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High precision astrometry now enables us to measure the time drift of astrophysical observables in real
time, hence providing new ways to probe different cosmological models. This article presents a general
derivation of the redshift and direction drifts for general observers. It is then applied to the standard
cosmological framework of a Friedmann-Lemaître spacetime including all effects at first order in the
cosmological perturbations, as well as in the class of spatially anisotropic universe models of the Bianchi I
family. It shows that for a general observer, the direction drift splits into a parallax and an aberration drifts
and order of magnitude estimates of these two components are provided. The multipolar decomposition of
the redshift and aberration drifts is also derived and shows that the observer’s peculiar velocity contributes
only as a dipole whereas the anisotropic shear contributes as a quadrupole.
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I. INTRODUCTION

Over the past decades, the developments of observatio-
nal cosmology, among which cosmic microwave back-
ground (CMB), baryonic acoustic oscillations (BAO), type
Ia supernovae and cosmic shear, have led to a robust model
of our universe in the framework of Friedmann-Lemaître
spacetimes, the parameters of which are well-measured to
define the concordance model of cosmology. The need for
a dark sector has triggered the necessity to develop tests
of the hypothesis on which this model lies (see Refs. [1,2]
for their description and existing tests). Any data which is
not strictly located on our past light cone brings sharp
constraints, in particular on the Copernican principle [3].
The first evaluation of the time drift of the cosmic

redshift dates back to the 1960s [4,5]. Since it offers a direct
measurement of the local cosmic expansion rate [6], it
evolved to the idea of “real time” cosmology [7], based on
the time drifts of both the cosmic redshift and the direction
as new cosmological observables. For example, the pos-
sibility of measuring the redshift drift was thought both as a
way of measuring the instantaneous cosmic expansion rate
as a function of redshift, HðzÞ, [8] and hence better
constrain dark energy models [9–11] in the framework
of Friedmann-Lemaître (FL) cosmologies. On a more
fundamental level, the redshift drift was shown to offer a

way to test of the Copernican principle in [3,12,13],
while lensing-type effects of a local void were investigated
in [14]. Direction drift effects were also investigated in
the test of the Copernican principle in Ref. [15], while in
Refs. [16,17] it was used to constrain anisotropic (Bianchi I)
cosmological models. More recently, the aberration drift
was used as a redshift-independent tool to extract the proper
acceleration of the earth with respect to CMB [18]. From a
more formal perspective, several investigations of optical
drift effects in general relativity provide a covariant deriva-
tion of cosmic parallax for a pair of sources in general
spacetimes [19–23].
From an observational perspective, the developments of

precision astrometry have allowed the Gaia space mission
to measure the parallax of astrophysical objects with
unprecedented precision [24,25]. Forthcoming experiments
carrying state-of-the-art spectrography on the E-ELT, aim
to reach the sensitivity to measure the redshift drift by
monitoring Ly-α absorption lines of distant quasars in a
time span of a decade [26] and it has been demonstrated
that the use of many spectral lines and quasars is an
important measure to reduced the variance in _z induced by
linear cosmological perturbations [27].
This article revisits both the redshift and direction drifts

in several cosmological frameworks. It starts by a simple
analysis in Minkowski spactime in Sec. II in order to
emphasize the need for a two-worldlines analysis, hence
non-local in time. A heuristic argument allows one to
grasp the physical meaning and typical amplitude of all
the different contributions. It takes into account a general
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accelerated observer and source. Then, Sec. III focuses on
the computation of the redshift and direction drifts for
general observers in FL spacetime. A multipolar decom-
position of this result is presented and compared to the
literature. The order of magnitude of the aberration and
parallax parts of the direction drift are then estimated.
In Sec. IV, the same drift effects are computed but now
for a linearly perturbed FL spacetime, including scalar,
vector and tensor perturbations. This fully characterizes
the imprints of the large scale structure. The analysis is
finally extended in Sec. V to anisotropic spacetimes to
provide the expressions of these drifts for a Bianchi I
universe. As such it offers a new way to test the isotropy of
the cosmic expansion around us, complementary to
methods based on either cosmic shear [28–30] or super-
novae [31,32] observations. Section VI summarizes our
results and their implications.

II. GENERAL APPROACH

A. Heuristic argument

In order to get some intuition on the aberration drift, let
us start the computation with a heuristic approach. In
1728, Bradley [33] obtained an expression for stellar
aberration using a corpuscular description of light with
Newton optics theory. It is today well-understood in the
framework of special relativity that aberration is related to
the Lorentz boost associated with a change of referential
(see e.g., Ref. [34] for details). Consider an inertial frame
S and a second inertial frame S0 moving with speed V with
respect to S along the X axis. For a light source in the
XOY plane of S whose position vector makes an angle α
with the OX axis, the photons emitted are observed in the
direction ðcos α; sin α; 0Þ, and the associated wave-vector
is kμ ¼ k0ð1;− cos α;− sin α; 0Þ. However, in the frame S0

the wave-vector is k0μ ¼ k00ð1;− cos α0;− sin α0; 0Þ, that is,
the photons are observed from a direction ðcos α0;
sin α0; 0Þ. It is a standard exercise to show that the angles
are related by

tan α0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

1þ V= cos α
tan α: ð2:1Þ

or, equivalently,

cos α0 ¼ cos αþ V
1þ V cos α

; ð2:2Þ

where the speed of light has be set to unity by a proper
choice of units. Bradley considered S to be the quasi-
inertial frame of the Solar System and S0 attached to the
Earth. Over a Δt ¼ 6 months period, ΔV ¼ 2V so that the
aberration is given by

j cosðα0 þ Δα0Þ − cos α0j ∼ sin α0Δα0 ∼ 2V sin2 α0:

The aberration is just an effect of perspective due to a
change of (Lorentz) frame, and the question of whether or
not to take into account the source velocity does not arise,
which was however a difficult question in corpuscular
optics. It follows that the drift is of order

Δα0

Δt
∼
ΔV
Δt

sin α0: ð2:3Þ

There is however a second effect to take into account.
It is a simple geometric effect due to the fact that in Δt the
star and the observer have moved by a typical relative
distance jv� − vojΔt so that it is expected that

Δα0 ∼
jv� − vojΔt
jr� − roj

: ð2:4Þ

In conclusion, we expect the typical total drift to behave as

Δα0

Δt
¼ jv� − voj

jr� − roj
þ ΔV

Δt
j sin αj: ð2:5Þ

As we will see, a rigorous calculation leads to projection
effects on the velocities which cannot be captured with
the above (heuristic) derivation. Still, the above formula
captures the essential effects. We shall refer to the total
drift as direction drift, the term inversely proportional to
the source-observer distance is the parallax drift and the
term proportional to the observer’s acceleration is the
aberration drift. Indeed, the arguments above are just a
simple sketch of the different contributions. The angles
have to be replaced by direction on the celestial sphere
(i.e., unit 2-vectors) and we need to properly define the
angles, motions, wave vectors, etc., as described by non-
inertial observers and sources. However, it emphasizes a
key issue on which our formalism is built: the direction
drift, and similarly the redshift drift, involves two sets of
null-geodesic compared before and after a given lapse of
observer proper time. It also shows that the direction drift
cannot be reduced to a time derivative (coordinate or
proper) of the aberration.

