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If the inflaton couples to other degrees of freedom (d.o.f.) that populate the postinflationary stage, such
coupling modifies the dynamics of the inflaton during inflation. We consider light fermions Yukawa
coupled to the inflaton as “unobserved” d.o.f. integrated out of the total density matrix. Tracing out these
d.o.f. yields a mixed density matrix whose time evolution is described by an effective field theory. We
show that the coupling leads to profuse fermion pair production for super-Hubble inflaton fluctuations
which lead to the growth of entanglement entropy during inflation. The power spectrum of inflaton
fluctuations features scale invariance violations PðkÞ ¼ P0ðkÞ expf8ξkg with corrections to the index and

its running directly correlated with the entanglement entropy: SvN ¼ −
P

k½lnð1 − ξkÞ þ ξk lnðξkÞ
1−ξk

�. For super-
Hubble fluctuations we find ξk ¼ − Y2

48π2
f2NT lnðk=kfÞ þ ln2ðk=kfÞg with Y the Yukawa coupling, NT the

total number of e-folds during inflation, and kf a “pivot” scale corresponding to the mode that crosses the
Hubble radius at the end of inflation.
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I. INTRODUCTION, MOTIVATION, AND GOALS

The main predictions of inflationary cosmology are
supported by observations of the cosmic microwave back-
ground (CMB) anisotropies with unprecedented accuracy
by the WMAP [1,2] and PLANCK [3] missions. A simple
paradigm of inflationary cosmology describes the infla-
tionary stage as dominated by the dynamics of a scalar
field, the inflaton, slowly rolling down a potential land-
scape leading to a nearly de Sitter inflationary epoch [4,5].
During this period (adiabatic) cosmological perturbations
are generated by quantum fluctuations that freeze when
their wavelengths become larger than the Hubble radius
with a nearly scale invariant power spectrum [6,7]. Upon
reentering the Hubble radius during the matter dominated
era, these fluctuations provide the seeds for structure
formation.
Typical models of inflation invoke one scalar field, the

inflaton, yielding adiabatic perturbations, including other
scalar fields generically yield a small component of
isocurvature (entropy) perturbations that are severely con-
strained by CMB observations [1–3]. The interactions
between the inflaton field and other fields describing
d.o.f. that populate a postinflation, radiation dominated
era, such as those present in the Standard Model, are
usually considered within the realm of reheating post-
inflation [8,9]. However, if the inflaton interacts with other
d.o.f., these interactions do not suddenly “switch on” after

the inflationary stage, but must be present even during
inflation. Hence, a logical conclusion is that, if the theory of
reheating is relevant to describe the postinflationary cos-
mology, the d.o.f. excited during this stage will also be
coupled to the inflaton during inflation. From this per-
spective, scalar field-driven inflation should be understood
as an effective field theory emerging after tracing out, or
coarse graining, these “unobserved” d.o.f. that are not
directly involved in the generation of the cosmological
perturbations that seed the temperature anisotropies.
Interacting quantum fields in a de Sitter (or nearly de

Sitter) space time have been the focus of several important
studies [10–30] that pointed out the emergence of secular
and infrared divergences associated with nearly massless
fields in inflationary cosmology. Previous studies have
shown that loop contributions from “spectator” fields
feature these secular or infrared divergences and may yield
a time dependence of curvature perturbations in the super-
Hubble limit [31–33]. An important framework to study
effective field theories out of equilibrium is that of open
quantum systems wherein the time evolution of a reduced
density matrix, obtained by tracing over unobserved d.o.f.,
is determined by a quantum master equation [34–36]. This
approach has recently begun to be implemented in cosmol-
ogy [37–43] and shown to be equivalent to the non-
equilibrium effective action that includes the influence
action of the d.o.f. that are traced over [36,44]. The
influence of these “unobserved” d.o.f., including fermions
[45], has been shown to lead to corrections to the power
spectrum of inflaton fluctuations and violations of scale*boyan@pitt.edu
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invariance [38,44]. Recently the interaction between the
inflaton and “environmental” fields has been studied within
the framework of the quantummaster equation to assess the
discord, namely the effect of decoherence on inflationary
correlations [39,40]. Taken together, these studies suggest a
relationship between corrections to the power spectrum
from “environmental” fields and discord and decoherence
as a consequence of interactions with “unobserved” (traced
over) d.o.f.

A. Motivation, goals, and main results

Our study is motivated by the following aspects:
(i) The power spectrum of scalar perturbations is

characterized by the index ns with the tilt [1,3]
ð1 − nsÞ indicating (slight) violations of scale invari-
ance, with the running αs ¼ dns=d lnðkÞ and run-
ning of the running βs ¼ dαs=d lnðkÞ being higher
order indicators of violations of scale invariance. In
single field slow roll scenarios 1 − ns, αs, βs follow a
hierarchy in slow roll parameters. The analysis of the
Planck Collaboration [3], however, yields a value of
βs surprisingly large, positive, and of the same order
of but slightly larger than αs that seems to be in
tension with slow roll scenarios [46,47], although at
the ≃2σ level. However, future surveys may tighten
this bound [48]. Values of αs, βs larger (and of
different sign) than those predicted in the simple
single field slow roll inflation can be obtained by
allowing entropy perturbations [49] or from contri-
butions of other sources [50].

(ii) If the inflaton is coupled to the d.o.f. that describe
the postinflation radiation dominated phase, this
coupling is also present during inflation. A corollary
of the results of Refs. [38,39,44,45] is that the
interaction between the inflaton and “unobserved”
d.o.f. that are integrated out into an effective
dynamics, yield corrections to the power spectrum
of inflationary quantum fluctuations with violations
of (near) scale invariance. Remarkably, these cor-
rections obtained in Refs. [38,39,44,45] can also
be interpreted as a running αs determined by the
interaction strength.

(iii) A recent study showed that integrating out (“un-
observed”) d.o.f. to yield an effective field theory
implies a loss of information, which is manifest as an
entanglement entropy of the effective field theory
that determines the time evolution of the reduced
density matrix [51].

Our aim is to assess whether, and how, the information
loss and entanglement entropy encoded in the effective
field theory resulting from tracing out the “unobserved”
d.o.f. [51] is manifest or imprinted in the corrections to the
power spectrum of inflaton fluctuations. In other words,
we study the relationship between the violations of scale
invariance in the power spectrum induced by the coupling

of the inflaton to the unobserved fields and the information
loss and entanglement entropy arising from tracing
over these d.o.f. If such a relationship can be unambigu-
ously established, a measurement of ns; αs; βs that departs
from the predictions of single field slow roll may be
evidence of an underlying effective field theory description
of inflation in which “unobserved” d.o.f. yield corrections
to observables.

B. Main results

Assuming that the scale of inflation H is much larger
than the weak scale, we consider the inflaton Yukawa
coupled to fermions with masses mf ≪ H as these are the
most ubiquitous d.o.f. of the standard model to which a real
scalar field can couple directly. We consider an initial
factorized density matrix describing Bunch-Davies vacua
for the inflaton and fermions, evolve this state in time in the
interacting theory, and trace the fermions out of the time
evolved density matrix obtaining a reduced density matrix
for the inflaton. We begin the study with a perturbative
evaluation of the reduced density matrix. This approach
makes evident that the production of fermion-antifermion
pairs kinematically entangled with inflaton fluctuations
leads to a mixed state upon tracing over the fermion pairs.
The coefficients of the reduced density matrix reveal
secular growing terms for super-Hubble inflaton fluctua-
tions; these are a consequence of profuse fermion pair
production enhanced when the physical wavelength of
inflaton fluctuations become super-Hubble. We obtain an
preliminary estimate of the entanglement entropy and its
relation to the power spectrum in the super-Hubble limit.
We then obtain the one-loop effective action upon integrat-
ing out the fermionic d.o.f. and show that it yields the time
evolution of the reduced density matrix from which we
obtain the entanglement entropy and the power spectrum of
inflaton fluctuations confirming the perturbative treatment.
For the entanglement entropy we find

SvN ¼ −
X
k

�
lnð1 − ξkÞ þ

ξk lnðξkÞ
1 − ξk

�
; ð1:1Þ

where for super-Hubble modes and Yukawa coupling Y
we find

ξk ¼ −
Y2

48π2
f2NT lnðk=kfÞ þ ln2ðk=kfÞg; ð1:2Þ

with NT the total number of e-folds during inflation, and kf
a “pivot” scale corresponding to the mode that crosses the
Hubble radius at the end of inflation.
A dynamical renormalization group improvement yields

for the inflaton power spectrum in the super-Hubble limit

PðkÞ ¼ H2

4π2
e8ξk ; ð1:3Þ
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explicitly showing that the corrections to the power
spectrum with scale invariance violations are directly
related to the entanglement entropy and information loss
of the effective field theory. The corrections to the scalar
index and its running are given by

δns ¼ −
NTY2

3π2
; αs ¼ −

Y2

6π2
; ð1:4Þ

with vanishing running of the running to leading order
in Y2.

II. THE MODEL

We consider the model of an inflaton scalar field
minimally coupled to gravity and Yukawa coupled to
one Dirac fermionic d.o.f. in a spatially flat de Sitter space
time. Including Majorana fermions and/or more species is
straightforward [45].
In comoving coordinates, the action is given by

S ¼
Z

d3xdt
ffiffiffiffiffiffi
−g

p �
1

2
_ϕ2 −

ð∇ϕÞ2
2a2

−
1

2
M2ϕ2

þ Ψ̄½iγμDμ −mf − Yϕ�Ψ
�
: ð2:1Þ

The Dirac γμ are the curved space-time γ matrices and
the fermionic covariant derivative is given by [52–55]

Dμ ¼ ∂μ þ
1

8
½γc; γd�eνcðDμedνÞ;

Dμedν ¼ ∂μedν − Γλ
μνedλ

where the vierbein field eμa is defined as

gμν ¼ eμaeνbη
ab;

ηab is the Minkowski space-time metric. The curved space-
time matrices γμ are given in terms of the Minkowski space-
time ones γa by (greek indices refer to curved space time
coordinates and latin indices to the local Minkowski space
time coordinates)

γμ ¼ γaeμa; fγμ; γνg ¼ 2gμν:

For a Friedmann-Robertson-Walker metric in conformal
time, the metric becomes

gμν ¼ C2ðηÞημν; CðηÞ≡ aðtðηÞÞ ð2:2Þ

and ημν ¼ diagð1;−1;−1;−1Þ is the flat Minkowski space-
time metric and for exact de Sitter space-time

CðηÞ ¼ −
1

Hη
: ð2:3Þ

In conformal time the vierbeins eμa are given by

eμa ¼ C−1ðηÞδμa; eaμ ¼ CðηÞδaμ ð2:4Þ

and the Dirac Lagrangian density simplifies to

ffiffiffiffiffiffi
−g

p
Ψ̄ðiγμDμΨ −mf − YϕÞΨ

¼ ðC3
2Ψ̄Þ½i=∂ − ðmf þ YϕÞCðηÞ�ðC3

2ΨÞ ð2:5Þ

where i=∂ ¼ γa∂a is the usual Dirac differential operator in
Minkowski space-time in terms of flat space time γa

matrices.
Introducing the conformally rescaled fields

CðηÞϕðx⃗; tÞ ¼ χðx⃗; ηÞ; C
3
2ðηÞΨðx⃗; tÞ ¼ ψðx⃗; ηÞ; ð2:6Þ

and neglecting surface terms, the action becomes

S ¼
Z

d3xdηfL0½χ� þ L0½ψ � þ LI½χ;ψ �g; ð2:7Þ

where

L0½χ� ¼
1

2
½χ02 − ð∇χÞ2 −M2ðηÞχ2�; ð2:8Þ

L0½ψ � ¼ ψ̄

�
i=∂ þ mf

Hη

�
ψ ; ð2:9Þ

LI½χ;ψ � ¼ −Yχ∶ψ̄ψ∶; ð2:10Þ

where we have normal ordered the interaction in the
interaction picture of free fields, and

