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High precision astrometry now enables us to measure the time drift of astrophysical observables in real
time, hence providing new ways to probe different cosmological models. This article presents a general
derivation of the redshift and direction drifts for general observers. It is then applied to the standard
cosmological framework of a Friedmann-Lemaitre spacetime including all effects at first order in the
cosmological perturbations, as well as in the class of spatially anisotropic universe models of the Bianchi I
family. It shows that for a general observer, the direction drift splits into a parallax and an aberration drifts
and order of magnitude estimates of these two components are provided. The multipolar decomposition of
the redshift and aberration drifts is also derived and shows that the observer’s peculiar velocity contributes
only as a dipole whereas the anisotropic shear contributes as a quadrupole.
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I. INTRODUCTION

Over the past decades, the developments of observatio-
nal cosmology, among which cosmic microwave back-
ground (CMB), baryonic acoustic oscillations (BAO), type
Ia supernovae and cosmic shear, have led to a robust model
of our universe in the framework of Friedmann-Lemaitre
spacetimes, the parameters of which are well-measured to
define the concordance model of cosmology. The need for
a dark sector has triggered the necessity to develop tests
of the hypothesis on which this model lies (see Refs. [1,2]
for their description and existing tests). Any data which is
not strictly located on our past light cone brings sharp
constraints, in particular on the Copernican principle [3].

The first evaluation of the time drift of the cosmic
redshift dates back to the 1960s [4,5]. Since it offers a direct
measurement of the local cosmic expansion rate [6], it
evolved to the idea of “real time” cosmology [7], based on
the time drifts of both the cosmic redshift and the direction
as new cosmological observables. For example, the pos-
sibility of measuring the redshift drift was thought both as a
way of measuring the instantaneous cosmic expansion rate
as a function of redshift, H(z), [8] and hence better
constrain dark energy models [9-11] in the framework
of Friedmann-Lemaitre (FL) cosmologies. On a more
fundamental level, the redshift drift was shown to offer a
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way to test of the Copernican principle in [3,12,13],
while lensing-type effects of a local void were investigated
in [14]. Direction drift effects were also investigated in
the test of the Copernican principle in Ref. [15], while in
Refs. [16,17] it was used to constrain anisotropic (Bianchi I)
cosmological models. More recently, the aberration drift
was used as a redshift-independent tool to extract the proper
acceleration of the earth with respect to CMB [18]. From a
more formal perspective, several investigations of optical
drift effects in general relativity provide a covariant deriva-
tion of cosmic parallax for a pair of sources in general
spacetimes [19-23].

From an observational perspective, the developments of
precision astrometry have allowed the Gaia space mission
to measure the parallax of astrophysical objects with
unprecedented precision [24,25]. Forthcoming experiments
carrying state-of-the-art spectrography on the E-ELT, aim
to reach the sensitivity to measure the redshift drift by
monitoring Ly-a absorption lines of distant quasars in a
time span of a decade [26] and it has been demonstrated
that the use of many spectral lines and quasars is an
important measure to reduced the variance in z induced by
linear cosmological perturbations [27].

This article revisits both the redshift and direction drifts
in several cosmological frameworks. It starts by a simple
analysis in Minkowski spactime in Sec. II in order to
emphasize the need for a two-worldlines analysis, hence
non-local in time. A heuristic argument allows one to
grasp the physical meaning and typical amplitude of all
the different contributions. It takes into account a general
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accelerated observer and source. Then, Sec. III focuses on
the computation of the redshift and direction drifts for
general observers in FL spacetime. A multipolar decom-
position of this result is presented and compared to the
literature. The order of magnitude of the aberration and
parallax parts of the direction drift are then estimated.
In Sec. IV, the same drift effects are computed but now
for a linearly perturbed FL spacetime, including scalar,
vector and tensor perturbations. This fully characterizes
the imprints of the large scale structure. The analysis is
finally extended in Sec. V to anisotropic spacetimes to
provide the expressions of these drifts for a Bianchi I
universe. As such it offers a new way to test the isotropy of
the cosmic expansion around us, complementary to
methods based on either cosmic shear [28-30] or super-
novae [31,32] observations. Section VI summarizes our
results and their implications.

II. GENERAL APPROACH

A. Heuristic argument

In order to get some intuition on the aberration drift, let
us start the computation with a heuristic approach. In
1728, Bradley [33] obtained an expression for stellar
aberration using a corpuscular description of light with
Newton optics theory. It is today well-understood in the
framework of special relativity that aberration is related to
the Lorentz boost associated with a change of referential
(see e.g., Ref. [34] for details). Consider an inertial frame
S and a second inertial frame S’ moving with speed V with
respect to S along the X axis. For a light source in the
XOY plane of S whose position vector makes an angle a
with the OX axis, the photons emitted are observed in the
direction (cos a, sina, 0), and the associated wave-vector
is k* = k°(1, — cos a, — sin a, 0). However, in the frame S’
the wave-vector is k* = k°(1, —cos @, —sina’, 0), that is,
the photons are observed from a direction (cosd/,
sina/, 0). It is a standard exercise to show that the angles
are related by

V1-=V?2

tand = ———tana. (2.1)
1+V/cosa
or, equivalently,
Vv
cosa = %, (2.2)
1+ Vcosa

where the speed of light has be set to unity by a proper
choice of units. Bradley considered S to be the quasi-
inertial frame of the Solar System and S’ attached to the
Earth. Over a At = 6 months period, AV = 2V so that the
aberration is given by

~sind'Ad/ ~2Vsin® .

|cos(a + Ad’) — cos |

The aberration is just an effect of perspective due to a
change of (Lorentz) frame, and the question of whether or
not to take into account the source velocity does not arise,
which was however a difficult question in corpuscular
optics. It follows that the drift is of order
Ad AV .
NN sina’.
There is however a second effect to take into account.
It is a simple geometric effect due to the fact that in At the
star and the observer have moved by a typical relative
distance |v, — v,|Af so that it is expected that

(2.3)

|V, — V,|At

Ad ~————
|l'* _r0|

(2.4)

In conclusion, we expect the typical total drift to behave as

Ad v, —v,| AV
J— +_

—— 1= ol 2.
At r,—r,| At (2:3)

| sina|.
As we will see, a rigorous calculation leads to projection
effects on the velocities which cannot be captured with
the above (heuristic) derivation. Still, the above formula
captures the essential effects. We shall refer to the total
drift as direction drift, the term inversely proportional to
the source-observer distance is the parallax drift and the
term proportional to the observer’s acceleration is the
aberration drift. Indeed, the arguments above are just a
simple sketch of the different contributions. The angles
have to be replaced by direction on the celestial sphere
(i.e., unit 2-vectors) and we need to properly define the
angles, motions, wave vectors, etc., as described by non-
inertial observers and sources. However, it emphasizes a
key issue on which our formalism is built: the direction
drift, and similarly the redshift drift, involves two sets of
null-geodesic compared before and after a given lapse of
observer proper time. It also shows that the direction drift
cannot be reduced to a time derivative (coordinate or
proper) of the aberration.

