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In this work we effectively calculated the two-dimensional Minkowski functionals for cosmic
microwave background (CMB) temperature maps generated by single field models of inflation with a
standard kinetic term. We started with a calculation of the bispectrum of initial perturbations and then
calculated the two-dimensional configuration space cubic moments for temperature fluctuations. These
cubic moments give rise to first order non-Gaussian correction terms to the Minkowski functionals. Thus,
we developed a robust mechanism to predict the amount of non-Gaussianity generated by inflation in the
CMB temperature maps using Minkowski functionals.
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I. INTRODUCTION

Among the most direct data sets for studies of the early
inflationary stage of our Universe evolution are the cosmic
microwave background (CMB) temperature and polarization
maps that are becoming measured with high precision by
ground and satellite based experiments [1–10]. The primor-
dial perturbations generated during inflation and reflected in
CMBanisotropy are close to beingGaussian; however, small
non-Gaussian contributions that reflect specific features and
peculiarities of inflationary models are also in general
expected to be present. The study of resulting non-
Gaussian features inCMBmaps is promising for distinguish-
ing between these details of inflationary models.
Inflation is the initial accelerated expansion of the early

universe. An inflationary expansion of more than 65 e-folds
is needed to explain the observed homogeneity and
isotropy of the Universe. It is predominantly accepted that
inflation is driven by the potential energy of a scalar
inflaton field slowly rolling down the potential. Inflation
also successfully describes the creation of small inhomo-
geneities, needed to seed observed structure in the
Universe, as having been generated by quantum fluctua-
tions in the inflaton field. The quantum fluctuations also got
stretched and became imprinted on CMB maps and other
observables on cosmological scales. Thus, inflation is able
to explain not only why the Universe is so homogeneous
and isotropic but also what is the origin of the structures in
the Universe [11–17]. Alternatives to inflation have been
proposed but no other scenario is as simple and elegant as
inflation produced by scalar field(s) [18–20].

In single-field models of inflation, the generated initial
inhomogeneities are described via a single scalar adiabatic
perturbation field ζðxÞ. The statistical properties of ζðxÞ are
the main observable signatures to distinguish between
different inflationary models. We also know that if the
perturbations are exactly Gaussian, then all odd n-point
correlation functions vanish while all even n-point func-
tions are related to the two-point function. Thus, in
momentum space the Gaussian field ζðxÞ is completely
described by the power spectrum PζðkÞ given by

hζkζk0 i ¼ ð2πÞ3δ3ðkþ k0Þ 2π
2

k3
PζðkÞ: ð1Þ

Inflation predicts that the scalar power spectrum is nearly
flat PζðkÞ ¼ Asð kk�Þns−1 ≈ As, where ns is called the scalar
spectral index [14–16]. The fact that the observed value of
scalar spectral index ns ¼ 0.9603� 0.0073 [4] is close to
but not exactly unity is considered as strong evidence for
the existence of inflation during the early universe.
However, many different kinds of inflationary models
can be made compatible with observations of the power
spectrum. Thus, the study of the non-Gaussian signatures is
important to reduce the degeneracy in inflationary models.
Such signatures are contained in nontrivial higher-order
correlations starting with the cubic ones. These higher
order correlation functions also give us more insight about
the physics of the early universe.
Similar to the power spectrum, for three-point correla-

tions one can calculate the bispectrum Bζðk1; k2; k3Þ as a
measure of the non-Gaussianity of the initial perturbations

hζk1
ζk2

ζk3
i ¼ ð2πÞ3δ3ðk1 þ k2 þ k3ÞBζðk1; k2; k3Þ: ð2Þ
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The bispectrum carries much more information than the
power spectrum as it contains three different length scales.
It was shown by Maldacena that for basic single-field slow-
roll inflation with a standard kinetic term the non-Gaussian
effects are small [21]. However, there are many models of
inflation that give a relatively large, potentially detectable,
level of non-Gaussianity. Comparing non-Gaussian pre-
dictions with observations will help us to constrain or rule
out different inflationary models and give us more insight
about the physics of the early universe.
In this paperwewill focus on the study of non-Gaussianity

from inflation through real space measures that describe
geometrical and topological properties of CMB temperature
maps viewed as a random field. Examples of standard
measures of random fields are Minkowski functionals
(MF), extrema statistics [22], and also more novel measures
such as skeleton statistics [23,24].Minkowski functionals are
the most intuitive descriptors of the properties of the
excursion regions of the field above a certain threshold.
Minkowski functionals have several mathematical properties
that make them special among other geometrical quantities.
They are translationally and rotationally invariant, are
additive, and have simple geometrical meanings. In [25] it
was shown that all global morphological properties of any
pattern in N-Dimensional space that satisfy motional invari-
ance and additivity can be fully characterized by N þ 1
Minkowski functionals. Indeed, for two-dimensional (2D)
field there are three functionals, which are simply the volume
of the space where the field exceeds the threshold, the length
of the boundary of the excursion set, and the Euler character-
istic, χ2D—the number of separate connected regions with
high field valuesminus thenumber of “holes”within them. In
practice, we are interested in statistical average Minkowski
functionals as functions of threshold ν per unit volume
of space.
It has been shown that for mildly non-Gaussian field

geometrical characteristics can be expressed as a series of
higher order moments of the perturbation field and its
derivatives [26–31]. In particular, the Euler characteristic
density of excursion sets as a function of threshold is given
for a 2D perturbation field up to the first non-Gaussian
correction by [26,27]

χ2DðνÞ ≈
�

σ1ffiffiffi
2

p
σ

�
2 e−

ν2

2

ð2πÞ3=2
�
H1ðνÞ þ σ

�hζ3i
6σ4

H4ðνÞ

−
hζ2Δζi
2σ2σ21

H2ðνÞ −
hð∇ζÞ2Δζi

σ41

��
: ð3Þ

In the above expression σ2 ¼ hζ2i, σ21 ¼ hð∇ζÞ2i, ν is the
threshold in units of σ, andHiðνÞ are Hermite polynomials.
The first term in the expansion denotes the Gaussian part
that is proportional to H1ðνÞ while the terms that involve
cubic moments of the field represent the first non-Gaussian
correction in σ. On this example we see that real space

geometrical characteristics typically involve all hierarchies
of moments. However, in perturbation theory, higher order
moments appear only in higher orders of perturbative
expansion, and the first non-Gaussian corrections involve
only cubic moments of the field and its derivatives.
Minkowski functionals have been extensively used to

characterize CMB maps since [32], even before they were
introduced to cosmology on a formal basis in [33]. They
were measured in the first CMB maps by COBE satellite
[34], are WMAP data [35], and have been applied to the
recent Planck CMB temperature maps [36–38]. However,
their direct use to test predictions of the inflationary models
was hindered by the difficulty to compute theoretical
predictions from inflation for real space statistics,
Minkowski functionals in particular.
We previously worked out the Minkowski functionals for

three-dimensional (3D) perturbation field ζ at the end of
inflation in single-fieldmodels of inflation [39]. In this paper
we have developed a robust mechanism to compute theo-
retical predictions for third-order moments such as hζ3i,
hζ2Δζi, and hð∇ζÞ2Δζi on 2DCMBmaps that are generated
from these inflationary initial conditions. This links the non-
Gaussianity generated by inflation to the geometrical observ-
ables such as Minkowski functionals in CMB maps.
This paper is organized into six sections. In Sec. II, we

review the theoretical framework of inflationary cosmology
whereafter we will describe the calculation of the three-
point correlation function in momentum space and the
calculation of different third-order moments in configura-
tion space. In Sec. III, we will present our numerical
technique for the calculation of the three-point function and
briefly discuss different single-field models of inflation
with some features in the inflationary potential. In Sec. IV,
we will present the calculation of moments in configuration
space while in Sec. V we present the geometrical
Minkowski functionals. In the last section we will sum-
marize our results and conclude.

II. THEORETICAL FRAMEWORK

The single-field models inflation driven by a scalar field
ϕ is described by the following action in units of
(M−2

pl ¼ 8πG ¼ 1, c ¼ ℏ ¼ 1):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð4Þ

where VðϕÞ is the potential for the inflaton field. In
Friedmann cosmology with homogeneous and isotropic
background, the Friedmann equation for scale factor and
the Kline-Gordon equation for inflaton field are given by

H2 ¼ 1

3

�
1

2
_ϕ2 þ VðϕÞ

�
; ϕ̈þ 3H _ϕþ V;ϕ ¼ 0: ð5Þ
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One can define the following slow-roll parameters1 and the
corresponding slow-roll conditions as

ϵ ¼ −
_H
H

≪ 1; η ¼ _ϵ

ϵH
≪ 1: ð6Þ

These slow-roll conditions ϵ ≪ 1, η ≪ 1 ensure that the
inflaton field rolls slowly down the potential and the
Universe inflates for a significantly long period. These
slow-roll parameters depend on the potential of the inflaton
field and the model of inflation. For standard single-field
inflation with quadratic potential VðϕÞ ¼ 1

2
m2ϕ2 these

slow-roll parameters are of order Oð0.01Þ for inflaton field
values ϕ > 10Mpl. In the case of quadratic inflation, to
obtain 70 e-folds of inflation, one needs the initial inflaton
field value to be ϕi ≈ 16.76Mpl.

