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Several unexpected features are observed at large angular scales in the cosmic microwave background
(CMB) temperature anisotropy measurements by both WMAP and Planck. These include the lack of both
variance and correlation, alignment of the lowest multipole moments with one another, hemispherical
power asymmetry, and an odd-to-even parity excess. In this work, we study the statistics of eight
representative large-angle CMB features in order to evaluate their covariance in the standard ΛCDM
model. We do so using two sets of simulated CMB temperature maps; an ensemble of 100 000 simple
Gaussian simulations, and 1000 Full Focal Plane (FFP) simulations provided by the Planck
collaboration. In measuring feature probabilities, we pay particular attention to analysis choices,
making sure that we can reproduce previous results in the literature, and explain differences where
appropriate. The covariance structure we find is consistent with expectations given that many of the
features studied are functions of the angular power spectrum. Notably, we find significant differences in
the covariance entries associated with the quadrupole-octopole alignments derived from the Gaussian
and FFP simulations. We additionally perform a principal component analysis to quantitatively gauge
what combinations of features capture the most information about how simulation measurements vary,
and to provide an alternative assessment of the ways in which the real sky is anomalous. The first four
principal components explain about 90% of the simulations’ variance, with the first two roughly
quantifying the lack of large-angle correlations, and the next two quantifying the phase-dependent
anomalies (multipole alignments and power asymmetry). Though the results of this analysis are fairly
unsurprising, its comprehensive approach serves to tie together a number of previous results, and will
therefore provide context for future studies of large-angle anomalies.
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I. INTRODUCTION

The spectacular maps of the cosmic microwave back-
ground (CMB) anisotropy that have been made over the
past few decades have revolutionized our understanding of
the universe, and rejuvenated efforts to test fundamental
processes in the early and late universe. The CMBmaps are
overall in a very good agreement with the six-parameter
spatially flat ΛCDM model specified by the energy
densities of dark matter and baryons, the amplitude and
spectral index of primordial scalar fluctuations, the reio-
nization optical depth, and the expansion rate (Hubble
constant) [1]. Shortly after the WMAP experiment’s data
were released, however, several surprising coincidences
were noticed at large angular scales. In particular, the
WMAP maps of temperature anisotropies exhibit low
variance, a lack of correlation on the largest angular scales,
alignment between various low multipole moments [2],
alignment between those low multipole moments and the

motion and geometry of the Solar System [3], a hemi-
spherical power asymmetry [4], a preference for odd parity
modes [5], and an unexpectedly large cold spot in the
Southern hemisphere [6]. Planck data [7] largely confirmed
the presence of these features. For a review of the CMB
anomalies, see Ref. [8].
While these anomalies have remained an active area of

study over the years, it is difficult to draw firm conclusions
from the study of features of the CMB at very large angles,
mainly due to the significant cosmic variance at those
scales. Moreover, the a posteriori nature of their observa-
tion, as well as the generally good fit of data to the standard
cosmological model, means that large-angle anomalies do
not in themselves provide compelling evidence for beyond-
ΛCDM physics [9].
Rather, in a time where nearly all cosmological obser-

vations have been in remarkable agreement with the
predictions of ΛCDM, the statistically unlikely large-angle
features have attracted attention because of the tantalizing
possibility that one or some of them might have cosmo-
logical origins [10–13]. If that were the case, due to, e.g., an*jlmuir@umich.edu
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isotropy-breaking mechanism in the early universe, the
feature in question could provide insight into the physics of
inflation. It is important, however, to additionally consider
other explanations for anomalous large-scale CMB fea-
tures: they could be artifacts of instrumental or astrophysi-
cal systematics or they could simply be unlikely
fluctuations in the standard isotropic model. Much of the
study of large-angle anomalies has thus been focused on
disentangling these three logical possibilities: whether
large-angle CMB anomalies are cosmological, are due to
systematics, or are statistical flukes. Better understanding
of the anomalies will be driven in the future by observations
of new quantities on very large spatial scales, such as CMB
polarization [14–18] and lensing [19], as well as large-scale
structure [20]. Whether or not new insights about the early
universe become readily apparent, studying large-angle
anomalies has and will thus continue to provide an
opportunity to build a deeper understanding of our mea-
surements of the large-angle CMB.
One largely unexplored question is how the observed

anomalies are related to one another: If we observe one
unlikely feature, does that make us less surprised to find
another? Roughly speaking, (positively) correlated anoma-
lies imply a smaller overall joint significance than if they
are uncorrelated. Full understanding of the anomalies
thus enables an accurate accounting of the likelihood for
the joint observation of unexpected features. Since the
a posteriori nature of the choice of anomaly statistics
remains, we would certainly not advocate for using a
measure of the combined tension of all observed anomalies
as a test of ΛCDM. However, for studies focusing on pairs
or groups of large-angle features as tests for phenomeno-
logical models of inflation, knowing their joint probability
distribution in ΛCDM will prevent double-counting (or, if
the anomalies are anticorrelated, undercounting) of the
anomalies’ significance. Furthermore, the knowing the
covariance of large-angle features associated with anoma-
lies allows us to quantitatively separate anomaly “atoms,”
i.e., a set of independent features out of which drive the
anomalous observations [8].
Previous work on the covariance of CMB temperature

anisotropy anomalies has mostly been limited to studying
pairs of anomalies. For example in Ref. [21], the authors
show that missing power at large scales quantified by S1=2
and the quadrupole-octopole alignment are not correlated
in ΛCDM (such a conclusion was also reached, albeit for
the full-sky-only analysis, by Ref. [22]). The lack of
correlation between hemispherical power asymmetry and
the quadrupole-octopole alignment in ΛCDM are demon-
strated in Ref. [23]. In Ref. [24], the authors indicate a
possible connection between the lack of power and the odd-
multipole preference anomaly. In particular, they claim—
based on an analytical argument—that the odd-multipole
preference can be a phenomenological cause of the lack
of large-angle correlation. Additionally, in Ref. [25] the

authors find a correlation between the low large-angle power
and the low value of the CMB quadrupole. Reference [26]
explores the relationship between low power at large angles
and the amplitude of the CMB quadrupole and octopole,
while Ref. [27] studies its relationship with the quadrupole
and octopole phases. Herewe aim to take a more global view
by studying the relationship between all of these features
simultaneously.
In this work, we will use ensembles of simulated CMB

temperaturemaps toempirically characterize, in thecontext of
ΛCDM, the covariance between a collection of features
associated with commonly-studied large-angle anomalies.
Our analysis proceeds in three general steps. First, we will
measure the quantities associated with those features and
confirm that the comparison between our measurements
of the real CMB sky and simulations reproduce previous
findings.Next,wewill study the distribution of the simulation
ensembles in the space defined by the “anomaly feature”
quantities to find their covariances. In doing so, we will
investigate the impact of foregrounds and surveyproperties by
comparing the results obtained from simple Gaussian simu-
lations of the CMB temperature map to the more realistic
Planck full focal plane simulations [28]. Finally, we will use
the measured feature covariances perform a principal com-
ponent analysis in order to further characterize the ways in
which large-angleCMBmappropertiesareexpected tovary in
ΛCDM, and in which the observed CMB sky is unusual. We
emphasize that the goal of this analysis is to gain a deeper
understanding of the predictions of ΛCDM, rather than to do
any explicit model-comparison.
The rest of the paper is organized as follows. In Sec. II

we introduce our methods in detail, including the descrip-
tion of maps and masks adopted, of our simulation
ensembles and of our power spectrum measurements. In
Sec. III, we outline the statistical description of the eight
large-scale features that we study in this work and report
the statistical significance of the features with respect to our
simulation ensembles. The main results of our work—the
measurement of covariances between the anomalies—is
presented in Sec. IV, along with discussion of a PCA
analysis. We summarize and conclude in Sec. V.

II. METHODS

We begin by introducing basic terminology and notation
for describing CMB anisotropies. Temperature fluctuations
can be expanded in a spherical harmonic series as follows

Tðn̂Þ ¼
X
l

Xl
m¼−l

almYlmðn̂Þ; ð1Þ

where n̂ is the direction on the sky and the complex
coefficients alm contain all information about the temper-
ature field. For statistically isotropic fluctuations, the expect-
ation of the two-point correlation between coefficients alm
drastically simplifies and only depends on l:
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halma�l0m0 i ¼ δll0δmm0Cl: ð2Þ
If the fluctuations are statistically isotropic and Gaussian, the
angular power spectrum, Cl, contains all statistical infor-
mation about the temperature field.
It is useful to additionally define the real-space angular

correlation function as

CðθÞ ¼ hTðn̂1ÞTðn̂2Þi ð3Þ
¼ 1

4π

X
l

ð2lþ 1ÞClPlðcos θÞ ð4Þ

where n̂1 · n̂2 ¼ cos θ and PlðxÞ is a Legendre polynomial
of order l.

