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If the inflaton couples to other degrees of freedom (d.o.f.) that populate the postinflationary stage, such
coupling modifies the dynamics of the inflaton during inflation. We consider light fermions Yukawa
coupled to the inflaton as “unobserved” d.o.f. integrated out of the total density matrix. Tracing out these
d.o.f. yields a mixed density matrix whose time evolution is described by an effective field theory. We
show that the coupling leads to profuse fermion pair production for super-Hubble inflaton fluctuations
which lead to the growth of entanglement entropy during inflation. The power spectrum of inflaton
fluctuations features scale invariance violations P(k) = Py (k) exp{8¢&; } with corrections to the index and

its running directly correlated with the entanglement entropy: S,y = —>_[In(1 = &) + %(5‘)] For super-

Hubble fluctuations we find &, = — % {2N7In(k/ks) +In*(k/k;)} with Y the Yukawa coupling, N the
total number of e-folds during inflation, and k, a “pivot” scale corresponding to the mode that crosses the

Hubble radius at the end of inflation.
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I. INTRODUCTION, MOTIVATION, AND GOALS

The main predictions of inflationary cosmology are
supported by observations of the cosmic microwave back-
ground (CMB) anisotropies with unprecedented accuracy
by the WMAP [1,2] and PLANCK [3] missions. A simple
paradigm of inflationary cosmology describes the infla-
tionary stage as dominated by the dynamics of a scalar
field, the inflaton, slowly rolling down a potential land-
scape leading to a nearly de Sitter inflationary epoch [4,5].
During this period (adiabatic) cosmological perturbations
are generated by quantum fluctuations that freeze when
their wavelengths become larger than the Hubble radius
with a nearly scale invariant power spectrum [6,7]. Upon
reentering the Hubble radius during the matter dominated
era, these fluctuations provide the seeds for structure
formation.

Typical models of inflation invoke one scalar field, the
inflaton, yielding adiabatic perturbations, including other
scalar fields generically yield a small component of
isocurvature (entropy) perturbations that are severely con-
strained by CMB observations [1-3]. The interactions
between the inflaton field and other fields describing
d.o.f. that populate a postinflation, radiation dominated
era, such as those present in the Standard Model, are
usually considered within the realm of reheating post-
inflation [8,9]. However, if the inflaton interacts with other
d.o.f., these interactions do not suddenly “switch on” after
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the inflationary stage, but must be present even during
inflation. Hence, a logical conclusion is that, if the theory of
reheating is relevant to describe the postinflationary cos-
mology, the d.o.f. excited during this stage will also be
coupled to the inflaton during inflation. From this per-
spective, scalar field-driven inflation should be understood
as an effective field theory emerging after tracing out, or
coarse graining, these “unobserved” d.o.f. that are not
directly involved in the generation of the cosmological
perturbations that seed the temperature anisotropies.
Interacting quantum fields in a de Sitter (or nearly de
Sitter) space time have been the focus of several important
studies [10-30] that pointed out the emergence of secular
and infrared divergences associated with nearly massless
fields in inflationary cosmology. Previous studies have
shown that loop contributions from “spectator” fields
feature these secular or infrared divergences and may yield
a time dependence of curvature perturbations in the super-
Hubble limit [31-33]. An important framework to study
effective field theories out of equilibrium is that of open
quantum systems wherein the time evolution of a reduced
density matrix, obtained by tracing over unobserved d.o.f.,
is determined by a quantum master equation [34-36]. This
approach has recently begun to be implemented in cosmol-
ogy [37-43] and shown to be equivalent to the non-
equilibrium effective action that includes the influence
action of the d.o.f. that are traced over [36,44]. The
influence of these “unobserved” d.o.f., including fermions
[45], has been shown to lead to corrections to the power
spectrum of inflaton fluctuations and violations of scale
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invariance [38,44]. Recently the interaction between the
inflaton and “environmental” fields has been studied within
the framework of the quantum master equation to assess the
discord, namely the effect of decoherence on inflationary
correlations [39,40]. Taken together, these studies suggest a
relationship between corrections to the power spectrum
from “environmental” fields and discord and decoherence
as a consequence of interactions with “unobserved” (traced
over) d.o.f.

