expectation values S1 ≡ fnI ¼ 2.8;
Xphen ¼ expð−20.6Þ; Yphen ¼ expð8.1Þg (corresponding to
fQn ¼ 0.96; κ⋆ ¼ −0.21;Q1 ¼ 1.5 × 10−10g) and a sec-
ond set S2 ≡ fnI ¼ 2.8; Xphen ¼ expð−19.8Þ; Yphen ¼
expð7.7Þg (corresponding to fQn ¼ 2.8; κ⋆ ¼ −0.6;
Q1 ¼ 3.3 × 10−10g) which gives a larger Qn that is still
1σ consistent with the central value in the binned distri-
bution of Fig. 6(b). The fθþðtiÞ; H; Fag parameter regions
consistent with S1 and S2 are shown in Fig. 8. The most
important phenomenological self-consistency constraint in
Fig. 8 is that the axion dark matter does not exceed the
totality of cold dark matter abundance:

ωa ≤ 1: ð24Þ

This determines the upper ends of each of the allowed
ðH;FaÞ curves. The most important theoretical constraint
comes from the validity of the linear computation,

ffiffiffiffiffiffi
Δ2

S

p
ωa

< 1; ð25Þ

which is a restatement of the assumed smallness of axion
energy overdensity δρa=ρa < 1. Since the spectral peak is

FIG. 7. Δ2
Sðk; k⋆; nI;Q1Þ is plotted for nI ¼ 2.5 (solid),

nI ¼ 3.2 (dotted), and nI ¼ 3.9 (dashed) with k⋆ ¼ 0.81k0 and
Qn ¼ 0.96. The bump region and above are not very sensitive to
the spectral index for a fixed Qn. The plateau amplitude
(corresponding to the mean nI) is approximately 10% of the
adiabatic power, which represents an order of magnitude en-
hancement compared to the current bounds on the flat spectral
index case.
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FIG. 6. Distribution of ðXphen; YphenÞ (with CMB only KK fit) is plotted for (a) nI ∈ ½1.9; 2.3�, (b) nI ∈ ½2.6; 2.9�, and
(c) nI ∈ ½3.54; 3.94� (d) BLUE model with nI ¼ 3.9. Each successive contoured regions corresponds to 1,2,3-σ regions. Since the
distributions (c) and (d) are similar, the constraint is not very sensitive to the isocurvature spectral index nI “far” above the central
spectral index of Eq. (21). This suggests that much of the constraint for the “large” nI models with the current data is coming from the
bump region and above in k space since that part of the data is not as sensitive to the spectral index for κ⋆ < 0.
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less than about twice the plateau, we can impose a simpler
bound,

Q1

ωa
<

1

2
; ð26Þ

which will set a lower bound on Fa. This determines the
lower ends of each of the allowed ðH;FaÞ curves.
The dashed curves in Fig. 8 represent jΦþðtiÞj < 0.3Mp

with two different numbers of inflationary e-folds. If
jΦþðtiÞj is above this value, we would generically be wary
of the breakdown of the effective field theory description
that neglects gravity suppressed nonrenormalizable oper-
ators. Note that Ne in Eq. (19) represents the number of
e-folds between time ti and the end of inflation. Hence, we
see from the figure that the initial nonequilibrium value of
jΦþðtiÞj need not be very large to satisfy the best fit value of
κ⋆. The dotted curves towards the bottom of the plot
represent the boundary below which we would have to take
into account the cosmic string decay contribution to the
axionic dark matter abundance due to the fact that PQ
symmetry might be restored if

Fa ≲ Tmax ¼ ð0.77Þ
�

9

5π3g�

�
1=8 ffiffiffiffiffiffiffi

Trh

p
ðHMp

ffiffiffiffiffiffi
8π

p
Þ1=4;

ð27Þ

where Tmax is taken from [44] and we have assumed
in Fig. 8 that the number of d.o.f. g� contributing to the
energy density is 200 at the completion of reheating. If
the axionic string network reaches the scaling regime, then

the decay of the strings will contribute an axion abundance
of [42]

Ωa;str ≈ 2.0ξ

�
Fa

1012 GeV

�
1.19

�
ΛQCD

400 MeV

�
; ð28Þ

which would be relevant in the parameter regime below the
dotted curve in Fig. 8. Since there is a large parameter
region in which axions constitute all of the dark matter, we
will not dwell on this parametric corner where the string
contribution becomes important.
Some other constraints that we have considered but are

not important in the best fit parameter region are the
following. Making sure that the initial θþðtiÞ tuning is
above the quantum noise and noting the approximation
made in Eq. (29) of [24], we impose

H
2πjΦþðtiÞj

≪ θþðtiÞ ≪ 1: ð29Þ

If we require that the classical value of the conserved
quantity be always greater than the quantum fluctuations
(not just at the initial time), we end up with a stronger
constraint:

H
4πFa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c− þ cþ

p ≪ θþðtiÞ ≪ 1: ð30Þ

These constraints are not as strong as the ones playing a
role in Fig. 8.
It is important to note that the axionic d.o.f. naturally

carries both adiabatic and isocurvature inhomogeneity

FIG. 8. Shown are axionic parameter regions consistent with the parameters S1 preferred by current data (left) and a larger Qn
parameter set S2 (right). Hence, the effect of increasingQn and adjusting κ⋆ to maintain a good fit to the data shifts the underlying model
parameters fH;Fag to the right. The upper ends on all the thick lines come from the saturation of the dark matter bound: ωa ≤ 1. The
bottom ends on all the thick lines come from the bound of perturbativity: δρa=ρa < 1. The dashed curves represent jΦþðtiÞj < 0.3Mp

with two different numbers of inflationary e-folds. The upper one assumes that the number of e-folds Ne of inflation is at least 50, while
the second curve assumes that the number of e-folds of inflation is at least 54. The dotted curves towards the bottom of the figure
represent boundaries below which the total dark matter abidance may also contain cosmic strings because the maximum temperature
reached during the reheating period is larger than Fa. The upper dotted curve is for Trh ¼ 108 GeV while the lower dotted curve is for
Trh ¼ 106 GeV. The bottom blue region is excluded by the supernova 1987A burst duration (e.g., [43]), and some literature exclude Fa
values that are an order of magnitude higher [10]. The numbers by the isolated dots indicate ωa at that point in the parameter
space.
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condition information because of the gravitational coupling
between the inflaton and the axion, as discussed in [18]. In
spatially flat gauge, this imprinting of the adiabatic inho-
mogeneities shows up as a secular time integral effect.
Hence, even though the axion is a spectator field with
its own independent quantum fluctuations, it naturally
acquires mixed boundary conditions.

V. CONCLUSIONS

In this work, we have fit the ABI spectrum to Planck and
BOSS DR11 data. Unlike the usual isocurvature spectrum
that is fit to data in the literature, this spectrum has a strong
blue tilt up to k⋆, has a little bump, and is flat beyond
that. We use the economical three-parameter fitting
function of [24] in the context of six-parameter vanilla
Λ-CDM and find the best-fit isocurvature parameter set
of about fk⋆=a0 ¼ 4.1þ14

−2.7 × 10−2 Mpc−1; nI ¼ 2.76þ1.1
−0.59;

Qn ¼ 0.96þ0.32
−0.93g (1σ error bars) which indicates a decent fit

with the ABI spectrum making up about 10% of the power
on short scales. Unfortunately, it is clear that there is no
statistical significance to this nonzero isocurvature ampli-
tude. Note that 10% of the primordial power on short scales
is much larger than what one would expect from a scale-
invariant isocurvature spectrum. The rest of the Λ-CDM
parameters can be found in Table III. If we fix the spectral
index and the break point to be large (nI ¼ 3.9;
k⋆=a0 ¼ 0.7h=Mpc), we find a 2σ preference for a nonzero
ABI spectrum as indicated by Fig. 5. It is interesting to note
that the 2σ acceptable fit of this HI-BLUE model allows the
primordial isocurvature power to be 40 times the adiabatic
primordial power at k≳ k⋆ scales.
Furthermore, in the context of the axion model of [17],

the parameter region preferred by current data corresponds
to all of the dark matter being made up of QCD axions
with the axion decay constant of order 1013 GeV and an
expansion rate of order 108 GeV during inflation. This
interpretation would imply no detection of inflaton gen-
erated gravity waves (tensor perturbations) in the near
future (e.g., in experiments such as CMB-S4 [45]).
However, the axion masses would be within the range of
detectability through microwave cavity type of experiments
[46]. Although all of these results are encouraging, the fit
results are statistically inconclusive.
On the other hand, there is additional reason to have

some optimism that the results might be hinting at
a signal. As investigated by [29], a Λ-CDM fit to small
l (l ∈ ½2; 1000Þ) and the large l (l ≥ 1000) Planck data
gives about a 2σ discrepant value of Ωch2. In particular, the
low-l data prefers Ωch2 ≈ 0.115 while the high-l data
prefers Ωch2 ≈ 0.125. Although [29] disfavors this dis-
crepancy as a hint for new physics because of the Planck
data’s tension with the South Pole Telescope data, the
interpretation of this discrepancy is currently unresolved,
and what we may be detecting in the ABI fit presented in

this paper is this mismatch between the low-l and high-l
data. For example, Ref. [29] considered the possibility of
increasing a CMB lensing phenomenological parameter AL
(possibly motivated by modified gravity) to resolve the
anomaly. The paper [47] shows that the AL can be set to its
general relativity value of AL ¼ 1 using compensated
isocurvature perturbations. One can obtain a sense of
how the ABI spectrum mimics the large Ωch2 effect in
the large l region through Fig. 9, which significantly
exaggerates both Ωch2 and Qn to make the effect more
apparent.
Although future data may shed light on the systematics

between the low l and the high l, the current state of the
data seems unclear. For example, the SPTpol polarization
data of [48] for l < 1000 are consistent with high Ωch2,
while the data for l > 1000 prefer a large Ωch2. The
ACTPol data of [49] have error bars that are consistent with
both high and low Ωch2. Although the most probable
interpretation of the low-l vs high-l anomaly can be
argued to be the existence of not yet well understood
systematics, if it is a signal of new physics, we can look
forward to future data increasing the statistical significance
of the hint. Indeed, planned CMB and large-scale structure
surveys will improve data sensitivity over a larger range of
scales. Since experiments measuring the 21 cm line are
expected to reach scale sensitivities of k=a0 ∼ 10h=Mpc in
the coming decades [50], such probes may shed light on
physics at the highest energies by confirming or excluding
hints of ABI perturbations.
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