A. Maps and masks

In the course of this analysis we use several data products
from the Planck 2015 data release, provided on the Planck
Legacy Archive.1 For transparency and reproducibility,
when relevant we identify the names of specific files used
in footnotes.
Though the primary product of this paper will be a study

of the covariance between anomalies as measured from
simulation ensembles, we also use Planck data to quantify
the values of the anomaly statistics described above for the
real, observed CMB sky. Our purpose in doing this will be
twofold. First, it will allow us to compare our assessment
of the anomalousness of features of the observed CMB
sky against the probabilities reported in the literature.
Additionally, measuring the same statistics from the real
Planck data as from our simulations will allow us to place
the real CMB sky in the multidimensional feature space
examined in Secs. III and IV.
For map-based statistics we use the SMICA [29] map2

from the 2015 Planck data release. Though the Commander
map should more properly be used for the analysis of very
large scale features, past studies [7,30,31] have found that the
significance of the various anomalies does not depend
strongly on which component separation method is used.
Therefore, using the SMICAmap should be sufficient for our
purposes.
Because we care only about large-angle features, we

work with maps that are at a resolution of NSIDE ¼ 64,
smoothed with a Gaussian beam of 160 arcmin. We
downgrade the SMICA CMB temperature map, which is
provided at NSIDE ¼ 1024, following the prescription
described in Ref. [30]. We do this by first extracting its
spherical components alm using the healpy3 [32] func-
tion map2alm. Then, again using healpy, we get the
harmonic space representation of the Gaussian beam bl and
pixel window functions pl corresponding to the full width

half maximum (FWHM) and pixel resolution, respectively,
of both the input and output maps. By combining these
together, we obtain the downgraded harmonic coefficients,

aoutlm ¼ bðoutÞl pðoutÞ
l

bðinÞl pðinÞ
l

ainlm: ð5Þ

We then use the healpy function alm2map to convert
back to pixel space, obtaining the downgraded map. We
refer to Table 1 in Ref. [30] for the appropriate beam
FWHM values: 160 arcmin for NSIDE ¼ 64, and 10 arcmin
for NSIDE ¼ 1024. (For other parts of this study we will
also use the conversions 5 arcmin for NSIDE ¼ 2048 and
640 arcmin for NSIDE ¼ 16.)
Whenwe use amask, we adopt theUT78 commonmask,4

which is identified in Ref. [7] as themask that should be used
for the analysis of Planck temperature maps. UT78 is the
union of the masks for Planck’s four component-separation
methods (SMICA, NILC, SEVEM, and Commander). This
mask is provided as a map of zeros and ones at resolution
NSIDE ¼ 2048, where zeros represent masked pixels and
ones signify unmasked pixels. To downgrade the mask to
NSIDE ¼ 64, we follow the procedure described in Eq. (5),
then threshold the resultingmap so that all pixels with a value
≤0.9 are marked as masked. This reduces the mask from its
original fsky ¼ 0.78 to 0.67. (When we use NSIDE ¼ 16

maps for one of the anomalies studied below, the UT78
mask’s sky coverage reduces further to fsky ¼ 0.58.)

B. Simulated ensembles

Our primary simulation ensemble will be a set of 100 000
noiseless Gaussian CMB temperature maps generated using
the synfast function in healpy. Gaussian temperature
map realizations are drawn using the Planck best-fit theory
prediction for thepower spectrum.5 Themaps areproduced at
NSIDE ¼ 64 with FWHM ¼ 160 arcmin Gaussian smooth-
ing, and with the pixwin argument set to True. These
settings were chosen to make the simulated maps have
properties consistent with the downgraded SMICA temper-
aturemapsdescribed above.These straightforward-to-imple-
ment simulations, which we will henceforth refer to as the
“synfast simulations,”will allow us to obtain the statistics of
fluctuations associated with the CMB signal only.
In order to explorewhether foreground and survey-related

effects that are present in the Planck SMICA map influence
the relationship between anomalies, we repeat our analysis
on the publicly available ensemble of Planck full focal plane
(FFP) simulations [28]. Specifically, we use the FFP8.1
CMB sky and noisemaps that have been processed using the
SMICA component separation pipeline, which we add

1pla.esac.esa.int.
2COM_CMB_IQU-smica_1024_R2.02_full.fits.
3healpy is the PYTHON implementation ofHEALPIX, described

at http://healpix.sourceforge.net.

4COM_Mask_CMB-IQU-common-field-MaskInt_
2048_R2.01.fits, field 0.

5COM_PowerSpect_CMB-base-plikHM-TT-lowTEB-
minimum-theory_R2.02.txt.
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together before downgrading to NSIDE ¼ 64. The FFP
simulations include the physical effects of astrophysical
foregrounds, gravitational lensing, Doppler modulation,
and frequency-dependent Rayleigh scattering effects. They
also model the Planck mission’s scanning strategy, detector
response, beam shape, and data reduction pipeline.
Additionally, a small, frequency-dependent intensity quadru-
pole has been added to the FFP simulations to account for an
uncorrected residual in the data from the dipole-induced
Doppler quadrupole identified inRef. [33].Note that because
we use the FFP8.1 rather than FFP8 simulations, we do not
need to rescale the CMB components of the simulations by
the factor of 1.0134 that was applied in Ref. [7].

C. Power spectrum measurements

There are several methods that one can use to measure
the angular power spectrum of a map of CMB temperature
fluctuations. Using different methods generally will cause
variations in the estimate for Cl, and thus the choice of how
to measure Cl can impact anomaly statistics.
Our analysis mainly relies on pseudo-Cl estimates for

the power spectrum. For full-sky measurements these will
give unbiased estimates of the true power spectrum simply
by averaging the observed spherical harmonics,

Ĉl ¼ 1

2lþ 1

Xm¼þl

m¼−l
jalmj2: ð6Þ

If a mask is used to remove contaminated parts of the map,
additional care must be taken, as is described in, e.g.,
Ref. [31]. In practice we measure cut-sky pseudo-Cl’s
using the polspice algorithm6 [34], which removes the
monopole and dipole of the masked map, measures the

angular correlation function CðθÞ of the unmasked part of
the sky, and then integrates to obtain Cl,

Cl ¼ 2π

Z
1

−1
CðθÞPlðcos θÞd cos θ: ð7Þ

In contrast to these cut-sky pseudo-Cl’s, which only
estimate the statistical properties of the unmasked parts of
the sky, quadratic maximum likelihood (QML) methods
can be used to estimate the statistical properties of the entire
sky. QML power spectrum estimators are unbiased, and
have a smaller variance than pseudo-Cl estimators [35]. It
will make the most sense for us to study the statistical
properties of certain large-angle features in terms of the
observed SMICA map’s QML power spectrum. For this,
we do not implement our own QML power spectrum
estimator, but instead use the public QML spectrum
provided by the Planck team [36]. The Planck QML power
spectrum was obtained using a Blackwell-Rao estimator
[37] applied to the Commander component-separated map
(and mask) at NSIDE ¼ 16 for multipoles l ¼ 2–29, and
the PliK likelihood applied to measured pseudo-Cl’s for
l ≥ 30. The low-l power spectrum estimation uses the
Commander mask, which has fsky ¼ 0.94 and therefore
leaves available much more of the sky available for analysis
than the UT78 common mask. The high-l power spectrum
likelihood uses galactic masks, described in Appendix A of
Ref. [36], which leave less available sky than those used
with component-separated CMB maps.
To summarize, the three Cl measurement strategies we

will examine are
(i) Full-sky Cl’s: We computed them using polspice

based on a map with NSIDE ¼ 64, with the monop-
ole and dipole subtracted.

(ii) UT78 pseudo-Cl’s: We computed them using
polspice with the same settings as the full-sky

FIG. 1. Comparison of the different angular power spectrum measurements described in Sec. II C (left) and their corresponding
angular correlation functions (right). The collection of grey lines behind them are from the full-sky Cl measurements of the first 100
synfast simulations. The black dotted line shows theoretical expectation, and the gray dotted lines show the 68% confidence level
cosmic-variance errors.

6The polspice software can be found at http://www2.iap.fr/
users/hivon/software/PolSpice/. we run it using the settings
subav=YES, subdipole=YES, apodizesigma=NO, and
pixelfile=NO.

MUIR, ADHIKARI, and HUTERER PHYS. REV. D 98, 023521 (2018)

023521-4

http://www2.iap.fr/users/hivon/software/PolSpice/
http://www2.iap.fr/users/hivon/software/PolSpice/
http://www2.iap.fr/users/hivon/software/PolSpice/
http://www2.iap.fr/users/hivon/software/PolSpice/


case, using the NSIDE ¼ 64 version of the Planck
UT78 common mask.

(iii) Planck public QML Cl’s: These estimates are
provided for low7 and high8-l on the Planck Legacy
archive.

In Fig. 1 we compare the angular power spectra derived
from the SMICA CMB temperature map using these three
methods, as well as the corresponding angular correlation
functions derived using Eq. (3). We also show theoretical
predictions using the Planck best-fit model, along with the
68% confidence region for cosmic variance.
Our NSIDE ¼ 64 resolution implies that we can study

multipoles up to lmax ¼ 3NSIDE − 1 ¼ 191 (though for
practical purposes, pixelization effects become apparent for
pseudo-Cl measurements at l ∼ 150 for full-sky measure-
ments and l ∼ 100 for cut-sky). Sincewewill be focusing on
scales l < 100, this choice of NSIDE is sufficiently high.