A. Motivation, goals, and main results

Our study is motivated by the following aspects:

(i) The power spectrum of scalar perturbations is
characterized by the index n, with the tilt [1,3]
(1 — n,) indicating (slight) violations of scale invari-
ance, with the running a; = dng/dIn(k) and run-
ning of the running f; = da,/dIn(k) being higher
order indicators of violations of scale invariance. In
single field slow roll scenarios 1 — ny, a, f, follow a
hierarchy in slow roll parameters. The analysis of the
Planck Collaboration [3], however, yields a value of
P, surprisingly large, positive, and of the same order
of but slightly larger than «, that seems to be in
tension with slow roll scenarios [46,47], although at
the ~20 level. However, future surveys may tighten
this bound [48]. Values of ay, f, larger (and of
different sign) than those predicted in the simple
single field slow roll inflation can be obtained by
allowing entropy perturbations [49] or from contri-
butions of other sources [50].

(ii) If the inflaton is coupled to the d.o.f. that describe
the postinflation radiation dominated phase, this
coupling is also present during inflation. A corollary
of the results of Refs. [38,39,44,45] is that the
interaction between the inflaton and “unobserved”
d.o.f. that are integrated out into an effective
dynamics, yield corrections to the power spectrum
of inflationary quantum fluctuations with violations
of (near) scale invariance. Remarkably, these cor-
rections obtained in Refs. [38,39,44,45] can also
be interpreted as a running «, determined by the
interaction strength.

(iii) A recent study showed that integrating out (“un-
observed”) d.o.f. to yield an effective field theory
implies a loss of information, which is manifest as an
entanglement entropy of the effective field theory
that determines the time evolution of the reduced
density matrix [S1].

Our aim is to assess whether, and how, the information
loss and entanglement entropy encoded in the effective
field theory resulting from tracing out the “unobserved”
d.o.f. [51] is manifest or imprinted in the corrections to the
power spectrum of inflaton fluctuations. In other words,
we study the relationship between the violations of scale
invariance in the power spectrum induced by the coupling

of the inflaton to the unobserved fields and the information
loss and entanglement entropy arising from tracing
over these d.o.f. If such a relationship can be unambigu-
ously established, a measurement of n; «; B, that departs
from the predictions of single field slow roll may be
evidence of an underlying effective field theory description
of inflation in which “unobserved” d.o.f. yield corrections
to observables.

B. Main results

Assuming that the scale of inflation H is much larger
than the weak scale, we consider the inflaton Yukawa
coupled to fermions with masses m; << H as these are the
most ubiquitous d.o.f. of the standard model to which a real
scalar field can couple directly. We consider an initial
factorized density matrix describing Bunch-Davies vacua
for the inflaton and fermions, evolve this state in time in the
interacting theory, and trace the fermions out of the time
evolved density matrix obtaining a reduced density matrix
for the inflaton. We begin the study with a perturbative
evaluation of the reduced density matrix. This approach
makes evident that the production of fermion-antifermion
pairs kinematically entangled with inflaton fluctuations
leads to a mixed state upon tracing over the fermion pairs.
The coefficients of the reduced density matrix reveal
secular growing terms for super-Hubble inflaton fluctua-
tions; these are a consequence of profuse fermion pair
production enhanced when the physical wavelength of
inflaton fluctuations become super-Hubble. We obtain an
preliminary estimate of the entanglement entropy and its
relation to the power spectrum in the super-Hubble limit.
We then obtain the one-loop effective action upon integrat-
ing out the fermionic d.o.f. and show that it yields the time
evolution of the reduced density matrix from which we
obtain the entanglement entropy and the power spectrum of
inflaton fluctuations confirming the perturbative treatment.
For the entanglement entropy we find

s = -3 -0+ 120}

1 =&
where for super-Hubble modes and Yukawa coupling Y
we find

(1.1)

Y?

T

2Ny In(k/ks) +n2(k/kp) ), (1.2)

with N the total number of e-folds during inflation, and &,
a “pivot” scale corresponding to the mode that crosses the
Hubble radius at the end of inflation.

