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We study statistical anisotropies generated in the observed two-point function of the cosmic microwave
background (CMB) fluctuations if the primordial statistics are non-Gaussian. Focusing on the dipole
modulations of the anisotropies, we find that the hemispherical power asymmetry observed in the CMB
temperature fluctuations can be modeled by a local-type trispectrum with amplitude τNLðkp ¼
0.05 Mpc−1Þ ≈ 2 × 104 and a large red tilt n ≈ −0.68. We numerically evaluate the non-Gaussian
covariance of the modulation estimators for both temperature and E-mode polarization fluctuations
and discuss the prospects of constraining the model using Planck satellite data. We then discuss other
effects of the scale-dependent trispectrum that could be used to distinguish this scenario from other
explanations of the power asymmetry: higher-order modulations of the two-point function and the non-
Gaussian angular power spectrum covariance. As an important consequence of the non-Gaussian power
spectrum covariance, we discuss how the CMB-inferred spectral index of primordial scalar fluctuations can
be significantly biased in the presence of a scale-dependent local-type trispectrum.
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I. INTRODUCTION

Several anomalies have been observed in the cosmic
microwave background temperature fluctuations at the
largest scales [1]. They are measured features that are
primordial and not due to instrumental noise or systematics,
or due to late-time physics. Such anomalies are moderately
unlikely to arise as mere statistical fluctuations in the
Gaussian, isotropic models of cosmological fluctuations
which otherwise describe observations with great precision.
While the statistical significance of these unexpected
features is not very strong, their presence has led to several
model building attempts [2–12] aiming to constrain physics
of the primordial universe.
The current ambiguous status of the anomalies on large

scales [13], and in particular the hemispherical power
asymmetry [14–16] which has motivated this work, is
driven by the fact that the large-scale temperature fluctua-
tions have been measured to cosmic-variance limit. But,
there is additional data available in principle, in particular
from large-scale polarization [17], from galaxy surveys
[18], from the scattering of CMB photons by free electrons
after reionization [19–21], or from 21-cm fluctuations [22].

The different efforts to model the observed statistical
anisotropies in the CMB can be roughly categorized into
two groups in which: (i) there is an explicit breaking of
statistical isotropy [3,23], which means a preferred direc-
tion in the Universe, or (ii) the statistical isotropy breaking
is spontaneous due to some stochastic modulating field
[24] or primordial non-Gaussianity [25]. In this work, we
use a framework where the observed power asymmetry
arises spontaneously as the result of looking at a sub-
volume of a larger space whose fluctuations are described
by isotropic but non-Gaussian statistics. In a non-Gaussian
model, the dipolar modulation of the Fourier space
two-point function is described by the collapsed limit of
the Fourier space four-point function (the trispectrum) of
primordial fluctuations.
The relation between non-Gaussianity and statistical

anisotropy has been discussed previously in the context
of the CMB [26–28]. In particular, Planck satellite data was
used to constrain the amplitude τNL of a scale-invariant
local-type trispectrum by using statistical anisotropy
estimators [27], giving τNL < 2800 at 95% confidence
level [29]. (See also [30].) However, since the observed
asymmetry has a significant scale dependence, it is useful
to expand on the Planck analysis and study in detail a scale-
dependent trispectrum model. Non-Gaussianity that is scale
dependent and larger on large scales can be consistent with
the very tight scale-independent constraints, since those
are driven by the many modes measurable on small scales.
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An easy way to see this is to note that the τNL constraint
from WMAP data, which are dominated by larger scales
than Planck data, is an order of magnitude weaker [31].
We study the effect of a scale-dependent trispectrum in

the CMB fluctuations by calculating the induced non-
Gaussian covariance of modulation estimators. Such a
formalism allows us to simultaneously consider the effect
on the (correlated) modulations expected in CMB polari-
zation and forecast the improvement in trispectrum con-
straints when adding polarization data. Further, we can also
straightforwardly extend the study to other trispectra that
have a large collapsed limit. The following primary results
of our work all provide strong motivations to expand the
current search for non-Gaussianities to the case of scale-
dependent local-type trispectrum:
(1) Two of the large-scale CMB temperature

anomalies—the hemispherical power asymmetry
and the power deficit at large scales—can be well-
modeled by a scale-dependent trispectrum,

(2) Such a trispectrum has other modulating effects on
the temperature and polarization fluctuations that
can be used to improve constraints on the scale-
dependent trispectrum parameters, and

(3) If we require the trispectrum amplitude and param-
eters be large enough to explain both the hemi-
spherical power asymmetry and the power deficit at
large scales, then we find that the non-Gaussian
covariance between the measured angular power
spectra of the CMB can be large enough to signifi-
cantly bias the inference of cosmological parameters
(see Fig. 4).