B. Minkowski spacetime

Let us consider a Minkowski spacetime with metric
ds2 ¼ −dt2 þ δijdxidxj in Cartesian coordinates. Thanks
to the three spatial translations Killing vectors, ξμðiÞ ¼ δμi ,

the vector kμ tangent to a null geodesic xμðλÞ satisfies

kμξ
μ
ðiÞ ¼ ki ¼ const ð2:6Þ

along the geodesic. Likewise, the existence of a timelike
Killing vector ensures that the frequency measured by the
associated observer is constant along the photon’s trajectory.
Let us first consider a static observer with 4-velocity

uμ ≡ δμ0. We decompose kμ into a frequency ω and a
direction nμ as
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kμ ¼ ωðuμ − nμÞ; nμuμ ¼ 0: ð2:7Þ

Note that we choose to parametrize the photon’s propaga-
tion direction in terms of the observation direction, which
explains the minus sign in kμ; this is consistent with the
parametrizations we used in the previous section, and is just
a convenient definition. The condition (2.6) reduces to

dxi

dt
¼ −nio; ð2:8Þ

and we have fixed the constant on the right-hand side
(r.h.s.) of Eq. (2.8) to be the value of the vector ni at the
observer’s position. This equation is easily integrated
to give

xis − xio ¼ −ðts − toÞnio; ð2:9Þ

where the subscripts “s” and “o” stand for “source” and
“observer” respectively. Let us now consider a second
geodesic in which the photon was emitted at ts þ δts and
received by the observer at to þ δto. We also assume that
the source is static. Writing Eq. (2.8) for this second
geodesic gives

xis − xio ¼ −ðts − to þ δts − δtoÞðnio þ δ12nioÞ; ð2:10Þ

where we have introduced the general definition

δ12O ¼ Oðto þ δτÞ −OðtoÞ; ð2:11Þ

for any observable O compared at two times separated by
a lapse δτ of the proper time of the observer. Note that it
is a non-local variation which involves two geodesics.
For a static observer, we also have δτ ¼ δt. Contraction
of Eqs. (2.8) and (2.10) with nio leads to δts ¼ δto, as
expected.1 If we now compare Eqs. (2.9) and (2.10) to
extract the direction drift, we find for a static source and a
static observer in Minkowski spacetime

δ12nio ¼ 0; ð2:12Þ

i.e., there is no direction drift.
Let us now consider a general observer with 4-velocity

ũμ. We assume that its peculiar velocity vμ is small
compared to the speed of light. Hence, we shall work at
linear order in the spatial velocity and write

ũμ ¼ uμ þ vμ; ð2:13Þ

with vμuμ ¼ 0. From now on tilde quantities are associated
to the general observer. The wave vector is either

decomposed as kμ ¼ ωðuμ − nμÞ for the static observer,
or as kμ ¼ ω̃ðũμ − ñμÞ for the general observer. It follows
that

ki ¼ ω̃ðvi − ñiÞ; ð2:14aÞ

ω̃ ¼ ωð1þ vi niÞ; ð2:14bÞ

ñi ¼ ni þ⊥i
jv

j; ð2:14cÞ

where

⊥i
j ≡ δij − ninj ð2:15Þ

is the perpendicular projector with respect to the direction
of observation of the static observer, ni. The proper time of
the general observer is related to the coordinate time by
dτ2 ¼ ð1 − v2Þdt̃2, hence dτ ¼ dt̃ at linear order in v. Since
Eq. (2.6) is observer independent, the geodesic equation
leads to

ω
dxi

dt
¼ ω̃oðvio − ñioÞ: ð2:16Þ

Using Eq. (2.14b), it takes the form

dxi

dt
¼ ⊥i

jv
j
o − ñio: ð2:17Þ

In this expression, we have used that the perpendicular
projector multiplies the spatial velocity, and therefore the
relation ni ¼ ñi, valid at lowest order in v, can be used in
Eq. (2.15). Once integrated, it leads to

xis − xio ¼ ðts − toÞð⊥i
jv

j
o − ñioÞ ð2:18Þ

since ni and thus ⊥i
j ¼ δij − ninj are constants along the

null geodesic. This is the generalization of Eq. (2.9) for a
general observer.
Let us now consider a second light ray emitted at ts þ δt̃s

and received at to þ δt̃o. We also allow the source to have a
general velocity. We now have δt̃o ≠ δt̃s, since both the
observer and source are moving. The end points of the
second null-geodesic are now given by xis;o þ vis;oδt̃s;o, and
the velocity of the observer is then vio þ _vioδt̃o. Figure 1
illustrates the scheme of this calculation. The integration of
the second geodesic gives

xis − xio þ visδt̃s − vioδt̃o

¼ ðts − to þ δt̃s − δt̃oÞ
× ð⊥i

jv
j
o − ñio þ⊥i

j _v
j
oδt̃o − δ12ñioÞ: ð2:19Þ

The relation between δt̃s and δt̃o is obtained by subtracting
the contractions of Eqs. (2.18) and (2.19) with nio to get

1Note that we have also used nioδ12nio ¼ 0, which is true for
small variations.
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δt̃s
δt̃o

¼ 1 − ðvis − vioÞnoi: ð2:20Þ

Once inserted in Eqs. (2.18) and (2.19), we get the direction
drift

δ12ñio
δto

¼ ⊥i
jðvjs − vjoÞ
Dso

þ⊥i
j _v

j
o; ð2:21Þ

where Dso ≡ to − ts is the (positive) radial distance
between the observer and the source. Note that the
perpendicular projector multiplies spatial velocities, and
as we work at linear order in velocities, it is equivalent to
consider the projector built either from ni or ñi.
The expression (2.21) has two different terms as our

heuristic reasoning suggested. The first term (the parallax
drift) is related to the change of apparent position of the
source due to the motion of the source and the observer.
This is a simple perspective effect that is proportional to the
inverse of the distance. The second term (the aberration
drift) is the mean peculiar acceleration of the observer
perpendicular to the line of sight on the time scale of the
observation.

C. Summary

This first insight shows that it is indeed not correct to
start from the Bradley formula for the aberration and simply
take its time derivative. It also defines clearly the general
strategy of the computation: (1) consider 2 null geodesics
connecting the observer and the source, (2) relate the lapses
of time between the two geodesics at the source and at the

observer. This provides a well-defined and physically well-
under control derivation of both the direction and redshift
drifts that can be extended to any spacetime. It also
emphasizes that we have to pay attention to the fact that
ω may not be constant along the geodesics and to define
properly the direction of observation. To that purpose,
given a metric gμν, we shall introduce a tetrad basis ϵμðAÞ
defined by

gμνϵ
μ
ðAÞϵ

ν
ðBÞ ¼ ηAB: ð2:22Þ

If we choose ϵμð0Þ to be the 4-velocity uμ of an inertial

observer, any vector field Vμ can then be decomposed as

Vμ ¼ ð−VαuαÞuμ þ VðiÞϵμðiÞ: ð2:23Þ

III. FRIEDMANN-LEMAÎTRE SPACETIME
AND ITS PERTURBATIONS

A. General observers

The construction from the previous section is easily
generalized to a cosmological spacetime. Let us assume a
cosmology described by a spatially flat Friedmann-
Lemaître (FL) solution with metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj ð3:1Þ

where t is the cosmic time, i.e., the proper time of
comoving observers with 4-velocity uμ ≡ δμ0 and aðtÞ is
the scale factor. We also introduce the conformal time
defined by dη ¼ a−1dt and define the Hubble function by
H ≡ d ln a=dt. We use the tetrad field defined by