A dynamical renormalization group improvement yields
for the inflaton power spectrum in the super-Hubble limit

P(k) = 4—”2 6851(,

(1.3)
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explicitly showing that the corrections to the power
spectrum with scale invariance violations are directly
related to the entanglement entropy and information loss
of the effective field theory. The corrections to the scalar
index and its running are given by

N Y? y?
-— = (1.4)

on, = : = -,
s 372 s 67>

with vanishing running of the running to leading order
in Y2.

II. THE MODEL

We consider the model of an inflaton scalar field
minimally coupled to gravity and Yukawa coupled to
one Dirac fermionic d.o.f. in a spatially flat de Sitter space
time. Including Majorana fermions and/or more species is
straightforward [45].

In comoving coordinates, the action is given by

ol e

+Pliy"D, —m; — Y¢]T}. (2.1)

The Dirac y* are the curved space-time y matrices and
the fermionic covariant derivative is given by [52-55]

1 o a v
Dy =0y +5lr", riles(Dyeq,),

_ g
Dyedv - aﬂedl/ - F;wedi
where the vierbein field ¢/ is defined as
g/u/ — ezeznah’

N4 1s the Minkowski space-time metric. The curved space-
time matrices y* are given in terms of the Minkowski space-
time ones y“ by (greek indices refer to curved space time
coordinates and latin indices to the local Minkowski space
time coordinates)
r=rtea  {rrt =29

For a Friedmann-Robertson-Walker metric in conformal
time, the metric becomes

G = CH() 0 (2.2)

and 77, = diag(1, =1, —1, —1) is the flat Minkowski space-
time metric and for exact de Sitter space-time

1

con) =7 (2.3)

In conformal time the vierbeins ¢} are given by

d=Clnd: e =CE (24

and the Dirac Lagrangian density simplifies to

,/—g‘i’(iy"Dﬂ‘P —my—Y$)¥

— (V)i - (m + YH)C)(CP)  (2.5)
where i@ = y“0, is the usual Dirac differential operator in
Minkowski space-time in terms of flat space time y*
matrices.

Introducing the conformally rescaled fields

Cp(E. 1) =x(Fn):  CYE1) =wEn). (2.6)
and neglecting surface terms, the action becomes
5= [ @xdntol + Loyl + Lilrvl. 27
where
Lol = 317~ (V2P - M), (28)
coll = v |9+ 1. 29)
Lilwl==Yxipy:, (2.10)

where we have normal ordered the interaction in the
interaction picture of free fields, and

(2.11)

M? 1
e
H n

M2(n) = [ — -

In the noninteracting case Y = 0 the Heisenberg equa-
tions of motion for the spatial Fourier modes of wave vector

k for the conformally rescaled scalar field are

2) + [18 —nlz <u§ - %)};@(;7) —0 (212)

where

9 M?
2 _
We consider a light inflaton field with M?/H? < 1 con-
sistently with a nearly scale invariant power spectrum.
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The Heisenberg fields are quantized in a comoving
volume V as

x(ﬁn)=%%:[aq*g(q,n)e"‘i’?+af;g*(q,n)f"‘i"?]- (2.14)

We choose Bunch-Davies conditions for the scalar fields,
namely

(2.15)

and

Bt /manHY (—qn).  (2.16)

N =

9(q.n) =

For M?/H? <1 corresponding to v, ~3/2 the mode
functions simplify to

e~ikn i
san = 1= 2.17)
The Dirac equation for Fermi fields becomes
9=, =0 M) =~F (218)

For Dirac fermions the solution y/(X,7) is expanded as

1 > 7o - T
bvd _ E R ik-x il —ik-X
W('x’ 1’]) - \/V e [bk,}LUl(k’ ’7)6 + d/‘('.ﬂvi(lg ’7)‘3 ],

(2.19)

where the spinor mode functions U, V obey the Dirac
equations

[i°0, =7 - k=M, (m)]U,(k.n) =0, (2.20)

[iy°0, +7 - k=M, ()]V,(k.n) =0.  (221)
We choose to work with the standard Dirac representa-
tion of the (Minkowski) y* matrices.
It proves convenient to write