M2ðηÞ ¼
�
M2

H2
− 2

�
1

η2
: ð2:11Þ

In the noninteracting case Y ¼ 0 the Heisenberg equa-
tions of motion for the spatial Fourier modes of wave vector
k⃗ for the conformally rescaled scalar field are

χ00
k⃗
ðηÞ þ

�
k2 −

1

η2

�
ν2χ −

1

4

��
χk⃗ðηÞ ¼ 0 ð2:12Þ

where

ν2χ ¼
9

4
−
M2

H2
: ð2:13Þ

We consider a light inflaton field with M2=H2 ≪ 1 con-
sistently with a nearly scale invariant power spectrum.
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The Heisenberg fields are quantized in a comoving
volume V as

χðx⃗;ηÞ¼ 1ffiffiffiffi
V

p
X
q⃗

½aq⃗gðq;ηÞeiq⃗·x⃗þa†q⃗g
�ðq;ηÞe−iq⃗·x⃗�: ð2:14Þ

We choose Bunch-Davies conditions for the scalar fields,
namely

aq⃗j0iχ ¼ 0: ð2:15Þ

and

gðq; ηÞ ¼ 1

2
ei

π
2
ðνχþ1

2
Þ ffiffiffiffiffiffiffiffiffi

−πη
p

Hð1Þ
νχ ð−qηÞ: ð2:16Þ

For M2=H2 ≪ 1 corresponding to νχ ≃ 3=2 the mode
functions simplify to

gðq; ηÞ ¼ e−ikηffiffiffiffiffi
2k

p
�
1 −

i
kη

�
: ð2:17Þ

The Dirac equation for Fermi fields becomes

½i=∂ −MψðηÞ�ψ ¼ 0; Mψ ðηÞ ¼ −
mf

Hη
: ð2:18Þ

For Dirac fermions the solution ψðx⃗; ηÞ is expanded as

ψðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗;λ

½bk⃗;λUλðk⃗; ηÞeik⃗·x⃗ þ d†
k⃗;λ
Vλðk⃗; ηÞe−ik⃗·x⃗�;

ð2:19Þ

where the spinor mode functions U, V obey the Dirac
equations

½iγ0∂η − γ⃗ · k⃗ −MψðηÞ�Uλðk⃗; ηÞ ¼ 0; ð2:20Þ

½iγ0∂η þ γ⃗ · k⃗ −Mψ ðηÞ�Vλðk⃗; ηÞ ¼ 0: ð2:21Þ

We choose to work with the standard Dirac representa-
tion of the (Minkowski) γa matrices.
It proves convenient to write

Uλðk⃗; ηÞ ¼ ½iγ0∂η − γ⃗ · k⃗þMψ ðηÞ�fkðηÞUλ; ð2:22Þ

Vλðk⃗; ηÞ ¼ ½iγ0∂η þ γ⃗ · k⃗þMψðηÞ�hkðηÞVλ; ð2:23Þ

with Uλ;Vλ being constant spinors [56,57] obeying

γ0Uλ ¼ Uλ; γ0Vλ ¼ −Vλ: ð2:24Þ

The mode functions fkðηÞ; hkðηÞ obey the following
equations of motion:

�
d2

dη2
þ k2 þM2

ψðηÞ − iM0
ψðηÞ

�
fkðηÞ ¼ 0; ð2:25Þ

�
d2

dη2
þ k2 þM2

ψ ðηÞ þ iM0
ψðηÞ

�
hkðηÞ ¼ 0: ð2:26Þ

We choose Bunch-Davies boundary conditions for the
solutions, namely

fkðηÞ⟶−kη→∞
e−ikη; hkðηÞ⟶−kη→∞

eikη; ð2:27Þ

which leads to the choice

hkðηÞ ¼ f�kðηÞ; ð2:28Þ

and fkðηÞ is a solution of

�
d2

dη2
þ k2 þ 1

η2

�
m2

f

H2
− i

mf

H

��
fkðηÞ ¼ 0: ð2:29Þ

We find

fkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−πkη
2

r
ei

π
2
ðνψþ1=2ÞHð1Þ

νψ ð−kηÞ; νψ ¼ 1

2
þ i

mf

H
:

ð2:30Þ

The sub-Hubble limit ð−kηÞ → ∞ of these modes is given
by (2.27) whereas these modes feature a purely oscillatory
super-Hubble behavior [45]. The important aspect, how-
ever, is that the amplitude of the mode functions remains
bound and of order unity for super-Hubble wavelengths.
Under the assumption that the scale of inflation is much

larger than the weak scale and that the fermionic d.o.f.
represent those of the Standard Model, it follows that
H ≫ mf, leading to

fk ≃ e−ikη: ð2:31Þ

In contrast, nearly massless M ≪ H minimally coupled
scalar fields feature a growing mode in the super-Hubble
limit (kη ≪ 1) with

gðk; ηÞ ∝ 1

k3=2η
; ð2:32Þ

which results in amplification and classicalization of super-
Hubble fluctuations [58].

III. ENTANGLEMENT ENTROPY AND POWER
SPECTRUM: A PERTURBATIVE ARGUMENT

Before we study the time evolution of the reduced
density matrix via the effective action, we analyze the
emergence of an entangled state between inflaton and
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fermionic d.o.f. in perturbation theory. The aim of this
section is to provide a simple physical understanding of the
emergence of the entanglement entropy and its relation to
the power spectrum, along with a preliminary estimate of
its value. The results of this section must be taken as
indicative, and as a guide to the physical processes
involved. The next sections provide a more technically
detailed and firmer derivation of the reduced density matrix
and entanglement entropy from the effective action.
Consider an initial state corresponding to the Bunch-

Davies vacuum for both the inflaton and fermions, namely

jΨðη0Þi ¼ j0iχ ⊗ j0iψ : ð3:1Þ

In the Schrödinger picture the time evolution of this state is
given by

jΨðηÞi ¼ Uðη; η0ÞjΨðη0Þi ð3:2Þ

where Uðη; η0Þ is the unitary time evolution operator
obeying

i
d
dη

Uðη; η0Þ ¼ HðηÞUðη; η0Þ; Uðη0; η0Þ ¼ 1; ð3:3Þ

whereHðηÞ ¼ H0ðηÞ þHiðηÞ is the total Hamiltonian, and
H0ðηÞ,HiðηÞ are the free field and interaction Hamiltonian
respectively, with H0ðηÞ depending explicitly on η through
the mass terms. The reduced density matrix for the inflaton
field χ is obtained by performing the trace over the
fermionic d.o.f. of the full density matrix. It is given by

ρrχðηÞ ¼ TrψðjΨðηÞihΨðηÞjÞ: ð3:4Þ

Entanglement between the inflaton and fermionic
d.o.f. resulting from their interaction and time evolution
is best studied in the interaction picture. The unitary time
evolution operator in absence of interaction (free fields)
U0ðη; η0Þ obeys

i
d
dη

U0ðη;η0Þ¼H0ðηÞU0ðη;η0Þ; U0ðη0;η0Þ¼1: ð3:5Þ

The quantum state in the interaction picture evolves in time
as

jΨðηÞiI ¼ UIðη; η0ÞjΨðη0Þi ð3:6Þ

where the unitary time evolution operator in the interaction
picture UIðη; η0Þ ¼ U0

−1ðη; η0ÞUðη; η0Þ obeys

i
d
dη

UIðη;η0Þ¼HIðηÞUIðη;η0Þ; UIðη0;η0Þ¼1; ð3:7Þ

where

HIðηÞ ¼ Y
Z

d3xχðx⃗; ηÞ∶ψ̄ðx⃗; ηÞψðx⃗; ηÞ∶ ð3:8Þ

is the interaction Hamiltonian in the interaction picture, and
χ, ψ are given by the free field expansions (2.14), (2.19)
respectively.
Up to second order in Y we obtain

jΨðηÞiI ¼ jΨðη0Þi þ jΨð1ÞðηÞi þ jΨð2ÞðηÞi þ � � � ð3:9Þ

where jΨðη0Þi is given by (3.1) and

jΨð1ÞðηÞi ¼ −i
Z

η

η0

HIðη1Þdη1jΨðη0Þi; ð3:10Þ

jΨð2ÞðηÞi ¼ ð−iÞ2
Z

η

η0

Z
η1

η0

HIðη1ÞHIðη2Þdη1dη2jΨðη0Þi

¼ −i
Z

η

η0

HIðη1ÞjΨð1Þðη1Þidη1: ð3:11Þ

We find

jΨð1ÞðηÞi ¼
X
k⃗;q⃗

Mð1Þ
λ;λ0 ðk⃗; q⃗; ηÞj1k⃗iχ ⊗ j1q⃗;λ; 1̄p⃗;λ0 iψ ;

p⃗ ¼ −q⃗ − k⃗; ð3:12Þ

where the matrix element is given by

Mð1Þ
λ;λ0 ðk⃗; q⃗; ηÞ ¼

Yffiffiffiffi
V

p
Z

η

η0

dη1g�ðk; η1ÞŪλðq⃗; η1ÞVλ0 ðp⃗; η1Þ:

ð3:13Þ

This state depicted in Fig. 1 is recognized as an
entangled multiparticle state of the inflaton field and
fermion-antifermion pairs.

An important aspect of the matrix element Mð1Þ
λ;λ0 ðk⃗; q⃗; ηÞ

is that it grows with conformal time for super-Hubble
inflaton modes: as a consequence of the growing mode
(2.32) for wave vectors that become super-Hubble at a time
η� ≈ −1=k, the time integral in (3.13) yields a contribu-
tion ∝ Y lnðη=η�Þ.

FIG. 1. The first-order state Ψð1Þ is a multiparticle state with an
inflaton (dashed line) kinematically entangled with a fermion-
antifermion pair (solid lines) with k⃗ ¼ −p⃗ − q⃗.
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In second order, there are several contributions obtained
from the second equality in Eq. (3.11); however, only two
contribute to the reduced density matrix: (i) annihilate all
particles from jΨð1ÞðηÞ returning to the vacuum state
jΨðη0Þi, (ii) create another χ-particle annihilating the
fermion-antifermion pair in the state jΨð1ÞðηÞi, yielding

jΨð2ÞðηÞi ¼ Mð2Þ
a ðηÞjΨðη0Þi

þ
X
k⃗

Mð2Þ
b ðk; ηÞj1k⃗; 1−k⃗iχ ⊗ j0iψ : ð3:14Þ

The contribution to the second-order state jΨð2bÞi with

matrix element Mð2Þ
b ðk; ηÞ is shown in Fig. 2; this is a one-

loop self-energy diagram.
The matrix elements involve another wave function

g�ðηÞ and another time integral implying an extra loga-
rithmic growth for super-Hubble wave vectors leading to a
behavior

Mð2Þ
a ðηÞ ∝ Y2ln2ðη=η�Þ; Mð2Þ

b ðk; ηÞ ∝ Y2ln2ðη=η�Þ:
ð3:15Þ

Therefore, the reduced density matrix in the interaction
picture up to second order is given by

ρrχðηÞ ¼ Trψ ðjΨðηÞihΨðηÞjÞ
≃ ρ0ðηÞðj0iχχh0jÞþ

X
k⃗

½ρ1ðk⃗;ηÞðj1k⃗iχχh1k⃗jÞ

þ ρ2ðk⃗;ηÞðj0iχχh1k⃗; 1−k⃗jÞþ ρ�2ðk⃗;ηÞðj1−k⃗;1k⃗iχχh0jÞ�;
ð3:16Þ

where

ρ0ðηÞ ≃ ½1þ 2ReMð2Þ
a ðηÞ�;

ρ1ðk⃗; ηÞ ∝ jMð1Þj2 ∝ Y2ln2ðη=η�Þ;
ρ2ðk⃗; ηÞ ∝ Mð2Þ

b ðηÞ ∝ Y2ln2ðη=η�Þ: ð3:17Þ

The secular growth of the matrix elements arising from
super-Hubble wavelengths of inflaton fluctuations imply
the profuse production of single quanta of the inflaton
kinematically entangled and correlated with fermion pairs.
That the reduced density matrix (3.16) describes a mixed

state can be understood from an argument closely related to
that in Ref. [51]. If (3.16) were a pure state, it could be
written as