ϵð0Þ ¼ ∂t; ϵðiÞ ¼ a−1∂i: ð3:2Þ

For a photon with wave vector kμ ¼ ωðuμ − nμÞ, one easily
derives from the formalism of the previous sections that the
redshift drift for comoving observers and sources is

δ12z
δto

¼ ð1þ zÞHo −Hs; ð3:3Þ

whereas the direction drift vanishes,

δ12n
ðiÞ
o ¼ 0 ð3:4Þ

when ni is expressed in its tetrad components ni ¼ nðjÞϵiðjÞ.
For the direction drift, the case of comoving observer and
sources is indeed analogous to the Minkowski case for
static observer and sources. Note that in Minkowski there is
no redshift drift.
As in the previous section, we now consider a general

observer with 4-velocity

FIG. 1. General definitions for the two null geodesics between a
general observer and source. The differences between the times
contribute to the parallax part of the drift. Note that at first order
in velocities δτs;o ¼ δt̃s;o.
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ũμ ¼ uμ þ vμ; ð3:5Þ

where vμ is spatial (vμuμ ¼ 0). Again, the tilde denotes
quantities associated with a general observer. We assume
the observer is nonrelativistic and work at first order in vμ.
The wave vector is decomposed equivalently either

as kμ ¼ ωðuμ − nμÞ or as kμ ¼ ω̃ðũμ − ñμÞ. Again, it
follows that

ki ¼ ω̃ðvi − ñiÞ; ð3:6aÞ

ω̃ ¼ ωð1þ viniÞ; ð3:6bÞ

ñi ¼ ni þ⊥i
j v

j; ð3:6cÞ

where ⊥i
j ¼ δij − ninj is the perpendicular projector with

respect to ni. Since the FL spacetime also enjoys 3 spatial
Killing vectors,

a2ki ¼ ki ¼ const ð3:7Þ

along a null geodesic. However, FL having only a timelike
conformal Killing vector, we have aω ¼ const. After
decomposing ni, ñi and the velocities on the tetrad (3.2) as

ni ¼ nðjÞϵiðjÞ; ñi ¼ ñðjÞϵiðjÞ; vi ¼ vðjÞϵiðjÞ; ð3:8Þ

the condition (3.7) leads to

aω
dxi

dη
¼ aoω̃oðvðiÞo − ñðiÞo Þ: ð3:9Þ

With the use of Eq. (3.6b), and the fact that aω ¼ aoωo for
comoving observers, it reduces to

dxi

dη
¼ ⊥i

jv
ðjÞ
o − ñðiÞo : ð3:10Þ

It can be integrated easily since nðiÞ is constant along the null
geodesic, and so is⊥i

j, once expressed as⊥i
j ¼ δij − nðiÞnðjÞ.

We get

xis − xio ¼ ðηs − ηoÞð⊥i
jv

ðjÞ
o − ñðiÞo Þ: ð3:11Þ

Indeed, after shifting to conformal time, this is similar to the
derivation in Minkowski spacetime.
We now shift to the second geodesic describing the

observation at a conformal time ηo þ δη̃o where δη̃o is
related to the proper time τ of the observer by δτ ¼ δt̃ as
long as we work at first order in velocities. The photon was
emitted by the source at a conformal time ηs þ δη̃s. As
explained in the previous section, we need once more to
find the relationship between δη̃s and δη̃o. Compared to the
first geodesic, the positions of the source and the observer

are now given by xis;o þ vðiÞs;oδη̃s;o; the velocity of the

observer is vðiÞo þ v0ðiÞo δη̃o (where a prime refers to a
derivative with respect to the conformal time). As long
as we work in first order in velocities, we need only the

background value of δ12n
ðiÞ
o ¼ 0 so that ⊥i

j remains
unchanged. Plugging these modifications in Eq. (3.10)
we get the equation of the second geodesic

xis − xio þ vðiÞs δη̃s − vðiÞo δη̃o

¼ ðηs − ηo þ δη̃s − δη̃oÞ
× ð⊥i

jv
ðjÞ
o − ñðiÞo þ⊥i

jv
0ðjÞ
o δη̃o − δ12ñ

ðiÞ
o Þ: ð3:12Þ

By contracting this latter equation with nðiÞo , one gets the
relation between δη̃s and δη̃o as

δη̃s
δη̃o

¼ 1 − ðvðiÞs − vðiÞo ÞnðiÞ: ð3:13Þ

This can also be obtained by making use of Eq. (A9)
derived in Appendix A.
To finish, we just need to combine Eqs. (3.11)–(3.13) to

get the total direction drift, i.e., the change of direction in
units of proper time of the observer, which is

δ12ñ
ðiÞ
o

δto
¼ ⊥i

jðvðjÞs − vðjÞo Þ
aoχso

þ⊥i
j _v

ðjÞ
o ; ð3:14Þ

where χso ≡ ηo − ηs is the comoving radial distance
between the observer and the source. This expression is
similar to Eq. (2.21) derived in a Minkowski spacetime, and
its implications will be discussed in Sec. III C.
Let us now turn to the redshift drift. Starting from

Eq. (3.6b), we can express the redshift as

1þ z̃ ¼ ω̃s

ω̃o
¼ ao

as
½1þ ðvðiÞs − vðiÞo ÞnðiÞ�: ð3:15Þ

It is then straightforward to write the redshift 1þ z̃þ δz̃ for
a second geodesic and subtract the previous relation, so as
to find the observed redshift drift,

δ12z̃
δto

¼ ð1þ z̃ÞðHo − _vðiÞo nðiÞÞ − ðHs − _vðiÞs nðiÞÞ: ð3:16Þ

B. Multipolar decomposition

The angular dependence, i.e., in nðiÞ, of the redshift and
aberration drifts can be decomposed in multipoles either
using symmetric trace-free tensors or spherical harmonics
[35]. For the redshift drift, it takes the form

δ12z̃
δto

¼ W þWinðiÞ þWijnðiÞnðjÞ þ…

¼
X
l;m

WlmYlmðnðiÞÞ ð3:17Þ
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where the Wi1…in are symmetric tracefree tensors. From
Eq. (3.16), we read that the monopole and the dipole of the
redshift drift are

W ¼ ð1þ z̃ÞHo −Hs ð3:18aÞ

Wi ¼ −ð1þ z̃Þ _vðiÞo þ _vðiÞs : ð3:18bÞ

The direction drift can be written in terms of a gradient
and curl as

δ12ñ
ðiÞ
o

δto
¼ DðiÞEðnðlÞÞ þ ϵðiÞðjÞDðjÞHðnðlÞÞ ð3:19Þ

whereDðiÞ is the covariant derivative on the 2-sphere of unit
radius and ϵðiÞðjÞ is the Levi-Civita tensor on the unit
2-sphere. The angular dependence of EðnðiÞÞ andHðnðiÞÞ is
in turn decomposed in symmetric trace-free tensors or in
spherical harmonics. For E (and similarly for H) this
decomposition is

EðnðlÞÞ ¼ EinðiÞ þ EijnðiÞnðjÞ þ…

¼
X
l≥1;m

ElmYlmðnðiÞÞ: ð3:20Þ

From Eq. (3.14) we infer that HðnðiÞÞ ¼ 0 and the dipolar
components of EðnðiÞÞ are

Ei ¼
vðiÞs − vðjÞo

aoχso
þ _vðiÞo : ð3:21Þ

Note that a dipole in HðnðiÞÞ corresponds to a global
infinitesimal rotation, hence the direction drift generated by
our local velocity cannot be mixed with such effect.
Finally, we note that one could have chosen to decom-

pose the direction drift directly in terms of spin-weighted
spherical harmonics; this is actually equivalent to what we
are doing since the covariant derivative on the unit 2-sphere
DðiÞ coincides with the spin-raising operator spherical
harmonics [36,37].