The rest of the paper is organized as follows. In
Sec. II, we discuss the general relationship between
statistical anisotropies observed in a finite volume when
the curvature fluctuations on larger scale are coupled to
those on smaller scales. We then define modulation
estimators in Sec. III and describe how the effect of
the non-Gaussian nature of fluctuations on the covari-
ance of these estimators can be computed when a model
for the primordial trispectrum is specified. In Sec. IV, we
numerically evaluate these covariances and obtain a
fiducial set of scale-dependent trispectrum parameters
that can explain the observed hemispherical power
asymmetry at large scales, and study how including
polarization and higher-order modulations can improve
model constraints. We discuss the non-Gaussian covari-
ance of angular power spectra generated by a scale-
dependent primordial trispectrum and how it can bias the
reconstruction of the spectral index of the power spec-
trum in Sec. V. We summarize and conclude in Sec. VI.

II. SPONTANEOUS ISOTROPY BREAKING
FROM NON-GAUSSIANITY

The statistics of the power asymmetry observed in a
finite volume can be modeled as a spatial modulation of the

observed temperature fluctuations. Simplifying to the
scale-independent case for the moment, this is

δ̃T
T0

¼ δT
T0

ð1þ An̂ · d̂Þ ð1Þ

where n̂ is the direction of observation, d̂ is the direction
of the asymmetry, and A is the amplitude. The standard
Gaussian, isotropic model predicts that any given finite-
sky realization will have an asymmetry drawn from a
distribution with hAi ¼ 0 and a finite variance deter-
mined by the power spectrum of the fluctuations.
Models that introduce a new parameter for the asym-
metry can either explicitly break isotropy, predicting a
distribution with hAi ≠ 0, or introduce a second, modu-
lating Gaussian field that effectively boosts the variance
of A to be larger than expected from the measured
isotropic fluctuations. For example, to boost the like-
lihood of an asymmetry only on large scales, one can
introduce a field hðxÞ into the primordial potential
perturbations (Φ), where hðxÞ has fluctuations only on
large scales and so is not a stochastic field in the finite
volume [32]:

ΦðxÞ ¼ gðxÞ½1þ hðxÞ� ð2Þ

In this case, hgðxÞhðxÞi ¼ 0 and the observed asymmetry
in a finite volume constrains the power spectrum of the
second field. On the scales where the modulating field is
stochastic, the curvature perturbations in this scenario
have a connected four-point function proportional to the
power in the two Gaussian fields (PgPh). For this reason,
trispectrum estimators can be used, in the collapsed
limit, to constrain the power asymmetry from such a
modulating field.
In the simplest, scale-independent non-Gaussian sce-

nario, the model for infinite volume statistics is

ΦðxÞ ¼ σðxÞ þ fNL½σ2ðxÞ − hσ2ðxÞi�: ð3Þ

In any finite volume, the long wavelength modes of σ play
the role of the nonstochastic, modulating field exactly as in
Eq. (2) previous case. The correlation between the power in
short-wavelength modes and any gradient in the fluctua-
tions of the long-wavelength modes results in spontaneous
isotropy breaking observed in the finite volume. However,
the extra variance of A is not a new parameter to be
constrained only by the asymmetry but is also constrained
by isotropic non-Gaussianity in the finite volume (assum-
ing the power spectrum is not suddenly very different on
large scales). In the scenario in Eq. (3), there will be a
Fourier space connected three-point function whose ampli-
tude is proportional to fNL, and a four-point function with
amplitude proportional to f2NL. While the observed value of
fNL is itself subject to infrared divergent cosmic variance in
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this case [33,34], the non-Gaussian variance of A is infrared
finite and is very nearly determined by the locally measured
fNL [25].
The models above are useful to contrast because they

are simple,1 but the class of scenarios of actual interest is
more complicated since the observed asymmetry in
CMB temperature is significantly scale dependent.
Although constraints on non-Gaussianity have improved
dramatically in recent years, there is still a surprising
amount of space for non-Gaussian models to match
existing data and generate the power asymmetry. The
expression in Eq. (3) is an example of a much more
general class of scenarios where the level of spontaneous
isotropy breaking in a finite volume is enhanced by
correlations between modes of different wavelengths.
The momentum-space statistics of Eq. (3) have the
feature that modes of very different wavelengths are
coupled in a scale-independent way. A much wider range
of couplings between modes of different wavelengths
(including, of course, no coupling as is consistent with
single-clock inflation) can be modeled by writing down
particular 3-; 4-;…n-point correlations in Fourier space
and expanding the field Φðk⃗Þ in terms of a Gaussian field
ϕ with appropriate kernels Kn in the convolutions.
Schematically [35,36]

Φðk⃗Þ ¼ ϕðk⃗Þ þ
�Z

ϕ � ϕK2

�
k⃗

þ
�Z Z

ϕ � ϕ � ϕK3

�
k⃗
þ � � � ð4Þ

Notice that there will be two contributions to the
trispectrum: one that depends twice on the quadratic
kernel K2, and another from a single K3 term. (In the
local ansatz, these are the τNL ∝ f2NL and gNL terms,
respectively.)
Even for a globally homogeneous, isotropic field, we

expect some level of anisotropy if we restrict our obser-
vations to a subvolume: for any single realization of the
CMB sky, there is a direction that divides the map into two
pieces with maximally different average amplitudes of
power in the two halves. To see how the spontaneous
breaking of isotropy is enhanced if the underlying field has
a non-Gaussian component, we may divide the modes in
Fourier space into long- and short-wavelength modes, and
look at the expression for modes of the field that satisfy
k≳ kmin:

Φðk⃗SÞ ¼ ϕðk⃗SÞ
�
1þ

Z
kL

ϕK2 þ
Z
kL

Z
kL

ϕ � ϕK3 þ � � �
�

þ
�Z

ϕ � ϕK2

�
k⃗S

�
1þ

Z
kL

ϕK3 þ � � �
�

þ
�Z Z

ϕ � ϕ � ϕK3

�
k⃗S

½1þ � � �� þ � � � ð5Þ

The fact that one may trade explicit isotropy breaking in
a subvolume for non-Gaussianity in an encompassing
volume has been known for some time (see, e.g., the
clear discussion in [27]). The calculation above, how-
ever, gives a straightforward means of generating both
the isotropic and anisotropic statistics expected in a
subvolume for a wide range of models. The statistical
shift to the small-volume power spectrum [the linear
term in Eq. (5)] can be expanded in spherical harmonics
to give the expected level of isotropy breaking in the
two-point function expected for a given model [25].
From Eq. (5), it is also clear that the sub-volume statistics

depend on parameters that control the size of all higher order,
tree-level connected correlations. In general, then, the
observed anisotropy is probing features of both the bispec-
trum and the trispectrum, and possibly beyond. An asym-
metry in the observed power spectrum may be primarily
generated by a four-point function if its amplitude (properly
normalized by factors of the amplitude of fluctuations) is
larger than that of the three-point function. Particularly
relevant for the observed power asymmetry is the casewhere
the collapsed limit of the trispectrum is larger than itwouldbe
from the simple example of the single-source local ansatz
given in Eq. (3). That is, the effective τNL that governs the
collapsed limit of the trispectrum is greater than f2NL [37]. In
Eq. (5), such an example requires aK4 kernel that effectively
subtracts off the K2

3 contribution to the trispectrum and adds
back the same shape, but with the appropriately scaled
coefficient.2 An enhanced trispectrum, and power asymme-
try, can also be generated by modifying Eq. (4) to allow
two separate fields additively sourcing the curvature (e.g.,
Gaussian fieldþ non-Gaussian field).

III. MODULATIONS IN THE CMB
FLUCTUATIONS

In this section, we describe and compute statistics of
CMB modulations from a scale-dependent primordial
trispectrum. The observed statistics in the CMB are
the multipole moments of temperature or polarization

1In this work, we use “model” to refer to a description of the
statistics of the inhomogeneities after reheating. We consider the
construction of dynamical models of the primordial (inflationary)
era that generates these statistics to be an extra layer, that likely
provides an additional set of theoretical priors reflecting how
difficult it seems to generate the respective dynamical models and
how much inflation they tend to produce.

2An interesting test case of this type, that naturally gives a
scale-dependent asymmetry, is that of quasi-single field inflation
[38–41]. We find, however, that the quasi-single field parameters
do not easily allow for fNL small enough to be consistent with
Planck constraints but τNL as large as required by our fiducial
model here (see Sec. IV).
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fluctuations, which depend on the primordial potential
ΦðkÞ as follows

axlm ¼ 4πð−iÞl
Z

d3k
ð2πÞ3 ΦðkÞgxlðkÞY�

lmðk̂Þ; ð6Þ

where gxlðkÞ is the CMB transfer function with x ¼ T, E
describing temperature and E-mode polarization fluctua-
tions respectively.
The role of polarization fluctuations in helping pin down

whether the modulations observed in the temperature
fluctuations are primordial or not has been previously
studied in [17,32,42]. Here we write down the general
expressions for the covariances of modulation estimators in
the presence of a trispectrum. We will use them to generate
realizations of the estimators and study the expected
constraints by using Planck temperature and polarization
data in the next section. For the most part, we will focus on
dipole modulations of the cosmic microwave background
fluctuations (both T and E).
Let us define the dipole modulation estimators using

l;lþ 1 correlations as follows:

ΔX̂wx
0 ðlÞ ¼ 1

ð2lþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cww
l Cxx

lþ1

p Xl
m¼−l

aw�lma
x
lþ1;m ð7Þ

ΔX̂wx
1 ðlÞ ¼ 1

ð2lþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cww
l Cxx

lþ1

p Xl
m¼−l

aw�lma
x
lþ1;mþ1 ð8Þ

where w, x can be either T, E and Cls are the CMB angular
power spectrum of the best-fit cosmology. (Note that, while
we use the notation from [17] of ΔX̂Ms, our definition does
not include additional l-dependent factors that exactly map
the l;lþ 1 correlations to the Cartesian components of
dipole modulation parameter A as defined as in Eq. (1).)
Similar estimators can be defined for higher-order modu-
lations, by considering l;lþ 2 correlations, for example
for quadrupolar modulation. If the primordial fluctuations
are Gaussian, the covariance of the dipole modulation
estimators is given by

hΔX̂wx�
M ðlÞΔX̂yz

M0 ðl0ÞiG ¼ δM;M0δl;l0

2lþ 1

Cwy
l Cxz

lþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cww
l Cxx

lþ1C
yy
l0 C

zz
l0þ1

q ;