ρrχðηÞ ¼ jαðηÞihαðηÞj; ð3:18Þ

where the state jαðηÞi, up to second order in the coupling,
must be generically a superposition of the vacuum, single
particle, and correlated pair states as it must be obtained
in a second-order expansion with the interaction (2.10).
Therefore such state should be of the form

jαðηÞi ¼ α0ðηÞj0iχ þ
X
k⃗

½α1ðk⃗; ηÞj1k⃗iχ

þ α2ðk⃗; ηÞj1k⃗; 1−k⃗iχ þ � � ��; ð3:19Þ

where α0 ≃OðY0Þ þOðY2Þ; α1 ≃OðYÞ; α2 ≃OðY2Þ.
Comparing (3.18) to (3.16) we find that (3.18) features
terms first order in Y of the form ≃j0iχχh1k⃗j and Hermitian
conjugate, as well as terms of the form j1k⃗iχχh1k⃗0 j for

k⃗ ≠ k⃗0. Neither of such terms are present in (3.16). The
main reason why these terms are not present in (3.16) is
because the single particle χ states are entangled with
fermion-antifermion pairs. In performing the trace over
these d.o.f., each member of the pair in a “bra”must pair up
with a similar state of same momentum and polarization λ
from a “ket” in the trace. Thus we conclude that the density
matrix (3.16) describes a mixed state. The entanglement
between the inflaton and fermionic states is responsible for
the entanglement entropy associated with this mixed state,
which is given by

S ¼ −
X
n

λn lnðλnÞ; ð3:20Þ

where λn are the eigenvalues of the reduced density matrix.
To leading order in Y, the eigenvalues in the single and

two particle sectors are proportional to ρ0, ρ1 yielding an
entanglement entropy

S ≃ −
X
k⃗

ζkðηÞ ln ζkðηÞ; ζkðηÞ ∝ Y2ln2ð−kηÞ: ð3:21Þ

The growth of this entanglement entropy is a consequence
of fermion pair production, which is enhanced when the
physical wavelength of the inflaton fluctuation becomes
super-Hubble. Tracing over the fermionic d.o.f. leads to
information loss which is manifest as the entanglement
entropy. As time evolves more inflaton modes become
super-Hubble resulting in fermion-pair production; as
more pairs are integrated out, more information is lost
and entropy grows.
The power spectrum of the original ϕðx⃗; ηÞ ¼ χðx⃗; ηÞ=

CðηÞ field is given by
FIG. 2. The second-order state Ψð2bÞ (solid line) is a fermion-
antifermion self-energy loop. The dashed lines are inflaton states.
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PkðηÞ ¼
�

k3

2π2C2ðηÞ
�
TrχρrχðηÞχ k⃗ðηÞχ−k⃗ðηÞ ð3:22Þ

where [see Eq. (2.14)] in the interaction picture

χk⃗ðηÞ ¼ ak⃗gðk; ηÞ þ a†
−k⃗
g�ðk; ηÞ: ð3:23Þ

With the product χk⃗χ−k⃗, both the single-particle and
correlated pair states in (3.16) contribute to the power
spectrum. We find for de-Sitter with CðηÞ ¼ −1=Hη and
for super-Hubble modes

PkðηÞ ≃
�
k3H2η2

2π2

�
1

2k3η2
½1þ aY2ln2ð−kηÞ þ � � ��

≃
H2

4π2
½1þ aY2ln2ð−kηÞ þ � � �� ð3:24Þ

where a is a constant that depends explicitly on the matrix
elements. It will be obtained below from a more systematic
treatment. This perturbative analysis, while preliminary and
very approximate in the form of the secular logarithms,
yields a simple understanding of the physical processes that
describe the reduced density matrix and the emergence of
the entanglement entropy: the production of correlated
fermion pairs kinematically entangled with inflaton fluc-
tuations. It also highlights in a simple but approximate
manner the relationship between the corrections to the
power spectrum and the entanglement entropy. The sec-
tions below provide a more technically detailed derivation
and confirmation of these results from the effective action.

IV. REDUCED DENSITY MATRIX

The effective action for inflaton d.o.f. obtained by tracing
out fermionic d.o.f. has been obtained in Ref. [45]. For
consistency and continuity in the presentation we summarize
the main aspects of the derivation. The reader is referred to
Ref. [45] for more technical details.
The time evolution of a density matrix initially prepared

at time η0 is given by

ρðηÞ ¼ Uðη; η0Þρðη0ÞU−1ðη; η0Þ; ð4:1Þ

where Tr½ρðη0Þ� ¼ 1 and Uðη; η0Þ is the unitary time
evolution operator of the full theory. It obeys

i
d
dη

Uðη; η0Þ ¼ HðηÞUðη; η0Þ; Uðη0; η0Þ ¼ 1 ð4:2Þ

where HðηÞ is the total Hamiltonian. Therefore

Uðη;η0Þ¼T
h
e
−i
R

η

η0
Hðη0Þdη0i

; U−1ðη;η0Þ¼ T̃
h
e
i
R

η

η0
Hðη0Þdη0i

ð4:3Þ

with T the time-ordering symbol describing evolution
forward in time and T̃ the antitime-ordered symbol describ-
ing evolution backwards in time.
Consider the initial density matrix at a conformal time η0

and for the conformally rescaled fields to be of the form

ρðη0Þ ¼ ρχðη0Þ ⊗ ρψðη0Þ: ð4:4Þ

This choice while ubiquitous in the literature neglects
possible initial correlations. We consider an initial time
η0 such that physical wavelengths of cosmological rel-
evance were deep inside the Hubble radius at η0. We will
focus on the time evolution well after their physical
wavelengths have become super-Hubble during inflation
when the amplitude of the scalar modes χ become ampli-
fied. Under this assumption initial correlations between
these modes and the fermionic d.o.f. are perturbatively
small; hence we adopt this initially factorized density
matrix with the understanding that the role of initial
correlations between the inflaton and the fermionic d.o.f.
remains to be studied further.
Since we are considering a de Sitter space-time, we take

the initial time η0 to be earlier than or equal to the time at
which the slow-roll (nearly de Sitter) stage begins.
Our goal is to evolve this initial density matrix in

(conformal) time obtaining (4.1) and trace over the fer-
mionic d.o.f. (ψ̄ ;ψ) leading to a reduced density matrix for
χ namely

ρrχðηÞ ¼ TrψρðηÞ: ð4:5Þ

There is no natural choice of the initial density matrices
for the inflaton or fermionic fields; however, consistently
with the analysis of the previous section and to exhibit the
main physical consequences of tracing over the fermionic
d.o.f. in the simplest setting, we choose both fields to be in
their respective Bunch-Davies vacuum state, namely

ρχðη0Þ ¼ j0iχχh0j; ρψ ðη0Þ ¼ j0iψψ h0j: ð4:6Þ

This condition can be generalized straightforwardly. In the
discussion below, we refer to ψ , ψ̄ collectively as ψ to
simplify notation.
In the field basis the matrix elements of ρχðη0Þ; ρψ ðη0Þ

are given by

hχjρχðη0Þjχ̃i ¼ ρχ;0ðχ; χ̃Þ; hψ jρψðη0Þjψ̃i ¼ ρψ ;0ðψ ; ψ̃Þ;
ð4:7Þ

and we have suppressed the coordinate arguments of the
fields in the matrix elements. In this basis
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ρðχf;ψf; χ̃f;ψ̃f;ηfÞ
¼hχf;ψfjUðηf;η0Þρð0ÞU−1ðηf;η0Þjχ̃f;ψ̃fi

¼
Z

DχiDψ iDχ̃iDψ̃ ihχf;ψfjUðηf;η0Þjχi;ψ iiρχ;0ðχi; χ̃iÞ

×ρψ ;0ðψ i;ψ̃ iÞhχ̃i;ψ̃ ijU−1ðηf;η0Þjχ̃f;ψ̃fi: ð4:8Þ

The
R
Dχ etc., are functional integrals, which for the

fermionic d.o.f. are in terms of Grassmann valued fields
and Dψ ≡DψDψ̄ . To simplify, notation space-time argu-
ments have been suppressed. The matrix elements of the
forward and backward time evolution operators can be
written as path integrals, namely

hχf;ψfjUðηf; η0Þjχi;ψ ii ¼
Z

DχþDψþe
i
R

ηf
η0

dη0d3xL½χþ;ψþ�
;

ð4:9Þ

hχ̃i;ψ̃ ijU−1ðηf;η0Þjχ̃f;ψ̃fi¼
Z

Dχ−Dψ−e
−i
R

ηf
η0

R
d3xL½χ−;ψ−�

;

ð4:10Þ
where L½χ;ψ � can be read off (2.7) and the boundary
conditions on the path integrals are

χþðx⃗; η0Þ ¼ χiðx⃗Þ; χþðx⃗; ηfÞ ¼ χfðx⃗Þ;
ψþðx⃗; η0Þ ¼ ψ iðx⃗Þ; ψþðx⃗; ηfÞ ¼ ψfðx⃗Þ; ð4:11Þ

χ−ðx⃗; η0Þ ¼ χ̃iðx⃗Þ; χ−ðx⃗; ηfÞ ¼ χ̃fðx⃗Þ;
ψ−ðx⃗; η0Þ ¼ ψ̃ iðx⃗Þ; ψ−ðx⃗; ηfÞ ¼ ψ̃fðx⃗Þ: ð4:12Þ

The fields χ�, ψ� describe the time evolution forward
(þ) with Uðη; η0Þ and backward (−) with U−1ðη; η0Þ; this
is the Schwinger-Keldysh formulation [59–61] of time
evolution of density matrices.
The reduced density matrix for χ is obtained by tracing

over fermionic d.o.f., namely

ρrðχf; χ̃f; ηfÞ ¼
Z

Dψfρðχf;ψf; χ̃f;ψf; ηfÞ: ð4:13Þ

We find

ρrðχf; χ̃f; ηfÞ

¼
Z

DχiDχ̃iT ½χf; χ̃f; χi; χ̃i; ηf; η0�ρχðχi; χ̃i; η0Þ;

ð4:14Þ

where the time evolution kernel T is given by the following
path integral representation:

T ½χf; χ̃f; χi; χ̃i; ηf; η0� ¼
Z

DχþDχ−eiSeff ½χþ;χ−;ηf �: ð4:15Þ

The total effective action that yields the time evolution of
the reduced density matrix is given by

Seff ½χþ; χ−; ηf� ¼
Z

ηf

η0

dη0
Z

d3x½L0½χþ� − L0½χ−��

þ F ½χþ; χ−�: ð4:16Þ
The influence action F is defined by

eiF ½χþ;χ−� ¼
Z

Dψ iDψ̃ iDψfρψðψ i; ψ̃ i; η0Þ

×
Z

DψþDψ−ei
R

d4xf½Lþ½ψþ;χþ�−L−½ψ−;χ−��g;

ð4:17Þ
and we used the shorthand notation

L�½ψ�; χ�� ¼ L0½ψ�� − Yχ�ðxÞ∶ψ̄�ðxÞψ�ðxÞ∶: ð4:18Þ
The boundary conditions on the fermionic path integrals are

ψþðx⃗; η0Þ ¼ ψ iðx⃗Þ; ψþðx⃗; ηfÞ ¼ ψfðx⃗Þ;
ψ−ðx⃗; η0Þ ¼ ψ̃ iðx⃗Þ; ψ−ðx⃗; ηfÞ ¼ ψ̃fðx⃗Þ ¼ ψfðx⃗Þ:

ð4:19Þ
The last equality is a consequence of the trace.
The path integral in the fermionic sector is a representa-

tion of the time evolution forward and backwards of the
fermionic density matrix in (4.17) where χ� act as external
sources coupled to ∶ψ̄�ðxÞψ�ðxÞ∶. These sources are
different along the different branches,

eiF ½χþ;χ−� ¼Trψ ½Uðηf;η0;χþÞρψ ðη0ÞU−1ðηf;η0;χ−Þ�; ð4:20Þ

where Uðη; η0; χ�Þ is the time evolution operator in the
fermionic sector in presence of external sources χ� namely