-

U,(k,n) = [iy°8, =7 -k + M, () f (U, (2.22)

Vi(k,n) = [i°0, + 7 K + M, (n)Je(n)V;,  (2.23)
with U;; V), being constant spinors [56,57] obeying
U, =U,,

'V, =-V,. (2.24)

The mode functions f;(n); hi(n7) obey the following
equations of motion:

2
[j_,?z + k2 + M3, (n) - iM{//(n):|fk(’7) =0.  (225)

[5_172 + k2 + MZ(n) + iM{,,(n)] hi(n) = 0. (2.26)

We choose Bunch-Davies boundary conditions for the
solutions, namely

fk(’?)k—>€_ik"; hk(’?)k—>eik’7, (2.27)
—kn—oc0 —kn—o0
which leads to the choice
hi(n) = fi(n), (2.28)
and f(n) is a solution of
& o Lmy  my
d_l72+ +—2 ﬁ_lﬁ fk(i’]):O (229)
We find
—7kn i, 1 m
filn) =/ ——e¥ HAHY (<) b, = ol lgf-
(2.30)

The sub-Hubble limit (—k#) — oo of these modes is given
by (2.27) whereas these modes feature a purely oscillatory
super-Hubble behavior [45]. The important aspect, how-
ever, is that the amplitude of the mode functions remains
bound and of order unity for super-Hubble wavelengths.
Under the assumption that the scale of inflation is much
larger than the weak scale and that the fermionic d.o.f.
represent those of the Standard Model, it follows that
H > my, leading to
fr=e ™, (2.31)
In contrast, nearly massless M <« H minimally coupled
scalar fields feature a growing mode in the super-Hubble
limit (kn < 1) with

1
g(k.n) “sz”’

(2.32)

which results in amplification and classicalization of super-
Hubble fluctuations [58].

III. ENTANGLEMENT ENTROPY AND POWER
SPECTRUM: A PERTURBATIVE ARGUMENT

Before we study the time evolution of the reduced
density matrix via the effective action, we analyze the
emergence of an entangled state between inflaton and
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fermionic d.o.f. in perturbation theory. The aim of this
section is to provide a simple physical understanding of the
emergence of the entanglement entropy and its relation to
the power spectrum, along with a preliminary estimate of
its value. The results of this section must be taken as
indicative, and as a guide to the physical processes
involved. The next sections provide a more technically
detailed and firmer derivation of the reduced density matrix
and entanglement entropy from the effective action.
Consider an initial state corresponding to the Bunch-
Davies vacuum for both the inflaton and fermions, namely
[¥(0)) = [0), ® [0}, (3.1)
In the Schrodinger picture the time evolution of this state is
given by
[¥(n)) = Uln;no)[¥(no)) (3.2)
where U(n;10) is the unitary time evolution operator
obeying

iiU(n;no) = H(n)U(n;n0)3

i (3.3)

U(nosno) = 1,

where H(n) = Hy(n) + H;(n) is the total Hamiltonian, and
Hy(n),H;(n) are the free field and interaction Hamiltonian
respectively, with H, () depending explicitly on # through
the mass terms. The reduced density matrix for the inflaton
field y is obtained by performing the trace over the
fermionic d.o.f. of the full density matrix. It is given by

Py () = Tr, ([ () (¥ (n)))- (3.4)

Entanglement between the inflaton and fermionic
d.o.f. resulting from their interaction and time evolution
is best studied in the interaction picture. The unitary time
evolution operator in absence of interaction (free fields)

Uo(n;19) obeys

d
ld—nUo(’?;’?o):Ho(’?)Uo(ﬂ;ﬂo)Q Uo(no:mo) =1. (3.5)

The quantum state in the interaction picture evolves in time
as

[P(n)); = U (n;m0) ¥ (o)) (3.6)

where the unitary time evolution operator in the interaction
picture U, (n:19) = Uy~ (m:10) U (1 110) obeys

d
ld—”Uz(n;no)=H1(n)U1(11;110); Ui(nosno) =1, (3.7)

where

Hi(p) =Y / PogEn) B EwEn): (38)

is the interaction Hamiltonian in the interaction picture, and
¥, v are given by the free field expansions (2.14), (2.19)
respectively.