III. FEATURES STUDIED

Here we study eight characteristics of the large-angle
CMB temperature maps. These features, which are sum-
marized in Table I, include some of the most prominently
discussed CMB anomalies. This set of features is not
intended to be comprehensive9 Rather, our intention is to
focus on a representative sample that will allow us to
develop an understanding of the large-angle CMB’s stat-
istical properties in ΛCDM.
Broadly, we classify features based on whether they

depend entirely on information in the (isotropic) two-point
statistics, or whether they require map or alm-based
information. We adopt this classification to aid in our
interpretation of their covariances: because the two-point
function anomalies are all functions of the same angular
power spectrum, their respective definitions directly imply
some a priori expectations for their covariances. The same
is not necessarily true for the isotropy-breaking anomalies,
due to the stochastic nature of the alm coefficients.
As we introduce each feature, we will define the quantity

that we use to measure it, briefly introduce relevant findings
from previous studies, and discuss how those findings
compare to our measurements. We will mainly perform
these comparisons against Ref. [7], the Planck 2015 paper
on the isotropy and statistics of the CMB, which we will
henceforth refer to as Planck XVI (I&S). Unless otherwise
noted, the anomaly measurements in that work were
done using a QML Cl estimator on UT78 cut-sky maps
evaluated at NSIDE ¼ 64. Their measurements of the real

sky were done on the SMICA temperature map, and they
evaluated statistics based on the FFP8 simulations. Note
that because we use a different ensemble of simulations
(FFP8.1 rather than FFP8), as well as a different power
spectrum measurement technique, we expect our findings
for anomaly statistics to be similar to the Planck XVI (I&S)
results, but not necessarily to exactly match them.
Following Planck XVI (I&S), we will quantify how

unusual (or not) the SMICA temperature map appears
compared to simulations using p-values, defined to be
equal to the fraction of simulations that return more
extreme values than the real sky. As part of each feature
description, we will note whether and how measurement
choices (between Planck QML vs pseudo-Cl, cut-sky vs
full-sky) affect those statistics, and will take care to identify
which of those choices are used in our anomaly covariance
studies presented in the next Sec. IV. These single-feature
results are summarized in Fig. 3, which is described in more
detail in Sec. III C.

A. Features depending on two-point functions only

We first study the six features that are fundamentally a
function of the angular clustering power.

1. S1=2: Large-angle power

First, we measure power in large angular scales of the
temperature map using the S1=2 statistic, defined as the
integral of the square of the angular correlation function
CðθÞ over angles between 60° and 180° [40]

S1=2 ¼
Z

1=2

−1
½CðθÞ�2dðcos θÞ: ð8Þ

It measures the deviation of CðθÞ from zero at angles greater
than 60°. The inclusion of this statistic is motivated by the
lack of power at large angular scales θ ≳ 60° first observed
by COBE [41], and later confirmed by WMAP [40] and
Planck [7,31]. Though there are several ways of quantifying
this lack of large-angle correlation, we adopt S1=2 because it
is the most commonly studied in the literature.
In practice, to measure S1=2 for a temperature map, we

first measure the angular power spectrum and then calculate
it in harmonic space via [26]

S1=2 ¼
1

ð4πÞ2
X
l;l0

ð2lþ 1Þð2l0 þ 1ÞClIl;l0
�
1

2

�
Cl0 : ð9Þ

Here the matrix Il;l0 is defined as

Il;l0 ðxÞ ¼
Z

x

−1
Plðx0ÞPl0 ðx0Þdx0; ð10Þ

but is in practice computed using the recursion relation in
Appendix A of Ref. [26]. We sum over values l ¼ 2–100.

7COM_PowerSpect_CMB-TT-loL-full_R2.02.txt.
8COM_PowerSpect_CMB-TT-hiL-full_R2.02.txt.
9For example, we do not include the statistics from Ref. [38]

which quantify alignments between different combinations of
even and odd parity multipoles. We also do not include the “cold
spot” [39] which, being a localized feature at smaller scales, does
not naturally belong to the set of large-angle features studied here.
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When analyzing the SMICA map at NSIDE ¼ 64 with
the UT78 mask, Planck XVI (I&S) reports a low value for
S1=2 with a lower tail probability10 of p ¼ 0.4%. That
means they find that only 0.4% of simulations have a lower
value of S1=2 than the SMICA map. Our cut-sky S1=2
measurements give similar probabilities: p ¼ 0.7% for the
fiducial synfast simulations and p ¼ 0.5% for the FFP
simulations.11

The lower-tail probability of the observed sky’s S1=2
value depends dramatically on the method used to measure
the angular power spectrum, increasing to 8% for full-sky
Cl’s and to 6% for Planck public QML Cl’s (which, recall,
effectively reconstruct the full-sky anisotropy field). This is
consistent with results from previous studies [26,31,42]
which have shown that the relatively small amount of
(nonzero) correlations on the full sky are dominated by
contributions from pixels close to the galactic mask.

2. C2: Quadrupole amplitude

We additionally study C2, the quadrupole of temperature
fluctuations, which was first found to be low in COBE [43]
data, and later in WMAP [2,44] and Planck [36]. Analyses
have shown that the lowness of the quadrupole is not
particularly significant [37,45,46], so its value or lower-tail
probabilities are not generally reported explicitly in the
literature. Given this, we do not directly compare our
measurement of C2 to previous results, but do include it as
one of our statistics in order to study its covariance with the
low angular power at large angles and other features.

Our one-dimensional study of C2 ’s statistics reflect the
findings in the literature. Our fiducial choice for the
quadrupole is to adopt the Planck QML C2 to represent
the observed value, while for the simulations we use the
quadrupole from the full-sky Cl’s. In order to make the
simulation measurements more directly comparable to
the QML power spectrum, we apply a correction for the
NSIDE ¼ 64 maps’ beam and pixel window functions via

Cl ¼ ðbð64Þl pð64Þ
l Þ−2Cpolspice

l : ð11Þ

Here, bð64Þl and pð64Þ
l are the harmonic components of the

beam and pixel window functions for the NSIDE ¼ 64
input map.
We find that C2 has a lower-tail probability of 5% using

the synfast simulations, and 6% compared to the FFP
simulations. Pseudo-Cl measurements of the SMICA map
give slightly lower probabilities, with p ∼ 2% for either
full- or cut-sky measurements.

3. C3: Octopole amplitude

Though the value of the observed CMB temperature
octopole amplitude is not anomalous (see, e.g., [46]), we
also include it in our study because its behavior in relation
to other features has the potential to be interesting. For
example, Ref. [27] points out that contributions from the
quadrupole and octopole seem to be canceling the power
from the rest of the sky, and that a measure of large-angle
power becomes less anomalous when their contributions
to the correlation function are removed. Additionally,
Ref. [26] finds that the relationship between several of the
lowest multipoles, certainly more than the just the quadru-
pole, is responsible for the low observed S1=2. Given this,
we include C3 in our analysis because the relationship
between C3, C2, and S1=2 may reveal some interesting
structure.
We perform our fiducial measurement of C3 in the same

way as for C2: we use the Planck QML Cl’s for the

TABLE I. Summary of quantities studied in this work.

Depends on Quantity Description Multipoles Section

Two-point functions only S1=2 Amount of angular power at θ > 60° 2–100 III A 1

C2 Quadrupole amplitude 2 III A 2
C3 Octopole amplitude 3 III A 3
σ216 Variance of temperature fluctuations

at Nside ¼ 16
2–47 III A 4

R27 Ratio of power between even and
odd multipoles

2–27 III A 5

CðπÞ Angular correlation at θ ¼ 180° 2–191 III A 6
Phases of alm SQO Quadrupole-octopole alignment 2,3 III B 1

ALV Hemispherical power asymmetry 2–191 III B 2

10Value from Table 13 of Ref. [7].
11These p-values are weakly sensitive to whether the Cl’s are

corrected for resolution according to Eq. (11): with that correc-
tion, the p-values for S1=2 go down to 0.6% for the synfast
simulations and to 0.4% for the FFP simulations. We opt not to
make that correction when computing S1=2 and CðπÞ because
doing so introduces significant noise contributions at high
multipoles and makes the sums involved overly sensitive to
our choice of lmax.
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observed temperature map, and the beam-and-pixelization-
corrected [according to Eq. (11)] full-sky Cl measurements
from simulations. Compared to the synfast and FFP
simulations, the p-values for both the QML and full-sky
SMICA measurements are 47–49%, while the cut-sky
octopole is lower, with p ∼ 15%.