B. Minkowski spacetime

Let us consider a Minkowski spacetime with metric
ds? = —d* 4 5;;dx'dx’/ in Cartesian coordinates. Thanks
to the three spatial translations Killing vectors, &) = &7,

the vector k# tangent to a null geodesic x#(4) satisfies

k& = ki = const (2.6)
along the geodesic. Likewise, the existence of a timelike
Killing vector ensures that the frequency measured by the
associated observer is constant along the photon’s trajectory.

Let us first consider a static observer with 4-velocity
u' =&, We decompose k* into a frequency @ and a
direction n* as
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k= w(u* —n*), nu, = 0.

’ 27)

Note that we choose to parametrize the photon’s propaga-
tion direction in terms of the observation direction, which
explains the minus sign in k*; this is consistent with the
parametrizations we used in the previous section, and is just
a convenient definition. The condition (2.6) reduces to

dxi
dr

=—ni, (2.8)
and we have fixed the constant on the right-hand side
(r.h.s.) of Eq. (2.8) to be the value of the vector n' at the
observer’s position. This equation is easily integrated
to give

xls - Xf) = _(t.\' - to)nf)’

(2.9)
where the subscripts “s” and “0” stand for “source” and
“observer” respectively. Let us now consider a second
geodesic in which the photon was emitted at 7, + ¢, and
received by the observer at , + 6t,. We also assume that
the source is static. Writing Eq. (2.8) for this second
geodesic gives

Xi- - Xé = _(ts — It 6ts - 5t0)(”é + 512”5))7 (210)
where we have introduced the general definition
51,0 = O(t, + 1) — O(t,), (2.11)

for any observable O compared at two times separated by
a lapse o7 of the proper time of the observer. Note that it
is a non-local variation which involves two geodesics.
For a static observer, we also have 67 = 6t. Contraction
of Egs. (2.8) and (2.10) with n! leads to &t, = dt,, as
expected.1 If we now compare Egs. (2.9) and (2.10) to
extract the direction drift, we find for a static source and a
static observer in Minkowski spacetime

512}’1{J = O, (212)
1.e., there is no direction drift.

Let us now consider a general observer with 4-velocity
ii*. We assume that its peculiar velocity o# is small
compared to the speed of light. Hence, we shall work at
linear order in the spatial velocity and write

W= ut + vH, (2.13)
with v#u,, = 0. From now on tilde quantities are associated
to the general observer. The wave vector is either

'Note that we have also used n;o0121h = 0, which is true for
small variations.

decomposed as k* = w(u* — n*) for the static observer,
or as k* = @(#* — i*) for the general observer. It follows
that

k' =a(v' —n'), (2.14a)
»=w(l+v'n;), (2.14b)
it =n'+ L/, (2.14¢)
where
Li=8—n'n; (2.15)

is the perpendicular projector with respect to the direction
of observation of the static observer, n'. The proper time of
the general observer is related to the coordinate time by
d7?> = (1 — v?)d?, hence dr = d7 at linear order in . Since
Eq. (2.6) is observer independent, the geodesic equation
leads to

dxt
W= @, (v — 7l) (2.16)
Using Eq. (2.14b), it takes the form
dx! S
O Llvg — 7. (2.17)

In this expression, we have used that the perpendicular
projector multiplies the spatial velocity, and therefore the
relation n! = 7!, valid at lowest order in v, can be used in
Eq. (2.15). Once integrated, it leads to

Xomxh= (=) (Lo =) (218)
since n' and thus L% = &) — n'n; are constants along the
null geodesic. This is the generalization of Eq. (2.9) for a
general observer.

Let us now consider a second light ray emitted at ¢, + &7
and received at 1, + 67,. We also allow the source to have a
general velocity. We now have 67, # 67,, since both the
observer and source are moving. The end points of the
second null-geodesic are now given by x! , + vi .7, ., and
the velocity of the observer is then v! + ©!6%,. Figure 1
illustrates the scheme of this calculation. The integration of
the second geodesic gives

xi — xi + vist, — vl i,
= (ty — t, + 5ty — O1,)
X (J_;vé — iy + J-§i}é5;o — 8107p). (2.19)

The relation between &7, and 57, is obtained by subtracting
the contractions of Egs. (2.18) and (2.19) with n! to get
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FIG. 1. General definitions for the two null geodesics between a
general observer and source. The differences between the times
contribute to the parallax part of the drift. Note that at first order
in velocities &7, , = 6f, .

o1 S
= =1- (le - Ué)noi'

5 (2.20)

Once inserted in Egs. (2.18) and (2.19), we get the direction
drift

Siaithy J—;(U{v —v))
§t, Dy

+ Liid, (2.21)
where D,,=t,—1t, is the (positive) radial distance
between the observer and the source. Note that the
perpendicular projector multiplies spatial velocities, and
as we work at linear order in velocities, it is equivalent to
consider the projector built either from n’ or #i'.

The expression (2.21) has two different terms as our
heuristic reasoning suggested. The first term (the parallax
drift) is related to the change of apparent position of the
source due to the motion of the source and the observer.
This is a simple perspective effect that is proportional to the
inverse of the distance. The second term (the aberration
drift) is the mean peculiar acceleration of the observer
perpendicular to the line of sight on the time scale of the
observation.