A. Calculation of power spectrum and bispectrum

In this section we will present the steps laid down by
Maldacena to calculate the two-point and the three-point
correlation functions of the scalar perturbations [21]. First,
one writes the action for the inflaton field given in Eq. (4)
using the Arnowitt-Deser-Misner (ADM) formalism.
Second, one expands the action to second order in
perturbation theory for the calculation of the two-point
function and to third order for the calculation of the three-
point function. Third, one quantizes the perturbations and
imposes canonical commutation relations. Next, one can
define the vacuum state by matching the mode function to
the Minkowski vacuum when the mode is deep inside the
horizon that fixes the mode function completely. Following
these steps one can find the power spectrum and the
bispectrum for scalar perturbations [21,40].
In the ADM formalism the space-time is sliced into three-

dimensional hypersurfaces Σ, with three metric gij, at
constant time. The line element of the space-time is given by

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð7Þ

where N and Ni are lapse and shift functions. In single-field
inflation, we have only one physically independent scalar
perturbation. Thus, we perturb the metric and matter part of
the action and use the gauge freedom to choose the comoving
gauge for the dynamical fields ϕ and gij,

δϕ ¼ 0; gij ¼ a2ðe2ζδij þ tijÞ; ð8Þ

where ζ is the comoving curvature perturbation at constant
density hypersurface δϕ ¼ 0. In this gauge, the inflaton field
is unperturbed and all scalar degrees of freedom are

parametrized by the metric fluctuations ζðt; xÞ while the
tensor perturbations are parametrized by tij, that is, both
traceless and orthogonal ∂itij ¼ tii ¼ 0. The conditions in
Eq. (8) fix the gauge completely at nonzero momentum [21].
The shift and lapse functions are not dynamical variables in
ADM formalism; hence, they can be derived from constraint
equations in terms of ζ. We shall study only scalar perturba-
tions in this paper.
Linear perturbation results are obtained if one expands

the action to second order in perturbation field ζðxÞ,

Sð2Þ ¼
Z

d4xa3ϵð_ζ2 − a−2ð∂ζÞ2Þ; ð9Þ

which gives the following equation of motion for scalar
perturbations v ¼ zζ in Fourier space:

v00k þ
�
k2 −

z00

z

�
vk ¼ 0; ð10Þ

where z ¼ a _ϕ=H and momentum k is in reduced Planck
units Mpl. This is known as the Mukhanov equation for
scalar perturbations [41]. Now, one can calculate the power
spectrum using Eq. (1) by calculating the two-point
function of ζðxÞ,

PζðkÞ ¼
k3

2π2
jukj2; ð11Þ

where uk ¼ vk=z are the Fourier coefficients of ζðxÞ, the
curvature perturbations.
To obtain next order results in perturbation theory and to

calculate non-Gaussianity, one expands the action to third
order in scalar perturbations in the comoving gauge
[21,42]. After several integrations by parts and dropping
the total derivatives one finds the following third-order
action is often quoted in the literature [21,42–45]:

Sð3Þ ¼
Z

d4xða3ϵðϵ−ηÞζ _ζ2þaϵ2ζð∂ζÞ2

−
a
2
ϵηζ2∂2ζ−2aϵ_ζð∂iζÞð∂iχÞ

þ 1

2a
ϵ∂2χð∂iζÞð∂iχÞþ

1

4a
ϵð∂2ζÞð∂iχÞ2þ2gðζÞδL

δζ

�
;

gðζÞ¼ ζ _ζ=Hþ 1

4a2H2
½−ð∂ζÞ2þ∂−2ð∂i∂jð∂iζ∂jζÞÞ�

þ 1

4a2H
½−ð∂ζÞð∂χÞþ∂−2ð∂i∂jð∂iζ∂jχÞÞ�: ð12Þ

Here the last term can be eliminated with a field
redefinition ζ → ζn þ gðζÞ because gðζÞ is only a function
of derivatives of scalar perturbations ζðt; xÞ that vanish
outside the horizon. The above third-order action is an
exact result without any slow-roll approximations; thus, it

1Our definition of η ¼ _ϵ
ϵH ¼ 2ϵ − 2ηH is commonly used in the

studies of non-Gaussianity, whereas ηH ¼ −ϕ̈=ð _ϕHÞ is the
Hubble slow-roll parameter used more commonly in the studies
of inflation.
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is even valid for models that deviate from slow-roll
conditions. Another feature of this action is that it contains
only first two slow-roll parameters ϵ and η while it is
independent of derivative terms such as η0.
Finally, to calculate the three-point function in momen-

tum space we move to the interaction picture and write the
Hamiltonian for the action in Eq. (4) as

HðζÞ ¼ H0ðζÞ þHintðζÞ; ð13Þ

where H0 is the quadratic part of the Hamiltonian while
Hint represents all higher order terms in perturbation theory
[21]. The three-point function is calculated using the in-in
formalism in the interaction picture using the third order
action. Next, we quantize the perturbation field ζðxÞ and
define the vacuum state. For this we expand the ζðxÞ field
into creation and annihilation operators and use the
commutation relations of the scalar field to get the
following result:

hζk1
ζk2

ζk3
i¼ ið2πÞ3

Z
τend

−∞
dτ

�
−2a2ϵ2u�1u0�2u0�3

k1:k2

k22
þ2a2ϵðϵ−ηÞu�1u0�2u0�3−a2ϵð2ϵk1:k2þηk23Þu�1u�2u�3

þa2

2
ϵ3u�1u

0�
2u

0�
3k

2
1

k2:k3

k22k
2
3

þa2

2
ϵ3u�1u

0�
2u

0�
3

k1:k2

k22
þ c:c:þdistinct permutations

�Y3
i¼1

uiðτendÞδ3
�X

j

kj

�
: ð14Þ

The choice of the vacuum is specified by the choice of the
mode function uk selection. The above expression for
the three-point function will be used in later sections for
the exact and numerical calculations of the three-point
function in momentum space.

B. Non-Gaussian observables

The integral relation for the three-point function given in
Eq. (14) can be analytically evaluated in the slow-roll limit.
Ignoring ϵ3 terms in Eq. (14) gives us the following result
that was first derived by Maldacena [21]:

hζk1
ζk2

ζk3
i ¼ ð2πÞ7δ3ðk1 þ k2 þ k3Þ

ðPζ
kÞ2Q
ik

3
i
A; ð15Þ

A ¼ η� − ϵ�

8

X
i

k3i þ
ϵ�

8

X
i≠j

kik2j þ
ϵ�

K

X
i>j

k2i k
2
j ; ð16Þ

where � denotes the ϵ and η values at the horizon crossing.
The quantityA is a convenient measure of non-Gaussianity
in the perturbation field. The relationship between A and
the bispectrum is given by

Bζðk1; k2; k3Þ ¼ ð2πÞ4 ðP
ζ
kÞ2Q
ik

3
i
A: ð17Þ

The bispectrum and A are general measures of non-
Gaussianity; however, both these quantities are highly scale
dependent. Thus, over the recent years fNL, a local
dimensionless nonlinearity parameter that is also indepen-
dent of scale, has become a widely used measure of non-
Gaussianity [46]. One can define a generalized fNL for the
general kind of non-Gaussianity by the following equation
that also has the advantage of being nearly scale indepen-
dent:

fNL ≡ −
10Bζðk1; k2; k3Þ

Q
ik

3
i

3ð2πÞ4ðPζ
kÞ2ð

P
ik

3
i Þ

: ð18Þ

The measurement of fNL and bispectra for particular
triangle configurations in the data has been used to restrict
specific (local, equilateral, and orthogonal) primordial
bispectrum ampltitudes, for instance, for Planck data in
[47,48]. At the same time these efforts have not to date
detected primordial non-Gaussian features in CMB data.
In this paper we focus on real space measures of non-

Gaussianity such as high order moments of the field and its
derivatives and geometrical descriptors expressed as expan-
sions in these moments. For the first perturbative level of
deviation from the Gaussian limit, only cubic moments are
involved, and they are given by k-space integrals of the
bispectrum (see [31] for exact relations). Thus the real
space approach provides restrictions on different combi-
nations of bispectrum amplitudes; however, what is more
important, it links primordial non-Gaussianity to observ-
able quantities where the estimation from data has com-
pletely different systematics and noise properties. Using
different observables and cross validating the results will be
critical to detect a weak signal in a convincing way,
especially of such a complex effect as non-Gaussianity,
which has a very wide space of parameters and signatures.