ð9Þ

where M;M0 ¼ 0, 1. Note that ΔX̂0ðlÞ are real, whereas
ΔX̂1ðlÞ are complex and the three degrees of freedom
among the two estimators determine the amplitude and
direction of the dipole modulation.
For models that generate a CMB power asymmetry by

explicitly changing the power spectrum (for example,
assuming that the primordial power spectrum has a
dipole modulation), the means of ΔX̂M are nonzero:

hΔX̂MðlÞi ≠ 0. However, in models where the primordial
fluctuations have significant non-Gaussianity, it is possible
that global isotropy is respected, i.e., hΔX̂MðlÞi ¼ 0, but
the expected cosmic variance of CMB dipolar modulation
increases. The resulting apparent statistical anisotropy is a
spontaneous statistical isotropy breaking [24] caused by the
non-Gaussian nature of fluctuations. In that case, the non-
Gaussian contribution to the covariance depends on a
particular configuration of the CMB trispectrum:

hΔX̂wx�
M ðlÞΔX̂yz

M0 ðl0ÞinG

¼ δM;M0

P
m;m0 hawlmax�lþ1;mþMa

y�
l0m0azl0þ1;m0þM0 ic

ð2lþ 1Þð2l0 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cww
l Cxx

lþ1C
yy
l0 C

zz
l0þ1

q ð10Þ

where the subscript c indicates connected part of the
trispectrum.
To compute the CMB four-point function we follow the

method in [43,44], which constructs the CMB trispectrum
from a “reduced trispectrum” that automatically enforces
the trispectrum to have rotation, parity and permutation
symmetries. The CMB four-point function can be written
using Wigner-3j symbols, as:

hawl1m1
axl2m2

ayl3m3
azl4m4

ic

¼
X
LM

Pwl1xl2
yl3zl4

ðLÞ
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

�

× ð−1ÞM þ ðl2 ↔ l3Þ þ ðl2 ↔ l4Þ ð11Þ
where [43]:

Pwl1xl2
yl3zl4

ðLÞ ¼ T wl1xl2
yl3zl4

ðLÞ þ ð−1ÞLþl1þl2T xl2wl1
yl3zl4

ðLÞ
þ ð−1ÞLþl3þl4T wl1xl2

zl4yl3
ðLÞ

þ ð−1Þl1þl2þl3þl4T xl2wl1
zl4yl3

ðLÞ ð12Þ
The reduced CMB trispectrum T depends on the model

of primordial trispectrum. In this work, we will consider a
scale-dependent local τNL trispectrum [45]

Tðk1;k2;k3;k4Þ ¼ τNL

�
k2k4
k2p

�
n
Pðk1ÞPðk3ÞPðjk1 − k2jÞ

þ permutations ð13Þ
where the index n describes the scale dependence of the
trispectrum amplitude of the otherwise local-type trispec-
trum, and kp is the pivot at which τNL is the amplitude; we
take kp ¼ 0.05 Mpc−1. Similar to the calculation for the
constant τNL trispectrum [44,46], we obtain

T wl1xl2
yl3zl4

ðLÞ ¼ τNLhl1l2Lhl3l4L

Z
dr1r21α

w
l1
ðr1; nÞβxl2ðr1Þ

×
Z

dr2r22α
y
l3
ðr2; nÞβzl4ðr2ÞFLðr1; r2Þ

ð14Þ
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where

hl1l2;L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4π

r �
l1 l2 L

0 0 0

�

ð15Þ

αwlðr; nÞ ¼
2

π

Z
dkk2

�
k
kp

�
n
gwlðkÞjlðkrÞ ð16Þ

βxlðrÞ ¼ 4π

Z
dk
k
PΦðkÞgxlðkÞjlðkrÞ ð17Þ

FLðr1; r2Þ ¼ 4π

Z
dK
K

PΦðKÞjLðKr1ÞjLðKr2Þ ð18Þ

and the jl are spherical Bessel functions. Note that the
angular power spectrum can be written as an integral over
the comoving distance r, using the quantities αlðrÞ and
βlðrÞ defined above:

Cwx
l ¼

Z
drr2αwlðr; 0ÞβxlðrÞ: ð19Þ

Numerically evaluating the reduced trispectrum of
Eq. (14) allows us to compute the non-Gaussian cova-
riances, Eq. (10), for the dipole modulation estimators. The
full covariance matrix for dipole modulation estimators
(including the fsky scaling for partial sky coverage and the
noise power spectra) is given by,

C ¼ hΔX̂wx�
M ðlÞΔX̂yz

M0 ðl0Þi

¼ 1

ð2lþ 1Þfsky
δM;M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cww
l Cxx

lþ1C
yy
l0 C

zz
l0þ1

q
�
δl;l0C̃

wy
l C̃xz

lþ1

þ 1

2l0 þ 1

X
m;m0

hawlmax�lþ1;mþMa
y�
l0m0azl0þ1;m0þM0 ic

�
;