C. Summary

This first insight shows that it is indeed not correct to
start from the Bradley formula for the aberration and simply
take its time derivative. It also defines clearly the general
strategy of the computation: (1) consider 2 null geodesics
connecting the observer and the source, (2) relate the lapses
of time between the two geodesics at the source and at the

observer. This provides a well-defined and physically well-
under control derivation of both the direction and redshift
drifts that can be extended to any spacetime. It also
emphasizes that we have to pay attention to the fact that
@ may not be constant along the geodesics and to define
properly the direction of observation. To that purpose,
given a metric g,,, we shall introduce a tetrad basis e?’ )

defined by

gﬂvei(lA)el(/B) = NAB- (222)

If we choose 6’(’0) to be the 4-velocity u* of an inertial
observer, any vector field V¥ can then be decomposed as

Vi = (=Veug)u + Vel

(2.23)
III. FRIEDMANN-LEMAITRE SPACETIME
AND ITS PERTURBATIONS

A. General observers

The construction from the previous section is easily
generalized to a cosmological spacetime. Let us assume a
cosmology described by a spatially flat Friedmann-
Lemaitre (FL) solution with metric

ds? = —dr* + a*(1)6;;dx'dx/ (3.1)
where ¢ is the cosmic time, i.e., the proper time of
comoving observers with 4-velocity u* = &) and a(r) is
the scale factor. We also introduce the conformal time
defined by dy = a~'dr and define the Hubble function by
H = dIna/dt. We use the tetrad field defined by

€0) = 6,, €i = Cl_lai. (32)
For a photon with wave vector k* = w(u* — n*), one easily
derives from the formalism of the previous sections that the
redshift drift for comoving observers and sources is

512Z o

= (1 H,—-H,, 3.3
7 (1+2)H, - H, (3.3)
whereas the direction drift vanishes,
(i) _
5]2}’10 =0 (34)

when n' is expressed in its tetrad components n' = n(/)e E )

For the direction drift, the case of comoving observer and
sources is indeed analogous to the Minkowski case for
static observer and sources. Note that in Minkowski there is
no redshift drift.

As in the previous section, we now consider a general
observer with 4-velocity
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= ut 4 ok, (3.5)
where v# is spatial (v*u, = 0). Again, the tilde denotes
quantities associated with a general observer. We assume
the observer is nonrelativistic and work at first order in v*.

The wave vector is decomposed equivalently either

as k#* = w(u/l — n/") or as k* = (b(ﬁﬂ - flﬂ) Again, it
follows that
K= a(v' - i), (3.6a)
@ =w(l +vin;), (3.6b)
il =nl + J_;'._pf, (3.6¢)

where L = &, —n'n; is the perpendicular projector with
respect to n'. Since the FL spacetime also enjoys 3 spatial
Killing vectors,

a*k’ = k; = const (3.7)
along a null geodesic. However, FL having only a timelike

conformal Killing vector, we have aw = const. After
decomposing n’, /i and the velocities on the tetrad (3.2) as

nt = n(/’)%)’ 7l = fl(j)eéj>’ o= ”U)eb)’ (3.8)
the condition (3.7) leads to
dx’ i i
aa)i:aod)o(vg) —ﬁE))). (3.9)

dn
With the use of Eq. (3.6b), and the fact that aw = a,w,, for
comoving observers, it reduces to

(3.10)

It can be integrated easily since n() is constant along the null
geodesic, and sois L%, once expressed as J_;'- = 5} - n(i>n<
We get

i

X —xbh = (1, = no)(Lind) =), (3.11)
Indeed, after shifting to conformal time, this is similar to the
derivation in Minkowski spacetime.

We now shift to the second geodesic describing the
observation at a conformal time 7, + 67, where 67, is
related to the proper time 7 of the observer by 6t = 67 as
long as we work at first order in velocities. The photon was
emitted by the source at a conformal time 7, + 7,. As
explained in the previous section, we need once more to
find the relationship between 67, and 67,. Compared to the
first geodesic, the positions of the source and the observer

are now given by xﬁyo—l—vg’%&ﬁsﬁo; the velocity of the

observer is vE,“ + vf)(i)éﬁo (where a prime refers to a

derivative with respect to the conformal time). As long
as we work in first order in velocities, we need only the
background value of 512n((f) =0 so that J_j remains
unchanged. Plugging these modifications in Eq. (3.10)

we get the equation of the second geodesic

xi—xt o\, — o 7,

= (ns =1, + 57]3 - 5’70)

x (Lo il + Lio s, - 30n)).  (3.12)

By contracting this latter equation with nf,[), one gets the
relation between 67, and 67, as

Ol

01l

This can also be obtained by making use of Eq. (A9)
derived in Appendix A.

To finish, we just need to combine Eqs. (3.11)—(3.13) to

get the total direction drift, i.e., the change of direction in
units of proper time of the observer, which is

=1- (vy) - vgi>)n(,»).

(3.13)

512ﬁgi) _ J_§(U§J) _ U(]))
5t0 aO){SO

where y,, =1, —n, is the comoving radial distance
between the observer and the source. This expression is
similar to Eq. (2.21) derived in a Minkowski spacetime, and
its implications will be discussed in Sec. III C.

Let us now turn to the redshift drift. Starting from
Eq. (3.6b), we can express the redshift as

+ 15y, (3.14)

4 (0 = o). (3.15)
It is then straightforward to write the redshift 1 + Z 4 67 for
a second geodesic and subtract the previous relation, so as
to find the observed redshift drift,

S51~7 . (i Ay
51t2Z = (14 2)(Hy = i) = (H, = gy,
o

(3.16)

B. Multipolar decomposition

The angular dependence, i.e., in n) | of the redshift and
aberration drifts can be decomposed in multipoles either
using symmetric trace-free tensors or spherical harmonics
[35]. For the redshift drift, it takes the form

1%
St,

=> We,Y"(n0) (3.17)
Z.m
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where the W, ; are symmetric tracefree tensors. From
Eq. (3.16), we read that the monopole and the dipole of the

redshift drift are

W =(1+Z%)H, - H, (3.18a)

W, =—(1+2) i+ (3.18b)
The direction drift can be written in terms of a gradient
and curl as

5127130 » o
Qulto. _ ping(n) + 00D, H(n)

s ; (3.19)
(8

where D/ is the covariant derivative on the 2-sphere of unit
radius and €()) is the Levi-Civita tensor on the unit
2-sphere. The angular dependence of £(n")) and H(n')) is
in turn decomposed in symmetric trace-free tensors or in
spherical harmonics. For £ (and similarly for H) this
decomposition is

EnV) = &n + &nDnl) + .
= EpYm(n).