III. NUMERICAL TECHNIQUE

A. Calculation of mode function and power spectrum

To calculate the power spectrum of scalar perturbations
we need to solve the background equations of motion
Eq. (5) and the Mukhanov equation Eq. (10) that can also
be written in the following form:
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_H ¼ −
_ϕ2

2
;

ϕ̈ ¼ −3H _ϕ − V;ϕ;

v00k ¼ −
�
k2 −

z00

z

�
vk; z ¼ a

ffiffiffiffiffi
2ϵ

p
; ð19Þ

where primes 0 denote derivatives with respect to con-
formal time. These are coupled differential equations with
the first two representing the background and the last
equation for scalar perturbations. Numerically, it is more
convenient to work out the differential equation for uk
rather than vk since we finally require uk ¼ vk=z to
calculate the power spectrum and bispectrum. We can shift
for conformal time τ to the number of e-folds n ¼ lnðaÞ
variable and write the above equations in a numerically
more efficient form. Thus, we convert the Mukhanov
equation to the perturbation equation for ukðnÞ as a
function of n. Similarly we can write the above equations
of motion as function of n as below,

H;n ¼ −H
ϕ2
;n

2
; ð20Þ

ϕ;nn ¼ −ð3 − ϵÞϕ;n − V;ϕ=H2; ð21Þ

uk;nn ¼ −ð3 − ϵþ ηÞuk;n −
k2

ðaHÞ2 uk; ð22Þ

where subscripts “ ;n” denote derivatives with respect to
n ¼ lnðaÞ. We solve these equations numerically starting
mode evolution deep inside the horizon and choosing the
Bunch-Davies vacuum for the initial conditions.
The above equations of motion are for single-field

inflation with a standard kinetic term with any potential
VðϕÞ. In this paper we specifically studied quadratic
inflation VðϕÞ ¼ 1

2
m2ϕ2 as our base model with a mass

of the inflaton field m ¼ 6.125 × 10−6 that gives us the
correct value of As ¼ 2.215 × 10−9 at the pivot scale k ¼
0.05 Mpc−1 [6]. We then studied a variation of the base
model that has a steplike feature added to the quadratic
potential, as an example of models with localized sharp
potential changes. The potential for this model is given by
VstepðϕÞ ¼ 1

2
m2ϕ2ð1þ c tanh ϕ−ϕs

d Þ with the same mass
parameter m, whereas c and d are the height and the width
of the step jump at location ϕs [49,50].
In Fig. 1 we have presented the calculation of a

dimensionless power spectrum according to Eq. (11).
The power spectrum is mildly dependent on k for the
quadratic potential with d lnPζ

d ln k ¼ −2ϵ� − η�. On the other
hand, for the step potential, due to the breaking of the slow-
roll condition because of a sharp step in the potential, we
see an oscillating power spectrum near the step but as we
move away from the step it follows the same behavior of
the quadratic potential (Fig. 1).

B. Three-point function calculation

After numerically solving the background equations and
the equation for scalar perturbations, we insert these
solutions back into Eq. (14) to calculate the three-point
function in momentum space. The three-point correlation
function is a numerically challenging task as it involves
integrations that arise from Eq. (14). The integrands consist
of three factors of uk or u0k multiplied by the background
factors of a, ϵ, and η. The scalar perturbation function uk
oscillates before the horizon crossing at τ�, while after the
horizon crossing it freezes out. Thus, the integration
consists of two parts, the before horizon crossing (BHC)
part and the after horizon crossing (AHC) part

Z
τend

−∞
dτIðτÞ ¼

Z
τ�

−∞
dτIðτÞ þ

Z
τend

τ�
dτIðτÞ; ð23Þ

where τ� is the horizon crossing point of the largest kmode
in the three-point correlation function and IðτÞ is the
integrand of the three-point function given in Eq. (14) that
contains background factors and the product of three
oscillating mode functions. The BHC and AHC parts of
integration present different numerical challenges as the
first has growing oscillations, as τ approaches negative
infinity, while for the AHC part one has to regularize by
adding a total derivative term in the action [43,44]. Without
adding this term in the action, the AHC part of the integral
is divergent as one of the terms a3ϵ_ηζ2 _ζ in the initial action
grows as the scale factor [43,44].
The contribution to the integral that arises from before

horizon crossing poses significant technical challenges. In
conformal time the initial big bang singularity is pushed
back in conformal time to τ → −∞. Thus, the scalar
perturbations start deep inside the horizon and keep
oscillating till the horizon crossing point τ� of the largest
k mode in the three-point function. Now, there are different
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P
k

k [Mpc-1]
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FIG. 1. Power spectrum of scalar perturbations PζðkÞ against
momenta k for quadratic potential and step potential with
c ¼ 0.002, d ¼ 0.02Mpl, and ϕs ¼ 15.86Mpl.
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methods to numerically evaluate an oscillating integral over
an infinite range. If we cut off this infinite integral to some
finite value, due to large oscillations this induces a spurious
contribution of Oð1Þ. Numerically it was shown that these
kinds of integrals can be evaluated by introducing an
arbitrary damping factor into the integrand, but this damp-
ing factor needs to be chosen carefully [49]. Other
techniques, such as boundary regularization, for evaluating
such integrals are even more complex [44,50].
We have developed a different numerical technique,

which is numerically more robust and elegant, using the
Cesaro resummation of improper series. For oscillating
integrand IðτÞ, the following expressions give the definition
of Cesaro integration,

Z
τ�

−∞
dτIðτÞ≡ lim

τ→−∞

1

τ� − τ

Z
τ

τ�
dτ0

�Z
τ0

τ�
dτ00Iðτ00Þ

�
: ð24Þ

This gives a specific definition to the improper integral on
the left-hand side, whereas the right-hand side is an average
over the partial integrals that give a convergent result for a
wide range of improper integrals [51]. However, we
extended this method further, and we defined a higher
order Cesaro integral, with a double average over partial
sums, to further improve the convergence defined as

lim
τ→−∞

1

τ0− τ

Z
τ

τ0

dτ0
1

τ0− τ0

Z
τ0

τ0

dτ00
�Z

τ00

τ0

dτ000Iðτ000Þ
�
: ð25Þ

In our numerical program we have used this extended
version of the Cesaro sum to compute BHC part.
This method quickly gives convergent results without

introducing any artificial damping factors. This can be seen
in Fig. 2 which shows the three-point function integral
AHC and BHC results plotted against the number of e-folds
(while integrating) for equilateral triangle and squeezed
triangle cases. In this figure horizon crossings occur τ� that
correspond to e-fold values of 6.5 and 8 for equilateral and
squeezed triangles. Figure 2 describes two different inte-
gration regimes BHC τ < τ� and AHC τ > τ�. In the BHC
regime, we integrate in the backward direction from the
horizon crossing point τ� using the extended Cesaro
integral [39]. Our technique converges very quickly as it
can be seen that the integral plateaus as we go 5–6 e-folds
left of the horizon crossing points. In the AHC regime
τ > τ�, we integrate in the forward direction starting at τ�
that also plateaus soon after horizon crossing. Thus, the
three-point function integral, or generalized fNL, is just the
sum of the two asymptote (plateau) values in the before and
after horizon crossing regimes for each kind of triangle.
The generalised fNL is plotted in Fig. 3 for step potential
that shows that our technique works even for such
potentials.
To test our procedure, we have calculated the three-point

function numerically for the 1
2
m2ϕ2 potential and compared

it with the corresponding analytical results given by
Eq. (16). The results show that our numerics match the
analytical results with the error bar below 1% for slow-roll
models of inflation [39].

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

 0  2  4  6  8  10  12  14  16  18  20

3-
po

in
t F

un
ct

io
n 

In
te

gr
al

ln(a)

Equilateral

Squeezed

FIG. 2. The AHC and BHC parts of three-point function, or
generalized fNL, are plotted against the number of e-folds N ¼
lnðaÞ while integrating, for equilateral and squeezed triangles.
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IV. 2D MOMENTS FOR CMB MAPS

Non-Gaussianity can also be studied through the higher
order moments of the perturbation field in configuration
space. Analysis of these moments provides a robust
measure of non-Gaussianity and has also become an
important field of investigation [52,53]. In this paper we
will extend our previous work on 3D calculation of
moments [39]. These 2D moments will provide important
information on the geometrical properties of the CMB
temperature fluctuations map and give us 2D non-
Gaussianity observables such as extrema counts, genus,
and skeleton [29].
To calculate the third-order moments we have to take the

inverse Fourier transform of the three-point function in
momentum space. These moments are always scaled by
the corresponding variances σ and σ1 in all physical
observables such as Minkowski functionals and Euler
characteristics.
The tiny temperature fluctuations in the CMB mark the

imprints of inflation in the early universe. The adiabatic
scalar modes of these fluctuations are generated by the
quantum fluctuations of initial perturbation field ζ. Thus,
we will study how these quantum perturbations get
imposed on the CMB maps. In a two-dimensional map
of the sky, the temperature fluctuations can be related to ζ
via the k-mode integral

ΔT
T

ðθ;φÞ ≈
Z

d3k
ð2πÞ3 ζkΘðk; k̂ · n̂; ; τrec; τnowÞ; ð26Þ

where the transfer function Θðk; k̂ · n̂; τrec; τnowÞ describes
how the observed temperature of the photons coming from
the direction n̂ ¼ ðθ;ϕÞ was formed from earlier times to
the moment of recombination τrec and subsequently modi-
fied to the present moment of observation τnow. Full
treatment requires reconstruction of the Θ transfer function
from the solution of the Boltzmann equation, given, for
example, by CAMB software [54,55]. Here we adopt an
approximate approach, that of an instant recombination,
suitable for sufficiently large scales exceeding the sound
horizon at recombination, kτreccs < 1 (cs being the speed
of sound)