4. σ216: Variance at NSIDE= 16

We study another indicator of large-angle power via σ216,
the variance of unmasked pixels of a low resolution,
NSIDE ¼ 16 temperature map. The variance of CMB
temperature maps, especially at low spatial resolution,
has been observed to be anomalously low in analyses of
both WMAP [47,48] and Planck [7] data. Planck measured
the variance of unmasked pixel values with various
resolutions, and found that the lowest investigated value
of Nside ¼ 16, with a p-value12 of 0.5%, produced the most
anomalously low variance. They found that the variance
tends to become lower as the mask is extended to cover
more of the sky, and that the statistical significance of its
lowness persists when different foreground subtraction
methods are applied.
To measure σ216 for a given CMB temperature map, we

first downgrade the map from NSIDE ¼ 64 to NSIDE ¼ 16.
We also downgrade the UT78 mask, but go directly from the
original NSIDE ¼ 2048 resolution to NSIDE ¼ 16 in order to
make the resulting sky fraction consistent with that used in
the Planck study. We then simply compute the variance of all
unmasked pixels.
Though we measure σ216 through a pixel-based method,

given an angular power spectrum Cl we can predict its
expectation value for full-sky measurements via

hσ216iðClÞ ¼
1

4π

X
l

ð2lþ 1ÞClðbð16Þl pð16Þ
l Þ2; ð12Þ

where bð16Þl and pð16Þ
l are the beam and pixel window

functions corresponding to NSIDE ¼ 16. This expression
will allow us to compare our map-based measurements of
σ216 to the predictions from the Planck best fit theory Cl’s as
well as the Planck public QML Cl’s.
It is worth noting that our method of measuring σ216 is

different from that used to quantify map variance in the
WMAP and Planck analyses. Those analyses use an
estimator [47] to isolate the cosmological contribution to
the variance of a normalized version of the temperature
map, in which each pixel value has been divided by its
expected dispersion from both cosmological temperature
fluctuations and noise. Because of this, our reported
numbers for σ216 will be much larger than the normalized
variances reported in Planck XVI (I&S). Nonetheless, the
statistical distribution of variances should be similar, to the

extent that noise contributions to variance can be approxi-
mated as direction-independent.13

For measurements of σ216 we would like to exclude pixels
that may contain residual foregrounds, so we focus on its
cut-sky value for both from the SMICA map and simu-
lations. We find the SMICA σ216 to be low compared to
simulations, with single-tail probability of p ¼ 0.8% and
0.5% for the synfast and FFP simulations, respectively.
Thus, our cut-sky FFP p-value exactly matches that in
Planck XVI (I&S). The σ216 expectation value from the
Planck public QMLCl’s and our full-sky Cl measurements
are very similar, with p ¼ 20% when compared to either
simulation ensemble.

5. R27: Parity asymmetry at low l

We use the statistic R27 to quantify large-angle parity
asymmetry of the CMB temperature map. It has been noted
that, at low l, the CMB maps have more power in odd
multipoles than even. This was observed in the WMAP 3,
5, and 7 year data [49–51] as well as in Planck [7]. We
quantify this asymmetry using the same estimator as Planck
XVI (I&S),

Rlmax
¼ DþðlmaxÞ

D−ðlmaxÞ
ð13Þ

where

Dþ;− ¼ 1

lþ;−
tot

Xþ;−

l¼2;lmax

lðlþ 1Þ
2π

Cl; ð14Þ

and the plus and minus indicate sums over even (parity-
symmetric) and odd (parity-antisymmetric) multipoles,
respectively. The Rlmax

statistic is therefore a ratio of the
parity-even over parity-odd multipole band-powers. The
factor of lðlþ 1Þ=ð2πÞ is used because the theoretical
prediction for lðlþ 1Þð2πÞ−1Cl is approximately scale-
independent out to multipoles of l≲ 50, and thus gives
Rlmax

∼ 1 over that range.
Because Rlmax

is directly based on the power spectrum,
we will focus on its measurements from the Planck QML
power spectrum, and compare them to full-sky Cl mea-
surements in simulations. As in the case of C2 and C3, we
correct for the impact of the simulations’ resolution on the
power spectrum using Eq. (11).
For our covariance studies, we will focus on the behavior

for lmax ¼ 27, as that multipole range gives the most
anomalously low value of Rlmax

in the Planck XVI (I&S)

12This value is taken from Table 12 of Ref. [7].

13In principle the noise dispersion can vary with position on
the sky due to beam effects and weights used to construct
component separated maps, but those effects are expected to be
small [48].
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analysis,14 with a single-tail probability p ¼ 0.2% for the
SMICA map. We find the SMICA map’s R27 to be notably
less anomalous: measurements of the Planck QML power
spectrum give single tail probabilities of p ¼ 3% and 2%
when compared to the synfast and FFP simulations,
respectively.
Given this p-value discrepancy, we investigated how

Rlmax
depends on lmax and the power spectrum measure-

ment technique. Results of this investigation, shown in
Fig. 2, reveal that the significance of parity asymmetry
heavily depends on the choice of mask and power spectrum
measurement method. The discrepency between our results
and those of Planck XVI (I&S) can be explained by two
main differences [52]. The first and primary cause is that
the Planck XVI (I&S) measurements of Rlmax

for the real
sky are based on QML Cl measurements of the UT78 cut-
sky map, degraded to NSIDE ¼ 32, which leaves fsky ¼
0.64 unmasked. This has a smaller sky fraction than the
maps used to produce the Planck public QML power

spectrum, which was obtained using the Commander
χ2-based LM93 mask with fsky ¼ 0.93 [53]. The other
difference is that our simulation measurements are based on
pseudo-Cl measurements of the full sky, while those in
Planck XVI (I&S) use QML simulation measurements of
the cut sky, but we find that this has little impact on the
probability distribution for Rlmax

. We confirmed that we
were able to replicate the Planck results when using their
UT78 QML Cl values, which are an intermediate data
product of their analysis, but restrict all results presented in
this paper to only publicly available data.
We obtain a p-value closest to that reported for R27 in

Planck XVI (I&S) using full-sky Cl measurement of the
SMICA map compared to FFP simulations (0.6%).
However, in order to be consistent with our treatment
of the other purely power-spectrum based features, we
will use the public Planck QML Cl’s compared to full-sky
Cl simulation measurements as our fiducial choices for
measuring R27.

6. CðπÞ: Two-point correlation at θ= 180°

We next consider the angular correlation function of
CMB temperature evaluated at 180°, which we will refer to
as CðπÞ. We include it in the hope that it will help clarify
the relationship between other features. Our motivation
comes from the fact that CðθÞ, which is otherwise fairly flat
at large angles, drops to negative values at θ ≃ π. This dip
has been observed in both WMAP and Planck data, and can
be seen in the colored curves on the right-hand side of
Fig. 1. By its definition we expect the value CðπÞ to be
related to the missing large-angle correlations statistic S1=2,
as well as to the R27 measurement of parity asymmetry.
This can be seen by comparing the definition for Rlmax

in
Eq. (13) to

CðπÞ ¼
X∞
l¼2

ð−1Þl 2lþ 1

4π
Cl: ð15Þ

We will of course investigate these correlations quantita-
tively further below.
We measure CðπÞ by using cut-sky pseudo-Cl measure-

ments of the SMICA map and simulations to obtain
measured power spectra (as we do for S1=2), transforming
to real space angular correlations via Eq. (15). In practice,
we compute the sum over multipoles l ¼ 2–100. For the
cut-sky measurements, the SMICA map’s CðπÞ is lower
than for the majority of simulations, but is not particularly
anomalous, with p ∼ 11% for both the synfast and FFP
simulation ensembles. The p-value goes down to 5–6% if
we instead compare SMICA map measurements using the
public Planck QML Cl’s to the same set of simulation
measurements, and 3–4% for full-sky Cl’s. As this measure
is not commonly studied in the literature, we do not
compare this to any reported values.

FIG. 2. Plot of the lower-tail probability p for the parity
asymmetry as a function of the largest multipole lmax considered,
for various SMICA power spectrum measurement and simulation
ensemble combinations. Solid lines show the probabilities for the
SMICA map assessed relative to the synfast simulations, and
dashed lines show them relative to the FFP simulations. For the
QML and full-sky Cl SMICA measurements, the simulations are
measured using full-sky Cl’s. For the cut-sky pseudo-Cl SMICA
measurements, cut-sky pseudo-Cl simulation measurements are
used. The vertical line denotes the lmax value at which where
Planck XVI (I&S) found the most anomalous parity statistic; see
text for details.

14Value taken from text associated with Fig. 20 of Ref [7].
Though that text actually reports l ¼ 28 to give the lowest Rlmax

p-value, this is due to a typographical error, and we confirmed
with that section’s author that the minimum p-value is actually at
l ¼ 27 [52].
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B. Features depending on alm phases

We also consider two features that depend on the phases
of CMB temperature harmonic coefficients alm—i.e.,
which cannot be measured solely from the two-point
correlations of the maps. These features are associated
with reported anomalies that could indicate a possible
departure from the assumption of statistical isotropy of
CMB temperature fluctuations: the quadrupole-octopole
alignment and the hemispherical power asymmetry.