>1,m

(3.20)

From Eq. (3.14) we infer that H(n?)) = 0 and the dipolar
components of £(n')) are
0 _ ) ,
gi - u + i](()l>.

3.21
aOXSO ( )

Note that a dipole in H(n)) corresponds to a global
infinitesimal rotation, hence the direction drift generated by
our local velocity cannot be mixed with such effect.

Finally, we note that one could have chosen to decom-
pose the direction drift directly in terms of spin-weighted
spherical harmonics; this is actually equivalent to what we
are doing since the covariant derivative on the unit 2-sphere
DY coincides with the spin-raising operator spherical
harmonics [36,37].

C. Discussion on velocities

The previous sections derive the redshift and direction
drifts for both comoving and general observers in a strictly
spatially homogeneous and isotropic FL spacetime. Let us
have a closer look to our result (3.14) concerning the
aberration drift. It contains two contributions: the first one
is the parallax drift, which encompasses the change of
parallax due to the motions of the source and observer, and
the second, the aberration drift, is similar to the Bradley
aberration. While the first depends on the distance of the
source, the second depends only on the acceleration of the
observer, a property that we have already explained in our

heuristic argument. Other works, such as Refs. [22,23],
have also computed in more general settings these two
contributions to the total variation of direction, employing a
different terminology.

To compare the two contributions, we must describe the
different motions involved, which comprise the motion of
our local group of galaxies with respect to the CMB, the
motion of the Milky Way with respect to the local group,
the motion of the Sun around the Milky Way, and finally
the motion of the Earth around the Sun. To this purpose, we
write

o) = vl(fé + vf\;l)w + vg> + vé;) (3.22)
and analyze each motion separately. We also provide rough
estimates of the order of magnitude of the aberration and
parallax drifts, assuming that the motions of the sources are
averaged out.

1. Local group velocity, Vg)(;

Let us start by considering the motion of our local group
of galaxies. This motion is given by solving the geodesic
equation for a point particle with 4-velocity #* in a flat FL
universe. In the absence of perturbations of the gravita-
tional potential, the solution is simply 1')((,[) = —Hov(i) . The
comoving radial distance from the observer to the source

satisfies
AoXso /Z dz’
DHO - 0 E(Z/) ,

where E(z) = H(z)/H,. This allows us to rewrite
Eq. (3.14) as

(3.23)

5ty Dy,

512;1(()1') B J—j‘ {(vﬁj) _ v<j)) )
0 E(Z)

7~ Us ], (3.24)

where Dy = H;' is the Hubble radius today. Now, E(z)
can be evaluated through the Friedmann equations, and in a
ACDM scenario it is given by

E(z) = \/Q;(l +2)3 +QQ, (3.25)
where Q) and Q} are the energy density parameters for
matter and dark energy today, respectively. Note that since
the parallax drift is redshift dependent through E(z), it can
be distinguished from the aberration drift, which does not
depend on z. To compare their magnitude, we use the
fiducial cosmology Q7 = 0.31 and Q} = 0.69, following
the latest Planck values [38].

Assuming comoving sources, the parallax drift is com-
parable to the aberration drift for z ~ 1.48, which corre-
sponds to sources such that ayy,, ~ Dy, . At smaller
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FIG. 2. Behavior of the function °* o = frd2 B

z. Note that it saturates for large z. The vertlcal hne corresponds
to z = 1.48.
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redshifts, the parallax drift dominates. Since 1/ fo

saturates” to approximately 0.31 at large redshifts (Fig. 2)
the parallax drift will always contribute to more than 25%
of the total signal. This saturation was already noted in
Ref. [22]. Considering the LG has an approximate velocity
of 620 km/s with respect to the CMB rest frame [39], we
expect the aberration drift to be of order 0.03 pas/yr.
For sources with comoving radial distance of Dy, the
parallax drift is of the same magnitude, and remains so even
for further sources. For closer sources, e.g., at 0.1Dy , the
parallax drift is more significant, at roughly 0.3 uas/yr.
Our estimates can be compared to Ref. [18], and
essentially its Eq. (5). To that purpose we pick up a system
of coordinates on the celestial 2-sphere such that
i) = (sin @ cos ¢, sin B sin @, cos O) (3.26)
again with the convention that a tilde denotes quantities
as seen by the general observer. Following Ref. [18], we
align the z-axis with the velocity of the observer. In that
coordinate system, the projection of Eq. (3.14) on the z-axis
gives, to first order in velocities,

déo 1
— = v, Sinf — v, sin @
dr aoso
(2) (0
1 vs — cos Ongvs
_ < 770 > . (327)
Ao so sin @

Since we are in a pure FL, we have to set ® = ¥ = O in the
results of Ref. [18]. Hence, at first order in velocity, the
proper time of the general observer and the cosmic time
coincide. Comparing the above to Eq. (5) of Ref. [18], the
aberration contribution to the drift matches with our result.

*For large redshifts, E(z)~+/QS,(1+2z)3, such that 1/fOE &
Q0 /2=0.28. The 0.31 value mentioned on the text is found
when taking into account the nonzero value of Q.

The 6 of their Eq. (5) accounts for the parallax drift due to
the motions of the source, which can be suppressed by
averaging over many sources. Here, this effect is explicit in
the last term of Eq. (3.27). The authors of Ref. [18] are
concerned with the aberration drift effect, and argue that the
parallactic effects from the motion of the observer can be
subtracted from observations. The first term of Eq. (3.27) is
thus not present in Ref. [18]. If the effect from the velocities
of the sources is averaged out, we are indeed left with the
parallax drift due to the motion of the observer and the
aberration drift. The total drift thus reads

@
At agrso

Vo 8in 6 — b, sin 6. (3.28)

Our method of comparing two infinitesimally close geo-
desics has the advantage of making explicit each of these
effects. We show how to apply it in less symmetric
spacetime in Sec. V.