C. Discussion on velocities

The previous sections derive the redshift and direction
drifts for both comoving and general observers in a strictly
spatially homogeneous and isotropic FL spacetime. Let us
have a closer look to our result (3.14) concerning the
aberration drift. It contains two contributions: the first one
is the parallax drift, which encompasses the change of
parallax due to the motions of the source and observer, and
the second, the aberration drift, is similar to the Bradley
aberration. While the first depends on the distance of the
source, the second depends only on the acceleration of the
observer, a property that we have already explained in our

heuristic argument. Other works, such as Refs. [22,23],
have also computed in more general settings these two
contributions to the total variation of direction, employing a
different terminology.
To compare the two contributions, we must describe the

different motions involved, which comprise the motion of
our local group of galaxies with respect to the CMB, the
motion of the Milky Way with respect to the local group,
the motion of the Sun around the Milky Way, and finally
the motion of the Earth around the Sun. To this purpose, we
write

vðiÞo ¼ vðiÞLG þ vðiÞMW þ vðiÞ⊙ þ vðiÞ⊕ ð3:22Þ

and analyze each motion separately. We also provide rough
estimates of the order of magnitude of the aberration and
parallax drifts, assuming that the motions of the sources are
averaged out.

1. Local group velocity, vðiÞLG

Let us start by considering the motion of our local group
of galaxies. This motion is given by solving the geodesic
equation for a point particle with 4-velocity ũμ in a flat FL
universe. In the absence of perturbations of the gravita-

tional potential, the solution is simply _vðiÞo ¼ −Hov
ðiÞ
o . The

comoving radial distance from the observer to the source
satisfies

aoχso
DHo

¼
Z

z

0

dz0

Eðz0Þ ; ð3:23Þ

where EðzÞ ¼ HðzÞ=Ho. This allows us to rewrite
Eq. (3.14) as

δ12ñ
ðiÞ
o

δto
¼ ⊥i

j

DHo

�ðvðjÞs − vðjÞo ÞR
z
0

dz0
Eðz0Þ

− vðjÞo

�
; ð3:24Þ

where DHo
¼ H−1

o is the Hubble radius today. Now, EðzÞ
can be evaluated through the Friedmann equations, and in a
ΛCDM scenario it is given by

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωo

mð1þ zÞ3 þ Ωo
Λ

q
; ð3:25Þ

where Ωo
m and Ωo

Λ are the energy density parameters for
matter and dark energy today, respectively. Note that since
the parallax drift is redshift dependent through EðzÞ, it can
be distinguished from the aberration drift, which does not
depend on z. To compare their magnitude, we use the
fiducial cosmology Ωo

m ¼ 0.31 and Ωo
Λ ¼ 0.69, following

the latest Planck values [38].
Assuming comoving sources, the parallax drift is com-

parable to the aberration drift for z ≈ 1.48, which corre-
sponds to sources such that aoχso ∼DHo

. At smaller
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redshifts, the parallax drift dominates. Since 1=
R
z
0

dz0
Eðz0Þ

saturates2 to approximately 0.31 at large redshifts (Fig. 2),
the parallax drift will always contribute to more than 25%
of the total signal. This saturation was already noted in
Ref. [22]. Considering the LG has an approximate velocity
of 620 km=s with respect to the CMB rest frame [39], we
expect the aberration drift to be of order 0.03 μas=yr.
For sources with comoving radial distance of DHo

, the
parallax drift is of the same magnitude, and remains so even
for further sources. For closer sources, e.g., at 0.1DHo

, the
parallax drift is more significant, at roughly 0.3 μas=yr.
Our estimates can be compared to Ref. [18], and

essentially its Eq. (5). To that purpose we pick up a system
of coordinates on the celestial 2-sphere such that

ñðiÞo ¼ ðsin θ̃ cos ϕ̃; sin θ̃ sin ϕ̃; cos θ̃Þ ð3:26Þ

again with the convention that a tilde denotes quantities
as seen by the general observer. Following Ref. [18], we
align the z-axis with the velocity of the observer. In that
coordinate system, the projection of Eq. (3.14) on the z-axis
gives, to first order in velocities,

dθ̃
dt

¼ 1

aoχso
vo sin θ − _vo sin θ

−
1

aoχso

�
vðzÞs − cos θnðiÞv

ðiÞ
s

sin θ

�
: ð3:27Þ

Since we are in a pure FL, we have to setΦ ¼ Ψ ¼ 0 in the
results of Ref. [18]. Hence, at first order in velocity, the
proper time of the general observer and the cosmic time
coincide. Comparing the above to Eq. (5) of Ref. [18], the
aberration contribution to the drift matches with our result.

The _θ of their Eq. (5) accounts for the parallax drift due to
the motions of the source, which can be suppressed by
averaging over many sources. Here, this effect is explicit in
the last term of Eq. (3.27). The authors of Ref. [18] are
concerned with the aberration drift effect, and argue that the
parallactic effects from the motion of the observer can be
subtracted from observations. The first term of Eq. (3.27) is
thus not present in Ref. [18]. If the effect from the velocities
of the sources is averaged out, we are indeed left with the
parallax drift due to the motion of the observer and the
aberration drift. The total drift thus reads

dθ̃
dt

¼ 1

aoχso
vo sin θ − _vo sin θ: ð3:28Þ

Our method of comparing two infinitesimally close geo-
desics has the advantage of making explicit each of these
effects. We show how to apply it in less symmetric
spacetime in Sec. V.

2. Milky Way velocity, vðiÞMW

The main source of acceleration for the Milky Way
inside the local group is the gravitational potential from
M31 (Andromeda). Thus, we approximate the acceleration
of the Milky Way by _vMW ¼ GMM31=R2

M31. This gives the
magnitude of the aberration drift: with RM31 ≈ 0.8 Mpc and
MM31 ≈ 1.3 × 1012M⊙ [40], it gives a typical magnitude of
0.006 μas=yr for aberration drift.
The contribution of the parallax drift is estimated from

vMW=aoχso. The Milky Way’s velocity with respect to the
local group is estimated to be of order 135 km=s [39]. For
sources at a distance aoχso ¼ DHo

, the parallax drift for is
then of the order 0.006 μas=yr. For sources further than
aoχso ≳DHo

, the total direction drift for the motion of the
MW inside the LG is roughly one order of magnitude
smaller than the drift of the LG with respect to the CMB.