ð20Þ

where w, x, y, z can be T, E, while M;M0 ¼ 0, 1 (of the
ΔX̂0;1) and C̃wy

l ¼ Cwy
l;cmb þ Cwy

l;noise. The noise power spec-
trum for Planck is approximated using the specifications for
two channels as in [47] with fsky ¼ 0.65. For numerical
evaluations, we use camb [48] to obtain the transfer
functions glðkÞ using Planck 2015 best-fit cosmological
parameters [49]. We also follow the approximation outlined
inAppendix for faster numerical evaluation, andmostly limit
ourselves to l ≥ 30 for which the approximation is correct
within a few percent. In the next section, we use realizations
ofΔX̂Ms obtained using the full covariancematrixEq. (20) to
obtain our fiducial scale-dependent trispectrum parame-
ters: τNL ¼ 2 × 104; n ¼ −0.68.
In Fig. 1, we plot the expectation value of the non-

Gaussian contribution to the dipole modulation amplitude,

hAðlÞinG ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2

xðlÞinG þ hA2
yðlÞinG þ hA2

zðlÞinG
q

using the fiducial τNL; n values.HereAðlÞ corresponds to the
harmonic transform of a dipolar modulation of the fluctua-
tions Aðn̂ · d̂Þ as in Eq. (1). Note that there are additional l
dependent factors between our definition of ΔX̂Ms and the
Cartesian components of A, which approach constant values
at largel:ΔX̂0 ≈ ð4=5ÞAz;ReΔX̂1 ≈ Ax=2; ImΔX̂1 ≈ Ay=2;
we account for these factors betweenΔX̂Ms andAx;y;zs when
computing AðlÞ and comparing our results to that of [50],
which fitted the Planck temperature dipole modulation data
to a phenomenological l−dependent model:

AðlÞ ¼ Al0

�
l
l0

�
n
: ð21Þ

From Fig. 1, we can see that a scale-dependent trispectrum
can generate a scale-dependent dipole modulation of the
CMB temperature fluctuations similar to the best-fit values
found by [50]. We have also plotted the corresponding
scale-dependent dipole modulations expected in EE and TE
spectra.
In Fig. 1,we see that in general the polarization asymmetry

amplitude is larger than that of the temperature. See also
[17,42] for similar results and discussion. The reason is that
temperature multipoles get contribution from a wider range
of scales, and each modulation multipole roughly traces
the average level ofmodulation over this range of scales. The
transfer functions for E-modes, however, are generally
narrower in range of wave number k and trace, on average,

FIG. 1. The expected l dependent amplitude of dipole modu-
lation from the scale-dependent trispectrum model given in
Eq. (13) for our fiducial parameters. For reference, we have
plotted the best-fit l—dependent dipole modulation amplitude
obtained by Aiola et al. [50] using Planck temperature data. The
hAðlÞinG TT (solid blue) values only include the non-Gaussian
contribution (and no Gaussian noise) which could explain its
smaller magnitudes than that of the best-fit Aiola et al. model
(black dotted).
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larger scales compared to the temperature fluctuations.
The modulation amplitude in our fiducial model decreases
at smaller scales, which results in larger E-modemodulation.
If, however, we postulate a scale dependence of the modu-
lation amplitude which increases at smaller scales (i.e.,
n > 0), the temperature modulation amplitudes on average
will be larger than the polarization modulation amplitudes.

IV. FORECAST

In this section, we use numerical evaluations of the non-
Gaussian covariances described in the previous section and
generate various realizations of modulation parameters—at
different multipoles—for both temperature and polarization
fluctuations. We make use of these realizations to choose
fiducial trispectrum model parameters by selecting “look-
alike” realizations in temperature fluctuations over a range
l ¼ 30–600, where there is 3σ evidence for hemispherical
power asymmetry. The polarization realizations that are
generated simultaneously with the temperature realizations
are then used to forecast the prospect of detecting the
fiducial trispectrum model by using the log-likelihood
difference.

A. Studies on ΔX̂MðlÞ realizations and fiducial model

Using the full covariance matrix Eq. (20) we generate
realizations of modulation parameters

d ¼ fΔX̂0ðlÞ;ReΔX̂1ðlÞ; ImΔX̂1ðlÞg

for various values of τNL; n. From the realizations, we
measure the best-fit dipole amplitude and scale dependence
ðA; nÞ by fitting to the function Eq. (21): AðlÞ ¼ Aðl0Þ
ðl=l0Þn; we choose l0 ¼ 300 instead of l0 ¼ 60 as in [50]
but translate their constraints accordingly. Based on the
distributions of A, n obtained using realizations for a
number of ðτNL; nÞ values, we choose our fiducial scale-
dependent trispectrum parameter values to be τNL ¼
2 × 104; n ¼ −0.68. The non-Gaussian model using these
fiducial parameters produces median amplitude and scale
dependence for the temperature modulation similar to the
marginalized values found in [50], indicated by the dashed
lines in Fig. 2. We contrast the ðA; nÞ distribution generated
by our fiducial trispectrum model to the distribution of
ðA; nÞ obtained from Gaussian, isotropic realizations.
The 2D smoothed histograms obtained by these two set
of realizations are shown in Fig. 2. The shape of the
contours indicates that even a significantly smaller τNL
would make the observed power asymmetry more likely
compared to τNL ¼ 0.
Interestingly, the rough estimates for the scale-dependent