Θ ≈ TðkÞeik·n̂τ0 ; ð27Þ

TðkÞ ¼
�
1

4
Δγ þΦþ ik · n̂ve

�
τrec

e−σðτrecÞ

þ
Z

τnow

τrec

dτðΦ0 þ Ψ0Þeik·n̂ðτrec−τÞe−σðτÞ; ð28Þ

where the Newtonian potentials Φ and Ψ, the photon
energy density fluctuations Δγ, and electron velocity
potential ve are easily obtained from cosmological pertur-
bation codes as in CAMB code [54,55]. The above transfer

function describes photons that propagated nearly freely
from the moment of their last scattering τrec over the radial
distance τ0 ¼ τnow − τrec with temperature set by the local
temperature of the plasma shifted by the gravitational and
Doppler shifts at the position of the photon release and
modified at a later time due to propagation in the time
variable potential [often called the integrated Sachs Wolfe
(ISW) effect]. Since the transfer function is defined after the
primordial ζk amplitude is factorized out, the appropriate
normalization of perturbation potentials on superhorizon
scales k → 0 is 1

4
Δγ −Ψ → 1. This corresponds to Tðk →

0Þ ¼ −1=5 in the Einstein–de Sitter universe [56–58]. In
Eq. (28) σðτÞ is the optical depth due to late-time scattering
along the photon path from the moment τ to the observer at
τnow. This optical depth predominantly accumulates from
the time reionization of the Universe at τreion to τnow and
according to the latest Planck Collaboration analysis
amounts to σðτrecÞ ¼ 0.066 [59].
Note that the integral over full sky of temperature

fluctuations is zero by definition, so the monopole term
is unobservable and must be subtracted out prior to the
calculation of any configuration space statistics [35,60–62].
Given that the angular dependent part of the ISW integral
and Doppler term contribute little to the monopole, the
monopole subtraction can be achieved by simply replacing
eik·n̂τ0 → eik·n̂τ0 − j0ðkτ0Þ in Eq. (27).
Let us look how one can calculate the moments of

ζ̃ðn̂Þ ¼ ΔTðn̂Þ
T on the 2D sky. After subtracting unobservable

monopole contribution

ζ̃ðn̂Þ ¼
Z

d3k
ð2πÞ3 ζkTðkÞWðkRÞ½eik·n̂τ0 − j0ðkτ0Þ�: ð29Þ

Here we have introduced the very important quantity for the
analysis of the data, the window function WðkRÞ.
Configuration space statistics are always measured in the
experiment when the data field is suitably smoothed.
Dependence of the statistics on the smoothing scale is
an important informative ingredient for matching observa-
tional data to theoretical predictions. In our case the
smoothing of the temperature field is done on the sky,
andWðkRÞ is the Fourier space response of this angular (or
multipole) smoothing. In general smoothing may contain
both a low-pass component that suppresses small scale
contributions and a high-pass part that suppresses very long
angular variations. While the latter can be useful to
eliminate a contribution of low multipoles, in particular
the dipole part of the temperature map, in this paper we
limit our analysis to low-pass filtering. We shall consider
the window function to be Gaussian with cutoff scale R,
WðkRÞ ¼ e−k

2R2=2. Note that in general, as a rough rule of
thumb, one can use the correspondence R ¼ τ0=l between
the real space scale R and the angular multipole smoothing
scale l on a sphere of radius τ0.
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The variances of the temperature fluctuations and its
gradients are then given by

σ2 ¼ hζ̃2i ¼
Z

d lnðkÞ

× PζðkÞT2ðkÞW2ðkRÞð1 − j20ðkτ0ÞÞ; ð30Þ

σ21 ¼ hð∇ζ̃Þ2i ¼
Z

k2d lnðkÞ

× PζðkÞT2ðkÞW2ðkRÞð1 − j20ðkτ0ÞÞ; ð31Þ

which we denote for brevity as, respectively, σ2 and σ21.
Next we calculate the cubic moments with monopole

subtraction. A general solution for calculation of these
moments is given in Appendix A. We define for brevity the
double integral over wave vector magnitudes as

Z
dΩps ¼

Z
k21dk1
4π2

k22dk2
2π2

d cos θBζðk1; k2; jk1 þ k2jÞ

×
Y3
i¼1

WðkiRÞTðkiÞ;

k3 ¼ −k1 − k2: ð32Þ

Using this notation we obtain the following expression for
the cubic moment [28,39]:

hζ̃3i ¼
Z

dΩps

�
1þ 2j0ðk1τ0Þj0ðk2τ0Þj0ðjk3jτ0Þ

−
3

2
ðj20ðk1τ0Þ þ j20ðk2τ0ÞÞ

�
: ð33Þ

Similarly, we found that

hζ̃2Δζ̃i ¼ −
Z

dΩps
2

3
k22τ

2
0ð1 − 2ðj0ðk1τ0Þ

þj2ðk1τ0ÞP2ðcos θÞÞ þ j0ðk1τ0Þ
× j0ðjk3jτ0Þðj0ðk2τ0Þ þ j2ðk2τ0ÞÞÞ ð34Þ

and

hð∇ζ̃Þ2Δζ̃i ¼
Z

dΩps
4

3

�
k41 þ k42
10

−
k21k

2
2

3

�
1þ P2ðcos θÞ

5

��
τ40: ð35Þ

Using the above expressions for two-dimensional
moments we have calculated these moments for the
quadratic potential as well as for the step and λϕ4

potentials. We have used the values of τnow ¼
14362 Mpc, τrec ¼ 284.95 Mpc, and τ0 ¼ 14077 Mpc as
given by CAMB software for the best fit cosmological
parameters from the Planck Collaboration results [1,3]. Our
approximate treatment of temperature fluctuations is appli-
cable for kτreccs < 1, i.e., kτ0 < τ0=ðτreccsÞ ≈ 94 with
cs ≈ 0.526c. For numerical reasons, the integration over
wave numbers have been limited to the range (kmin ¼
0.3=τ0, kmax ¼ 300=τ0) for k integrals, which was checked
not to affect our results significantly, due to already present
monopole cutoff at low k < 1=τ0 and the use of low-pass
Gaussian smoothing with sufficiently large scale R,
Rkmax > 1.
We shall quote the results for the normalized 2D cubic

moments S2 ¼ hζ̃3i=σ4, T2 ¼ hζ̃2Δζ̃i=σ2σ21, and U2 ¼
hð∇ζ̃Þ2Δζ̃i=σ41. Such normalized moments are scale inde-
pendent in the second order of perturbation theory for a
scale-free power spectrum PζðkÞ but are inverse propor-
tional to the linear change of the amplitude of ζ field. Non-
Gaussian corrections to geometrical configuration space
statistics such as Minkowski functionals are proportional to
σS2, σT2, and σU2 and do not dependent on the linear field
amplitude.
In Table I the magnitudes of normalized moments and

average fNL value for different inflationary models are
compared. For the table we have chosen the smoothing
length to be R ¼ 422 Mpc ¼ 0.03τ0. This real-space scale
roughly corresponds to l ¼ 33 multipoles. The variance at
this smoothing is σ ≈ 3 × 10−5.
We see that the magnitude of cubic moments is small for

the classical models with smooth potential, with λϕ4

potential generating somewhat larger non-Gaussianity than
the quadratic one. Inflationary models with the step
potential have the magnitude of the moments 10 to 1000
times larger, which enhances the possibility of non-
Gaussian features to be observable. For non-Gaussianity
sourced by the second-order perturbations, the normalized
moments reflect, first of all, the structure of the underlying

TABLE I. The moments of CMB temperature fluctuation after
the monopole subtraction for the smoothed field with R ¼ τ0=30
with 5% numerical uncertainty. The value τ0 ¼ 14362 Mpc has
been used, and for the models with the step potential the step is
located at ϕs ¼ 15.86Mpl. The approximate peak value of
generalized fNL computed from Eq. (18) for equilateral con-
figuration k1 ¼ k2 ¼ k3 is shown in the last column for each
model for comparison.