Uðη; η0; χþÞ ¼ T
	
e
−i
R

η

η0
Hψ ½χþðη0Þ�dη0


;

U−1ðη; η0; χ−Þ ¼ T̃
	
e
i
R

η

η0
Hψ ½χ−ðη0Þ�dη0
; ð4:21Þ

and

Hψ ½χ�ðηÞ�¼H0ψ ðηÞþY
Z

d3xχ�ðx⃗;ηÞ∶ψ̄�ðx⃗;ηÞψ�ðx⃗;ηÞ∶:

ð4:22Þ

In Eq. (4.22) H0ψ ðηÞ is the free field Hamiltonian for the
field ψ which depends explicitly on time as a consequence
of the η dependent mass term in the fermionic Lagrangian
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density (2.9) and χ� in the interaction terms are classical
c-number sources.
The calculation of F ½χþ; χ−� proceeds by passing to the

interaction picture for the HamiltonianHψ ½χ�ðηÞ�, defining

Uðη; η0; χ�Þ ¼ U0ðη; η0ÞU ipðη; η0; χ�Þ ð4:23Þ

where U0ðη; η0Þ is the time evolution operator of the free
field ψ and cancels out in the trace in (4.20). The fermionic
fields in U ipðη; η0; χ�Þ feature the free field time evolution
(2.19). The trace can be obtained systematically in pertur-
bation theory in Y. Using the results of Refs. [36,45] we
find up to OðY2Þ in the cumulant expansion

iF ½χþ; χ−� ¼ −Y2

Z
d3x1d3x2

Z
ηf

η0

dη1

Z
η1

η0

dη2fχþðx⃗1; η1Þχþðx⃗2; η2ÞG>ðx1; x2Þ þ χ−ðx⃗1; η1Þχ−ðx⃗2; η2ÞG<ðx1; x2Þ

− χþðx⃗1; η1Þχ−ðx⃗2; η2ÞG<ðx1; x2Þ − χ−ðx⃗1; η1Þχþðx⃗2; η2ÞG>ðx1; x2Þg; x1 ¼ ðη1; x⃗1Þ etc:; ð4:24Þ

where

G>ðx1; x2Þ ¼ hð∶ψ̄ðx1Þψðx1Þ∶∶ψ̄ðx2Þψðx2Þ∶Þiψ ; ð4:25Þ

G<ðx1; x2Þ ¼ hð∶ψ̄ðx2Þψðx2Þ∶∶ψ̄ðx1Þψðx1Þ∶Þiψ ; ð4:26Þ

and the averages over fermionic variables are given by

hð� � �Þiψ ¼ Trψð� � �Þρψðη0Þ
Trψρψðη0Þ

: ð4:27Þ

We have used that normal ordering in the interaction picture
yields

Trψð∶ψ̄ðxÞψðxÞ∶Þρψðη0Þ ¼ 0; ð4:28Þ

since the initial density matrix corresponds to the (Bunch-
Davies) vacuum state for the fermionic d.o.f. Furthermore,
comparing (4.25) and (4.26) it follows that

G>ðx1; x2Þ ¼ G<ðx2; x1Þ: ð4:29Þ

The fermionic correlation functions G≶ are identified
as the fermion loop that enters in the second-order

contribution of the perturbative density matrix (3.16)
[see Fig. (2)], thereby establishing a direct relation between
the perturbative approach of the previous section and the
effective action.
In a spatially flat FRW cosmology spatial translational

invariance implies that

G≶ðx1; x2Þ ¼ G≶ðx⃗1 − x⃗2; η1; η2Þ

≡ 1

V

X
p⃗

K≶
pðη1; η2Þeip⃗·ðx⃗1−x⃗2Þ: ð4:30Þ

It is straightforward to find that

K<
p ðη1; η2Þ ¼ ðK>

p ðη1; η2ÞÞ�: ð4:31Þ

Therefore, we write the influence action in terms of spatial
Fourier transforms in a volume V, with

χ�ðx⃗; ηÞ≡ 1ffiffiffiffi
V

p
X
k⃗

χ�
k⃗
ðηÞe−ik⃗·x⃗; ð4:32Þ

and performing the spatial integrals we obtain

iF ½χþ; χ−� ¼ −Y2
X
k⃗

Z
ηf

η0

dη1

Z
η1

η0

dη2fK>
k ðη1; η2Þ½χþk⃗ ðη1Þχ

þ
−k⃗
ðη2Þ − χ−

k⃗
ðη1Þχþ−k⃗ðη2Þ�

þK<
k ðη1; η2Þ½χ−k⃗ ðη1Þχ−−k⃗ðη2Þ − χþ

k⃗
ðη1Þχ−−k⃗ðη2Þ�g: ð4:33Þ

In summary, the reduced density matrix for the inflaton field is given by

ρrðχf; χ̃f; ηfÞ ¼
Z

DχiDχ̃i

Z
DχþDχ−eiSeff ½χþ;χ−;ηf �ρχðχi; χ̃i; η0Þ; ð4:34Þ

where the total effective action that yields the time evolution of the reduced density matrix is given by (4.16), (4.33) and the
boundary conditions on the path integrals are

χþðx⃗; η0Þ ¼ χiðx⃗Þ; χþðx⃗; ηfÞ ¼ χfðx⃗Þ; χ−ðx⃗; η0Þ ¼ χ̃iðx⃗Þ; χ−ðx⃗; ηfÞ ¼ χ̃fðx⃗Þ: ð4:35Þ
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Although the reduced density matrix is obtained by
tracing over the fermionic d.o.f., the total density matrix
evolves in time via the unitary time evolution operator;
therefore,

TrρðηfÞ ¼ Trρðη0Þ; ð4:36Þ

where the total trace corresponds to tracing over both the
fermionic and inflaton d.o.f. Taking the initial density matrix
to be given by Eq. (4.4) with (4.6), the relation (4.36) yieldsZ

Dχfρ
rðχf; χ̃f ¼ χf; ηfÞ ¼ 1: ð4:37Þ

It is convenient to introduce the center of massΨk⃗ðηÞ and
relative Rk⃗ðηÞ variables as

Ψk⃗ðη1Þ ¼
1

2
ðχþ

k⃗
ðη1Þ þ χ−

k⃗
ðη1ÞÞ;

Rk⃗ðη1Þ ¼ ðχþ
k⃗
ðη1Þ − χ−

k⃗
ðη1ÞÞ; ð4:38Þ

thus the path integral measure becomes DχDχ̃ ¼ DΨDR
and the boundary conditions become

Ψk⃗ðη0Þ≡Ψk⃗;i ¼
1

2
ðχ k⃗;i þ χ̃ k⃗;iÞ;

Ψk⃗ðηfÞ≡Ψk⃗;f ¼
1

2
ðχk⃗;f þ χ̃k⃗;fÞ; ð4:39Þ

Rk⃗ðη0Þ≡ Rk⃗;i ¼ ðχk⃗;i − χ̃k⃗;iÞ;
Rk⃗ðηfÞ≡ Rk⃗;f ¼ ðχk⃗;f − χ̃k⃗;fÞ: ð4:40Þ

In terms of these variables the effective action (4.16)
becomes

iSeff ½Ψ; R; ηf� ¼
X
k⃗

�Z
ηf

η0

dη1i½R0
k⃗
ðη1ÞΨ0

−k⃗ðη1Þ −W2ðηÞRk⃗ðη1ÞΨ−k⃗ðη1Þ�

−
Z

ηf

η0

dη1

Z
ηf

η0

dη2

�
1

2
Rk⃗ðη1ÞNkðη1; η2ÞR−k⃗ðη2Þ þ Rk⃗ðη1ÞiΣR

k ðη1; η2ÞΨ−k⃗ðη2Þ
��

; ð4:41Þ

where 0≡ d=dη and

W2ðηÞ ¼ k2 −
1

η2

�
ν2χ −

1

4

�
; ð4:42Þ

Nkðη1; η2Þ ¼
Y2

2
½K>

k ðη1; η2Þ þK<
k ðη1; η2Þ�; ð4:43Þ

ΣR
k ðη1; η2Þ ¼ Σkðη1; η2ÞΘðη1 − η2Þ;
Σkðη1; η2Þ ¼ −iY2½K>

k ðη1; η2Þ −K<
k ðη1; η2Þ�: ð4:44Þ

The Gaussian path integrals over Ψ, R are carried out by
standard methods: introduce the classical paths Ψc, Rc and
fluctuations around them z, r respectively as

Ψk⃗ðη1Þ ¼ Ψc
k⃗
ðη1Þ þ zk⃗ðη1Þ;

Rk⃗ðη1Þ ¼ Rc
k⃗
ðη1Þ þ rk⃗ðη1Þ; ð4:45Þ

where Ψc
k⃗
ðη1Þ;Rc

k⃗
ðη1Þ fulfill the boundary conditions

(4.39), (4.40) and

zk⃗ðη0Þ ¼ zk⃗ðηfÞ ¼ 0;

rk⃗ðη0Þ ¼ rk⃗ðηfÞ ¼ 0; ð4:46Þ

and require that the linear terms in rk⃗; zk⃗ in Seff vanish. This
yields the following equations of motion for Ψc, Rc:

d2

dη21
Ψc

k⃗
ðη1Þ þW2ðη1ÞΨc

k⃗
ðη1Þ þ

Z
η1

η0

Σkðη1; η2ÞΨc
k⃗
ðη2Þdη2

¼ i
Z

ηf

η0

Nkðη1; η2ÞRc
k⃗
ðη2Þdη2; ð4:47Þ

and

d2

dη21
Rc
k⃗
ðη1ÞþW2ðη1ÞRc

k⃗
ðη1Þþ

Z
ηf

η1

Σkðη2;η1ÞRc
k⃗
ðη2Þdη2¼0:

ð4:48Þ

Therefore the Gaussian path integrals yield

Z
DΨDReiSeff ½Ψ;R;ηf � ¼ N ðηfÞeiSeff ½Ψi;Ψf;Ri;Rf ;ηf �: ð4:49Þ

The normalization factor

N ðηfÞ ¼
Z

DrDzeiSeff ½z;r;ηf � ð4:50Þ
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only depends on ηf but does not depend on the initial and
final values of the fields as a consequence of the boundary
conditions (4.46) for the fluctuations. This factor does not
need to be calculated because it is completely determined
by the unitarity condition (4.37).
Using the equations of motion (4.47), (4.48) we find

iSeff ½Ψi;Ψf; Ri; Rf; ηf�

¼
X
k⃗

�
i½Rk⃗;fΨ

0c
−k⃗
ðηfÞ − Rk⃗;iΨ

0c
−k⃗
ðη0Þ�

þ 1

2

Z
ηf

η0

dη1

Z
ηf

η0

dη2Rc
k⃗
ðη1ÞNkðη1; η2ÞRc

k⃗
ðη2Þ

�
:

ð4:51Þ

In this expression Ψc, Rc are the solutions of the equations
of motion (4.47), (4.48) with the boundary conditions
(4.39), (4.40).
To proceed further we need (i) the initial density matrix

hχijρχðη0Þjχ̃ii ¼ ρχ;0ðχi; χ̃iÞ in the Schrödinger representa-

tion, (ii) the kernels K≶
k ðη1; η2Þ, and (iii) the solution of

the equations of motion (4.47), (4.48) with the boundary
conditions (4.39), (4.40).