3. Sun velocity, vðiÞ⊙
Let us estimate the direction drift due to the motion of

the Sun around the Galactic center. From Kepler’s laws, the
acceleration of the Sun around the Galactic center is
_v⊙ ¼ v2⊙=RGC, where RGC is the distance from the Sun
to the Galactic center. The parallax drift is simply estimated
from v⊙=aoχso. Considering v⊙ ≈ 230 km=s [39] and the
distance to the Galactic center to be RGC ≈ 8 kpc, the
aberration drift and the parallax drift are found to be of
the same order for sources such that aoχso ≃ cRGC=
v⊙ ≈ 10 Mpc. This shows that both the parallax and
aberration drifts may contribute significantly to the total
signal. The aberration drift is of order 4 μas=yr and, at
aoχso ¼ DHo

, the parallax drift is of order 0.01 μas=yr.
Thus, the aberration drift contribution from v⊙ is 100 times
larger than the aberration drift due to the motion of the LG.

FIG. 2. Behavior of the function aoχso
DHo

¼ R
z
0

dz0
Eðz0Þ as a function of

z. Note that it saturates for large z. The vertical line corresponds
to z ¼ 1.48.

2For large redshifts, EðzÞ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωo

mð1þzÞ3
p

, such that 1=
R
z
0

dz0
Eðz0Þ ≈ffiffiffiffiffiffiffi

Ωo
m

p
=2¼0.28. The 0.31 value mentioned on the text is found

when taking into account the nonzero value of Ωo
Λ.
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4. Earth velocity, vðiÞ⊕
The direction drift contribution from the motion of the

Earth around the Sun comprises an annual modulation to
the total signal which is not cumulative. Since the motion of
the Earth around the Sun is well understood, it is expected
that this signal can be subtracted.

5. Final remarks on velocities

Table I summarizes the previous estimations of the
aberration and parallax drifts. They are denoted _v and
v=aoχso, respectively. We consider the parallax drift for
sources distanced by a comoving radial distances of DHo

,
which corresponds to z ≈ 1.48. It is an interesting exercise
(left to the reader) to evaluate the parallax drift also for
aoχso ¼ 3DHo

, which corresponds to z≳ 100, and for
aoχso ¼ 0.1DHo

, which corresponds to z ≈ 0.1.
Quasars are found in a range of redshifts up to z ¼ 5, but

are mostly around z ¼ 1 and z ¼ 2 [41]. This means that
for both the local group and the Milky Way motions, the
aberration and parallax drifts are of the same order of
magnitude.
We must finally note that our estimations completely

ignore the direction of the different velocities, which must
be taken into account for a precise analysis.

IV. PERTURBED FL SPACETIMES

We extend the previous analysis to take into account the
effects of the large scale structure. The universe is then
described by a perturbed FL spacetime with geometry

ds2 ¼ a2½−ð1þ 2ΦÞdη2 þ ðδij þ hijÞdxidxj�; ð4:1Þ

with

hij ¼ −2Ψδij þ 2∂ðiEjÞ þ 2Eij: ð4:2Þ

This defines our choice of Newtonian gaugewhere the scalar
modes are described by the two gravitational potentials, Φ
and Ψ, vector perturbations are described by a transverse
vector Ei (∂iEi ¼ 0) and Eij represents the traceless and
transverse tensor perturbation (Ei

i ¼ 0 ¼ ∂iEij) describing
gravitational waves.
The gravitational potentials have two effects on the

direction drift. The first is a direct effect on the drift while
the second is an effect on the motion of the observer. More
precisely, it will affect the geodesic motion of the local

group with respect to the CMB since then the geodesic
equation for a point particle with 4-velocity ũμ is

_vðiÞo ¼ −Hov
ðiÞ
o − ∂iΦo: ð4:3Þ

Reference [18] describes how measurements of the cos-
mological aberration drift could be used to evaluate the
contribution from ∂iΦo. In fact, neglecting decaying and
vorticity modes, one can show that the contribution from

the gravitational potential is proportional toHov
ðiÞ
o , with the

proportionality factor being given by a model-dependent
parameter. In standard GR, this parameter is of order one,
and the contribution of ∂iΦo is of the same order of
magnitude as the cosmological aberration drift [18].

A. Null geodesics

The study of the null geodesics is simpler once one uses
the standard trick that they are conformally invariant.
The metric (4.1) can be rescaled as ds2 ¼ gμνdxμdxν ¼
a2ĝμνdxμdxν. Then, if kμ is the tangent vector to a null
geodesic of gμν, then k̂μ ¼ a2kμ is the tangent vector to a
null geodesic of ĝμν, where from now on the overhat
denotes quantities evaluated in the conformal space.
The conformal null geodesic vector k̂μ can be decom-

posed as

k̂μ ¼ ω̂ð1; niÞ: ð4:4Þ

We define ˆ̄ωo and n̄i the (constant) background values of
ω̂ and ni, respectively. To first order in perturbations, the
0-component of the geodesic equation is

1

ω̂

dω̂
dη

¼ Φ0 − 2
dΦ
dη

−
1

2
n̄in̄jh0ij; ð4:5Þ

where we used that d
dη ≡ 1

ω̂ k̂
μ∂μ ¼ ∂

∂η þ ni∂i and the prime
denotes the partial derivative with respect to η. It can be
integrated to give

ω̂s − ω̂o ¼ ˆ̄ωo

�
−2ðΦs −ΦoÞ

þ
Z

ηs

ηo

�
Φ0 −

1

2
n̄in̄jh0ij

�
dη

�
: ð4:6Þ

The energy of the photon requires the 4-velocity of a
comoving observer in perturbed FL universe to be com-
puted. But, as long as we are dealing with first order effects,
we can ignore the spatial part of the 4-velocity and then
include it as described in the previous section. So, in
conformal time,

ûμ ¼ ð−1 −Φ; 0Þ: ð4:7Þ

TABLE I. Estimation of aberration and parallax drifts for
different motions. The values are expressed in units of μas=yr.

LG MW ⊙

_v 0.03 0.006 4.0
v=DHo

0.03 0.006 0.01
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Since ûμ ¼ 1
a uμ, we deduce that the energy of the photon as

measured by an observer with 4-velocity uμ is

ω ¼ −kμuμ ¼
ω̂

a
ð1þΦÞ; ð4:8Þ

from which we deduce the redshift

1þ z ¼ ωs

ωo
¼ ao

as

ω̂s

ω̂o
½1þ ðΦs −ΦoÞ�: ð4:9Þ

Now, ω̂s=ω̂o can be obtained from Eq. (4.6) so that

1þ z ¼ ao
as

�
1 − ðΦs −ΦoÞ

þ
Z

ηs

ηo

�
Φ0 −

1

2
n̄in̄jh0ij

�
dη

�
: ð4:10Þ

It decomposes in scalar, vector and tensor contributions as
1þ z̄þ δzðSÞ þ δzðVÞ þ δzðTÞ, with

δzðSÞ ¼ ao
as

�
−ðΦs −ΦoÞ þ

Z
ηs

ηo

Θ0dη
�
; ð4:11aÞ

δzðVÞ ¼ −
ao
as

Z
ηs

ηo

∂ðiE0
jÞn̄

in̄jdη; ð4:11bÞ

δzðTÞ ¼ −
ao
as

Z
ηs

ηo

E0
ijn̄

in̄jdη; ð4:11cÞ

where we have defined the standard lensing potential as

Θ ¼ Φþ Ψ: ð4:12Þ

B. Redshift drift

Evaluating the redshift drift is more involved in a
perturbed FL universe since the constant time hypersurfa-
ces are no longer homogeneous. Considering a second
geodesic corresponding to an observation at to þ δto, the
change in redshift δ12z is obtained from Eq. (4.10) to be