Up to second order in Y we obtain

[P (), = [®(no)) + [PV () + ¥ () + -+ (3.9)

where |¥(#,)) is given by (3.1) and

B0 () = i / " Hy O )dn ¥ (n)).  (3.10)

n

B () = (=i)? / " H () (72)dpy g ¥ o)

Mo Mo
. ’7
— =i [" Hi) O ). (3.11)
Mo
We find
oo _
v () = ZME,}(k, amig), @ g5 15,5
kg
p=-G—k (3.12)

where the matrix element is given by

(1) 7. 1 * rr (2 -
M (k,qg;n) = —= d k,n)U,(g.m)Vy(p.m).
,1,,1( gsn) v, myg* (k,n)Ui(q.m)Vi(P.m)

0

(3.13)

This state depicted in Fig. 1 is recognized as an
entangled multiparticle state of the inflaton field and
fermion-antifermion pairs.

An important aspect of the matrix element Mfll /1),(1_5 q:mn)
is that it grows with conformal time for super-Hubble
inflaton modes: as a consequence of the growing mode
(2.32) for wave vectors that become super-Hubble at a time
n* ~ —1/k, the time integral in (3.13) yields a contribu-
tion o Y In(n/n*).

q, A

FIG. 1. The first-order state ¥(!) is a multiparticle state with an
inflaton (dashed line) kinematically entangled with a fermion-
antifermion pair (solid lines) with k = —p — g.
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In second order, there are several contributions obtained
from the second equality in Eq. (3.11); however, only two
contribute to the reduced density matrix: (i) annihilate all
particles from |¥()(5) returning to the vacuum state
|W(n9)), (ii) create another y-particle annihilating the
fermion-antifermion pair in the state |¥(!)(y7)), yielding

2@ (1)) = M (0)[® (10))

+3 MP (kn)|1:17), ® [0),.  (3.14)
3

The contribution to the second-order state |¥(>*)) with
matrix element Méz)(k; 1) is shown in Fig. 2; this is a one-
loop self-energy diagram.

The matrix elements involve another wave function
g*(n) and another time integral implying an extra loga-
rithmic growth for super-Hubble wave vectors leading to a
behavior

M () « Y2I2(n/n"); M (ksn) o Y202 (n/n).

(3.15)

Therefore, the reduced density matrix in the interaction
picture up to second order is given by

Py () = Tr, (| (1)) (¥(n)])
= po(1)(10),,,(0[) + Z[ﬂl(/?,n)(|1,g>”<1,;|)
k

+ 2 () (0, (155 1_gl) +p3 (ko) (115 1), (O],

(3.16)
where
poln) = [1 + 2ReM” ());
pr(k.n) o< [IMD]? o Y2102 (/")
pa(k,n) o< My () o Y2102 (n/"). (3.17)

The secular growth of the matrix elements arising from
super-Hubble wavelengths of inflaton fluctuations imply
the profuse production of single quanta of the inflaton
kinematically entangled and correlated with fermion pairs.
That the reduced density matrix (3.16) describes a mixed

W) = e >

FIG. 2. The second-order state ¥(2?) (solid line) is a fermion-
antifermion self-energy loop. The dashed lines are inflaton states.

state can be understood from an argument closely related to
that in Ref. [51]. If (3.16) were a pure state, it could be
written as

Py () = la(m){a(n)l. (3.18)
where the state |a(#)), up to second order in the coupling,
must be generically a superposition of the vacuum, single
particle, and correlated pair states as it must be obtained
in a second-order expansion with the interaction (2.10).
Therefore such state should be of the form

la(n)) = ag(n)[0), + Z[al(/;, Mg,
k

+ (k)11 ), + -, (3.19)
where ay~O(Y?) + O(Y?); ay=O(Y); a,~O(Y?).
Comparing (3.18) to (3.16) we find that (3.18) features
terms first order in Y of the form ~|0), (1;| and Hermitian
conjugate, as well as terms of the form [1p),, (1| for

I_é:,é k. Neither of such terms are present in (3.16). The
main reason why these terms are not present in (3.16) is
because the single particle y states are entangled with
fermion-antifermion pairs. In performing the trace over
these d.o.f., each member of the pair in a “bra” must pair up
with a similar state of same momentum and polarization 4
from a “ket” in the trace. Thus we conclude that the density
matrix (3.16) describes a mixed state. The entanglement
between the inflaton and fermionic states is responsible for
the entanglement entropy associated with this mixed state,
which is given by

S==Y A,In(4,). (3.20)

where 4, are the eigenvalues of the reduced density matrix.