2. Milky Way velocity, V{\?W

The main source of acceleration for the Milky Way
inside the local group is the gravitational potential from
M31 (Andromeda). Thus, we approximate the acceleration
of the Milky Way by iyw = GMy31/R3g3,- This gives the
magnitude of the aberration drift: with Ry3; = 0.8 Mpc and
My, ~ 1.3 x 1012M, [40], it gives a typical magnitude of
0.006 pas/yr for aberration drift.

The contribution of the parallax drift is estimated from
vmw/ o so- The Milky Way’s velocity with respect to the
local group is estimated to be of order 135 km/s [39]. For
sources at a distance a,y,, = Dy, the parallax drift for is
then of the order 0.006 pas/yr. For sources further than
AoX o 2 Dy, the total direction drift for the motion of the
MW inside the LG is roughly one order of magnitude
smaller than the drift of the LG with respect to the CMB.

3. Sun velocity, vg>

Let us estimate the direction drift due to the motion of
the Sun around the Galactic center. From Kepler’s laws, the
acceleration of the Sun around the Galactic center is
b = v5/Rge, Where Rge is the distance from the Sun
to the Galactic center. The parallax drift is simply estimated
from vg/ayy - Considering vg ~ 230 km/s [39] and the
distance to the Galactic center to be Rgc = 8 kpc, the
aberration drift and the parallax drift are found to be of
the same order for sources such that a,y,, ~ cRgc/
vo ~ 10 Mpc. This shows that both the parallax and
aberration drifts may contribute significantly to the total
signal. The aberration drift is of order 4 pas/yr and, at
QoY 5o = Dy, the parallax drift is of order 0.01 pas/yr.
Thus, the aberration drift contribution from v, is 100 times
larger than the aberration drift due to the motion of the LG.
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TABLE 1. Estimation of aberration and parallax drifts for
different motions. The values are expressed in units of pas/yr.
LG MW O
v 0.03 0.006 4.0
v/Dy, 0.03 0.006 0.01

4. Earth velocity, "ga)

The direction drift contribution from the motion of the
Earth around the Sun comprises an annual modulation to
the total signal which is not cumulative. Since the motion of
the Earth around the Sun is well understood, it is expected
that this signal can be subtracted.

5. Final remarks on velocities

Table I summarizes the previous estimations of the
aberration and parallax drifts. They are denoted v and
v/agyso, respectively. We consider the parallax drift for
sources distanced by a comoving radial distances of Dy ,
which corresponds to z ~ 1.48. It is an interesting exercise
(left to the reader) to evaluate the parallax drift also for
ao¥so = 3Dy, which corresponds to z 2 100, and for
aoXso = 0.1Dy_, which corresponds to z ~0.1.

Quasars are found in a range of redshifts up to z = 5, but
are mostly around z = 1 and z = 2 [41]. This means that
for both the local group and the Milky Way motions, the
aberration and parallax drifts are of the same order of
magnitude.

We must finally note that our estimations completely
ignore the direction of the different velocities, which must
be taken into account for a precise analysis.

IV. PERTURBED FL SPACETIMES

We extend the previous analysis to take into account the
effects of the large scale structure. The universe is then
described by a perturbed FL spacetime with geometry

ds? = a?[—(1 +2®)dn* + (5;; + h;;)dx'dx’],  (4.1)

with

hij = =2¥5;; + 20;Ej) + 2E;;. (4.2)
This defines our choice of Newtonian gauge where the scalar
modes are described by the two gravitational potentials, @
and W, vector perturbations are described by a transverse
vector E; (9;E' = 0) and E;; represents the traceless and
transverse tensor perturbation (E! = 0 = 9;E") describing
gravitational waves.

The gravitational potentials have two effects on the
direction drift. The first is a direct effect on the drift while
the second is an effect on the motion of the observer. More
precisely, it will affect the geodesic motion of the local

group with respect to the CMB since then the geodesic
equation for a point particle with 4-velocity & is
o) = —Hyol) - '@, (4.3)
Reference [18] describes how measurements of the cos-
mological aberration drift could be used to evaluate the
contribution from &'®,. In fact, neglecting decaying and
vorticity modes, one can show that the contribution from
the gravitational potential is proportional to H vé’), with the
proportionality factor being given by a model-dependent
parameter. In standard GR, this parameter is of order one,
and the contribution of 9'®, is of the same order of
magnitude as the cosmological aberration drift [18].

A. Null geodesics

The study of the null geodesics is simpler once one uses
the standard trick that they are conformally invariant.
The metric (4.1) can be rescaled as ds®> = Gudxtdx” =
a2§ﬂydx"dx”. Then, if k* is the tangent vector to a null

geodesic of g,,, then * = a?kv is the tangent vector to a
null geodesic of §,,, where from now on the overhat
denotes quantities evaluated in the conformal space.
The conformal null geodesic vector & can be decom-
posed as
k* = &(1,n'). (4.4)
We define @, and 7’ the (constant) background values of

@ and n', respectively. To first order in perturbations, the
0-component of the geodesic equation is

1da do 1,
Y _ o 2" wiin

a2 i (4.5)

ody

where we used that % =1k, = % + n'0; and the prime
denotes the partial derivative with respect to #. It can be

integrated to give

g — @, = 5)0 |:—2(CI)S - (Do)

s 1_._.
+/n7 (@’—Eﬁ’ﬁfh§j>d11}

The energy of the photon requires the 4-velocity of a
comoving observer in perturbed FL universe to be com-
puted. But, as long as we are dealing with first order effects,
we can ignore the spatial part of the 4-velocity and then
include it as described in the previous section. So, in
conformal time,

(4.6)

i, = (-1 - ®,0), (4.7)
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Since &1, = - u,, we deduce that the energy of the photon as
measured by an observer with 4-velocity u* is

0]
a):—k”uﬂzz(l-i-d)), (48)
from which we deduce the redshift
0) a, @
1 == b —D,)|. 4.9
+z o, asa)o[ﬂs o)] (4.9)