trispectrum parameters in an inflationary model that gen-
erates dipole asymmetry while respecting current bispec-
trum constraints given in [51] are similar to our fiducial
parameters. However, it is important to note that an actual

data analysis of the temperature modulation data to fit for
the scale-dependent trispectrum parameters has not been
done yet, which may result in different values than our
fiducial model—especially when larger multipoles and
higher-order modulations are included.
To examine the constraints on the scale-dependent

parameters from Planck temperature data (and information
added by polarization data), we select “look-alike” real-
izations from our set of fiducial non-Gaussian realizations
that produce scale-dependent dipole modulation in temper-
ature fluctuations similar to the best fit values found in [50]
(within ten percent of A300 ¼ 0.011; n ¼ −0.64). We then
compute the log-likelihood improvement with respect to
the isotropic and Gaussian model, (Δ lnL≡ lnLmax
ðτNL; nÞ − lnLð0; 0Þ), where

lnLðτNL; nÞ ¼ −
1

2
½detCþ dTC−1d� ð22Þ

and C is a function of ðτNL; nÞ given in Eq. (20). The
estimated log-likelihood improvement Δ lnL as a function
of the maximum multipole used to compute the log-
likelihoods is plotted in Fig. 3. Using only the temperature
dipole modulation data upto lmax ¼ 1000 we estimate a
log-likelihood improvement of Δ lnL ∼ 8 for two extra
parameters over the isotropic Gaussian model. We limit to

FIG. 2. Distributions (smoothed histograms) of scale-dependent
power asymmetry parameters ðAl0¼300; nÞ for two different mod-
els: (i) aGaussian and isotropicmodel (brown, contourwith smaller
amplitudes), and (ii) our fiducial non-Gaussian isotropic model
(blue, contour with larger amplitudes). For all the distributions, we
have used temperature multipoles l ¼ 30–600, and assumed
fsky ¼ 0.65. These smoothed distributions are generated from
25,000 modulation data realizations and the two contours indicate
1σ and 2σ intervals. The dashed lines show the marginalized
median values obtained from fit to Planck data by [50].
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lmax ¼ 1000 for two reasons: (i) the signal for the models
with strong scale dependence decreases sharply at larger
multipoles, and (ii) the Doppler and aberration contribution
starts to become important at higher multipoles that needs
to be accounted [52].

B. Addition of polarization data

To investigate the expected improvement by adding
E—mode polarization data, we select the E-mode realiza-
tions corresponding to the “look-alike” temperature real-
izations with power asymmetry similar to what is observed;
recall that this is done assuming our fiducial model param-
eters: τNLðkpÞ ¼ 2 × 104; n ¼ −0.68. Also, the polarization
realizations are generated simultaneously with the temper-
ature realizations to account for both the Gaussian and non-
Gaussian covariances between T and E. Then, we quantify
the contribution from the addition of polarization data by the
improvement in log-likelihood, plotted in Fig. 3 by including
TT, EE, and TE modulation estimators.
The results are plotted in Fig. 3. Even with the noise

levels of Planck, we expect significant improvement in log-
likelihood Δ lnL ∼ 3 by adding EE and TE dipole modu-
lation data, for our fiducial trispectrum model.

C. Expected improvement by using higher-order
modulations

We estimate the improvement when including higher-
order (L > 1) modulations by calculating the signal-to-
noise ratio from the connected CMB trispectrum, for each
modulation order, using [44,53]:

�
S
N

�
2

L
≈
Xlmax

l1≥l2
l2≥l3
l3≥l4

X
abcd

X
wxyz

T
wl1

xl2
yl3zl4

ðLÞ½Cov�−1Tal1bl2
cl3dl4

ðLÞ; ð23Þ

½Cov� ¼ ð2Lþ 1ÞCaw
l1
Cbx
l2
Ccy
l3
Cdz
l4

ð24Þ
where abcd; wxyz ¼ fTTTT;EEEE;TETEg for informa-
tion using the TT, EE, and TE modulation estimators (note
that there are other combinations possible when using the
trispectrum directly rather than using modulations), in
which case the covariance [Cov] for each unique set of
l1, l2, l3, l4 is a 3 × 3matrix. We find that for our fiducial
model,

X
L

�
S
N

�
2

L¼2;3;4
¼ 0.3

�
S
N

�
2

L¼1

ð25Þ

so, we can expect ∼30% increase in Δ lnLmax shown in
Fig. 3 by adding L ¼ 2, 3, 4 modulations of TT, EE, TE
from Planck.
The use of higher-order modulations can help distinguish

between a primordial trispectrum and a model in which the
primordial power spectrum has a genuine statistical
anisotropy. In the latter case, the preferred direction for
higher-order modulations is the same as that of the dipole
modulation. However, for a non-Gaussian model, the
dipole and quadrupole modulation directions are uncorre-
lated as hawlmax�lþ1;ma

y�
lma

z
lþ2;mic ¼ 0 for a parity-invariant

primordial trispectrum.