Inflationary model S2 T2 U2 fNL

1
2
m2ϕ2 Potential 0.147 −0.171 0.017 0.02

λϕ4 Potential 0.418 −0.493 0.076 0.03
Stepc¼0.002; d¼0.02Mpl

1.806 −2.312 0.894 2.0
Stepc¼0.01; d¼0.01Mpl

4.383 −5.146 6.02 50
Stepc¼0.1; d¼0.01Mpl

−35.1 141.5 156.7 1200
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model, as well as, if the model is not scale invariant, the
smoothing procedure that selects the contributing range of
wave numbers. To get a feel for the meaning of the
magnitudes of these moments, let us refer to another
well known perturbative theory, that of gravitational
instability in the later matter dominated stage of universe
evolution that leads to structures in the Universe that we
observe. At the second order of perturbation theory
gravitational instability generates S3 ¼ 34=7 ≈ 4.86 for
the field of density perturbations δ ¼ Δρ=ρ̄ (if we
neglect effects of scale dependence of the variance;
see, e.g., [63]), which is the value similar to our c ¼ d ¼
0.01 step case. The difference is that as density pertur-
bations grow, the variance of δ increases and the non-
Gaussian features ∼σS3 become very pronounced when
the mildly nonlinear regime σ > 0.01 is reached. In the
CMB problem, σ of temperature fluctuations remains
small, at the 3 × 10−5 level suppressing the expected non-
Gaussian corrections.
Now let us study 2D moments as functions of

smoothing cutoff R. In Fig. 4 we plot them for quadratic
potential. In this model ζ perturbations from inflation are
nearly scale-free, and scale dependent features of non-
Gaussian cubic moments come exclusively from the
response of CMB temperature fluctuations. As can be
seen in this figure, at sufficiently large R (near the
horizon scale) the moments reflect the integrated Sachs-
Wolfe effect as well as are affected by the monopole
subtraction. At scales 0.02 < R=τ0 < 0.2 where higher
spatial harmonics dominate, but the transfer function
TðkÞ is roughly flat, S2 and T2 tend to plateau values
equal to the values of 3D ζ-field studied in Paper I [39].
To be exact, since normalized moments inversely change
with the amplitude of the field, and TðkÞ ≠ 1, the
individual values of S2 and T2 differ from S3 and T3,
but their ratio is preserved, S2=T2 ≈ S3=T3 ≈ −0.8. At the

same time the U2 moment that includes the second
derivatives of the field is more sensitive to a power
increase at small scales and continues changing through
this scale range. At R < 0.02τ0 we start to observe the
effect of the first peak in the CMB transfer function,
which increases U2, but decreases S2 and T2 moments.
For the step potential R dependence is much

more informative. In Fig. 5 correspondent moments are
plotted for the model with a step in the inflaton potential
positioned at ϕs that corresponds to the wave vector k−1s ≡
Rs ¼ 0.5τ0 (scale that crosses the horizon on inflation
exactly when the field goes through the jump in the
potential, ϕ ¼ ϕs). The break in the slow-roll behavior
leads to a potentially large non-Gaussian contribution over
the range of k modes on the ultraviolet side of the step
scale. In these calculations, where we used c ¼ 0.01 and
d ¼ 0.01Mpl, the affected k range spans nearly two decades
from k ≈ 1=Rs to k ≈ 50=Rs and leads to complicated,
often oscillatory, behavior of the moments for smoothing
scales Rs=50≲ R≲ Rs. The exact dependence of S2, T2,
and U2 on R in this range is sensitive to parameters of the
model and thus gives us a discriminating test. This
sensitivity will be reflected as well in Minkowski func-
tionals for CMB maps.
In Fig. 6 we demonstrate the sensitivity of non-Gaussian

features to the parameters of the step, showing the results
for c ¼ 0.01, d ¼ 0.01Mpl. and the same position of the
step as in Fig. 5. Both the magnitude of the cubic moments
and the pattern of their R dependence is changed although
the range of affected scales remained almost the same as
in Fig. 5.
For R≳ Rs, we obtain the same moment values as in the

base quadratic slow-roll potential since all modes affected
by the step are filtered out. This is illustrated in Fig. 7 where
the position of the break is shifted to shorter scales,
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Rs ≈ τ0=10. When R≲ Rs=50 we are adding k modes that
are less and less affected by the step, and eventually the
moment values reach a plateau.
To summarize, in inflationary models with step potential,

the non-Gaussian cubic moments of CMB maps show
strong variation on smoothing scale R. The details of R
behaviour depend upon the location of the step ϕs in the
potential as well as the height c and width d parameters of
the step as depicted in Fig. 8. This can be used to determine
the parameters of the inflationary model from the analysis
of CMB maps. In particular, the position of the step, and
therefore the energy scale where the inflation potential has
a feature, is readily observed as the value of the smoothing
scale below which the region of enhanced non-Gaussianity

lies. Determining c and d parameters requires more detailed
matching with theoretical templates.

V. GEOMETRICAL STATISTICS AND
MINKOWSKI FUNCTIONALS

The Minkowski functionals up to first non-Gaussian
corrections can be calculated for two-dimensional random
fields from the cubic moments S2, T2, and U2 [28,30,31].
Even though MFs contain formally the same information as
the higher moments of the field and its derivative, in
practice MFs provide a more robust way to recover this
information from observational and simulated data than the
direct evaluation of higher order moments. The main reason
for this is that the direct moment estimation is highly
sensitive to high/low outliers in the map, and as such is very
noisy in the presence of glitches in the maps, in application
to CMB for example, residuals of point source subtraction.
In contrast, MFs are functions of the threshold ν, fit to
which will be dominated by the range of thresholds where
the signal is the least noisy. Reconstruction of the moments
then involves determining coefficients of decomposition of
the Minkowski functional curves into the orthogonal basis
of Hermite polynomials, which is usually a stable pro-
cedure with better accuracy of the result.
Let us first look at Minkowski functionals for the maps

smoothed with the fixed filter. We took R ¼ τ0=50 (i.e.,
l ≈ 50 in angular scale) for this illustration. The plots for
non-Gaussian corrections to MFs in this section are all
normalized as in the Planck Collaboration paper [5];
namely we divide them by the ν-independent prefactor
in the Gaussian limit of the correspondent MF.
The simplest 2D Minkowski functional is the filling

factor

fV2
ðνÞ ¼ 1

2
Erfc

�
νffiffiffi
2

p
�
þ e−

ν2

2ffiffiffiffiffiffi
2π

p σH2ðνÞ
S2
6
þOðσ2Þ: ð36Þ
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FIG. 6. Moments S2, T2, and U2 plotted as a function of
smoothing scale R for the step model with c ¼ 0.01,
d ¼ 0.01Mpl, and ϕs ¼ 15.86Mpl that corresponds to scale
Rs ≈ τ0=2.
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The first order correction in σ to the filling factor in two
dimensions is plotted in Fig. 9 for the quadratic and the step
potentials. The shape of this correction is universal but the
magnitudes give direct access to S2. In the case of the step
potential it is a factor of 30 higher than for the quadratic
potential.
The second Minkowski functional is the length of

isocontours (per unit volume) that is given by

N 2ðνÞ ¼
σ1e−

ν2

2

2
3
2σ

�
1þ σ

S2
6
H3ðνÞ þ σ

T2

2
H1ðνÞ þOðσ2Þ

�

ð37Þ
as a function of threshold ν. The first order correction in σ
to the length of isocontours N 2 is plotted as a function of
threshold in Fig. 10. The shape of the curve is determined
by the balance between S2 and T2, with T2 responsible for
the linear term, while S2 is for higher order cubic behavior.
In both models in Fig. 10 the T2 contribution is dominant
leading to a similar shape with a single prominent

maximum and minimum. The effect of non-Gaussianity
is again enhanced in the step potential model.
The two-dimensional Euler characteristic or genus as a

function of threshold ν is given by

χ2ðνÞ ¼
�

σ1ffiffiffi
2

p
σ

�
2 e−ν

2=2

ð2πÞ3=2
�
H1ðνÞ

þ σ

�
S2
6
H4ðνÞ −

T2

2
H2ðνÞ −U2

�
þOðσ2Þ

�
:

ð38Þ

It involves all three studied moments,U2, T2, and S2, which
contribute, respectively, three lowest even order Hermite
contributions to the threshold dependence. We show
example behavior for quadratic and step potentials sepa-
rately in Figs. 11 and 12.
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FIG. 9. The non-Gaussian correction to filling factor fV2
as a

function of threshold ν for both quadratic and step potentials with
c ¼ 0.01, d ¼ 0.01Mpl. Left axis for the quadratic potential and
right for the step potential while the smoothing scale is
R ¼ τ0=50.
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FIG. 10. The non-Gaussian correction to length of isocontours
N 2ðνÞ as a function of threshold ν for both quadratic and step
potentials. Left axis for the quadratic potential and right for the
step potential with c ¼ 0.002, d ¼ 0.02Mpl, and ϕs ¼ 15.66Mpl

while the smoothing scale is R ¼ τ0=50.
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FIG. 11. The non-Gaussian correction to Euler characteristic
χ2ðνÞ as a function of threshold ν for quadratic potential while the
smoothing scale is R ¼ τ0=50. Shaded yellow areas are the
numerical uncertainty in the value of the moments.
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FIG. 12. The non-Gaussian correction to Euler characteristic
χ2ðνÞ as a function of threshold ν for step potential with
c ¼ 0.002, d ¼ 0.02Mpl in black; c ¼ 0.01, d ¼ 0.01Mpl in
blue; and ϕs ¼ 15.86Mpl for both, while the smoothing scale
is R ¼ τ0=50. Shaded yellow area is the numerical uncertainty in
the value of the moments.
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The power in discriminating between different infla-
tionary models comes from studying variation of MFs with
a smoothing scale, where potentially the smoothing win-
dow can also be designed to maximize the detectability of
the non-Gaussian features. So, in Fig. 13 we show the
dependence of N 2 statistics and in Fig. 14 the Euler
characteristic χ2 on R.
These figures show that when R ≤ τ0=2 (i.e., to reaches

into the step resonance region on the ultraviolet side of the
position of the step in the inflaton potential), the non-
Gaussianity increases by a factor of 10 for our choice of
step parameters. Subsequent behavior at the lesser smooth-
ing scale is complex, reflecting and correspondingly
allowing one to reconstruct the R dependence of the
moments shown in Fig. 6.
The amplitude of non-Gaussianity in the step-potential

models that we used as an example for our technique is still

lower than the uncertainty in measurements of Minkowski
functionals reported in [5,6] (which, for instance, is at the
level of Δξ2D ∼ 0.01 for the normalized Euler characteristic
at full Planck resolution). Significant uncertainty in deduc-
ing primordial non-Gaussianity from the data comes from
non-Gaussian contributions from secondary effects—CMB
lensing and residuals after foreground subtraction. We can
reach the level of non-Gaussianity in step-models that
would easily be distinguishable in the data if we raise the
height of the step parameter to c ¼ 0.1. In Fig. 15 the non-
Gaussian correction to the normalized Euler characteristic
is plotted for this case showing corrections of 0.01
magnitude. However, at such large steps, the distortion
of the power spectrum is also significant, and the joint
analysis of non-Gaussian Minkowski functionals and
power spectrum is needed to see which effect is more
constraining.