A. Initial density matrix

From the expansion (2.14), we define

χk⃗ðηÞ ¼ ak⃗gðk; ηÞ þ a†
−k⃗
g�ðk; ηÞ; ð4:52Þ

χ0
k⃗
ðηÞ ¼ ak⃗g

0ðk; ηÞ þ a†
−k⃗
g�0ðk; ηÞ; ð4:53Þ

where gðk; ηÞ obey the same wave equation as (2.12) and
are given by (2.16) with Wronskian condition

g�ðk; ηÞg0ðk; ηÞ − g�0ðk; ηÞgðk; ηÞ ¼ −i: ð4:54Þ

The relations (4.52), (4.53) can be inverted to yield

ak⃗ ¼ i½g�ðk; ηÞχ0
k⃗
ðηÞ − g�0ðk; ηÞχk⃗ðηÞ�; ð4:55Þ

a†
k⃗
¼ −i½gðk; ηÞχ0

−k⃗
ðηÞ − g0ðk; ηÞχ−k⃗ðηÞ�: ð4:56Þ

Since the operators ak⃗; a
†
k⃗
are independent of time, the

relation (4.55) can be written at the initial time η0 as

ak⃗ ¼ i½g�ðk; η0Þχ0k⃗ðη0Þ − g�0ðk; η0Þχk⃗ðη0Þ�: ð4:57Þ

The Bunch-Davies vacuum obeys the condition (2.15) in
the Schrödinger representation at the time η0. The canonical
momentum conjugate to χ is

πk⃗ ¼ χ0
k⃗
¼ δ

δχ−k⃗
; ð4:58Þ

therefore, the condition (2.15) becomes a functional differ-
ential equation for the vacuum Schrödinger wave func-
tional at η0, ϒ½χ; η0� ¼ hχj0iχ , namely

�
δ

δχ−k⃗
− i

�
g�0ðk; η0Þ
g�ðk; η0Þ

�
χ k⃗ðη0Þ

�
ϒ½χ; η0� ¼ 0 ð4:59Þ

with solution

ϒ½χ; η0� ¼ Ne−
1
2

P
k⃗
Ωkχ k⃗χ−k⃗ ; ð4:60Þ

where

Ωk ¼ −i
�
g�0ðk; η0Þ
g�ðk; η0Þ

�
; ð4:61Þ

andN is a normalization factor. Therefore the initial density
matrix for the χ field in the Schrödinger representation is
given by

hχijρχðη0Þjχ̃ii ¼ ρχ;0ðχi; χ̃iÞ ¼ ϒ½χi; η0�ϒ�½χ̃i; η0�; ð4:62Þ

the normalization Trρχðη0Þ ¼ 1 fixes the value of jNj.
In terms of the center of mass and relative variables [see

Eqs. (4.39) and (4.40)]

Ψk⃗;i ¼
1

2
ðχ k⃗;i þ χ̃ k⃗;iÞ; Rk⃗;i ¼ ðχk⃗;i − χ̃k⃗;iÞ; ð4:63Þ

we find

ρχ;0ðχi; χ̃iÞ≡ ρχ;0ðΨi; RiÞ
¼ jNj2Πk⃗ e−ΩR;k½Ψk⃗;iΨ−k⃗;iþ1

4
Rk⃗;iR−k⃗;i� e−iΩI;kΨk⃗;iR−k⃗;i

ð4:64Þ

where ΩR, ΩI are real and given by

ΩR;k¼
1

2jgðk;η0Þj2
;

ΩI;k¼−ΩR;k½g�0ðk;η0Þgðk;η0Þþg0ðk;η0Þg�ðk;η0Þ�: ð4:65Þ

Finally from the expression (4.34), the reduced density
matrix in terms of the center of mass and relative variables
is given by

ρrðΨf; Rf; ηfÞ

¼ N ðηfÞ
Z

DΨiDRieiSeff ½Ψi;Ψf;Ri;Rf ;ηf �ρχ;0ðΨi; RiÞ:

ð4:66Þ
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This is the final form of the reduced density matrix, where
the functional integrals are simple Gaussian integrals that
can be carried out once the fermionic correlation functions
and the solutions of the equations of motion are obtained.
The normalization prefactor in (4.66) is determined from
the condition of unitary time evolution (4.37), namelyZ

DΨfρ
rðΨf; Rf ¼ 0; ηfÞ ¼ 1: ð4:67Þ

B. Fermionic correlations

The kernels K≶
k defined as the spatial Fourier transforms

of the Fermionic correlation functions (4.30) are obtained
from the mode functionsU, V in the field expansion (2.19),
given by (2.22)–(2.24) with (2.30). For generic fermion
mass mf the kernels do not feature a useful analytic
expression; however, assuming that the inflation scale is
much larger than the typical mass scales of the standard
model (and even beyond), we focus on the casemf ≪ H. In
this case we use the results of Ref. [45] and Σk,Nk in (4.43),
(4.44) are given by

Nkðη1; η2Þ ¼
Y2

8π

�
d2

dη1dη2
− k2

�

×

�
δðη1 − η2Þ −

1

π

sin½kðη1 − η2Þ�
ðη1 − η2Þ

�
ð4:68Þ

Σkðη1; η2Þ ¼
Y2

8π2

�
d2

dη1dη2
− k2

�

×

�
cos½kðη1 − η2Þ�

d
dη2

ln

�ðη1 − η2Þ2 þ ϵ2

ð−η0Þ2
��

;

ð4:69Þ

where ϵ → 0þ is a short-distance regulator and −η0 is a
renormalization scale chosen to coincide with the ini-
tial time.

C. Solutions of the equations of motion

We solve the equations of motion (4.47), (4.48) in a
perturbative expansion in Y2 and insert these solutions in
(4.51) to obtain the effective action up to order Y2. We
begin with the zeroth-order solution to highlight several
relevant aspects and shed light on the interpretation in the
interacting case.

1. Zeroth-order solutions

The solutions of the zeroth-order equations of motion
correspond to setting Y2 ¼ 0, namely Σk; Nk ¼ 0 in (4.47),
(4.48), yielding the free field equation of motion (2.12)
whose solutions are the mode functions gðk; ηÞ given
by (2.16).

However, instead of using these complex mode func-
tions, and in order to separate the real from the purely
imaginary contribution to the effective action, we use the
real mode functions

gþðk; ηÞ ¼
�
−
πη

2

�
1=2

Yνχ ð−kηÞ;

g−ðk; ηÞ ¼
�
−
πη

2

�
1=2

Jνχ ð−kηÞ; ð4:70Þ

which describe the growing (gþ) and decaying (g−)
solutions for super-Hubble modes and satisfy the
Wronskian condition

g0þðk; ηÞg−ðk; ηÞ − g0−ðk; ηÞgþðk; ηÞ ¼ −1: ð4:71Þ

These real mode functions are related to the complex mode
functions gðk; ηÞ (2.16) as

gðk; ηÞ ¼ iffiffiffi
2

p ei
π
2
ðνχþ1=2Þ½gþðk; ηÞ − ig−ðk; ηÞ�: ð4:72Þ

For a (nearly) massless inflaton field for which νχ ¼ 3=2,
in the super-Hubble limit −kη → 0þ these solutions behave
as

gþðk; ηÞ ¼
1

k3=2η
; g−ðk; ηÞ ¼

1

3
k3=2η2: ð4:73Þ

In terms of these mode functions the general solution of
(4.47) for Y2 ¼ 0 is given by

Ψc
k⃗
ðη1Þ ¼ Qkgþðk; η1Þ þ Pkg−ðk; η1Þ; ð4:74Þ

with the coefficients Qk, Pk fixed by the boundary con-
ditions (4.39). We find

Ψc
kðη1Þ ¼ Ψk⃗;i

Dk½ηf; η1�
Dk½ηf; η0�

þ Ψk⃗;f

Dk½η1; η0�
Dk½ηf; η0�

; ð4:75Þ

where we introduced

Dk½η1;η2�¼gþðk;η1Þg−ðk;η2Þ−gþðk;η2Þg−ðk;η1Þ: ð4:76Þ

The equation of motion for Rc for Y2 ¼ 0 with the
boundary conditions (4.40) has a similar solution,

Rc
kðη1Þ ¼ Rk⃗;i

Dk½ηf; η1�
Dk½ηf; η0�

þ Rk⃗;f

Dk½η1; η0�
Dk½ηf; η0�

: ð4:77Þ

Our goal is to obtain the effective action and entangle-
ment entropy to leading order in Y2; therefore, we input
the zeroth-order solution (4.77) for Rc in the second line
in (4.51) because Nk ∝ Y2.
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2. Perturbative solution

As discussed in detail in Ref. [45] upon integration by parts the self-energy term in the equation of motion (4.47)
becomesZ

η1

η0

Σkðη1; η2ÞΨc
k⃗
ðη2Þdη2 ¼ −

Y2

4π2
Ψc

k⃗
ðη1Þ
ϵ2

þ Y2

4π2
ln
�ð−η0Þ

ϵ

��d2Ψc
k⃗
ðη1Þ

dη21
þ k2Ψc

k⃗
ðη1Þ

�

þ Y2

4π2

Z
η1

η0

ln

�
η1 − η2
ð−η0Þ

�
d
dη2

�
cos½kðη1 − η2Þ�

�d2Ψc
k⃗
ðη2Þ

dη22
þ k2Ψc

k⃗
ðη2Þ

��
dη2: ð4:78Þ

In obtaining this expression, we have neglected the con-
tribution from the lower limit (η0) in the integration by
parts; these contributions are finite and perturbatively small
(since the mode functions are assumed to be deeply sub-
Hubble at the initial time) as η1 → 0 which is the limit of
interest in this work. As discussed in Ref. [45], the first
two terms are absorbed into mass and wave function
renormalization.
In particular, as shown in this reference, after absorbing

the quadratic divergence ∝ 1=ϵ2 independent of η0 into an

intermediate renormalized mass fM2 the fully renormalized
mass (up to one-loop) MRðη0Þ obeys the relation

M̃2

H2
¼ M2

Rðη0Þ
H2

−
Y2

2π2
ln

�ð−η0Þ
ϵ

�
: ð4:79Þ

Because fM2 does not depend on η0, the combination on the
right-hand side of (4.79) is invariant under a change of
scale η0. As discussed in Ref. [45], the scale η0 is chosen so
that the renormalized mass M2

Rðη0Þ ¼ 0, and choosing −η0
to coincide with the onset of slow roll inflation yields a
power spectrum that is scale invariant for Y ¼ 0 and the
departure from scale invariance is a consequence of the
interaction. See discussion in Sec. VII below.
Since we are primarily concerned with the asymptotic

super-Hubble limit, we adopt here the renormalization
procedure detailed in Ref. [45] absorbing these two terms
in the corresponding renormalizations and focus solely on
the contribution from the third term in (4.78).
We consider a perturbative solution of (4.47) of the form

Ψc
k⃗
ðη1Þ ¼ Ψc

k⃗;0
ðη1Þ þ Ψc

k⃗;1
ðη1Þ þ � � � ð4:80Þ

where Ψc
k⃗;0
ðη1Þ is given by the zeroth-order solution (4.75),

Ψc
k⃗;1
ðη1Þ ∝ Y2 etc. After renormalization (see details in

Ref. [45]) the first-order correction Ψc
k⃗;1

obeys the equation

d2

dη21
Ψc

k⃗;1
ðη1Þ þW2ðη1ÞΨc

k⃗;1
ðη1Þ

¼ I½k; η1� þ iRk⃗;iξk;1ðη1Þ þ iRk⃗;fξk;2ðη1Þ; ð4:81Þ

where

I½k; η1� ¼ −
Y2

2π2

Z
η1

η0

dη2 ln

�ðη1 − η2Þ
ð−η0Þ

�
d
dη2

×

�
cos½kðη1 − η2Þ�

Ψc
k⃗;0
ðη2Þ
η22

�
; ð4:82Þ

and we have used the zeroth-order equation of motion
(4.47) (with Σk ¼ 0;Nk ¼ 0) with W2

kðη1Þ ¼ k2 − 2=η21
neglectingM2

R=H
2 ≪ 1 with M2

R the renormalized inflaton
mass, and

ξk;1ðη1Þ ¼
Z

ηf

η0

Nkðη1; η2Þ
Dk½ηf; η2�
Dk½ηf; η0�

dη2; ð4:83Þ

ξk;2ðη1Þ ¼
Z

ηf

η0

Nkðη1; η2Þ
Dk½η2; η0�
Dk½ηf; η0�

dη2: ð4:84Þ

For the growing mode Ψc
k⃗;0
ðη2Þ ¼ gþðk; η2Þ we find in

the super-Hubble limit −kη1 → 0þ

Iþ½k; η1� ¼ −
Y2

2π2
gþðk; η1Þ

η21

�
ln

�
η1
η0

�
−
3

2

�
þ � � � ; ð4:85Þ

where the dots stand for subleading terms in this limit,
whereas for the decaying mode Ψc

k⃗;0
ðη2Þ ¼ g−ðk; η2Þ we

find that I−½k; η1� → Y2 × ðconstantÞ in the same limit, in
other words without secular terms.
The inhomogeneous equation (4.82) can be solved by

introducing the Green’s function of the differential operator
on the left-hand side of (4.82) with retarded boundary
conditions,