δ12z
1þ z

¼ ðHoδto −HsδtsÞ þ δ12ϒ ð4:13Þ

where

ϒ ¼ −ðΦs −ΦoÞ þ
Z

ηs

ηo

�
Φ0 −

1

2
n̄in̄jh0ij

�
dη ð4:14Þ

and δ12ϒ stands for the difference ofϒ between its value on
the second and first geodesics. To evaluate the drift of the
integrated terms inϒ, one has to take into account how they
vary spatially from one geodesic to the next as space is no
longer homogeneous. This calculation is detailed in
Appendix B, thus yielding

δ12ϒ ¼ −ð _Φsδts − _ΦoδtoÞ þ
Z

ηs

ηo

�
Φ00 −

1

2
n̄in̄jh00ij

�
dηδηo:

Plugging this back into Eq. (4.13), we get

δ12z
1þ z

¼ ðHoδto −HsδtsÞ − ð _Φsδts − _ΦoδtoÞ

þ
Z

ηs

ηo

�
Φ00 −

1

2
n̄in̄jh00ij

�
dηδηo: ð4:15Þ

To obtain the redshift drift, we must also take into account
the difference between the observer’s proper time τ and the
cosmic time t, δτ ¼ ð1þΦÞδt, and then use Eq. (A9) to
conclude that

δ12z
δτo

¼ ð1þ zÞ½Hoð1 −ΦoÞ þ _Φo� − ½Hsð1 −ΦsÞ þ _Φs�

þ ð1þ zÞ
ao

Z
ηs

ηo

�
Φ00 −

1

2
n̄in̄jh00ij

�
dη: ð4:16Þ

C. Direction drift

To evaluate the direction drift, we start with the
i-component of the geodesic equation,

dni

dη
− n̄i

dΦ
dη

þ⊥i
j∂jΦ −

1

2
⊥i

j∂jðn̄kn̄lhklÞ

þ n̄j
dhij
dη

−
1

2
n̄in̄jn̄k

dhjk
dη

¼ 0: ð4:17Þ

With the tetrad for the conformal space defined by

ϵð0Þ ¼ ð1 −ΦÞ∂η; ϵðiÞ ¼
�
δji −

1

2
hji

�
∂j; ð4:18Þ

the direction vector is decomposed in tetrad components as

nðiÞ ¼ k̂ðiÞ

k̂ð0Þ
; ð4:19Þ

so that

ni ¼ nðiÞ þΦnðiÞ −
1

2
hijn

ðjÞ: ð4:20Þ

Plugging this decomposition into Eq. (4.17) gives

dnðiÞ

dη
¼ −⊥i

j∂jΦþ 1

2
⊥i

j∂j½n̄ðkÞn̄ðlÞhkl� −
1

2
⊥i

jn̄
ðkÞ dh

j
k

dη
:

ð4:21Þ
By integrating this equation and then replacing nðiÞ by
ni ¼ dxi

dη using Eq. (4.20), one gets the null geodesic
equation,

dxi

dη
¼ nðiÞo þ n̄ðiÞo Φ −

1

2
n̄ðjÞo hij −

1

2
⊥i

jn̄
ðkÞ
o ðhjk − hjokÞ

−⊥i
j∂j

Z
η

ηo

�
Φ −

1

2
½n̄ðkÞo n̄ðlÞo hkl�

�
dη: ð4:22Þ

After integration from ηo to ηs, its scalar, vector and tensor
parts are
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xis − xio ¼ ðηs − ηoÞnðiÞo þ n̄ðiÞo
Z

ηs

ηo

Θdη −⊥i
j

Z
ηs

ηo

ðηs − ηÞ∂jΘdηþ ðηs − ηoÞ⊥i
jn̄

ðkÞ
o ∂ðkE

jÞ
o

−⊥i
jn̄

ðkÞ
o

Z
ηs

ηo

∂ðkEjÞdη − n̄ðjÞo

Z
ηs

ηo

∂ðjEiÞdηþ⊥i
j

Z
ηs

ηo

ðηs − ηÞn̄ðkÞo n̄ðlÞo ∂j∂kEldη

þ ðηs − ηoÞ⊥i
jn̄

ðkÞ
o Ej

ok −⊥i
jn̄

ðkÞ
o

Z
ηs

ηo

Ej
kdη − n̄ðjÞo

Z
ηs

ηo

Ei
jdηþ⊥i

j

Z
ηs

ηo

ðηs − ηÞn̄ðkÞo n̄ðlÞo ∂jEkldη; ð4:23Þ

where we have performed an integration by parts to express
the double integral as single integrals. We shall now write
this equation for a second geodesic. The terms evaluated at
fixed endpoints are simple to compute for the second
geodesic. For the integrated terms, we refer to Appendix B,
where the calculation is presented in detail. We need to take
into account the difference between proper time of the
observer and cosmic time, and also make use of Eqs. (4.10)
and (A9). Splitting in scalar, vector and tensor modes, the
direction drift is finally given by

δ12n
ðiÞ
o

δτo

ðSÞ
¼ −

⊥i
j

ao

Z
ηs

ηo

ðηs − ηÞ
χso

∂jΘ0dη; ð4:24aÞ

δ12n
ðiÞ
o

δτo

ðVÞ
¼ −

1

ao
⊥i

jn̄
ðkÞ
o ∂ðkE

0jÞ
o −

2⊥i
jn̄

ðkÞ
o

aoχso

Z
ηs

ηo

∂ðkE0jÞdη

þ⊥i
j

ao

Z
ηs

ηo

ðηs − ηÞ
χso

n̄ðkÞo n̄ðlÞo ∂j∂ðkE0
lÞdη;

ð4:24bÞ

δ12n
ðiÞ
o

δτo

ðTÞ
¼ −

1

ao
⊥i

jn̄
ðkÞ
o E0j

ok −
2⊥i

jn̄
ðkÞ
o

aoχso

Z
ηs

ηo

E0j
k dη

þ⊥i
j

ao

Z
ηs

ηo

ðηs − ηÞ
χso

n̄ðkÞo n̄ðlÞo ∂jE0
kldη: ð4:24cÞ

D. Summary

This section provides the first derivation of the direction
drift and redshift drift in a perturbed FL universe. As such
each has three contributions arising respectively from
scalar, vector and tensor modes. First, the scalar part of
our expression (4.16) corrects a mistake in the only
expression proposed in the literature so far and first
published in Ref. [27]. Such an expression plays an
important role in estimating the expected cosmological
variance of the redshift drift. Note that the scalar mode
contribution has to be combined with Eq. (3.14) to include
the effect of the motions of the observer and the sources.
Concerning gravity waves, several results [42–47] have

been used, in particular by Pulsar Timing Array experi-
ments. The result of Ref. [44] gives the perturbed values of
z and nðiÞ with respect to the background z̄ and n̄ðiÞ values.
Their equation (28) is directly comparable to Eq. (4.11c),

and the results match considering the relationship between
the parameters λ and η and that Eq. (28) is for a pure
Minkowski spacetime. To compute the perturbation of nðiÞ in
our framework, we start from Eq. (4.23) and split it into its
background and perturbed values. Noticing that the positions
of the source and observer are fixed in the “straight geodesic”
approximation, we take the perpendicular projection of
Eq. (4.23) to find

δnðiÞ ¼ −⊥i
jn̄

ðkÞEj
ok −

2⊥i
jn̄

ðkÞ

χso

Z
ηs

ηo

Ej
kdη

þ⊥i
j

Z
ηs

ηo

ðηs − ηÞ
χso

n̄ðkÞo n̄ðlÞo ∂jEkldη: ð4:25Þ

This matches with the Eq. (56) of Ref. [44] if we take into
account our opposite sign in defining the direction vector
and again, the relationship between the parameters ζ and η.
Thus, the plane wave expansion used in Refs. [42–47] is
compatible with our analysis. Indeed their results only
provide deviation of z and nðiÞ from their background value
and do not provide their drifts computed here.