In Appendix C we present an alternative approach to
studying Minkowski functionals as the functions of filling
factor fV2

rather than of the field threshold value ν [31].
Such an approach is needed when the variance of the field
cannot be determined with sufficient precision making it
difficult to find ν, which involves scaling of the field by the
variance. This is a frequent situation with the large-scale
structure data for galaxy distribution, where coverage may
be biased toward overdense regions. Large uncertainty in
the variance is usually not an issue for CMB all-sky maps;
nevertheless, the technique may still be useful.
In summary of this section, we have shown how

Minkowski functionals for CMB maps are computed from
the first principles in single field inflationary models, with
the step potential model used as a nontrivial example. It is
found that the magnitude of Minkowski functionals is
significantly larger for the step potential when compared
with slow-roll models of inflation. The shape of the MFs as
functions of the threshold also differs between different

4 2 0 2 4

0.0001

0.00005

0.0000

0.00005

0.0001
N

2

FIG. 13. The non-Gaussian correction to the length of iso-
contours N 2ðνÞ as a function threshold ν for step potential with
c ¼ 0.01, d ¼ 0.01Mpl, and ϕs ¼ 15.86Mpl at different smooth-
ing scales R ¼ τ0=2 (in black), R ¼ τ0=10 (in red), R ¼ τ0=50 (in
blue), and R ¼ τ0=100 (in green).
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FIG. 14. The non-Gaussian correction to Euler characteristic
χ2ðνÞ as a function threshold ν for step potential with c ¼ 0.01,
d ¼ 0.01Mpl, and ϕs ¼ 15.86Mpl at different smoothing scales
R ¼ τ0=2 (in black), R ¼ τ0=10 (in red), R ¼ τ0=50 (in blue), and
R ¼ τ0=100 (in green).
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FIG. 15. The non-Gaussian correction to Euler characteristic
χ2ðνÞ as a function threshold ν for step potential with c ¼ 0.1,
d ¼ 0.01Mpl, and ϕs ¼ 15.86Mpl at different smoothing scales
R ¼ τ0=2 (in black), R ¼ τ0=10 (in red), R ¼ τ0=50 (in blue),
and R ¼ τ0=100 (in green).
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models of inflation. It is also noted, as in Fig. 15, that one
can find parameter values where these MFs can be con-
strained by Planck analysis at the level of [5,6]. It is
demonstrated that MFs change in a model dependent way
with the smoothing cutoff R. Thus, we can conclude that
the Minkowski functionals are an efficient tool to link non-
Gaussianity in two-dimensional CMB data to the nonlinear
processes on inflation in models with features in the
inflaton potential.

VI. RESULTS AND DISCUSSION

The goal in this work was to develop a link between the
two-dimensional Minkowski functionals for temperature
anisotropy maps and different cosmic inflationary models.
Thus, we developed a robust bridge between the early
universe inflationary models and the observable 2D geo-
metrical characteristics of the initial field of scalar adiabatic
cosmological perturbations. The link to non-Gaussian
features in such observables as Minkowski functionals,
extrema counts, and skeleton properties is provided by
studying the higher order moments of the perturbation field
and its derivatives in configuration space [22,26–29,31].
We have investigated from ab initio the third-order

configuration space moments for 2D temperature maps
that give first non-Gaussian corrections. To calculate these
moments we have to calculate the three-point bispectrum in
momentum space and then integrate over the three
momenta using spherical harmonics for 2D maps of the
sky. We calculated the moments using the transfer functions
generated by CAMB [54], but using instant recombination
approximation, suitable for l < 100. Monopole subtraction
was performed in the momentum space, and this assured
the infrared convergence of the calculations.
We applied these 2D moments to the study of the CMB

temperature fluctuations map that is the most direct probe
of non-Gaussianity. The step potential model that breaks
slow-roll conditions shows interesting dependence of
moments on smoothing cutoff R, and their values increase
by a factor of 100 for some values of R. For this model, we
have larger parameter space of c, d, and ϕs for which we
have to find optimal R and other parameters for detection at
different scales. Thus, these Minkowski functionals give a
distinctly different signature for the slow-roll models and
for the models that break slow-roll conditions as the step
potential model.
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APPENDIX A: GENERAL FORMULA
2D MOMENTS

The calculation of moments in 2D consists of three
integrations as can be seen in Eq. (33). One of the
integrations is taken out with the help of the delta function,
and the integral then takes the following general form:

Z
dk31
ð2πÞ3

dk32
ð2πÞ3 fðk1ÞBðk1; k2;k1 · k2Þgðk2Þ ðA1Þ

in terms of the bispectrum Bðk1; k2;k1 · k2Þ. We can in
general decompose the functions fðk1Þ, gðk2Þ, and
Bðk1; k2;k1 · k2Þ in the above integral into spherical
harmonics as follows:

fðk1Þ ¼
X
lm

flmðk1ÞYlmðk̂1Þ;

gðk2Þ ¼
X
lm

flmðk2ÞYlmðk̂2Þ;

Bðk1; k2;k1 · k2Þ ¼ 4π
X
lm

Blðk1; k2ÞYlmðk̂1ÞY�
lmðk̂2Þ:

ðA2Þ

Using the above relations we find a general expression for
the integral in Eq. (A1) as

⇒
Z

dk31
ð2πÞ3

dk32
ð2πÞ3 fðk1ÞBðk1; k2;k1 · k2Þgðk2Þ

¼
Z

k21dk1
ð2πÞ3

k22dk2
ð2πÞ3 4π

X
lm

X
l0m0

X
l00m00

fl0m0 ðk1ÞBlðk1; k2Þ

× gl00m00 ðk2Þ
Z

dΩ1dΩ2Yl0m0 ðk1ÞYlmðk1ÞYlmðk2ÞY�
lmðk2Þ

¼
Z

k21dk1
ð2πÞ3

k22dk2
ð2πÞ3 4π

X
lm

X
i0m0

X
l00m00

fl0m0 ðk1ÞBlðk1; k2Þ

× gl00m00 ðk2Þð−1Þmδll0δm;−m0δll00δmm00

¼
Z

k21dk1
ð2πÞ3

k22dk2
2π2

X
lm

ð−1Þmfl;−mðk1ÞBlðk1; k2Þglmðk2Þ:

ðA3Þ

Thus, we can find the solution to cubic moments by
expanding fðk1Þ, gðk2Þ, and Bðk1; k2;k1 · k2Þ in multi-
poles and insert them in Eq. (A3) to get the result for
different moments.

INFLATIONARY STUDY OF NON-GAUSSIANITY USING … PHYS. REV. D 98, 023519 (2018)

023519-13



APPENDIX B: CALCULATION
OF CUBIC MOMENTS

The temperature maps have a monopole element
(the average temperature) that needs to be subtracted to
get the physical results, i.e., the temperature fluctuations,

hζ̃3i¼
Z

dΩpsðeiðk1þk2þk3Þ·n̂τ0

− j0ðk1τ0Þj0ðk2τ0Þj0ðk3τ0Þþ j0ðk1τ0Þj0ðk2τ0Þeik3·n̂τ0

þ j0ðk2τ0Þj0ðk3τ0Þeik1·n̂τ0 þ j0ðk1τ0Þj0ðk3τ0Þeik2·n̂τ0

− j0ðk1τ0Þeiðk2þk3Þ·n̂τ0 − j0ðk2τ0Þeiðk3þk1Þ·n̂τ0

− j0ðk3τ0Þeiðk1þk2Þ·n̂τ0Þ:

We calculated term by term with first term eiðk1þk2þk3Þ·n̂τ0
being just the three-point function calculation. Thus, we get
the monopole correction for the cubic moment hζ̃3i by
summing all the above five terms to get

hζ̃3i ¼
Z

dΩpsð1þ 2j0ðk1τ0Þj0ðk2τ0Þj0ðjk3jτ0Þ

−
3

2
ðj20ðk1τ0Þ þ j20ðk2τ0ÞÞÞ: ðB1Þ

In the above expression we see that in the limit k1 → 0 and
k2 → 0, the hζ̃3i moment vanishes. This shows that the
monopole contribution has been successfully eliminated
from the S3 moment.
Next, we calculate the second moment hζ̃2Δζ̃i with the

monopole eliminated that is given below

hζ̃2Δζ̃i ¼ −
Z

dΩpsk23⊥τ20ð1 − j0ðk1τ0Þe−ik1·n̂τ0

− j0ðk2τ0Þe−ik2·n̂τ0

þ j0ðk1τ0Þj0ðjk1 þ k3jτ0Þeik3·n̂τ0Þ;

where we have used plane perpendicular approximation
Δn̂eik3·n̂τ0 ¼ −k23⊥τ20eik3·n̂τ0 that is evaluated on the sphere
at the North Pole. In the calculation of this moment we
consider a symmetric bispectrum in momenta (k1, k2, k3)
with no special choice for the delta function. Thus, the
hζ̃2Δζ̃i moment takes the following form:

hζ̃2Δζ̃i ¼ −
Z

dΩps
2

3
k22τ

2
0ð1þ j0ðjk3jτ0Þ

× j0ðk1τ0Þðj0ðk2τ0Þ þ j2ðk2τ0ÞÞ
− 2ðj0ðk1τ0Þ þ j2ðk1τ0ÞP2ðcos θÞÞÞ: ðB2Þ

The above result can also be obtained from the general
solutions of the three-point function in Eq. (A3).
Last, we evaluate the third moment hð∇ζ̃Þ2Δζ̃i

that is independent of the monopole due to the derivatives.

This moment is finite in the infrared regime; thus, it is more
sensitive to the ultraviolet cutoff, which is why we use a
smooth Gaussian cutoff scheme. Moreover, to calculate this
moment on the 2D sphere we use the following relationship:

hð∇ζ̃Þ2Δζ̃i ¼ −hζðΔζÞ2i þ 1

2
hζ2Δ2ζi: ðB3Þ

So the third moment hζðτ0n̂ÞðΔζðτ0n̂ÞÞ2i is evaluated to be

hð∇ζ̃Þ2Δζ̃i ¼ 4

3

Z
dΩpsτ

4
0

�
k42 þ k43
10

−
k22k

2
3

3

�
1þ P2ðcos θÞ

5

��
: ðB4Þ

This moment, containing only derivatives, is independent of
the monopole term.

APPENDIX C: MINKOWSKI FUNCTIONALS AS
FUNCTIONS OF THE FILLING FACTOR

When direct determination of the second moments of the
field σ and σ1 is not sufficiently accurate, the Minkowski
functionals can be analyzed as functions of the filling factor
fV2

, which can often be measured even on incomplete data.
The procedure is the following. The filling factor and the
rest of the MFs are simultaneously measured for a set of
real field thresholds (not scaled by the variance σ), and then
N 2 and χ2 are expressed with respect to fV2

.
Mathematically, we introduce the effective νf that

represents the filling factor via the definition

1

2
erfcðνf=

ffiffiffi
2

p
Þ≡ fV2

: ðC1Þ

Inverting relation (36) we find to the first non-Gaussian
order that
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FIG. 16. The non-Gaussian correction to length of isocontours
N 2ðνfÞ as a function of filling factor νf for both quadratic and
step potentials. Left axis for the quadratic potential and right for
the step potential with c ¼ 0.002, d ¼ 0.02Mpl, and ϕs ¼
15.76Mpl while the smoothing scale is R ¼ τ0=50.
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ν ¼ νf þ σ
S2
6
H2ðνfÞ þOðσ2Þ: ðC2Þ

After substituting this relation into Eqs. (37) and (38) we
see that

N 2ðνfÞ ≈
σ1e−

ν2
f
2

2
3
2σ

�
1þ σ

�
T2

2
− S2

�
H1ðνfÞ

�
ðC3Þ

and

χ2ðνfÞ ≈
�

σ1ffiffiffi
2

p
σ

�
2 e−ν

2
f=2

ð2πÞ3=2
�
H1ðνfÞ

− σ

�
S2 þ

U2

2

�
− σ

�
S2 −

T2

2

�
H2ðνfÞ

�
: ðC4Þ

Thus, fitting the length of isocontours N 2ðνfÞ and Euler
characteristic χ2ðνfÞ statistics to the data as an expansion
into H0, H1, and H2 Hermite polynomials we determine
σ1=σ from the Gaussian terms and two combinations,
σðS2 − T2=2Þ and σðS2 þ U2=2Þ from the non-Gaussian
corrections. Figure 16 shows the non-Gaussian part of
isocontour length N2 as a function of νf that has the
universal shape. The model dependent information is in the
amplitude proportional to σðT2

2
− S2Þ and its dependence on

the smoothing scale R.
The Euler characteristic χ2ðνfÞ gives additionally access

to σðS2 þU=2Þ and exhibits functional form changes as the
underlying model and smoothing scale changes. This can
be viewed in Figs. 17 and 18. The constant contribution of
σðS2 þ U2=2Þ to non-Gaussian terms results in a shift of
oscillatory curves with respect to the x axis, whereas the
amplitude of oscillations is set by σðS2 − T2=2Þ.

[1] P. A. R. Ade et al., Planck 2015 results. I. Overview of
products and scientific results, Astron. Astrophys. 594, A1
(2016).

[2] C. L. Bennett, Nine-year Wilkinson microwave anisotropy
probe (WMAP) observations: Final maps and results, As-
trophys. J. Suppl. Ser. 208, 20 (2013).

[3] P. A. R. Ade et al., Planck 2013 results. I. Overview of
products and scientific results, Astron. Astrophys. 571, A1
(2014).

[4] P. A. R. Ade et al., Planck 2013 results. XVI. Cosmological
parameters, Astron. Astrophys. 571, A16 (2014).

[5] P. A. R. Ade et al., Planck 2013 results. XXIII. Isotropy
and statistics of the CMB, Astron. Astrophys. 571, A23
(2014).

[6] P. A. R. Ade et al., Planck 2015 results. XVI. Isotropy and
statistics of the CMB, Astron. Astrophys. 594, A16 (2016).

[7] W. C. Jones et al., A measurement of the angular power
spectrum of the CMB temperature anisotropy from the 2003
flight of boomerang, Astrophys. J. 647, 823 (2006).

[8] S. Hanany et al., Maxima-1: A measurement of the cosmic
microwave background anisotropy on angular scales of
10 arcminutes to 5 degrees, Astrophys. J. 545, L5 (2000).

[9] J. L. Sievers et al., Cosmological results from five years of
30 GHz CMB intensity measurements with the cosmic
background imager, arXiv:0901.4540.

[10] C. L. Reichardt et al., High resolution CMB power spectrum
from the complete ACBAR data set, Astrophys. J. 694, 1200
(2009).

4 2 0 2 4
0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

f

02
2

D
f

FIG. 17. The non-Gaussian correction to Euler characteristic
χ2ðνfÞ as a function of νf for step potential with c ¼ 0.002, d ¼
0.02Mpl in black; c ¼ 0.01, d ¼ 0.01Mpl in red; and ϕs ¼
15.86Mpl for both, while the smoothing scale is R ¼ τ0=50.
Shaded yellow areas are the numerical uncertainty in the value of
the moments.

4 2 0 2 4

0.002

0.001

0.000

0.001

f

02
2

D
f

FIG. 18. The non-Gaussian correction to Euler characteristic
χ2ðνfÞ as a function of filling factor νf for step potentials with
c ¼ 0.01, d ¼ 0.01Mpl, and ϕs ¼ 15.86Mpl at different smooth-
ing scales R ¼ τ0=2 (in black), R ¼ τ0=10 (in red), R ¼ τ0=50 (in
blue), and R ¼ τ0=100 (in green).

INFLATIONARY STUDY OF NON-GAUSSIANITY USING … PHYS. REV. D 98, 023519 (2018)

023519-15

https://doi.org/10.1051/0004-6361/201527101
https://doi.org/10.1051/0004-6361/201527101
https://doi.org/10.1088/0067-0049/208/2/20
https://doi.org/10.1088/0067-0049/208/2/20
https://doi.org/10.1051/0004-6361/201321529
https://doi.org/10.1051/0004-6361/201321529
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321534
https://doi.org/10.1051/0004-6361/201321534
https://doi.org/10.1051/0004-6361/201526681
https://doi.org/10.1086/505559
https://doi.org/10.1086/317322
http://arXiv.org/abs/0901.4540
https://doi.org/10.1088/0004-637X/694/2/1200
https://doi.org/10.1088/0004-637X/694/2/1200


[11] A. H. Guth, Inflationary universe: A possible solution to
the horizon and flatness problems, Phys. Rev. D 23, 347
(1981).

[12] A. H. Guth and S. Y. Pi, Fluctuations in the New Inflationary
Universe, Phys. Rev. Lett. 49, 1110 (1982).

[13] A. D. Linde, A new inflationary universe scenario: A
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982).

[14] V. F. Mukhanov and G. Chibisov, Quantum fluctuations and
a nonsingular universe, JETP Lett. 33, 532 (1981).

[15] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Sponta-
neous creation of almost scale-free density perturbations in
an inflationary universe, Phys. Rev. D 28, 679 (1983).