1. SQO: Quadrupole-octopole alignment

The CMB temperature’s quadrupole and octopole were
first observed to be planar and aligned in Ref. [2]. There are
a number of possible ways to denote the directionality, and
thus alignment, of multipoles. To do so, we will follow the
approach presented in Ref. [54] and make use of Maxwell
multipole vectors. Multipole vectors are a representation of
a function on a sphere; while they are at some level
equivalent to spherical harmonics in that role, their relation-
ship to the alm is highly nonlinear in a way that makes them
particularly well suited to studying the directionality of
patterns on the sky.
For each multipole l, there are l corresponding multi-

pole vectors vðl;iÞ, where i ∈ f1; 2;…;lg. Roughly speak-
ing, the more planar the temperature fluctuations associated
with a given multipole are, the more its associated multi-
pole vectors will be confined to a plane, and the more the
oriented-area vectors defined by their cross products,

wðl;i;jÞ ≡�ðvðl;iÞ × vðl;jÞÞ; ð16Þ

will line up in a direction normal to that plane. Moreover,
planarity (as opposed to simply orientation along a direc-
tion) of the temperature multipole will cause the multipole
vectors vðl;iÞ and vðl;jÞ to be at large angles relative to each
other, enhancing the magnitude of wðl;i;jÞ. Thus, we can use
the extent to which the object oriented vectors for two
multipoles point in similar directions to measure how much
the power from those l-modes are aligned.
The statistic SQO takes advantage of this property to

quantify the quadrupole-octopole alignment. It is the
normalized sum of the dot products of the quadrupole
oriented-area vector wð2;1;2Þ with the three octopole
oriented-area vectors wð3;i;jÞ: [55,56]

SQO ¼ 1

3

X
fi;jg

jwð2;1;2Þ · wð3;i;jÞj ð17Þ

where fi; jg can be f1; 2g, f2; 3g, or f3; 1g. Given this,
larger values of SQO indicate more alignment and planarity
in the l ¼ 2 and l ¼ 3 modes of the temperature maps.
Because multipole vectors are defined in terms of alm,

this measurement can only be done on full-sky maps. To
measure SQO for a temperature map, we first use the

HEALPIX function map2alm to measure its alm, and then
use the procedure15 described in Appendix A of Ref. [54] to
extract the multipole vectors for l ¼ 2–3. We then combine
them via Eqs. (16) and (17) to get SQO.
We find that the SQO value measured from the SMICA

map is larger than that from most simulations, with a
p-value (here, upper-tail probability) of 0.4% when com-
pared with either our synfast or FFP simulation ensembles.
This is consistent with the results in Ref. [57]. They found
the SMICA map from the Planck 2013 data release [58]
had a larger SQO, with a p-value

16 of 0.54% compared to an
ensemble of 106 simulations analogous to our synfast
simulations, but which use constrained realizations to in-
paint masked regions. The fact that our p-value is so similar
to theirs indicates that simply measuring SQO on full-sky
maps (as we do) rather than doing in-painting does not
significantly affect the large-scale alignment behavior.

2. ALV: Hemispherical power asymmetry
via local-variance dipole

Finally, we include a measure of the level of asymmetry
in temperature power between two hemispheres of the sky.
This is studied because one hemisphere of the observed
CMB sky has been noted to have more power than the other
[4,59], which can be modeled by a dipole modulation of
temperature fluctuations at large angular scales [60,61].
Following Refs. [62,63], we quantify hemispherical power
asymmetry using a local-variance map, which measures the
size of temperature fluctuations within disks of radius θ
centered on each of its pixels. By measuring the dipole of a
local-variance map, we can quantify the direction and
magnitude of any hemispherical power asymmetry in a
computationally inexpensive way. Additionally, we can
probe the scale dependence of the effect by varying the
angular size θ of the disks used to create the local-
variance map.
More formally, if n̂i is the location of the ith pixel of the

input temperature map Tðn̂Þ from which the monopole and
dipole of unmasked pixels have been removed, we can
write the local-variance map σ2θðn̂Þ as

σ2θðn̂Þ ¼
1

N½Dθðn̂Þ�
X

i∈Dθðn̂Þ
½Tðn̂iÞ − T̄θðn̂Þ�2; ð18Þ

whereDθðn̂Þ is the set of unmasked pixels within angle θ of
direction n̂, N½Dθðn̂Þ� is the number of pixels in that set,
and T̄θðn̂Þ is their average temperature.
In practice, we measure the dipole of a dimensionless,

weighted version of the local-variance map,

15Calculations were performed using code MPD_DECOMP.PY
provided at http://www.phys.cwru.edu/projects/mpvectors/.

16Value from Table 7 of Ref. [57].
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σ̃2θðn̂Þ ¼
wðn̂Þ
w̄

×
σ2θðn̂Þ − μθðn̂Þ

μθðn̂Þ
: ð19Þ

In this expression, wðn̂Þ is a dimensionless weight map
(defined below), w̄ is its average over unmasked pixels, and
μθðn̂Þ is the mean computed by averaging the local-
variance maps of an ensemble of simulated CMB temper-
ature maps.
We choose the weight function wðn̂Þ to be

wðn̂Þ ¼ 1

Var½σ2θðn̂Þ�
×

�
1

Npix

XNpix

i¼1

Var½σ2θðn̂iÞ�
�

ð20Þ

where we define, if α labels the simulation realization and
Nsim is the number of simulations,

Var½σ2θðn̂Þ� ¼
1

Nsim

XNsim

α¼1

"
σ2ðαÞθ ðn̂Þ − μθðn̂Þ

μθðn̂Þ

#
2

: ð21Þ

This inverse variance weighting suppresses the impact of
noisy regions of the input temperature map, as long as those
noise contributions are modeled in the simulations. In the
limit that noise properties are direction-independent, the
weight factor wðn̂Þ=w̄ will approach 1.
In our work, we measure ALV from the UT78 cut-sky for

both the SMICA and simulation maps. We fix the disk
radius to be θ ¼ 8°, which is the scale previously found
to produce the most anomalous local-variance dipole, and
compute the local-variance maps at a resolution of
NSIDE ¼ 16. The amplitude of the dipole of a normalized
local-variance map, ALV, is then obtained by using the
HEALPIX function remove_dipole. Following Planck
XVI (I&S), we include only disks for which at least 90% of
the input pixels are unmasked.
Our measurements return a local-variance dipole ampli-

tude with ALV ¼ 0.22 when σ2θðn̂Þ is normalized using the
synfast simulations, and ALV ¼ 0.21 using the FFP sim-
ulations. These values give an upper tail probability of
p ¼ 1% when compared to either set of simulations. Both
of these values are notably larger than the Planck XVI
(I&S) findings of ALV ∼ 0.044 for the SMICA map, with a
p-value of 0.1%.17 In investigating this discrepancy, we
found that the value of ALV is highly sensitive to the
resolution of the input temperature maps, with lower
resolution input maps tending to give larger dipole ampli-
tudes. Because we compute local variances using our
fiducial set of NSIDE ¼ 64 maps, while Planck XVI
(I&S) uses NSIDE ¼ 2048 input maps, we believe this
resolution dependence explains the difference.
We also note that Doppler dipole modulation included in

the FFP simulations [64] (but not the synfast simulations)

will generate a small power asymmetry which contributes
to the local-variance power asymmetry. However, that
contribution is expected to be negligible for the scales
l≲ 191 that we are investigating [65]. The fact that
the p-values from comparisons to the synfast and FFP
simulations are nearly identical is in line with that
expectation.

C. Summary: Individual anomaly measurements

To summarize, we have defined quantities associated
with eight properties of the CMB temperature map which
are either found to be statistically unlikely in the observed
sky or which are expected to shed light on the relationship
between statistically unlikely features. For each feature,
we have described our technique for measuring it from
real and simulated CMB maps. By analyzing the resulting
data associated with each feature individually, we have
verified (where applicable) that our measurement of the
SMICA map’s p-values (single-tail probabilities) relative
to the simulation ensembles are consistent with previous
findings.
Figure 3 shows a summary plot of these anomaly

statistics measured from our ensembles of 100 000 synfast
(left column), and 1000 FFP (right column) simulations. In
each panel, the grey histogram shows the distribution of
simulation measurements, which are either made based on
full-sky maps, or the cut UT78 sky, as indicated by the gray
text in the lower right corner. These data are what will be
used in subsequent sections to study the relationship
between features in the context of isotropic ΛCDM. The
vertical lines show feature measurements done using the
Planck public QML Cl’s (blue), pseudo-Cl’s extracted
from the full-sky SMICA map (green), UT78 cut-sky
pseudo-Cl’s for the SMICA map (orange), and the theo-
retical expectation based on Planck’s best-fit parameter
values (dashed black). Note that the two statistics that
depend on the phases (SQO and ALV) do not have a
corresponding measurement from either the published
QML or the best-fit theory Cl, as they cannot be related
to the angular power spectrum. The QML and theory values
for σ216 are computed using Eq. (12). The p-values for these
measurements are shown in the same color on the right-
hand side of each panel, with an arrow indicating which
measurement we think is most relevant for the feature in
question. These choices and the findings for each quantity
are discussed in detail above.
To put the p-values in context, the 1, 2, and 3σ error bars

for a normal distribution correspond to single tail proba-
bilities of p ¼ 16%, 2.2%, and 0.014%, respectively. Thus,
of the features we study, the SMICA values for S1=2, C2,
σ216, SQO, and ALV are 2 − 3σ unlikely compared to our
simulations, while R27 and CðπÞ are between 1σ and 2σ,
and C3 is not in tension. For the most part our measured
p-values are consistent with previous findings. Where they

17Values taken from Fig. 27 (ALV value) and Table 20
(p-value) of Ref. [7].
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are not, we can explain the discrepancies in terms of the
power spectrum measurement technique (for R27) or the
initial map resolution (for ALV).
We can also use the results in Fig. 3 to make some

general observations about the impact of different meas-
urement choices. Outside of small differences which are
within the reasonable range of sampling error, the one-
dimensional p-values comparing measurements of the real
sky measurements relative to synfast simulations are in

good agreement with those comparing the real sky to FFP
simulations. We additionally note that in general the
Planck public QML Cl’s give results that are very similar
to full-sky Cl measurements. The fact that the cut-sky
pseudo-Cl SMICA measurements have comparably lower
S1=2, C2, C3, and σ216 are consistent with previous studies
which have found that the observed lack of power in the
CMB sky is more severe in regions further from the
galactic mask.