Now, @,/&, can be obtained from Eq. (4.6) so that

14z=2

S

5 1 . .
+/" <®’—Eﬁ’ﬁ-’h§j>dn]. (4.10)
r’()

It decomposes in scalar, vector and tensor contributions as
1+2z 4629 + 62" + 620, with

{1 — (D, — D,)

5Z(S> = |:_(q)s - q)o) + /”"' ®/d”:| (4113)
aS Mo
(V) _ _& s I i
02 as Jy, O E)n'ildy, (4.11b)
521 = _% Bl aiaidy, (4.11c)

where we have defined the standard lensing potential as

O=0+V. (4.12)

B. Redshift drift

Evaluating the redshift drift is more involved in a
perturbed FL universe since the constant time hypersurfa-
ces are no longer homogeneous. Considering a second
geodesic corresponding to an observation at f, + 6t,, the
change in redshift §;,z is obtained from Eq. (4.10) to be

o
2% _ (H,6t, — H,6t,) + 61T (4.13)
I+z
where
s 1_. .
T =—(0,—D,) +/ <<D’ —Zn’nfh:»j)dr/ (4.14)
rIO

and 0, Y stands for the difference of YT between its value on
the second and first geodesics. To evaluate the drift of the
integrated terms in Y, one has to take into account how they
vary spatially from one geodesic to the next as space is no
longer homogeneous. This calculation is detailed in
Appendix B, thus yielding

51, = —(D,61, — D,5t,) + / " <d>” -7

Mo

in hﬁ;) dnén,.

Plugging this back into Eq. (4.13), we get

5122
14z

= (H,6t,

N 1_._.
+/ (CI)” —Eﬁ’ﬁfh:»’]) dnén,.
’70

To obtain the redshift drift, we must also take into account
the difference between the observer’s proper time 7 and the
cosmic time #, 67 = (1 + ®)&t, and then use Eq. (A9) to
conclude that

— H,8t,) — (D51, — D,51,)

(4.15)

512Z
0T,

= (14 2)[Hy(1 = ®,) + D] - [H,(1 - @,) + D]

1 s 1 . .
_|_( +Z)/'7 ((I)/’——fllfl”’l;;)dl’].
as Iy, 2

C. Direction drift

To evaluate the direction drift, we start with the
i-component of the geodesic equation,

(4.16)

dn’ _;do
J(I)——J_’ J(nkn'h
B G L =S L i)
dh’ 1 ARk
J_L _ Zpipipk 5 — 0. 4.1
+ 7 i SR i 0 (4.17)

With the tetrad for the conformal space defined by

€0 =(1- —h{f)aj, (4.18)

i1
CI>)8,], €(i) = (5{ —2

the direction vector is decomposed in tetrad components as

® 0
so that
n' = nl) + onl) - —h’ (4.20)
Plugging this decomposition into Eq. (4.17) gives
dn(® ; _ g diy
(4.21)

By integrating this equation and then replacing n) by
n' :% using Eq. (4.20), one gets the null geodesic
equation,

Lo w,, .
5L (i~ k)

o 1
- L0 /'7 i { 2[”c<>k)no hkﬂ}dﬂ

After integration from 7, to 7, its scalar, vector and tensor
parts are

' 0 e L)
azno + 7 (D—Eno hj—

(4.22)
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X, —x§ =

(ns - 710)”<0> + nﬁ,) / ®d’7 - Lj/ (ns - ’7)616(17] + (’73
Mo Mo

i (k i
- 770)£j”£) >a(kE{)>

- Liny / " ouENd - ) / " oyENdn + L / ", = )l 10 E dy
'70 '70

+ (1
Mo

where we have performed an integration by parts to express
the double integral as single integrals. We shall now write
this equation for a second geodesic. The terms evaluated at
fixed endpoints are simple to compute for the second
geodesic. For the integrated terms, we refer to Appendix B,
where the calculation is presented in detail. We need to take
into account the difference between proper time of the
observer and cosmic time, and also make use of Egs. (4.10)
and (A9). Splitting in scalar, vector and tensor modes, the
direction drift is finally given by

i)(S) i
o Xso

4.24
= (4.242)

(V) i
L e / OwEd

570 Ao AoX so

J—i' s - .
e /n (1 —n) ﬁgk)_g)aja(k% an.
as Jy, Xso
(4.24b)
(i)(7) i (k)
5 1 Coodial e
o’ _7£;ﬁ(()k)Egk = /'7 Efdn
57'-0 (2 AoX 50 o
J— s —_ .
= / s =) G000 pipr gy (4.240)
o Jyy  Xso

D. Summary

This section provides the first derivation of the direction
drift and redshift drift in a perturbed FL universe. As such
each has three contributions arising respectively from
scalar, vector and tensor modes. First, the scalar part of
our expression (4.16) corrects a mistake in the only
expression proposed in the literature so far and first
published in Ref. [27]. Such an expression plays an
important role in estimating the expected cosmological
variance of the redshift drift. Note that the scalar mode
contribution has to be combined with Eq. (3.14) to include
the effect of the motions of the observer and the sources.

Concerning gravity waves, several results [42—47] have
been used, in particular by Pulsar Timing Array experi-
ments. The result of Ref. [44] gives the perturbed values of
z and nY) with respect to the background z and ) values.
Their equation (28) is directly comparable to Eq. (4.11c¢),

Mo

. : . s : ; Ny . . Ns .
— o) LiAl) El, — Linl) / Ejdy - if) / Eidy + L / (n, — )iy i) D Egdn,  (4.23)

Mo o

|

and the results match considering the relationship between
the parameters 4 and 7 and that Eq. (28) is for a pure
Minkowski spacetime. To compute the perturbation of n() in
our framework, we start from Eq. (4.23) and split it into its
background and perturbed values. Noticing that the positions
of the source and observer are fixed in the “straight geodesic”
approximation, we take the perpendicular projection of
Eq. (4.23) to find

4 , Co2Lia® ey
onl) = —1L'RWE! — — / Eldn
’70

ZSO
0 8]Ek1d71

+£;/”f (ny—n) A0
7o Xso

This matches with the Eq. (56) of Ref. [44] if we take into
account our opposite sign in defining the direction vector
and again, the relationship between the parameters { and 7.
Thus, the plane wave expansion used in Refs. [42-47] is
compatible with our analysis. Indeed their results only
provide deviation of z and n”) from their background value
and do not provide their drifts computed here.