V. SPATIALLY HOMOGENEOUS AND
ANISOTROPIC SPACETIMES:

BIANCHI I CASE

Bianchi I spacetime is one of the solutions of a class of
spatially anisotropic and homogeneous spacetimes (see
Ref. [48] for details). Being homogeneous, these spaces
still enjoy three Killing vectors associated with the three
spatial translations. The spatial sections are also Euclidean,
and the spacetime metric is given by

ds2 ¼ −dt2 þ a2ðtÞ
X
i;j

e2βiðtÞδijdxidxj; ð5:1Þ

where the βi are three directional scale factors which satisfyP
iβi ¼ 0, and a is the average scale factor defined by the

volume expansion.

A. Null geodesics

Thanks to these Killing vectors, we still have

ki ¼ const ð5:2Þ
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along any null geodesic for a photon with 4-momentum
kμ ¼ ωðuμ − nμÞ, as long as we use the Cartesian coor-
dinates introduced in Eq. (5.1). It leads to

a2e2βi ki ¼ const; ð5:3Þ

with no summation over i. The worldline of a photon is
again given

dxi

dλ
¼ ki; ð5:4Þ

where λ is the parameter along the geodesic. In conformal
time, the orthonormal tetrads are explicitly given by

eð0Þ ¼ ∂t; eðiÞ ¼ a−1e−βi∂i; ð5:5Þ

in terms of which Eq. (5.3) becomes

aωe2βi
dxi

dη
¼ −aoωoeβ

0
i nðiÞo ð5:6Þ

where nðiÞo are the tetrad basis components of nio. We also
define the “conformal” shear by

σij ¼ β0ie
2βiδij; ð5:7Þ

which is a symmetric tracefree tensor.

B. Direction and redshift drifts to first order in shear

First, we note that the 0-component of the geodesic takes
the form

1

aω
dðaωÞ
dη

þ β0in
ðiÞnðiÞ ¼ 0; ð5:8Þ

a solution of which is

aω ¼ aoωo exp

�
−
Z

η

ηo

β0in
ðiÞnðiÞdη

�
: ð5:9Þ

Note that we omit the sums involving βi for simplicity.
To avoid confusion, one should keep in mind that an
expression like βinðiÞ is not summed, while βinðiÞnðiÞ is.
We shall now perform a small shear approximation and

consider only the lowest order terms in σij or, equivalently,
in β0i. In this limit Eq. (5.9) becomes

ω

ωo
≃

ω̄

ω̄o
½1 − ðβi − βoi Þn̄ðiÞn̄ðiÞ�; ð5:10Þ

where an overbar denotes a FL value since the Bianchi I
spacetime can be thought as a homogeneous perturbation
of the FL spacetime. Since n̄ðiÞ is constant, the small
shear approximation is related to a “straight geodesic”

approximation, or to the more usual Born approximation
in lensing. It follows that Eq. (5.6) becomes

xis − xio ≃ −
Z

ηs

ηo

ð1 − βiÞnðiÞo dηþ
Z

ηs

ηo

⊥i
jðβj − βojÞn̄ðjÞdη

ð5:11Þ

where ⊥i
j ¼ δij − n̄ðiÞn̄ðjÞ is the perpendicular projector

with respect to n̄ðiÞ. Now, we just have to follow the same
procedure, i.e., integrating the equations for two nearby
geodesics and determine the relation between δηs and δηo.
In a Bianchi I, the latter is given by Eq. (A9) to be

δηs
δηo

¼ ½1þ ðβi − βoi Þn̄ðiÞn̄ðiÞ�: ð5:12Þ

Hence, we have all the pieces to determine the drifts.

1. Direction drift

Evaluating Eq. (5.11) at ηs;o and ηs;o þ δηs;o and using
Eq. (5.12), the direction drift is

δ12nðiÞ

δto
¼ −

2

aoχso
⊥i

jðβsj − βojÞn̄ðjÞ −⊥i
j
_βoj n̄ðjÞ; ð5:13Þ

where χso ¼ ηo − ηs is the observer-source radial distance
in the FL background space. Notice that this expression is
similar to the one for a general observers in a FL spacetime,
containing a parallax type (the first term above) and an
aberration type (the second term) contribution. Note also
that the first term is a redshift-dependent one, whereas the
second is redshift-independent.

2. Redshift drift

The redshift drift is calculated in a similar way, from
Eq. (5.10), to be

1þ z ¼ ωs

ωo
¼ ao

as
½1 − ðβsi − βoi Þn̄ðiÞn̄ðiÞ� ð5:14Þ

As in the previous sections, it follows that

δ12z
δto

¼ ð1þ zÞðHo þ _βoi n̄ðiÞn̄ðiÞÞ − ðHs þ _βsi n̄ðiÞn̄ðiÞÞ;

ð5:15Þ

in agreement with the analysis of Ref. [28].

C. Decomposition in multipoles

As in Sec. III B, we can decompose the redshift and
direction drifts in terms of multipoles, the decomposition
being made with respect to n̄ðiÞ. Defining
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Bij ≡ δijβi _Bij ≡ δij _βi ð5:16Þ

we read from Eq. (5.15) that the Bianchi I spacetime brings
a quadrupolar structure to the redshift drift,

Wij ¼ ð1þ zÞ _Bo
ij − _Bs

ij: ð5:17Þ

Note however that it adds no dipolar contribution. It is thus
in principle distinguishable from the peculiar velocity of
the observer in a FL spacetime.
The direction drift in Bianchi I structure also inherits a

quadrupolar contribution in Eðn̄ðiÞÞ, but not in Hðn̄ðiÞÞ.
From Eq. (5.13), it is

Eij ¼ −
1

aoχso
ðBs

ij − Bo
ijÞ −

1

2
_Bo
ij: ð5:18Þ

D. Discussion

Equations (5.13) and (5.15) provide the expressions of
the direction and redshift drifts in a Bianchi I spacetime, in
small shear approximation. Indeed when βi ¼ 0 for all i,
we recover the FL expressions for a comoving observer.
Moreover, since the infinite wavelength limit of a

gravitational wave is equivalent to a homogeneous shear
[i.e., Eij → βiðtÞδij], it can be checked that the tensor part
of Eq. (4.16) is equivalent to Eq. (5.15) for the redshift drift
and that Eq. (4.24c) is equivalent to Eq. (5.13) for the
aberration drift.
Let us now compare to existing results, and in particular