GR
k ðη1; η2Þ ¼ Gk½η1; η2�Θðη1 − η2Þ; ð4:86Þ

where

Gk½η1; η2� ¼ −Dk½η1; η2�: ð4:87Þ

In the super-Hubble limit of both arguments we find

Gk½η1; η2� →
1

3

�
η21
η2

−
η22
η1

�
: ð4:88Þ
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In terms of this Green’s function it follows that

Ψc
k⃗;1
ðη1Þ ¼

Z
η1

η0

Gk½η1; η2�fI½k; η2� þ iRk⃗;iξk;1ðη2Þ

þ iRk⃗;fξk;2ðη2Þgdη2;
Ψc

k⃗;1
ðη0Þ ¼ Ψ0c

k⃗;1
ðηÞjη0 ¼ 0: ð4:89Þ

Writing the zeroth-order solution as a combination of g�
it is straightforward to find that up to and including OðY2Þ

Ψc
k⃗
ðη1Þ ¼ Qkg̃þðk; η1Þ þ Pkg̃−ðk; η1Þ

þ iRk⃗;ih1ðk; η1Þ þ iRk⃗;fh2ðk; η1Þ; ð4:90Þ

where Qk, Pk are coefficients fixed by the boundary
conditions (4.39) and the g̃� are the perturbatively cor-
rected mode functions with the following limits:

g̃�ðk; η0Þ ¼ g�ðk; η0Þ; ð4:91Þ

g̃�ðk; ηfÞ ¼ g�ðk; ηfÞ½1þ Y2F�ðk; ηfÞ þ � � ��: ð4:92Þ

Using the results of Ref. [45] we find that in the super-
Hubble limit −kηf → 0þ

Fþðk;ηfÞ¼
1

12π2
fln2ð−kηfÞ−2 lnð−kηfÞlnð−kη0Þgþ���;

ð4:93Þ

F−ðk; ηfÞ ¼ Y2 × ðfinite constantÞ; ð4:94Þ

the dots in (4.93) stand for subleading terms in the super-
Hubble limit. The functions h1;2ðk; η1Þ in Eq. (4.90) are
obtained from the integrals in (4.89) and satisfy

h1;2ðk; η0Þ ¼ 0; h01;2ðk; ηÞjη0 ¼ 0; ð4:95Þ

their explicit expressions are given in appendix (A) [see
(A7), (A8)]. Fixing the coefficients Qk, Pk to satisfy the
boundary conditions (4.39) yields

Ψc
k⃗
ðη1Þ ¼ Ψk⃗;i

D̃k½ηf; η1�
D̃k½ηf; η0�

þ Ψk⃗;f

D̃k½η1; η0�
D̃k½ηf; η0�

þ iRk⃗;iH1ðk; η1Þ þ iRk⃗;fH2ðk; η1Þ; ð4:96Þ

with

D̃k½η1; η2� ¼ g̃þðk; η1Þg̃−ðk; η2Þ − g̃þðk; η2Þg̃−ðk; η1Þ;
ð4:97Þ

and1

H1;2ðk; η1Þ ¼ h1;2ðk; η1Þ − h1;2ðk; ηfÞ
Dk½η1; η0�
Dk½ηf; η0�

;

H1;2ðk; η0Þ ¼ H1;2ðk; ηfÞ ¼ 0: ð4:98Þ

Gathering the results above, the effective action (4.51)
becomes

iSeff ½Ψi;Ψf;Ri;Rf;ηf�

¼
X
k⃗

�
iRk⃗;fðΨ−k⃗;iAk;fþΨ−k⃗;fBk;fþ iRk⃗;iCk;fþ iRk⃗;fDk;fÞ

− iRk⃗;iðΨ−k⃗;iAk;iþΨ−k⃗;fBk;iþ iRk⃗;iCk;iþ iRk⃗;fDk;iÞ

þ1

2
R2

k⃗;i
J1;kþ

1

2
R2

k⃗;f
J2;kþRk⃗;iRk⃗;fJ3;k

�
; ð4:99Þ

where the explicit form of the various coefficients is given
in Appendix A. An important aspect of these coefficients is
that they are all real; this is the main advantage of having
introduced the real mode functions g�ðk; ηÞ.
The Gaussian functional integrals in (4.66) can now be

carried out, yielding the reduced density matrix

ρrðΨf; Rf; ηfÞ ¼ ÑΠk⃗ expf−αkΨk⃗;fΨ−k⃗;f − βkRk⃗;fR−k⃗;f

− iγkΨk⃗;fR−k⃗;fg ð4:100Þ

with Ñ a normalization factor determined by the condition
(4.67), and

αk ¼
B2
k;i

4ωk
; ð4:101Þ

βk ¼
1

4ωk

�
J3;k þDk;i − Ck;f þ Ak;f

ðAk;i þΩI;kÞ
2ΩR;k

�
2

þ J2;k
2

−Dk;f −
A2
k;f

4ΩR;k
; ð4:102Þ

ωk ¼
ΩR;k

4
þ ðAk;i þ ΩI;kÞ2

4ΩR;k
− Ck;i −

J1;k
2

; ð4:103Þ

where ΩR;k;ΩI;k are given in terms of the real mode
functions at η0 by Eqs. (A1) and (A2) in Appendix A,
respectively. We do not quote the expression for γk which is
cumbersome and, as explained in detail below, not relevant
either for the power spectrum or the entanglement entropy.
The coefficients J, D, C are all of OðY2Þ and A; B≃

Oð1Þ þOðY2Þ; therefore, the squared term in βk must be
computed up to OðY2Þ.

1Since h1;2 ∝ Y2 we considered the mode functions to zeroth
order.
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D. Y = 0

Before we analyze the reduced density matrix including
the contribution from the fermionic correlations, it will
prove informative to consider first the Y ¼ 0 case for which
J1;2;3 ¼ Ck;i ¼ Ck;f ¼ Dk;i ¼ Dk;f ¼ 0. The coefficients
A, B for this case are gathered in Appendix B
[see Eqs. (B2)–(B7)], and the coefficient γk in (4.100) is
given by

γk ¼
1

ΩR;kD2½ηf; η0�
½Ak;i þ ΩI;k þΩR;kD½ηf; η0��: ð4:104Þ

Using the results for the coefficients in Appendix B and
after straightforward algebra, we find

αk ¼ ΩR;kðηfÞ; ð4:105Þ

βk ¼
αk
4
; ð4:106Þ

γk ¼ ΩI;kðηfÞ; ð4:107Þ

whereΩR;kðηfÞ;ΩI;kðηfÞ are the coefficients (A1), (A2) with
η0 → ηf. In terms of the complex mode functions gðk; ηÞ
(2.16) related to g�ðk; ηÞ by Eq. (4.72), these coefficients are
the same as those of Eq. (4.65) with η0 → ηf. Replacing
these coefficients in the reduced density matrix (4.100)
we find that it has exactly the same form as the initial
density matrix (4.63) but with Ψk⃗;i; Rk⃗;i → Ψk⃗;f; Rk⃗;f and
ΩR;k;ΩI;k → ΩR;kðηfÞ;ΩI;kðηfÞ. In other words, the reduced
density matrix for Y ¼ 0 at η ¼ ηf is simply the initial pure
state density matrix evolved in time from η0 up to ηf with the
free field Hamiltonian, namely

ρrðχf; χ̃f; ηfÞ ¼ ϒ½χf; ηf�ϒ�½χ̃f; ηf�; ð4:108Þ

where ϒ is the Schrödinger wave functional describing the
Bunch-Davies vacuum state at time ηf.
Of course this is expected; in absence of interactions the

reduced density matrix is simply the initial density matrix
propagated in time with the unitary time evolution operator.
However, it is reassuring, as well as an important check,
that the formalism described above yields the expected
result in the noninteracting limit.

E. Y ≠ 0

The term proportional to γk (a real coefficient) in the
exponent in (4.100) is purely imaginary corresponding to a
pure phase in the final density matrix which does not
contribute to the power spectrum or the entanglement
entropy and will be neglected in the analysis below.
While this final expression for the reduced density matrix
(4.100) with the coefficients (4.101)–(4.103) is cumbersome
and unwieldy, we are primarily focused on the super-Hubble
limit, where progress can be made by analyzing the behavior
of the various coefficients to extract the leading behavior.
The details of such analysis are provided in Appendix C with
the main result to leading order given by [see the final
Eqs. (C13) and (C14)]

αk ¼
1

g̃2þðk; ηfÞ
; ð4:109Þ

βk ¼
αk
4
½1þ Y2Fþðk; ηfÞ�: ð4:110Þ

V. ENTANGLEMENT ENTROPY FROM THE
EFFECTIVE ACTION

Going back to the original variables χf, χ̃f [see
Eqs. (4.39) and (4.40)], the final reduced density matrix
reads

ρrðχf; χ̃f;ηfÞ ¼ ÑΠk exp

�
−
��

αk
4
þ βk

�
ðχk⃗;fχ−k⃗;f þ χ̃k⃗;f χ̃−k⃗;fÞ− 2

�
βk−

αk
4

�
χ k⃗;fχ̃−k⃗;f

��
expf−iγkðχ k⃗;fχ−k⃗;f − χ̃k⃗;fχ̃−k⃗;fÞg:

ð5:1Þ

This expression makes manifest that if βk ¼ αk=4 the
reduced density matrix describes a pure state since it is
identified as the product of a wave functional times its
complex conjugate. Therefore the results (4.109), (4.110)
imply that in presence of interactions the reduced density
matrix describes amixed state. This is in agreement with the
perturbative calculation in Sec. III, and the discussion for
the Y ¼ 0 case above.
The entanglement entropy of this mixed state is the Von-

Neumann entropy; it is given by

SvN ¼ −
X
n

λn lnðλnÞ; ð5:2Þ

where λn are the eigenvalues of the density matrix, namely

Z
Dχ̃fρ

rðχf; χ̃f; ηfÞΦnðχ̃fÞ ¼ λnΦnðχfÞ: ð5:3Þ

The normalization condition (4.37) yields
P

nλn ¼ 1. The
second line in (5.1), i.e., the phase, does not contribute to
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the eigenvalue equation because it can be absorbed into the
wave functions, eiγkχχΦnðχfÞ → ΦnðχfÞ. Therefore this
total phase can be safely set to zero in the reduced density
matrix; it does not contribute to either the entropy or the
power spectrum. The entropy of Gaussian density matrices
has been originally obtained in the seminal work of
Refs. [62–66]. We present an alternative to these methods
that allows us to establish a closer relation to mixed states in
statistical physics. We recognize that setting to zero the
phase in (5.1) and introducing the definitions

αk
4
þ βk ≡WkðηfÞ

2
coth

�
WkðηfÞ
TkðηfÞ

�
;

βk −
αk
4
≡ WkðηfÞ

2 sinh
h

Wk
TkðηfÞ

i ; ð5:4Þ

yielding

WkðηfÞ ¼ 2½βkαk�1=2;

exp
�
−
WkðηfÞ
TkðηfÞ

�
¼

�ð4βkαk
Þ1=2 − 1

ð4βkαk
Þ1=2 þ 1

�
≡ ξk; ð5:5Þ

the reduced density matrix (5.1) is similar in form to the
Schrödinger representation of the density matrix of
decoupled harmonic oscillators, each in thermal equilib-
rium with temperature TkðηfÞ [67], namely

ρrðχf; χ̃f; ηfÞ ¼ Z−1hχfj exp
�
−
X
k⃗

HkðηfÞ
TkðηfÞ

�
jχ̃fi; ð5:6Þ

with

HkðηfÞ ¼
1

2
½πk⃗π−k⃗ þWkðηfÞχk⃗χ−k⃗�: ð5:7Þ

Z−1 is the normalization factor, and π−k⃗ is the canonical
momentum conjugate to χ k⃗. As Y2 → 0 it follows from
Eq. (4.110) that βk → αk=4 and TkðηfÞ → 0; therefore, we
recover the ground state density matrix as discussed above.
The eigenfunctions up to a normalization factor are

ΦnðχfÞ ∝ Hn½
ffiffiffiffiffiffiffi
Wk

p
χf� exp½−WkðχfÞ2�; ð5:8Þ

where Hn are Hermite polynomials, with eigenvalues

λn ¼ ½1 − ξk�ξnk; ð5:9Þ

where ξk is given by Eq. (5.5) and we used the normali-
zation condition (4.37). This normalization condition along
with the expression for the entanglement entropy imply
that the eigenvalues must fulfill the conditions 0 ≤ λn < 1.