(4.25)

V. SPATIALLY HOMOGENEOUS AND
ANISOTROPIC SPACETIMES:
BIANCHI I CASE

Bianchi I spacetime is one of the solutions of a class of
spatially anisotropic and homogeneous spacetimes (see
Ref. [48] for details). Being homogeneous, these spaces
still enjoy three Killing vectors associated with the three
spatial translations. The spatial sections are also Euclidean,
and the spacetime metric is given by

ds? = —d? + a?(1) ) 05, ;dxidy,

ij

(5.1)

where the f3; are three directional scale factors which satisfy
> B =0, and a is the average scale factor defined by the
volume expansion.

A. Null geodesics

Thanks to these Killing vectors, we still have

k; = const (5.2)
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along any null geodesic for a photon with 4-momentum
k* = w(u* —n*), as long as we use the Cartesian coor-
dinates introduced in Eq. (5.1). It leads to

a*e?’iki = const, (5.3)

with no summation over i. The worldline of a photon is
again given
dx’ .
— =K, 54
" (5.4)

where 1 is the parameter along the geodesic. In conformal
time, the orthonormal tetrads are explicitly given by

o) =0,  ep=a"leho, (55)
in terms of which Eq. (5.3) becomes
awei i —aywye’int (5.6)

where ngi) are the tetrad basis components of nl. We also

define the “conformal” shear by

2P
o;j = pPie ﬂ’5i,’,

(5.7)

which is a symmetric tracefree tensor.

B. Direction and redshift drifts to first order in shear

First, we note that the O-component of the geodesic takes
the form

1 d(aw) ;
%d—i’] + ﬂ§n< )I’l(i) =0, (58)
a solution of which is
aw = a,m, exp (— /Wﬂgn(")n(i)dn) (5.9)
Mo

Note that we omit the sums involving f; for simplicity.
To avoid confusion, one should keep in mind that an
expression like f;n'") is not summed, while ;n(Vn, is.
We shall now perform a small shear approximation and
consider only the lowest order terms in o;; or, equivalently,
in g;. In this limit Eq. (5.9) becomes
@ ~
o

1= (5= pA0A). (5.10)

OS'| Qi

where an overbar denotes a FL value since the Bianchi I
spacetime can be thought as a homogeneous perturbation
of the FL spacetime. Since () is constant, the small
shear approximation is related to a “straight geodesic”

approximation, or to the more usual Born approximation
in lensing. It follows that Eq. (5.6) becomes

. . 0y ; o o
x?—xé:—/ (l—ﬁ,»)nf,)dn+/ %,-(ﬂj—ﬁj)n(f)dn

o Mo

(5.11)
where ;j. = 5; - r‘z<i)ﬁ<j)
with respect to 72l"). Now, we just have to follow the same
procedure, i.e., integrating the equations for two nearby
geodesics and determine the relation between o7, and o7,.
In a Bianchi I, the latter is given by Eq. (A9) to be

is the perpendicular projector

on,

N [1+ (8 — p)a i ).

(5.12)
Hence, we have all the pieces to determine the drifts.

1. Direction drift

Evaluating Eq. (5.11) at #,, and #;, + 1, and using
Eq. (5.12), the direction drift is

51211(") 2 . s Le
= - Li(Bs = g)al) — Ligon0),
5t0 AoX so - (ﬂ] ﬁj )n 7]ﬂj "

(5.13)

where y,, =1, — 1, is the observer-source radial distance
in the FL background space. Notice that this expression is
similar to the one for a general observers in a FL spacetime,
containing a parallax type (the first term above) and an
aberration type (the second term) contribution. Note also
that the first term is a redshift-dependent one, whereas the
second is redshift-independent.

2. Redshift drift

The redshift drift is calculated in a similar way, from
Eq. (5.10), to be

W, d, _ (1) =
Ihz=""="[1- (5~ DAlag]  (5.14)
As in the previous sections, it follows that
0127 R0 3707
e (1 +2)(H, + i) — (Hy + in'ng ),
(o]
(5.15)

in agreement with the analysis of Ref. [28].

C. Decomposition in multipoles

As in Sec. III B, we can decompose the redshift and
direction drifts in terms of multipoles, the decomposition
being made with respect to (). Defining
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Bij = 6;;Pi Bij = 5ijﬁi (5.16)
we read from Eq. (5.15) that the Bianchi I spacetime brings
a quadrupolar structure to the redshift drift,
Wij = (1 + Z)B,o] - ij (517)
Note however that it adds no dipolar contribution. It is thus
in principle distinguishable from the peculiar velocity of
the observer in a FL spacetime.
The direction drift in Bianchi I structure also inherits a
quadrupolar contribution in £(7()), but not in H (7).
From Eq. (5.13), it is

1

aO){SO

1.,
Eij=- (st'j - B?;) _EBU' (5.18)

D. Discussion

Equations (5.13) and (5.15) provide the expressions of
the direction and redshift drifts in a Bianchi I spacetime, in
small shear approximation. Indeed when g; = 0 for all i,
we recover the FL expressions for a comoving observer.

Moreover, since the infinite wavelength limit of a
gravitational wave is equivalent to a homogeneous shear
lie., E;; = B:(1)d;;], it can be checked that the tensor part
of Eq. (4.16) is equivalent to Eq. (5.15) for the redshift drift
and that Eq. (4.24c) is equivalent to Eq. (5.13) for the
aberration drift.

Let us now compare to existing results, and in particular
Refs. [7,16] that assume a “straight geodesic approxima-
tion” and in which the results are obtained through a time
derivative of the aberration (as defined here). Defining a
spatial orthogonal coordinates system aligned with the
principal axis of expansion so that, with the notation of
Ref. [7], Hy/H — 1 = ,/H = Xy, etc., and decomposing
the direction of observation as in Eq. (3.26), it is easy to
show that Eqgs. (33-34) of Ref. [7] (or Egs. (6 and 7) of
Ref. [16]) are equivalent to —;}ﬁ?ﬁm up to an overall
minus sign. This is only the aberration drift effect of
Eq. (5.13) and these expressions do not contain the parallax
drift included in our expression. Indeed, it cannot be
obtained by deriving the expression of the aberration of
angles with respect to time since it arises from the fact that
the endpoints of the two geodesics are different.