FIG. 3. Summary plot where each row shows the results for one of the features discussed in Sec. III. Grey histograms show statistics
for the features of the CMB temperature map measured from our 100 000 synfast simulations (left column), and from 1000 FFP 8.1
simulations (right column). The grey text in the lower right of each panel denotes whether simulations measurements are based on the
full-sky or the cut-sky, where cut-sky measurements use the UT78 mask. Vertical lines show values for the Planck SMICA map, as well
as theory predictions from Planck’s best-fit cosmology. The p-values displayed are single-tail probabilities showing the percentage of
simulations that are more extreme that the SMICA measurements. Arrows by the p-values indicate which measurement we think is most
relevant for each feature.
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IV. RESULTS: ANOMALY COVARIANCES

We are now ready to tackle the main goal of this paper
and study the relationships between the large-angle CMB
temperature map properties which have been examined
individually above. The features are: the integrated power
of temperature fluctuations at angles θ > 60° (S1=2), the
quadrupole amplitude (C2), the octopole amplitude (C3),
the variance of the temperature map evaluated at resolution
NSIDE ¼ 16 (σ216), the parity statistic R with maximum
multipole of l ¼ 27 (R27), the angular power spectrum at
180° (CðπÞ), the quadrupole-octopole alignment (SQO), and
the amplitude of the hemispherical power asymmetry
(ALV). Using our measurements of these quantities from
our synfast and FFP simulations, we will determine their
covariances in order to build an understanding of how they
are related under the assumption of isotropic ΛCDM. We
will do so in three stages, first describing the relationship
between pairs of features measured from the synfast
simulations, then comparing the covariance matrices for
the synfast and FFP simulations, and finally, further
exploring the covariance structure by performing a princi-
pal component analysis.
We begin by inspecting how our fiducial set of 100 000

synfast simulations are distributed in the eight-dimensional
space defined by the parameters S1=2, C2, C3, σ216, R27,
CðπÞ, SQO, and ALV introduced in Sec. III. Figure 4 shows
the relationships between pairs of those quantities. The
diagonal panels display the same one-dimensional statis-
tical information as the left column of Fig. 3, with the gray
histograms showing the distribution from simulations and
the vertical lines showing the measurements of the SMICA
map and theoretical expectations based on the Planck’s
best-fit cosmological parameters.
In the off-diagonal panels, the grey contours indicate the

1, 2, and 3σ confidence regions based on simulation data.
The contour locations are determined for each panel as
follows. First, we use simulation data to make a two-
dimensional histogram with fifty bins along each axis.
Next, we smooth the histogram using a Gaussian filter with
a width corresponding to one bin. The smoothed histogram
is then thresholded at constant-count (constant-probability)
surfaces so that 68% of the input realizations fall inside the
1σ contours, etc. The number at the top of each panel
displays the correlation coefficient R of the two quantities
shown, computed based on the simulation samples.
Measurements of the observed SMICA map and theory
predictions are shown using colored crosses.
Examining Fig. 4, we can make a few general observa-

tions. First, there is structure and notable covariances in the
relationships between most of the features that depend only
on two-point functions, but not between C2 and C3, nor
between the alm-phase-dependent quantities (SQO and ALV)
and any of the other quantities. This is expected given the
isotropic ΛCDM model used to generate the simulations.

We additionally note that the distribution of simulation
points in this eight-dimensional space is decidedly non-
Gaussian; this is due to the asymmetric limits on the
quantities measured, as well as the (in some cases) non-
linear dependence of quantities on Cl.
More specifically, the covariances of the two-point-

function-based quantities can be understood by how they
depend on the power spectrum components Cl. In isotropic
ΛCDM, we expect the power at different multipoles l to be
independent. Correspondingly we see little covariance
between C2 and C3. The positive correlation between
σ216 and either of these amplitudes is straightforward, given
Eq. (12): all else being equal, adding power to low l
increases the variance at large scales. Similarly, increasing
C2 adds to even-l power and increasing C3 adds to odd-l
power, so we expect and see that the parity measure R27 to
be positively and negatively correlated with C2 and C3,
respectively.
Looking at CðπÞ allows us to clarify the relationship

between the parity properties and S1=2. We note that, given
the parity properties of spherical harmonics and referencing
Eq. (15), the contributions from even-l modes to CðπÞ
will be ∝ ð2lþ 1ÞCl, while odd-l contributions are
∝ −ð2lþ 1ÞCl. Thus CðπÞ is effectively another way of
characterizing the parity properties of the large-angle CMB.
Accordingly we see that CðπÞ has a strong positive
correlation with R27 and with C2 and a somewhat weaker
negative correlation with C3. Since CðπÞ is the measure-
ment of the angular correlation at θ ¼ 180°, small S1=2
values require that jCðπÞj be close to zero. The triangular
structure of the contours in the CðπÞ − S1=2 plane reflect
this behavior. [The fact that the triangle is asymmetric
about CðπÞ ¼ 0 can be understood in terms of the fact that
the simulations are based on the ΛCDM Planck best-fit
power spectrum: it has CðπÞ > 0, because the quadrupole
l ¼ 2 mode generates a dominant positive term in
Eq. (15).] Accordingly, the S1=2 − R27 contours show an
echo of that triangular structure. This provides an intuitive
way to understand the result derived analytically in
Ref. [24].
We note that the panel showing the cross correlation

between C2 and log S1=2 is comparable to that studied in
Ref. [25], though we find a looser relation between the two
quantities. The reason for this difference is that we mix
masking choices for our fiducial synfast map statistics,
using full-sky measurements for the C2 and cut-sky
measurements for S1=2. We verify that if we either measure
both quantities from full-sky maps or both on cut-sky maps,
the shape of our contours closely resemble the distribution
in Ref. [25]. (Reference [25] uses UT78 cut-sky measure-
ments of both features.)
The results from FFP simulations are visually similar to

those in Fig. 4, so we do not show the scatter plot for that
ensemble. Instead, below we examine the quantitative
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difference between the feature covariances based on the
synfast and FFP sets of simulations.

A. Covariance structure comparison

Here we measure the covariance between large-angle
features measured from our simulated CMB temperature
maps, and compare the covariances extracted from the
synfast and FFP simulations. By making this comparison,
we can gauge whether survey properties modeled in
the FFP but not in the synfast simulations affect the
relationship between the features studied. This in turn

can potentially provide insight into whether those survey
properties influence observed anomalies in the SMICA
map—though the fact that no one has yet found a
convincing systematics-based explanation for any of them
makes this unlikely.
For a given ensemble of n simulations, we represent each

realization as a d-dimensional vector x, where d ¼ 8 is the
number of large-angle quantities measured (S1=2, C2, C3,
etc.). Before measuring the covariance matrix, we center
and normalize the data so the jth vector component of
realization i becomes

FIG. 4. Relationships between large-angle CMB features (see Table I for descriptions of these quantities). Gray contours show the 1, 2,
and 3σ confidence regions based on measurements from our ensemble of 100 000 synfast simulations, using the same measurement
choices that produced the gray histograms in the left column of Fig. 3. The 1D histograms on the diagonal are the same as those in the
left column of Fig. 3. The marked data points for SMICA measurements and theoretical expectations are equivalent to the vertical lines
in Fig. 3. Note that the statistics based on the phases of the alm, SQO, and ALV, do not have the corresponding theoretical expectations
because they cannot be computed analytically from Cl.
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x̃ðjÞi ¼ ðxðjÞi − x̄ðjÞÞ=σðjÞ; ð22Þ

where x̄ðjÞ and σðjÞ are the mean and standard deviation
over realizations of the jth quantity being measured,
respectively. This ensures that the covariance structure is
not dominated by differences in the characteristic size of
some of the quantities we study (e.g., σ216 compared to
ALV). It will also mean that the covariance we measure will
be equivalent to the correlation coefficients appearing in the
subplots of Fig. 5.
Once the data are preprocessed, we define a d × n-

dimensional matrix X ¼ ðx̃1; x̃2;…; x̃nÞ, where each col-
umn corresponds to one realization. This allows us to
concisely write the measured d × d-dimensional feature
covariance matrix as