[16] A. A. Starobinsky, The perturbation spectrum evolving from
a nonsingular initially de-Sitter cosmology and the micro-
wave background anisotropy, Sov. Astron. Lett. 9, 302
(1983).

[17] V. Mukhanov, Physical Foundations of Cosmology (Cam-
bridge University Press, Cambridge, UK, 2005), 1st ed.

[18] A. D. Linde, Particle Physics and Inflationary Cosmology
(Harwood, Chur, Switzerland, 1990); Inflation and string
cosmology, Prog. Theor. Phys. Suppl. 163, 295 (2006).

[19] A. D. Linde, Inflationary cosmology, Lect. Notes Phys. 738,
1 (2008).

[20] L. Kofman, A. Linde, and V. Mukhanov, Inflationary theory
and alternative cosmology, J. High Energy Phys. 10 (2002)
057.

[21] J. M. Maldacena, Non-Gaussian features of primordial
fluctuations in single field inflationary models, J. High
Energy Phys. 05 (2003) 013.

[22] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, The
statistics of peaks of gaussian random fields, Astrophys. J.
Part 1 304, 15 (1986).

[23] T. Sousbie, C. Pichon, S. Colombi, D. Novikov, and D.
Pogosyan, The 3D skeleton: Tracing the filamentary struc-
ture of the Universe, Mon. Not. R. Astron. Soc. 383, 1655
(2008).

[24] D. Pogosyan, C. Pichon, C. Gay, S. Prunet, J. F. Cardoso, T.
Sousbie, and S. Colombi, The local theory of the cosmic
skeleton, Mon. Not. R. Astron. Soc. 396, 635 (2009).

[25] H. Hadwiger, Vorlesungen Über Inhalt, Oberfläche und
Isoperimetrie, Grundlehren der mathematischen Wissen-
schaften (Springer, Berlin, 1957).

[26] T. Matsubara, Analytic expression of the genus in a weakly
non-Gaussian field induced by gravity, Astrophys. J. Part 2
Lett. 434, L43 (1994).

[27] D. Pogosyan, C. Gay, and C. Pichon, Invariant joint
distribution of a stationary random field and its derivatives:
Euler characteristic and critical point counts in 2 and 3D,
Phys. Rev. D 80, 081301 (2009).

[28] D. Pogosyan, C. Pichon, and C. Gay, Non-Gaussian extrema
counts for CMB maps, Phys. Rev. D 84, 083510 (2011).

[29] C. Gay, C. Pichon, and D. Pogosyan, Non-Gaussian
statistics of critical sets in 2 and 3D: Peaks, voids, saddles,
genus and skeleton, Phys. Rev. D 85, 023011 (2012).

[30] T. Matsubara, Statistics of smoothed cosmic fields in
perturbation theory. I. Formulation and useful formulae in
second-order perturbation theory, Astrophys. J. 584, 1
(2003).

[31] S. Codis, C. Pichon, D. Pogosyan, F. Bernardeau, and T.
Matsubara, Non-Gaussian Minkowski functionals and ex-
trema counts in redshift space, Pogosyan 435, 531 (2013).

[32] J. R. Gott III, C. Park, R. Juszkiewicz, W. E. Bies, D. P.
Bennett, F. R. Bouchet, and A. Stebbins, Topology of
microwave background fluctuations: Theory, Astrophys.
J. 352, 1 (1990).

[33] K. R. Mecke, T. Buchert, and H. Wagner, Robust morpho-
logical measures for large-scale structure in the Universe,
Astron. Astrophys. 288, 697 (1994).

[34] J. Schmalzing and K. M. Gorski, Minkowski functionals
used in the morphological analysis of cosmic microwave
background anisotropy maps, Mon. Not. R. Astron. Soc.
297, 355 (1998).

[35] H. K. Eriksen, D. I. Novikov, P. B. Lilje, A. J. Banday,
and K. M. Górski, Testing for non-Gaussianity in the
Wilkinson Microwave Anisotropy Probe data: Minkowski
functionals and the length of the skeleton, Astrophys. J. 612,
64 (2004).

[36] A. Ducout, F. R. Bouchet, S. Colombi, D. Pogosyan, and S.
Prunet, Non-Gaussianity and Minkowski functionals: Fore-
casts for Planck, Mon. Not. R. Astron. Soc. 429, 2104
(2013).

[37] P. A. R. Ade et al. (Planck Collaboration), Planck 2013
results. XXIII. Isotropy and statistics of the CMB, Astron.
Astrophys. 571, A23 (2014).

[38] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XVI. Isotropy and statistics of the CMB, Astron.
Astrophys. 594, A16 (2016).

[39] M. Junaid and D. Pogosyan, Geometrical measures of non-
Gaussianity generated from single field inflationary models,
Phys. Rev. D 92, 043505 (2015).

[40] D. Baumann, Tasi lectures on inflation, in Physics of the
Large and the Small: Proceedings of the 2009 Theoretical
Advanced Study Institute in Elementary Particle Physics,
edited by C. Csaki and S. Dodelson (World Scientific
Publishing Company, Singapore, 2011), p. 852.

[41] V. F. Mukhanov, Gravitational instability of the universe
filled with a scalar field, JETP Lett. 41, 493 (1985).

[42] D. Seery and J. E. Lidsey, Primordial non-Gaussianities in
single field inflation, J. Cosmol. Astropart. Phys. 06 (2005)
003.

[43] F. Arroja and T. Tanaka, A note on the role of the boundary
terms for the non-Gaussianity in general k-inflation, J.
Cosmol. Astropart. Phys. 05 (2011) 005.

[44] J. S. Horner and C. R. Contaldi, Non-Gaussian signatures of
general inflationary trajectories, J. Cosmol. Astropart. Phys.
09 (2014) 001.

[45] C. Burrage, R. H. Ribeiro, and D. Seery, Large slow-roll
corrections to the bispectrum of noncanonical inflation, J.
Cosmol. Astropart. Phys. 07 (2011) 032.

[46] N. Bartolo, S. Matarrese, E. Komatsu, and A. Riotto, Non-
Gaussianity from inflation: Theory and observations, Phys.
Rep. 402, 103 (2004).

[47] P. A. R. Ade et al. (Planck Collaboration), Planck 2013
results. XXIV. Constraints on primordial non-Gaussianity,
Astron. Astrophys. 571, A24 (2014).

[48] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XVII. Constraints on primordial non-Gaussianity,
Astron. Astrophys. 594, A17 (2016).

M. JUNAID and D. POGOSYAN PHYS. REV. D 98, 023519 (2018)

023519-16

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevLett.49.1110
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevD.28.679
https://doi.org/10.1143/PTPS.163.295
https://doi.org/10.1007/978-3-540-74353-8
https://doi.org/10.1007/978-3-540-74353-8
https://doi.org/10.1088/1126-6708/2002/10/057
https://doi.org/10.1088/1126-6708/2002/10/057
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1086/164143
https://doi.org/10.1086/164143
https://doi.org/10.1111/j.1365-2966.2007.12685.x
https://doi.org/10.1111/j.1365-2966.2007.12685.x
https://doi.org/10.1111/j.1365-2966.2009.14753.x
https://doi.org/10.1086/187570
https://doi.org/10.1086/187570
https://doi.org/10.1103/PhysRevD.80.081301
https://doi.org/10.1103/PhysRevD.84.083510
https://doi.org/10.1103/PhysRevD.85.023011
https://doi.org/10.1086/345521
https://doi.org/10.1086/345521
https://doi.org/10.1093/mnras/stt1316
https://doi.org/10.1086/168511
https://doi.org/10.1086/168511
https://doi.org/10.1046/j.1365-8711.1998.01467.x
https://doi.org/10.1046/j.1365-8711.1998.01467.x
https://doi.org/10.1086/422570
https://doi.org/10.1086/422570
https://doi.org/10.1093/mnras/sts483
https://doi.org/10.1093/mnras/sts483
https://doi.org/10.1051/0004-6361/201321534
https://doi.org/10.1051/0004-6361/201321534
https://doi.org/10.1051/0004-6361/201526681
https://doi.org/10.1051/0004-6361/201526681
https://doi.org/10.1103/PhysRevD.92.043505
https://doi.org/10.1088/1475-7516/2005/06/003
https://doi.org/10.1088/1475-7516/2005/06/003
https://doi.org/10.1088/1475-7516/2011/05/005
https://doi.org/10.1088/1475-7516/2011/05/005
https://doi.org/10.1088/1475-7516/2014/09/001
https://doi.org/10.1088/1475-7516/2014/09/001
https://doi.org/10.1088/1475-7516/2011/07/032
https://doi.org/10.1088/1475-7516/2011/07/032
https://doi.org/10.1016/j.physrep.2004.08.022
https://doi.org/10.1016/j.physrep.2004.08.022
https://doi.org/10.1051/0004-6361/201321554
https://doi.org/10.1051/0004-6361/201525836


[49] X. Chen, R. Easther, and E. A Lim, Large non-Gaussianities
in single field inflation, J. Cosmol. Astropart. Phys. 06
(2007) 023.

[50] X. Chen, R. Easther, and E. A. Lim, Generation and
characterization of large non-Gaussianities in single field
inflation, J. Cosmol. Astropart. Phys. 04 (2008) 010.
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