V. ISOTROPIC MODULATION OF THE
POWER SPECTRUM

A trispectrum with large collapsed-limit signal also
modulates the isotropic angular power spectrum (the Cl)
of the CMB. The collapsed-limit configuration of the
trispectrum induces covariance between measured angular
power spectra at widely separated multipoles. For the case
of a constant modulation or a scale-invariant local trispec-
trum, the effect only rescales the amplitude of fluctuations.
However, as we show below, for a scale-dependent trispec-
trum there can be more interesting effects. The covariance
between measured angular power spectra in the presence of
a non-zero connected trispectrum is given by,

CðĈl; Ĉl0 Þ ¼
2C2

l

2lþ 1
δl;l0 þ

1

ð2lþ 1Þð2l0 þ 1Þ
×
X
m;m0

halmal;−mal0;m0al0;−m0 ic ð26Þ

where,

Ĉl ¼ 1

2lþ 1

Xl
m¼−l

a�lmalm: ð27Þ

In standard cosmological analyses, the second term in
Eq. (26) is ignored assuming that the primordial fluctuations
areGaussian distributed. Inclusion of the second term, if non-
zero and known (say from direct trispectrum measurements),

FIG. 3. The log-likelihood improvement as a function of
maximum multipole used in the analysis using Planck-like
temperature ΔX̂T

M realizations only, and in combination with
Planck-like E-mode ΔX̂E

M realizations. We find that, for our
fiducial trispectrummodel, adding E-mode polarization data from
Planck increases the Δ lnL ∼ 3 over the temperature-only data.
The data points in the figure are median Δ lnL values from fit to
realizations while the band shows the 68% spread around it.
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can increase the measurement errors on cosmological param-
eters, which can be estimated through a Fisher analysis [43].
In the absence of tight scale-dependent trispectrum con-
straints, one can marginalize over the non-Gaussian covari-
ance, which may however significantly degrade some of the
cosmological parameter constraints. In the case that the
primordial fluctuations do have a scale-dependent trispec-
trum, but one follows the standard cosmological analysis
without the non-Gaussian covariance term, the inferred
cosmological parameters can be significantly biased.
In the form written in Eq. (13), the isotropic power

modulation [non-Gaussian covariance term of Eq. (26)]
is infrared-divergent because of the integral FL¼0ðrÞ ∝

R
ðdK=KÞj20ðKrÞ, in which arbitrarily large wavelength
modes (K → 0) contribute. To study any possible modu-
lation of the isotropic power spectrum, therefore, we need
an infrared cutoff. We also need to assume a form for the
power spectrum on large scales; we simply take the near
scale-invariant form of primordial power spectrum to be
valid at all scales above the infrared cutoff scale. For
Kminr ≪ 1, and ns ≈ 1, F0ðrÞ can be approximated as

F0ðrÞ ≈ 4πAΦ

Z
∞

Kmin

dK
K

j0ðKrÞ2 ≈ 4πAΦ ln

�
1

Kminr

�
: ð28Þ

For l;l0 ≫ 2, the non-Gaussian power spectrum covari-
ance term is given by

CNGðĈl; Ĉl0 Þ ≈ τNLAΦN
π

Z
dr1r21αlðr1; nÞβlðr1Þ

×
Z

dr2r22αl0 ðr2; nÞβl0 ðr2Þ; ð29Þ

where we have defined

N ¼ ln

�
1

Kminrcmb

�

that determines the strength of the non-Gaussian covari-
ance. The scale dependence can be independently con-
strained by higher-order modulations for a nonzero τNL.
In Fig. 4, we plot the fractional non-Gaussian contribution
for our fiducial model, for a chosen value of N .
Scale-dependent non-Gaussianity can significantly

change the scale dependence of the observed power
spectrum and introduce additional cosmic variance uncer-
tainty in the observed spectral index ns [54]. A CMB data
analysis allowing for non-Gaussian covariance structure as
in Eq. (26) will account for the additional uncertainty.
Ignoring the non-Gaussian term will result in inference of
cosmological parameters that are different than the true
values. We provide an example next.
An increasing correlation betweenCls at large scales can

explain [25] the observed power deficit at low multipoles
[55] in the temperature fluctuations. If the low-l deficit is
due a scale-dependent trispectrum similar to our fiducial
model, the decreasing strength of correlations at larger
multipoles—as can be seen in Fig. 4—means that the
inferred spectral index ns is shifted higher than the true
value. The allowed level of shift due to non-Gaussianity can
be much larger at Δns ∼ 0.04 [54] for example, than the
precision of the measurement from the Planck mission.
Specifically, a typical realization of our fiducial non-
Gaussian model with the additional parameter N ¼ 40
fixed can have large-scale power lower than the true value;
in that case, a CMB analysis without the non-Gaussian
covariance will produce a biased high estimate of the
spectral index as exemplified on the right panel of Fig. 4.