S ¼ 1

n

Xn
i¼1

x̃i ⊗ x̃i ¼
1

n
XXT: ð23Þ

We show the covariance matrix Ssyn for our ensemble of
100 000 synfast simulations on the left side of Fig. 5.
We would like to study how the covariance matrix

derived from the ensemble of 1000 FFP simulations,
SFFP, differs from that measured from our 100 000
synfast simulations, Ssyn. To make that comparison
meaningful, we must ensure that differences we see
are not an artifact of sample variance due to the smaller
number of FFP simulations. On the right side of Fig. 5
we therefore show the relative difference for covariance
matrix entries Sij,

ðΔSÞij ¼
½ðSFFPÞij − ðSsynÞij�

½σð1000Þsyn �ij
; ð24Þ

where the denominator ½σð1000Þsyn �ij is sampling error for
when Sij is measured from a set of 1000 synfast
simulations.
We estimate σð1000Þsyn based on N ¼ 100 subdivisions of

the 100 000 synfast simulations. This allows us to measure

the covariance matrix Sð1000;αÞsyn for each subsample α ∈
f1;…; Ng. For each entry ij of the matrix, we can then

compute the mean over subsamples ½S̄ð1000Þsyn �ij, as well as the
sample variance,

h
σð1000Þsyn

i
2

ij
¼ 1

N−1

XN
α¼1

�h
Sð1000;αÞsyn

i
ij
−
�
S̄ð1000Þsyn

�
ij

�
2
: ð25Þ

Thus, assuming the errors on the covariance matrix entries
are Gaussian, the values plotted in the right panel of
Fig. 5 show the difference between the FFP and synfast
covariances in units of their 1000-synfast-realization-
based standard deviation. Plots of the absolute difference

SFFP − Ssyn and the sampling error σð1000Þsyn are shown for
completeness in the Appendix.
We see that there are several moderately significant

differences between the feature covariances derived using
the FFP and synfast simulations. The most prominent of
these are between the quadrupole-octopole alignment SQO
and log S1=2, C2, C3, and σ216, with differences ranging from
ð2–3.6Þσ. There is also a 2.3σ difference in the S1=2–C2

entry, and several other less significant differences in the
range (1–2)-σ.
Noting that the largest ΔS entries involve the quadrupole,

we hypothesized that these differences might be driven by
the kinematic quadrupole, which is partially simulated in the
FFP maps but not in the synfast simulations. To test this idea,
we created an alternative version of the synfast ensemble

FIG. 5. Left: The feature covariance matrix Ssyn measured from the synfast simulation ensemble. Right: The difference ΔS [given in

Eq. (24)], between the covariances measured from the FFP and synfast simulations in units of its sampling error σð1000Þsyn estimated from
sets 1000 synfast realizations [defined in Eq. (25)].
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where the Doppler quadrupole (DQ) correction aDQ2m given in
Table 3 of Ref. [57] is added to each map.18 When we use
this synfastþ DQ ensemble to reproduce Fig. 5 there are no
significant changes in the feature covariance matrix or its
differences from the FFP feature covariance. If the SFFP −
Ssyn differences were mainly driven by the kinematic
quadrupole present in the FFP maps, we would expect that
adding a DQ correction to the synfast simulations would
significantly change the structure ofΔS. Because it does not,
we conclude that modeled foregrounds or survey properties
other than the kinematic quadrupole are driving the
differences between SFFP and Ssyn.

B. Principal component analysis

We next use a principal component analysis (PCA) to
investigate whether large-angle CMB anomalies can be
reduced to a few fundamental “building blocks”—features,
or combinations thereof, which explain the ways that the
observed CMB sky is unusual compared to our ensembles
of simulations. Reference [8] conjectured that there are
three such building blocks in the CMB maps observed by
WMAP and Planck: missing large-angle power, alignments
between the low multipoles, and dipolar modulation of the
CMB (which is roughly equivalent to the hemispherical
asymmetry studied in this paper). We now have an
opportunity to quantitatively test this conjecture by using
our simulation measurements. By finding the simulation
data’s principal components (PCs) in the eight-dimensional
feature space we consider, we can determine which linear
combinations of features explain most of the covariance
structure discussed in Sec. IVA. It is our hope that studying
the position of the SMICA in this PC basis will allow us to
further characterize the large-angle properties of the
observed CMB temperature map.
PCA is a dimensionality reduction technique which

works by identifying the directions in a d-dimensional
parameter space along which a set of data points have the
maximum variance. The principal components are defined
sequentially: the first PC corresponds to the direction in
which our simulation realizations have the most variance;
the second PC corresponds to the direction of maximum
variance after the components of the data in the direction of
PC 1 are projected out; and so on. In practice, the PCs are
obtained by finding the eigenvectors of the data’s covari-
ance matrix. Therefore, in our analysis, we determine the
eigenvectors of the covariance matrices S derived above in
Eq. (23) to obtain PCs which are unit-length vectors in
the basis defined by the quantities S1=2, C2, C3, σ216, R27,
CðπÞ, SQO, and ALV. The first principal component is the

eigenvector with the largest eigenvalue, the second PC has
the second largest eigenvalue, and so on.
PCA works as a dimensionality reduction technique

because we can capture much of the information about
the input data’s variance by projecting it onto the first
d0 ≤ d PC directions. Heuristically, the fraction of the
information that is retained in this projection is equal to
ratio between the sum of the first d0 covariance matrix
eigenvalues to the sum of all d eigenvalues. To quantify the
relative importance of the various PCs, we adopt the
complement of this quantity, the fractional residual vari-
ance (FRV), the fraction of the variance that is not captured
by the first d0 PCs. It is given by the expression

FRV≡ 1 −
P

d0
i¼1 λiP
d
i¼1 λi

; ð26Þ

where the eigenvalues have been ordered so that λi ≥ λiþ1.
Figure 6 shows the properties of the PCs derived from

our ensemble of 100 000 synfast simulations. The left panel
show PCs (the eigenvectors of Ssyn), with each column
corresponding to one PC. The rows correspond to con-
tributions of each of the original eight quantities to the PCs.
The right panel shows the fractional residual variance as a
function of the number of PCs retained as well as the
individual contribution of each PC to its sum.
Studying the eigenvectors themselves, we find that

interpretation of the first four PCs is fairly straightforward
because they can be associated with input quantities which
are largely independent of one another. Together, they
capture about 90% of the simulations’ variation in the space
of our eight measured features.
The first PC, which captures 42% of the simulations’

variance, roughly corresponds to missing large-angle cor-
relations, as it is dominated by C2, S1=2, σ216, and CðπÞ (and,
to an extent, R27). These particular features are positively
correlated, with correlation coefficients R varying between
about 0.5 and 0.8 (see Fig. 4), so it is mathematically
expected that they would form a principal component
whose eigenvector components have same signs and
comparable amplitudes, as we observe in PC 1. One can
understand the relationship between these features by
noting how their quantities will change if we change the
quadrupole amplitude, all else being equal. Raising C2 will
increase large-angle power, and will increase the relative
power in even-parity modes compared to odd-parity modes,
so it make sense that S1=2, σ216, CðπÞ, and R27 will all
increase. Thus, one interpretation of the first PC is that it
picks out direction in our feature space similar to that
associated with variations in the quadrupole amplitude.
Next, PC 2 accounts for 20% of the simulations’

variance and is dominated by the octopole. Given the
correlations of C3 and the other statistics in Fig. 4, it is
also unsurprising that PC 2 receives moderate contribu-
tions from S1=2 and σ216 with the same sign as C3, and from

18This DQ correction is slightly different than that included in
the FFP simulations, which model only the residual frequency-
dependent portion of the kinematic quadrupole that is not
removed during the Planck map processing.
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R27 and CðπÞwith the opposite sign. As with PC 1, we can
understand this in terms of how other quantities will
respond if we raise or lower C3 without changing power at
other multipoles. More octopole power will generally add
to large-angle power, increasing S1=2 and σ216, but spe-
cifically through odd parity contributions which corre-
spond to lower R27 and CðπÞ.
The third and fourth PCs are associated with the alm-

phase dependent quantities. PC 3 is associated with the sum
of the quadrupole-octopole alignment SQO and the hemi-
spherical asymmetry statistic ALV, and captures 13% of the
simulations’ variance, while PC 4 is associated with their
difference and captures 12% of the variance. We note that
because their associated covariance eigenvalues λ3 and λ4
are nearly equal, the ordering of PC 3 and PC 4 is
somewhat arbitrary. This reflects the fact that the correla-
tion between SQO and ALV is very small, and means that
using PC 3 and PC 4 together is basically equivalent to
defining two unit vectors in the ALV and SQO directions.
The structure of the fifth through eighth PC, which

account for the remaining 10% of the simulations’
variance, resists simple interpretation. This is because
they are determined by the relationships between the non-
independent quantities, after the variation of the data in
the direction of the first four PCs (roughly C2, C3, SQO,
and ALV) are projected out. One could infer, for example,
that because PC 5 has C2 and C3 components with
different signs, that it might capture some information
about whether the power from the quadrupole and octo-
pole cancel one another, but this is far from clear. PCs 6-8
all have small eigenvalues with λ6 ∼ λ7 ∼ λ8, so their order

and the way that they divide up whatever degrees of
freedom are left after the first five PCs are removed are
somewhat arbitrary.
We also performed a PCA on the FFP simulation data.