To leading order in Y, the eigenvalues in the single and
two particle sectors are proportional to py, p; yielding an
entanglement entropy

S~=> Cm&(n):  Ciln) < Y2In (=kn).  (3.21)
;

The growth of this entanglement entropy is a consequence
of fermion pair production, which is enhanced when the
physical wavelength of the inflaton fluctuation becomes
super-Hubble. Tracing over the fermionic d.o.f. leads to
information loss which is manifest as the entanglement
entropy. As time evolves more inflaton modes become
super-Hubble resulting in fermion-pair production; as
more pairs are integrated out, more information is lost
and entropy grows.

The power spectrum of the original ¢(X,n) = y(X,n)/
C(n) field is given by
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e )>Trxp§(f1))(,;(11))(_,;(f7) (3.22)

Pi(n) = <m

where [see Eq. (2.14)] in the interaction picture

xi(n) = agglk.n) + a’ .g" (k). (3.23)
With the product yzx_p, both the single-particle and
correlated pair states in (3.16) contribute to the power
spectrum. We find for de-Sitter with C(n) = —1/Hn and
for super-Hubble modes

BH P\ 1
Pi(n) ~ <TT2> ETa 1+ aY?In?(=kn) + - - -]
2

~ % 1+ aY?In?(=kn) + - - -] (3.24)
where a is a constant that depends explicitly on the matrix
elements. It will be obtained below from a more systematic
treatment. This perturbative analysis, while preliminary and
very approximate in the form of the secular logarithms,
yields a simple understanding of the physical processes that
describe the reduced density matrix and the emergence of
the entanglement entropy: the production of correlated
fermion pairs kinematically entangled with inflaton fluc-
tuations. It also highlights in a simple but approximate
manner the relationship between the corrections to the
power spectrum and the entanglement entropy. The sec-
tions below provide a more technically detailed derivation
and confirmation of these results from the effective action.

IV. REDUCED DENSITY MATRIX

The effective action for inflaton d.o.f. obtained by tracing
out fermionic d.o.f. has been obtained in Ref. [45]. For
consistency and continuity in the presentation we summarize
the main aspects of the derivation. The reader is referred to
Ref. [45] for more technical details.

The time evolution of a density matrix initially prepared
at time 7, is given by

p(n) = U(n.no)p(no) U~ (n.10). (4.1)
where Tr[p(ny)] =1 and U(n,ny) is the unitary time
evolution operator of the full theory. It obeys

e U(n,no) = H(n)U(n,1m0); Ulng,no) =1 (4.2)

dn
where H () is the total Hamiltonian. Therefore

i | H O )

Uln.no) =T [e_lf”o } o U e) =T [eif,z H(ﬂ’)dr/]

with T the time-ordering symbol describing evolution
forward in time and T the antitime-ordered symbol describ-
ing evolution backwards in time.

Consider the initial density matrix at a conformal time #,
and for the conformally rescaled fields to be of the form

p(no) = py(110) @ py (o). (4.4)

This choice while ubiquitous in the literature neglects
possible initial correlations. We consider an initial time
no such that physical wavelengths of cosmological rel-
evance were deep inside the Hubble radius at 7. We will
focus on the time evolution well after their physical
wavelengths have become super-Hubble during inflation
when the amplitude of the scalar modes y become ampli-
fied. Under this assumption initial correlations between
these modes and the fermionic d.o.f. are perturbatively
small; hence we adopt this initially factorized density
matrix with the understanding that the role of initial
correlations between the inflaton and the fermionic d.o.f.
remains to be studied further.