The fulfillment of this condition is discussed in detail in
Sec. VII below.
These results agree with those of Refs. [62–64] obtained

with different methods. Finally the entanglement or Von-
Neumann entropy is given by

SvN ¼ −
X
k

�
lnð1 − ξkÞ þ

ξk lnðξkÞ
1 − ξk

�
: ð5:10Þ

For super-Hubble modes and to leading order in Y2 it
follows from the relation (4.110) that

ξk ¼
Y2

4
Fþðk; ηfÞ

¼ Y2

48π2
fln2ð−kηfÞ − 2 lnð−kηfÞ lnð−kη0Þg: ð5:11Þ

This is one of the important results in this study.

VI. POWER SPECTRUM

The power spectrum is given by (3.22) from which it is
clear that the phase in (5.1) is irrelevant. In terms of the
reduced density matrix (5.1) we need

Z
Dχfðχ k⃗;fχ−k⃗;fÞρrðχf; χ̃f ¼ χf; ηfÞ

¼ 1

2αk
¼ 1

2
g̃þðk; ηÞ ≃

gþðk; ηÞ
2

½1þ Y2Fþðk; ηfÞ þ � � ��;

ð6:1Þ

where Fþ is given by Eq. (4.93) and we used the
normalization (4.37). The secular growth of the correction
term Fþ as −kη → 0, leading eventually to a breakdown
of the perturbative expansion, can be systematically
resummed via the dynamical renormalization group
[68,69]. Following the treatment in Ref. [45] we implement
this resummation program to obtain a renormalization
group improved power spectrum. Returning to the pertur-
bative solution to the equation of motion, Eq. (4.80), we
consider that the zeroth-order solution is given by the
growing mode, namely, we take

Ψc
k⃗;0
ðη1Þ ¼ Qkgþðk; η1Þ; ð6:2Þ

in Eq. (4.80), and consider only the term I½k; η1� in the
inhomogeneity of the first-order equation of motion (4.81),
because this term yields the dominant secular growth at
long time in the super-Hubble limit. After renormalization
and following the steps leading to Eq. (4.92) we find

Ψc
k⃗;1
ðηÞ ¼ Qkgþðk; ηÞ½1þ Y2Fþðk; ηÞ þ � � ��: ð6:3Þ
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We introduce a (wave-function) renormalization of the
amplitude, Z½η̄�, and an arbitrary renormalization scale η̄ to
write the amplitude Qk⃗ as

Qk⃗ ¼ Qk⃗½η̄�Z½η̄�; Z½η̄� ¼ 1þ Y2z1½η̄� þ � � � : ð6:4Þ

Inserting this expansion in the solution (6.3) yields

Ψc
k⃗
ðηÞ ¼ Qk⃗½η̄�gþðk; ηÞ½1þ Y2ðFþðk; ηÞ þ z1½η̄�Þ þ � � ��:

ð6:5Þ

The perturbative expansion is improved by choosing the
coefficient z1½τ� to cancel the secularly growing correction
from Fþ at the (arbitrary) scale η̄, namely

Ψc
k⃗
ðηÞ ¼Qk⃗½η̄�gþðk;ηÞ½1þ Y2ðFþðk;ηÞ−Fþðk; η̄ÞÞ þ � � ��:

ð6:6Þ

Since the solution Ψc
k⃗
; ðηÞ does not depend on the scale η̄, it

obeys the dynamical renormalization group equation [68,69]

dΨc
k⃗
ðηÞ

dη̄
¼ 0; ð6:7Þ

namely, to leading order in Y2

dQk⃗½η̄�
dη̄

− Y2Qk⃗½η̄�
dFþðk; η̄Þ

dη̄
¼ 0: ð6:8Þ

The solution of this equation is

Qk⃗½η̄� ¼ Qk⃗½η̄�� exp½Y2ðFþðk; η̄Þ − Fþðk; η̄�ÞÞ�: ð6:9Þ

We choose the scale η̄� to correspond to the time at which the
mode of wave vector k crosses the Hubble radius, namely
−kη̄� ¼ 1 for two reasons: (i) at this time scale the corrections
to the mode functions are within the perturbative regime and
the amplitude has not changed substantially, (ii) at this scale it
follows from (4.93) thatFþðk; η̄�Þ ¼ 0. With this physically
motivated choice, and now finally setting η̄≡ η, the renorm-
alization group improved growing solution is

Ψc
k⃗
ðηÞ ¼ Qk⃗jhcgþðk; ηÞeY

2Fþðk;ηÞ ð6:10Þ

whereQk⃗jhc ≃Qk⃗ up to perturbatively small (and nonsecular)
corrections in Y2 is the amplitude at “Hubble crossing.” The
dynamical renormalization group improved solution is equiv-
alent to the solutionobtained via the quantummaster equation
as shown in Ref. [38].
Replacing this renormalization group improved solution

into the analysis of the previous section is tantamount to
replacing

g̃þðk; ; ηÞ → gþðk; ηÞeY2Fþðk;ηÞ ð6:11Þ

in all expressions leading to the reduced density matrix.
Using the leading order result (5.11) we obtain the power
spectrum for super-Hubble wavelengths at the end of the
inflationary era

PðkÞ ¼ H2

4π2
e8ξkðηfÞ: ð6:12Þ

This result establishes a direct relationship between the
corrections to the power spectrum and the entanglement
entropy (5.10).

VII. DISCUSSION

Several aspects of the results obtained in the previous
sections merit discussion.
(i) The perturbative argument indicates that the growth of

the entanglement entropy is associated with the production
of fermion-antifermion pairs which becomes enhanced
when the physical wavelength of the scalar fluctuation
becomes super-Hubble. As pair production is enhanced and
these d.o.f. are traced out of the total density matrix to yield
the reduced density matrix for the scalar fluctuations, more
and more information is lost in coarse graining these d.o.f.
This information loss is manifest as a growth of entropy
[51]. The effective action confirms this interpretation since
the term responsible for the mixing is a consequence of the
interactions and fermion pair production. The growth of
entropy for super-Hubble fluctuations has also been found
numerically in Ref. [39] in a different model with the
inflaton coupling to a massless scalar field conformally
coupled to gravity [38,44]. Our study thus confirms the
growth of entropy upon tracing over “unobserved” d.o.f.
providing an analytic description of the entanglement
entropy for super-Hubble modes within a very different
context of the inflaton Yukawa coupled to fermions.
(ii) The fact that the entanglement entropy and the

corrections to the power spectrum are correlated is under-
stood from the fact that both are determined by the inflaton
self-energy, namely the fermion-antifermion loop. In the
perturbative approach this is manifest in the matrix ele-
ments of the reduced density matrix, see Fig. 2, and in the
effective action by the fermionic correlators (4.25), (4.26)
which determine the self-energy and are obviously given by
the loop in Fig. 2.
At the one-loop level the effective action is Gaussian;

therefore, a relationship between the entanglement entropy
and the corrections to the inflaton correlator up to order Y2

is expected. What is perhaps unexpected is that the
relationship is given by Eq. (6.12), namely in the form
of a running of the power spectrum.
(iii) As discussed in detail in Ref. [45], if we restore the

renormalized mass, keeping M2
Rðη0Þ ≠ 0, the power spec-

trum becomes
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PðkÞ ¼ H2

4π2
e
M2
R
ðη0Þ

3H2 ln½−kη�eY2Fþðk;ηÞ; ð7:1Þ

the exponent can be combined in the form

�
M2

Rðη0Þ
3H2

−
Y2

6π2
ln½−kη0�

�
ln½−kη�þ Y2

12π2
ln2½−kη�: ð7:2Þ

As is shown in Sec. IV [see Eq. (4.79) and discussion
below it] and in Ref. [45], the term in the bracket is
invariant under a change of scale η0, thus the total power
spectrum is indeed independent of this renormalization
scale. However, choosing η0 to coincide with the beginning
of slow roll and setting the renormalized mass to vanish at
this scale leaves the scale η0 as a remnant in the power
spectrum. This is similar to the emergence of a renorm-
alization scale in renormalized correlation functions that
break scale invariance.
(iv) The correction to the power spectrum and the

entanglement entropy are determined by the factor

Y2Fþðk; ηfÞ ¼
Y2

12π2
fln2ð−kηfÞ − 2 lnð−kηfÞ lnð−kη0Þg:

ð7:3Þ

Considering that the total number of e-folds NT ¼
lnðη0=ηfÞ ≃ 60 and that the wave vectors k of cosmological
relevance cross the Hubble radius about 10 e-folds before
the end of inflation at ηf it follows that

Y2Fþðk; ηfÞ ≲ 10 × Y2: ð7:4Þ

Even considering that Hubble crossing occurs at the
beginning of inflation, −kη0 ≃ 1 (still super-Hubble today)
yields

Y2Fþðk; ηfÞ ≲ 30 × Y2: ð7:5Þ

Therefore, with Y < 10−1 this contribution is positive and
small and perturbation theory is valid. In particular the
condition 0 ≤ λn < 1 for the eigenvalues of the normalized
(mixed state) reduced density matrix and the expression for
the entanglement entropy is fulfilled. Therefore, λn can be
safely assigned a probability interpretation for the whole
range of wave vectors that cross the Hubble radius between
the beginning and end of inflation for moderate Yukawa
couplings.
There is a caveat in this argument. In principle, allowing

the wave vector k to be arbitrarily small it could lead to
Y2Fþðk; ηfÞ > 1. This possibility results in a breakdown of
perturbation theory. While the dynamical renormalization
group provides a systematic resummation for the power
spectrum, there is no natural manner to extend this well
understood resummation framework to the entanglement

entropy. Such resummation program for the entanglement
entropy remains to be studied further.
(v) It is convenient to introduce the “pivot” scale kf ¼

−1=ηf corresponding to the scale that crosses the Hubble
radius at the end of inflation, in terms of which

Y2Fþðk;ηfÞ¼−
Y2

12π2
f2NT lnðk=kfÞþ ln2ðk=kfÞg ð7:6Þ

with k ≪ kf. The power spectrum (6.12) can now be written
in terms of a correction to the index δns and running αs as

PðkÞ ¼
�
H
2π

�
2
�
k
kf

�
δnsþαs lnðk=kfÞ

; ð7:7Þ

with

δns ¼ −
NTY2

3π2
; αs ¼ −

Y2

6π2
; ð7:8Þ

suggesting a hierarchy αs ≃ ns=NT ; � � �.
We note that a change of the “pivot” scale kf results in a

change of the overall amplitude and a change of δns; these
changes have been discussed also in Ref. [70].
Therefore we find a correction to the index ns and a

negative running αs but not a running of the running, βs ≃ 0
to this order.
(vi) A corollary of this study is that even in absence of