The results are very similar to those for the synfast
simulations, and any differences that exist mainly just
reflect the differences between the structure of the synfast
and FFP covariance matrices discussed in Sec. IVA. Given
this, we do not show the FFP-based PCs.
We next calculate the probability of CMB maps pro-

jected to the PC basis. This can inform whether linear
combinations of the features that tend to “come together”
in simulated skies are particularly anomalous (or not) when
observed on our CMB sky. We proceed as follows. The
measurement of each simulation corresponds to a vector
in our eight-dimensional feature space. By taking the dot
product of that vector with each PC, we find its components
in the new PC basis. The grey histograms in Fig. 7 show the
resulting distributions of the simulations projected to the
PC basis, where as before we show results from the synfast
simulations in the left column, and from the FFP simu-
lations in the right column. The red vertical lines corre-
spond to the observed CMB sky, using the fiducial SMICA
map measurements (indicated in Fig. 3 by arrows next to
their p-values).
Figure 7 shows some instructive trends. Since the first

principal component (PC 1) is a linear combination of
the features that encode the missing angular correlations
[low C2, S1=2, σ216, and CðπÞ], it makes sense that the
probability observed sky’s PC 1 coefficient is low.
However the fact that this probability is lower than that

FIG. 6. Left: Eigenvectors of the anomaly covariance for our fiducial set of 105 synfast simulations. Each column is one PC; the one
with index 1 points in the direction of the data’s maximum variance. The rows indicate the features’ contributions to each PC. Right:
Fractional residual variance for these PCs and the eigenvalues associated with each PC as a fraction of the total sum of all eigenvalues.
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for any of the individual features (p-value ¼ 0.064%)
further indicates that, even given the lowness of one of
its constituent statistics (for example, the quadrupole),
the other features that make up PC 1 are still lower than
expected in ΛCDM. Next, the probability of PC 2 is not
anomalous (p ¼ 47%), which is unsurprising given that
it largely reflects the observed sky’s rather average C3.
The PC 3 probability, however, is surprisingly high
(p ¼ 0.032%), which is the smallest p-value among all
PCs. The extremely high value of the statistics projected
to PC 3 comes from the fact that this principal component
is largely a sum of SQO and ALV, which are both high on

our sky but uncorrelated (R ¼ 0.015) in ΛCDM. Hence,
PC 3 is the sum of two high-valued statistics, and is
therefore very high itself. In contrast, PC 4 is mainly a
difference between the same two high-valued statistics
(SQO and ALV), and so is itself average (p ¼ 39%). The
higher PCs do not shed significant further light on the
statistical properties of the features we study.
In concluding this section, we caution that PCA as a

method is only able to capture linear structures in the dataset.
Because the relationship between many of the quantities we
measure are nonlinear by definition, the PCAs will therefore
not capture all of the structure in the simulations’distribution.

FIG. 7. Summary of feature statistics projected into our PCA basis. The row labels indicate the basis vectors of the PC basis, which are
equivalent to the unit-eigenvectors of the synfast (left) and FFP (right) simulations’ feature covariance matrix. The gray histograms show
the distribution of the components of simulation realizations in the direction of each PC. The red lines show the same projection of our
fiducial SMICA map measurements (using the measurement methods whose p-values in Fig. 3 are denoted by an arrow). The red
numbers in the top right corner of each panel show the percentage of simulations that are more extreme than the corresponding SMICA
measurement.
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V. CONCLUSIONS

In this paper we have studied the relationships expected
in ΛCDM between a set of large-angle CMB features, with
the goal of better understanding the interdependence of
large-angle temperature anomalies observed in WMAP and
Planck data. In particular, we have studied eight features
measured via the quantities defined in Sec. III: the
integrated power of temperature fluctuations at angles
θ > 60° (S1=2), the quadrupole amplitude (C2), the octopole
amplitude (C3), the variance of the temperature map
evaluated at resolution NSIDE ¼ 16 (σ216), the parity statistic
R with maximum multipole of l ¼ 27 (R27), the angular
correlation function at 180° (CðπÞ), the quadrupole-octo-
pole alignment (SQO), and the amplitude of the hemispheri-
cal asymmetry (ALV). The first six of these features depend
on the angular power spectrum and quantify various aspects
of isotropic angular clustering at large scales, while the last
two depend on phases of the alm and quantify large-angle
alignments and power asymmetry observed in CMB maps.
In addition to several commonly studied anomalous fea-
tures, this list includes a few features which have not been
individually reported to be anomalous in the CMB data (the
octopole is a notable example), but which have been
flagged in previous work as potentially interesting in
relation to the other features.
Our analysis was based on measurements of two

ensembles of ΛCDM simulations: 100 000 noiseless
Gaussian CMB temperature maps generated using the
synfast function in healpy, and 1000 full focal plane
(FFP8.1) simulations provided by the Planck team that
contain astrophysical foregrounds and other physical
artifacts expected in the observed sky. We began by using
these ensembles to find the probability of each feature in
ΛCDM. This allowed us to study the impact of analysis
choices on the features’ statistics and to make sure we
could recover results from previous work. We found
generally excellent agreement between the statistics mea-
sured from our two sets of synthetic maps, and summa-
rized the results in Fig. 3.
Then, selecting a fiducial set of analysis choices, in

Sec. IV we used those same simulation measurements to
fulfill the principal goal of this paper by calculating the
correlation between the eight features studied. Figure 4
shows, for the first time, a complete covariance of the
features associated with the most commonly discussed
large-angle CMB anomalies. Our results confirm and
quantify various aspects of the features that were previously
either merely conjectured or calculated in isolation. For
example, the quadrupole C2, the missing large-angle
correlations statistic S1=2, and the variance σ216 are all
positively correlated and largely uncorrelated to the phase-
dependent features. The phase-dependent features—the
quadrupole-octopole alignment SQO and the hemispherical
asymmetry statistic ALV—are uncorrelated both with each

other and with all other features studied. Less trivially, the
observed low S1=2 essentially guarantees (in ΛCDM) that
the configuration-space clustering amplitude at the largest
observable scale, CðπÞ, is very close to zero, which is in
fact observed in the data. Furthermore, we find that the
covariance between SQO and several other features, though
still low compared to the covariances between other
features, is significantly higher when measured from
FFP simulations than from synfast. Introducing a kinetic
quadrupole correction to the synfast simulations has little
impact on that difference.
We then diagonalized the measured covariance matrix to

obtain the principal components of features’ expected
distribution in ΛCDM. This allowed us to quantify whether
most of the simulations’ variation in our eight-dimensional
feature space is retained in some smaller number of PCs.
We find that 42% of the simulations’ variance is in the
direction of the first PC, which quantifies the missing large-
angle correlations and has comparable coefficients of the
same sign in C2, S1=2, σ216 and CðπÞ. Another 20% is the PC
2 direction, which largely lies in the direction of C3, along
with less dominant contributions from features correlated
with the octopole. The next two PCs quantify the sum and
difference of the quadrupole-octopole alignment SQO and
the hemispherical asymmetry statistic ALV, capturing 13%
and 12% of the data’s variance, respectively. These first
four PCs together explain about 90% of variation in the
space of the (eight) features.
It is important to remind ourselves that apart from the

few (generally 2 − 3σ) anomalies discussed here and else-
where, the ΛCDM model describes most of the current
cosmological observations with immense success. Given
the significant cosmic variance inherent in the largest
angular scales of the CMB, as well as the absence of
concrete models that are competitive with ΛCDM, we
should be wary of putting too much weight on these
anomalies as motivations for new physics. However, given
the success of ΛCDM, any observational clues as to how to
build a more fundamental description of, for example, the
physics of inflation or dark energy will (initially at least)
take the form of small deviations from its predictions [66].
Given this, we should certainly take a careful look at
reported tensions and anomalies, making sure we under-
stand how assumptions related to modeling and analysis
affect their significance.
It is in this spirit that this work contributes to the

discussion of large-angle CMB anomalies: by understand-
ing in detail how observed features are related in ΛCDM,
we can better assess the independent ways in which our
observed CMB sky is unusual, and thus whether they might
provide clues about beyond-ΛCDM physics. An interesting
potential avenue for future work could be to study how the
covariance between the anomalies changes when assuming
underlying models that are extensions of or alternatives
to ΛCDM.
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APPENDIX: COVARIANCE DIFFERENCE AND SAMPLING ERRORS

Here we complement the results in Fig. 5 in Sec. IVA to show more information about the differences in the
features’ covariance matrix calculated using the synfast simulations and those using the FFP simulations.
The left panel of Fig. 8 shows the absolute differences in the coefficients calculated in the two sets of

simulations. It provides additional information to the relative differences shown in the right panel of Fig. 5
because the overall size of the correlation coefficients (shown in the left panel of Fig. 5) varies by two orders of
magnitude.
The right panel of Fig. 8 shows the sampling error in the correlation coefficients in the 1000 FFP simulations, which we

measure by splitting the 100 000 synfast simulations into 100 subsamples. Note that right panel of Fig. 5 shows the ratio
between the two panels of Fig. 8.
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