Lastly, we can give some crude estimates of the level to
which measurements of the direction drift can constrain the
shear. For simplicity let us write 8, as a fraction of H,,
i.e., B, ~ €H,. Then, we can separate the constraints in two
types: early and late anisotropies. For the first type, CMB
data severely constrains the value of the shear today to no
larger than the observed CMB quadrupole, i.e., € < 107.
This would lead to an aberration drift of the order of
107* pas/yr or smaller. As has been pointed out, this is

three order of magnitudes smaller than the expected
peculiar velocities in the standard (FL) model, so very
unlike to be detected with future experiments [17]. Late
type anisotropies are however more promising. Future
surveys of weak-lensing shear such as Euclid could
constrain the late anisotropy of the cosmic flow to order
By /Hy, = 1% [49]. This would imply a signal in the
aberration drift of the order 0.1 pas/yr per source, or
1.0 pas over ten years. This is compatible with the figure of
0.4 pas in ten years coming from the local group proper
motion with respect to the CMB frame found in Ref. [18].
In fact, as we pointed out in Sec. III C 1, assuming vy g ~
620 km/s leads to a drift of the order of 0.3 uas in ten
years. Moreover, since the shear contribution to the drift is
coming from a quadrupole, it can in princible be distin-
guished from the velocity contribution.

VI. CONCLUSIONS

Our analysis proposes a general method to compute the
direction and redshift drifts, making clear the importance of
considering two nearby geodesics connecting the observer
and the source. Two effects have to be considered, the first
related to the integral along the line of sight and the second
related to the end points of the geodesics. In a nonstatic
spacetime or for noninertial observer and sources the lapses
connecting the geodesics at the source and at the observer
differ.

This general method allowed us to first recover the
standard formula for the direction and redshift drifts for a
general observer in a FL spacetime. The multipolar
decomposition shows that for both the redshift and the
direction drifts, the observer’s velocity only induces a
dipole. We were able to separate the contribution of the
velocity to the direction drift into two effects, the parallax
drift (which is z-dependent) and aberration drift.
Comparing the two for various combined motions, we
showed that the two do contribute significantly to the total
drift. However, the parallax drift is usually considered as a
noise to be removed, which can be accomplished using the
z-dependence. The drift caused by the motion of the Sun
around the galactic center must also be removed if one is
interested in the cosmological aberration drift.

We also provided an expression for the direction and
redshift drifts in a perturbed FL universe for scalar, vector
and tensor perturbations. Concerning the scalar part of the
redshift drift, we corrected a mistake in the literature. The
tensor contribution to both the redshift and direction vector
were compared to existing results for a plane (gravitational)
wave. We have left a full multipolar analysis and calcu-
lation of correlations of the observables for future work.

To finish, we provided an expression for the direction
and redshift drifts in Bianchi I universes in the “straight
geodesic approximation.” A multipolar decomposition
shows that the shear contributes as a quadrupole, which
makes it distinguishable from the effects of the velocity.
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We also showed that the results published in the literature
were actually missing a parallax drift type contribution.
We then estimated how well the shear can be constrained
using our results.
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APPENDIX A: TIME-REDSHIFT RELATIONSHIP
Here we show the validity of the relation
dr, @ 1 (A1)

dr, w, 1+z

where 7,, are the proper times of the source and the
observer, respectively. In the geometrical optics approxi-
mation (also known as eikonal approximation), the electro-
magnetic vector potential satisfies (in vacuum)

ViV,A, = 0. (A2)
Considering a solution of the form
A, = C,,e"‘/’ (A3)

with approximately constant amplitude, Eq. (A3), neglect-
ing derivatives of C,, gives

VEQV .0 = 0
VIV, = 0.

(A4)
(AS)

k* = VHg is the vector normal to the surfaces of constant ¢.
Differentiating (A4) gives the geodesic equation

KV, k, = 0. (A6)

Hence k* is also tangent to a null geodesic. Thus, in the
eikonal approximation, null geodesics are curves of con-
stant phase ¢.

The frequency of the wave as measured by an observer
with 4-velocity u* is precisely (minus) the rate of change
of the phase of the wave with respect to his proper time.
That is,

do
®=== —u'V,p = —u'k,.
Thus, for a source and observer connected by a null

geodesic, we have that

(A7)

o, do/dz,

w, de/dr,’

Since null geodesics are curves of constant phase, we thus
have that

(A8)

dr, oo 1 (A9)

dz, o, 14z
Note that in the cases of inertial FL and Bianchi I the
observer and source were both comoving so that their
proper times coincide with the cosmic time. For a general
observer, this holds only to first order in velocities. For a
perturbed FL, the difference between proper time and
cosmic time has to be taken into account.

APPENDIX B: DRIFT OF INTEGRATED
EFFECTS IN PERTURBED FL

Here we show how to evaluate §;,E where = is a general
term of the form E = [ £[n, x'|d.

To that purpose, one has to take into account how &[n, x']
changes from one geodesic to the other. Thus, there will be
a contribution due to the fixed endpoints of the integral but
also a contribution from the spatial change of the integrand.
More explicitly,

_ 15+61 ; s ;
512.:‘ = f[?’],xz}dﬂ_ f[?],xl]df'] (Bl)
1o +61, 1o

The second line of sight x5(57) is given by
x4 () = x{(n) + &x'(n)
= x{ (1) — 6. (B2)
This allows us to compute the contribution from the
endpoints, which, to first order in oz, is simply

ns+on; ; 1y ;
[ dnosan = [ ctrvjan
1,

001, o

+ ‘S’//sés [le] - 5’7050 [xll] (B3)

Now, we use Eq. (B2) to write
&ln, x5] = &ln, x{] — 7' 0:&n, xi1on. (B4)
Now, remember that 7’0, = d%? - 0%. Also, since & is a

perturbation, any term multiplying it is evaluated at the
background, and at this level 6, = én,. We conclude that

’7.Y .
6.2 = an, [ £l xildn (B5)
Mo
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