(scalar) fields that could contribute to entropy perturba-
tions, the coupling of the inflaton to other d.o.f. that do not
contribute directly to cosmological perturbations and are
“traced over” lead to entropy production. This entangle-
ment entropy is different from a thermal entropy, but
nevertheless imply a loss of information and must be
included in the entropy budget both during and post-
inflation. Thus even without explicit entropy perturbations,
the entanglement entropy resulting from particle produc-
tion contributes to the entropy budget during the infla-
tionary stage.
(vii) Caveats: We have established a relation between

the entanglement entropy and corrections to the power
spectrum for inflaton fluctuations, not for curvature per-
turbations. The latter are the perturbations relevant for
temperature anisotropies; therefore, a comparison between
the results obtained here and the observational data are not
very meaningful. Although our analysis so far does not
apply directly to curvature perturbations, it suggests that
the underlying fundamental physical processes, namely
self-energy loop corrections of “unobserved” spectator
fields, will lead to similar results for them. This expectation
is borne out of the analysis in Ref. [31], that showed the
emergence of secular logarithms from loops of “spectator”
fields.
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VIII. CONCLUSIONS AND FURTHER QUESTIONS

The main premise of our study is that the coupling of the
inflaton to the d.o.f. that populate the postinflationary
reheating phase, influence the dynamics of the inflaton
during inflation. We consider the inflaton Yukawa coupled
to light fermions, assuming that the scale of inflation is
much higher than the electroweak scale. The full density
matrix is evolved in time from an initial factorized vacuum
state and the fermionic d.o.f. are traced out of the full
density matrix yielding a reduced mixed density matrix
whose time evolution is determined by a nonequilibrium
effective action. A perturbative study of the reduced density
matrix reveals that profuse fermion pair production when
the wavelengths of the inflaton fluctuations become super-
Hubble, result in growth of the entanglement entropy.
We obtain the one-loop effective action which confirms

that the fermionic self-energy leads to secular growth of
inflaton correlations and the entanglement entropy. The
entanglement entropy is a manifestation of the information
loss in the effective field theory [51], arising from tracing
over the “unobserved” d.o.f. As more fermion pairs are
produced, tracing these d.o.f. out of the density matrix
implies more information loss and a concomitant growth in
the entanglement entropy.
We establish a direct relation between scale invariance

violations of the inflaton power spectrum and the entan-
glement entropy, PðkÞ ¼ P0ðkÞ expf8ξkg with P0ðkÞ the
unperturbed (scale invariant) power spectrum and Von-
Neumann entanglement entropy SvN ¼ −

P
k½lnð1 − ξkÞþ

ξk lnðξkÞ
1−ξk

�. For super-Hubble fluctuations we find ξk ¼
− Y2

48π2
f2NT lnðk=kfÞ þ ln2ðk=kfÞg with Y the Yukawa

coupling, NT the total number of e-folds during inflation,
and kf a “pivot” scale corresponding to the mode that
crosses the Hubble radius at the end of inflation. The
correction to the index and its running are given by

δns ¼ −
NTY2

3π2
; αs ¼ −

Y2

6π2
; ð8:1Þ

with vanshing running of the running βs ≃ 0 to the order
considered.
A corollary of our study is that even in absence of scalar

entropy (isocurvature) perturbations, the coupling to the
inflaton to d.o.f. that are not directly observed and are
integrated out into an effective action contribute to entropy
production during the inflationary stage as a consequence
of the production of correlated pairs. This entropy, different
from the thermal variety, is imprinted on the power
spectrum of fluctuations and must be included in the
cosmological entropy budget.

A. Further questions

In this article we focused on studying the influence
of “unobserved” d.o.f. upon the inflaton. It remains to

understand how to implement the formulation presented
here to curvature perturbations, in particular addressing the
important issue of gauge invariance. Therefore, while the
results obtained here are indicative of the effect of d.o.f. that
are traced over, and the physical reasons (self-energy
corrections from particle production) for the correlation
between entanglement entropy and corrections to (near)
scale invariance are clear, such relation for curvature
perturbations must be studied further.
Although the relation between the entanglement entropy

and scalingviolations of thepower spectrum is fundamentally
important as a characterization of the corrections from
“unobserved” d.o.f., it is not clear whether these corrections
will be observationally distinguishable from those of “ordi-
nary” slow roll, or other sources such as isocurvature
perturbations. Thus the observational consequences of the
results in this study highlighting the influence of d.o.f. that do
not directly seed curvature perturbations and the relation with
entanglement entropyproduction remain to be studied further.
It would be very tantalizing if CMB observations can

discriminate between scaling violations in the form of
corrections to the tilt and running induced by “unobserved”
d.o.f. from those predicted by slow roll. Such observation
may open the window to glean other d.o.f. beyond the
inflaton in inflationary cosmology.
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APPENDIX A: COEFFICIENTS IN EQ. (4.99)

In terms of the real mode functions g�ðk; η0Þ the
coefficients ΩR;k;ΩI;k in Eq. (4.65) are given by

1

ΩR;k
¼ g2þðk; η0Þ þ g2−ðk; η0Þ; ðA1Þ

ΩI;k

ΩR;k
¼ −½g0þðk; η0Þgþðk; η0Þ þ g0−ðk; η0Þg−ðk; η0Þ�: ðA2Þ

The remaining coefficients in Eq. (4.99) are given by the
following expressions:

Ak;i ¼
�

d
dη1

�
D̃k½ηf; η1�
D̃k½ηf; η0�

��
η1¼η0

;

Ak;f ¼
�

d
dη1

�
D̃k½ηf; η1�
D̃k½ηf; η0�

��
η1¼ηf

; ðA3Þ

Bk;i ¼
�

d
dη1

�
D̃k½η1; η0�
D̃k½ηf; η0�

��
η1¼η0

;

Bk;f ¼
�

d
dη1

�
D̃k½η1; η0�
D̃k½ηf; η0�

��
η1¼ηf

; ðA4Þ
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Ck;i ¼
�

d
dη1

H1ðk; η1Þ
�

η1¼η0

;

Ck;f ¼
�

d
dη1

H1ðk; η1Þ
�

η1¼ηf

; ðA5Þ

Dk;i ¼
�

d
dη1

H2ðk; η1Þ
�

η1¼η0

;

Dk;f ¼
�

d
dη1

H2ðk; η1Þ
�

η1¼ηf

; ðA6Þ

where H1;2ðk; η1Þ are given by (4.98) with

h1ðk;η1Þ¼−
Z

η1

η0

dη2

Z
ηf

η0

dη3Dk½η1;η2�Nkðη2;η3Þ
Dk½ηf;η3�
Dk½ηf;η0�

;

ðA7Þ

h2ðk;η1Þ¼−
Z

η1

η0

dη2

Z
ηf

η0

dη3Dk½η1;η2�Nkðη2;η3Þ
Dk½η3;η0�
Dk½ηf;η0�

;

ðA8Þ

J1;k ¼
Z

ηf

η0

dη1

Z
ηf

η0

dη2
Dk½ηf; η1�
Dk½ηf; η0�

Nkðη1; η2Þ
Dk½ηf; η2�
Dk½ηf; η0�

;

ðA9Þ

J2;k ¼
Z

ηf

η0

dη1

Z
ηf

η0

dη2
Dk½η1; η0�
Dk½ηf; η0�

Nkðη1; η2Þ
Dk½η2; η0�
Dk½ηf; η0�

;

ðA10Þ

J3;k ¼
Z

ηf

η0

dη1

Z
ηf

η0

dη2
Dk½ηf; η1�
Dk½ηf; η0�

Nkðη1; η2Þ
Dk½η2; η0�
Dk½ηf; η0�

:

ðA11Þ

APPENDIX B: COEFFICIENTS FOR Y = 0

In this case only the coefficients A, B in Eq. (4.99) are
different from zero. From (A3) and (A4) with

D̃k½η1;η2�¼Dk½η1;η2�
¼gþðk;η1Þg−ðk;η2Þ−gþðk;η2Þg−ðk;η1Þ; ðB1Þ

we find

Ak;i ¼
di

Dk½ηf; η0�
; ðB2Þ

Ak;f ¼
1

Dk½ηf; η0�
; ðB3Þ

Bk;i ¼ −
1

Dk½ηf; η0�
; ðB4Þ

Bk;f ¼
df

Dk½ηf; η0�
; ðB5Þ

where

di ¼ gþðk; ηfÞg0−ðk; η0Þ − g0þðk; η0Þg−ðk; ηfÞ; ðB6Þ

df ¼ g0þðk; ηfÞg−ðk; η0Þ − gþðk; η0Þg0−ðk; ηfÞ: ðB7Þ

APPENDIX C: ANALYSIS OF COEFFICIENTS
FOR Y ≠ 0 IN THE SUPER-HUBBLE LIMIT

For this analysis we consider that the renormalized mass
of the inflaton field is MR ≪ H therefore taking νχ ¼ 3=2
in the mode functions. The coefficient Bk;f only contributes
to the phase of the reduced density matrix (4.99), namely
the coefficient γk in Eqs. (4.100), and (5.1); therefore. is not
relevant for either the power spectrum or the entanglement
entropy as discussed in the text. The main ingredients in the
analysis of the super-Hubble limit −kη → 0þ are

gþðk; ηÞ ¼
1

k3=2η
; g−ðk; ηÞ ¼

1

3
k3=2η2; ðC1Þ

g̃�ðk; ηfÞ ¼ g�ðk; ηfÞ½1þ Y2F�ðk; ηfÞ� ðC2Þ

with

Fþðk;ηfÞ ¼
1

12π2
fln2ð−kηfÞ− 2 lnð−kηfÞ lnð−kη0Þgþ � � �

ðC3Þ

F−ðk; ηfÞ ¼ finite constant: ðC4Þ

Therefore, it follows that

Dk½ηf; η0� ≃ gþðk; ηfÞg−ðk; η0Þ;
D̃k½ηf; η0� ≃ g̃þðk; ηfÞg−ðk; η0Þ: ðC5Þ

Furthermore, from Eq. (4.91) and the Wronskian condition
(4.71) we find

Bk;i ¼ −ðD̃k½ηf; η0�Þ−1;
Ak;f ≃ ½1þ Y2Fþðk; ηÞ�ðD̃k½ηf; η0�Þ−1; ðC6Þ

and

Ak;i ¼
g0−ðk; η0Þ
g−ðk; η0Þ

≃Oð1Þ: ðC7Þ
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The super-Hubble limit of the kernel Nkðη1; η2Þ given by
Eq. (4.68) is dominated by the delta function. Therefore for
the terms that involve the nested integrals of Nkðη1; η2Þ,
we integrate by parts the contribution from the upper
limits that vanish because D½η; η� ¼ 0, and that of the
lower limit yields a perturbatively small correction without
secular logarithms. In the integrands we take D½ηf; η�≃
gþðk; ηfÞg−ðk; ηÞ.
To leading order we find

Ja;k ≃ Y2 × finite constant; a ¼ 1; 2; 3;

Ci;k; Di;k ≃ Y2 × finite constant: ðC8Þ

Up to OðY2Þ in the squared bracket of (4.102) we need
the products

J3;kA
ð0Þ
k;f; Dk;iA

ð0Þ
k;f; Ck;fA

ð0Þ
k;f; Að0Þ

k;f ¼ ðD̃k½ηf;η0�Þ−1:
ðC9Þ

From the above results we find that these products yield
terms of the form

Y2ðD̃k½ηf; η0�Þ−1 ðC10Þ

which are subleading compared to the Y2 ln2ð−kηÞ
ðD̃k½ηf; η0�Þ−1 terms in Ak;f.
Terms of the form

Y2ðconstantÞðD̃k½ηf; η0�Þ−1;
Y2ðD̃k½ηf; η0�Þ−2 ∝ Y2ðkηfÞðD̃k½ηf; η0�Þ−1 ðC11Þ

from the coefficients C, D in (4.103) are subleading
perturbative corrections as compared to the terms of
Oð1Þ and can be safely neglected.
Therefore up to leading order in Y2 and secular loga-

rithmic terms we find

ωk ¼
1

4ΩR;k
½Ω2

R;k þ ðAk;i þΩI;kÞ2�; ðC12Þ

αk ¼
1

4ωkðD̃k½ηf; η0�Þ2
¼ 1

g̃2þðk; ηfÞ
; ðC13Þ

and

βk¼
A2
k;f

4ΩR;k

�ðAk;iþΩI;kÞ2
4ωkΩR;k

−1

�
¼1

4

A2
k;f

4ωk
¼αk

4
½1þY2Fþðk;ηÞ�:

ðC14Þ
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