FIG. 4. Left: The diagonal component of the non-Gaussian term in the power spectrum covariance as a fraction of the Gaussian term
for ðτNL; nÞ ¼ ð2 × 104;−0.68Þ model with N ¼ 40. Right: Example of how the inferred spectral index ns can be significantly biased
high if the observed large-scale power deficit is due to a scale-dependent trispectrum. In this example, a set of Cl realizations was
generated using the non-Gaussian model with spectral index (at the pivot wave number k0 ¼ 0.05 Mpc−1) ns ¼ 0.93, and the particular
realization in the figure is a typical (∼1σ) realization of the non-Gaussian model with ∼12% power deficit for l ¼ 10–40. The Gaussian
fit value of spectral index was obtained by only varying As, ns and keeping other nonprimordial parameters fixed.
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In such a scenario, the Planck-inferred values for other
cosmological parameters may also be biased. Perhaps most
straightforwardly, an incorrect reconstruction of the scalar
power amplitude will change the inferred bound on (or, in
the event of a detection, the value of) the tensor-to-scalar
ratio, r. This can affect conclusions drawn about the
inflaton field range. However, more generally the structure
of non-Gaussian covariance is complex and it is difficult to
predict if and how other nonprimordial parameters are
biased as there are degeneracies between the parameters.
A detail analysis of this possibility and how well the
parameters N ; τNL; n in Eq. (26) can be constrained by
combining power spectrum and higher-order modulations
using Planck, CMB measurements at smaller scales [56],
and other large-scale structure probes is left for future study.

VI. SUMMARY AND CONCLUSION

We have systematically studied the modulation effects of
scale-dependent primordial non-Gaussianity in the cosmic
microwave background fluctuations. We do so, in detail, by
using a scale-dependent local-type trispectrum which has a
large collapsed-limit signal i.e., in which long-wavelength
modes are significantly coupled to small-scale modes. We
assume global statistical isotropy and compute covariances
of statistical anisotropy estimators of two-point functions, in
the presence of a primordial trispectrum. Such a method is
necessary when we want to include multiple observables
(temperature and polarization fluctuations for example), that
probe the same underlying primordial density fieldwhich are
additionally correlated in the non-Gaussian model.
While current constraints on a scale-dependent trispec-

trum are rather weak, we find that for our fiducial model
parameters which can explain the hemispherical power
asymmetry, the prospects of detection using Planck data
(dipole modulation estimators only) are promising: an
estimated log-likelihood improvement of ∼11 using
Planck Tþ E data up to lmax ¼ 1000, with only two extra
parameters. Addition of higher-order modulations L ¼ 2,
3, 4 improves the signal by ∼30%.
A primordial trispectrum generically also produces

covariance between different multipoles of the angular
power spectrum. If such a scale-dependent non-Gaussian
covariance term is present but ignored in CMB analysis, we
have shown that the resulting level of bias in the spectral
index can be significant. Further, the bias in the spectral
index itself is scale dependent, which presents the pos-
sibility of its detection by combining small-scale CMB
measurements to that of the larger-scale Planck data. Given
that we get much of our precision cosmology from the
CMB Cls, we must, therefore, constrain primordial tris-
pectra (with possible scale dependence) that have large
signal in the collapsed limit.
In addition to constraining the scale-dependent trispec-

trum parameters from CMB data, there are several other
interesting and useful future studies that can extend our

work. First, it will be interesting to study how a non-
Gaussian covariance from a scale-dependent trispectrum will
bias other cosmological parameters and if it can explain
some of the current parameter tensions observed from large-
scale and small-scale measurements. Second, for ease of
numerical evaluations, we mostly focused on multipoles
l ≥ 30; a natural extension of this work, therefore, will be to
carefully examine the effects of a scale-dependent trispec-
trum at lower multipoles as the contributing trispectrum
configurations begin to deviate from the exact collapsed limit
of the trispectrum. Third, it will be useful to compute the
consequences of a scale-dependent trispectrum and forecast
constraints by including other probes such as CMB lensing
and large-scale structure.
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APPENDIX: EVALUATION OF THE
TRISPECTRUM IN THE
COLLAPSED LIMIT

Following the approximation in [57] for the n ¼ 0 case,
we can approximate the integral in Eq. (14) as products
of separate integrals over r. For L ≪ l1;l2;l3;l4, αlðrÞ’s
are sharply peaked around r ¼ rcmb and FLðr1; r2Þ ≈
FLðrcmb; rcmbÞ varies slowly for r values where the other
terms are contributing. Then,

T wl1xl2
yl3zl4

ðLÞ ≈ τNLhl1l2Lhl3l4LFLðrcmbÞ
×Dwxðl1;l2; nÞDyzðl3;l4; nÞ ðA1Þ

where,

Dwxðl1;l2; nÞ ¼
Z

drr2αwl1ðr; nÞβxl2ðrÞ ðA2Þ

We have tested that when the smallest multipole used is
l ¼ 30, the approximation provides results within 2.4%
percent, and quickly improves to subpercent level accuracy
for l ≈ 100. This allows for fast evaluation of non-
Gaussian covariance matrices for dipole modulation param-
eters. Further, with the following ansatz:

Dwx
L¼1ðl;lþ 1; nÞ ¼ Bwx

l ðnÞ
�
l
l0

�
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cwx
l Cwx

lþ1

p ðA3Þ

we can interpolate BlðnÞ using the exact integral values of
Eq. (A2) on a l; n grid, and use it for a likelihood or
MCMC analysis to fit for both τNL and n.
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