Refs. [7,16] that assume a “straight geodesic approxima-
tion” and in which the results are obtained through a time
derivative of the aberration (as defined here). Defining a
spatial orthogonal coordinates system aligned with the
principal axis of expansion so that, with the notation of
Ref. [7], HX=H − 1 ¼ _β1=H ¼ ΣX, etc., and decomposing
the direction of observation as in Eq. (3.26), it is easy to
show that Eqs. (33–34) of Ref. [7] (or Eqs. (6 and 7) of
Ref. [16]) are equivalent to −⊥i

j
_βoj n̄ðjÞ up to an overall

minus sign. This is only the aberration drift effect of
Eq. (5.13) and these expressions do not contain the parallax
drift included in our expression. Indeed, it cannot be
obtained by deriving the expression of the aberration of
angles with respect to time since it arises from the fact that
the endpoints of the two geodesics are different.
Lastly, we can give some crude estimates of the level to

which measurements of the direction drift can constrain the
shear. For simplicity let us write _βo as a fraction of Ho,
i.e., _βo ∼ ϵHo. Then, we can separate the constraints in two
types: early and late anisotropies. For the first type, CMB
data severely constrains the value of the shear today to no
larger than the observed CMB quadrupole, i.e., ϵ < 10−5.
This would lead to an aberration drift of the order of
10−4 μas=yr or smaller. As has been pointed out, this is

three order of magnitudes smaller than the expected
peculiar velocities in the standard (FL) model, so very
unlike to be detected with future experiments [17]. Late
type anisotropies are however more promising. Future
surveys of weak-lensing shear such as Euclid could
constrain the late anisotropy of the cosmic flow to order
_βo=Ho ¼ 1% [49]. This would imply a signal in the
aberration drift of the order 0.1 μas=yr per source, or
1.0 μas over ten years. This is compatible with the figure of
0.4 μas in ten years coming from the local group proper
motion with respect to the CMB frame found in Ref. [18].
In fact, as we pointed out in Sec. III C 1, assuming vLG ∼
620 km=s leads to a drift of the order of 0.3 μas in ten
years. Moreover, since the shear contribution to the drift is
coming from a quadrupole, it can in princible be distin-
guished from the velocity contribution.

VI. CONCLUSIONS

Our analysis proposes a general method to compute the
direction and redshift drifts, making clear the importance of
considering two nearby geodesics connecting the observer
and the source. Two effects have to be considered, the first
related to the integral along the line of sight and the second
related to the end points of the geodesics. In a nonstatic
spacetime or for noninertial observer and sources the lapses
connecting the geodesics at the source and at the observer
differ.
This general method allowed us to first recover the

standard formula for the direction and redshift drifts for a
general observer in a FL spacetime. The multipolar
decomposition shows that for both the redshift and the
direction drifts, the observer’s velocity only induces a
dipole. We were able to separate the contribution of the
velocity to the direction drift into two effects, the parallax
drift (which is z-dependent) and aberration drift.
Comparing the two for various combined motions, we
showed that the two do contribute significantly to the total
drift. However, the parallax drift is usually considered as a
noise to be removed, which can be accomplished using the
z-dependence. The drift caused by the motion of the Sun
around the galactic center must also be removed if one is
interested in the cosmological aberration drift.
We also provided an expression for the direction and

redshift drifts in a perturbed FL universe for scalar, vector
and tensor perturbations. Concerning the scalar part of the
redshift drift, we corrected a mistake in the literature. The
tensor contribution to both the redshift and direction vector
were compared to existing results for a plane (gravitational)
wave. We have left a full multipolar analysis and calcu-
lation of correlations of the observables for future work.
To finish, we provided an expression for the direction

and redshift drifts in Bianchi I universes in the “straight
geodesic approximation.” A multipolar decomposition
shows that the shear contributes as a quadrupole, which
makes it distinguishable from the effects of the velocity.
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We also showed that the results published in the literature
were actually missing a parallax drift type contribution.
We then estimated how well the shear can be constrained
using our results.
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APPENDIX A: TIME-REDSHIFT RELATIONSHIP

Here we show the validity of the relation

dτs
dτo

¼ ωo

ωs
¼ 1

1þ z
ðA1Þ

where τs;o are the proper times of the source and the
observer, respectively. In the geometrical optics approxi-
mation (also known as eikonal approximation), the electro-
magnetic vector potential satisfies (in vacuum)

∇μ∇μAν ¼ 0: ðA2Þ
Considering a solution of the form

Aμ ¼ Cμeiφ ðA3Þ
with approximately constant amplitude, Eq. (A3), neglect-
ing derivatives of Cμ, gives

∇μφ∇μφ ¼ 0 ðA4Þ
∇μ∇μφ ¼ 0: ðA5Þ

kμ ¼ ∇μφ is the vector normal to the surfaces of constant φ.
Differentiating (A4) gives the geodesic equation

kμ∇μkν ¼ 0: ðA6Þ
Hence kμ is also tangent to a null geodesic. Thus, in the
eikonal approximation, null geodesics are curves of con-
stant phase φ.
The frequency of the wave as measured by an observer

with 4-velocity uμ is precisely (minus) the rate of change
of the phase of the wave with respect to his proper time.
That is,

ω ¼ −
dφ
dτ

¼ −uμ∇μφ ¼ −uμkμ: ðA7Þ
Thus, for a source and observer connected by a null
geodesic, we have that

ωs

ωo
¼ dφ=dτs

dφ=dτo
: ðA8Þ

Since null geodesics are curves of constant phase, we thus
have that

dτs
dτo

¼ ωo

ωs
¼ 1

1þ z
: ðA9Þ

Note that in the cases of inertial FL and Bianchi I the
observer and source were both comoving so that their
proper times coincide with the cosmic time. For a general
observer, this holds only to first order in velocities. For a
perturbed FL, the difference between proper time and
cosmic time has to be taken into account.

APPENDIX B: DRIFT OF INTEGRATED
EFFECTS IN PERTURBED FL

Here we show how to evaluate δ12Ξ where Ξ is a general
term of the form Ξ ¼ R

ηs
ηo
ξ½η; xi�dη.

To that purpose, one has to take into account how ξ½η; xi�
changes from one geodesic to the other. Thus, there will be
a contribution due to the fixed endpoints of the integral but
also a contribution from the spatial change of the integrand.
More explicitly,

δ12Ξ ¼
Z

ηsþδηs

ηoþδηo

ξ½η; xi2�dη −
Z

ηs

ηo

ξ½η; xi1�dη: ðB1Þ

The second line of sight xi2ðηÞ is given by

xi2ðηÞ ¼ xi1ðηÞ þ δxiðηÞ
¼ xi1ðηÞ − n̄iδη: ðB2Þ

This allows us to compute the contribution from the
endpoints, which, to first order in δη, is simplyZ

ηsþδηs

ηoþδηo

ξ½η; xi2�dη ¼
Z

ηs

ηo

ξ½η; xi2�dη

þ δηsξs½xi1� − δηoξo½xi1�: ðB3Þ
Now, we use Eq. (B2) to write

ξ½η; xi2� ¼ ξ½η; xi1� − n̄i∂iξ½η; xi1�δη: ðB4Þ

Now, remember that n̄i∂i ¼ d
dη −

∂
∂η. Also, since ξ is a

perturbation, any term multiplying it is evaluated at the
background, and at this level δηs ¼ δηo. We conclude that

δ12Ξ ¼ δηo

Z
ηs

ηo

ξ0½η; xi1�dη: ðB5Þ
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