Since we are considering a de Sitter space-time, we take
the initial time 7, to be earlier than or equal to the time at
which the slow-roll (nearly de Sitter) stage begins.

Our goal is to evolve this initial density matrix in
(conformal) time obtaining (4.1) and trace over the fer-
mionic d.o.f. (y, y) leading to a reduced density matrix for
y namely

py(n) = Tr,p(n). (4.5)

There is no natural choice of the initial density matrices
for the inflaton or fermionic fields; however, consistently
with the analysis of the previous section and to exhibit the
main physical consequences of tracing over the fermionic
d.o.f. in the simplest setting, we choose both fields to be in
their respective Bunch-Davies vacuum state, namely

py/(”lO) = |O>y/y1<0|

This condition can be generalized straightforwardly. In the
discussion below, we refer to y,  collectively as y to
simplify notation.

In the field basis the matrix elements of p, (1); p,, (10)
are given by

Ulp,(no)lt) = prolx. 0)s Wlpy (o)) = pyolw: ),

(4.7)

and we have suppressed the coordinate arguments of the
fields in the matrix elements. In this basis
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PO W X piy)
=G lUmpno)p(0) U (nyno) 730 )
= / DyiDy DDy iy iy ¢ [U (nymo) iswidpyoriski)
X Py o (i) Tl U™ (npamo) |7 30 7). (4.8)

The f Dy etc., are functional integrals, which for the
fermionic d.o.f. are in terms of Grassmann valued fields
and Dy = Dy Dwy. To simplify, notation space-time argu-
ments have been suppressed. The matrix elements of the
forward and backward time evolution operators can be
written as path integrals, namely

i | df PxLyt ]
arswelUngno)lxiwi) = /D)(+Dy/+e L ,

(4.9)

o _ o _ =i | d%cLb(‘, -]
(iU 1(’7f’v’70)|)(f;1//f>:/D)( Dy~ e L "
(4.10)

where L[y, w] can be read off (2.7) and the boundary
conditions on the path integrals are

X (X.mo) :)(1(})’ )(+(55’ '7f) ZZf(f)v
w (Xom0) = wi(X); w (X)) = wp(X), (4.11)
x~(Eono) = 7:i(X); 2~ (Eong) = (%),
w~(Xono) =wi(X); wm(Xonp) = (X)), (4.12)

The fields y*, w* describe the time evolution forward
(+) with U(n,5,) and backward (—) with U~ (5, 7,); this
is the Schwinger-Keldysh formulation [59-61] of time
evolution of density matrices.

The reduced density matrix for y is obtained by tracing
over fermionic d.o.f., namely

p’()(f’)?f;ﬂf)=/Dwfp(;(f,wf;;zf,wf;nf). (4.13)
We find

= / Dy DiiT [y 7 rixis Xis i molpy, (i Zis o)

(4.14)

where the time evolution kernel 7 is given by the following
path integral representation:

T2 ps i 2N Mo) Z/D)(+D)(‘e"55ffw“;”f]~ (4.15)

The total effective action that yields the time evolution of
the reduced density matrix is given by

Sele iy = / " / PxlLolyt] = Lol ]
+Flxtox] (4.16)

The influence action F is defined by

eFlt] = /Dl//iDli/iDl//fpy/(Wivlpi;rlO)
X /Dl//’LDl//_eifd%{[ﬁ*["ﬁf]_’c[l’/;}{”},
(4.17)

and we used the shorthand notation

Loly*x] = Loly™] = Yy (x) o (x)w™ (x):.

The boundary conditions on the fermionic path integrals are

(4.18)

TXomo) =wi(X); wt (X)) =

Vg

v ) =@ v Eny) = (5) = (),

(4.19)
The last equality is a consequence of the trace.

The path integral in the fermionic sector is a representa-
tion of the time evolution forward and backwards of the
fermionic density matrix in (4.17) where y* act as external
sources coupled to = (x)y*(x):. These sources are
different along the different branches,

TV =Tx, U nosx )y, (o) U™ (np.mosx )], (4.20)

where U(n,n0;x*) is the time evolution operator in the
fermionic sector in presence of external sources y* namely

U nosx™) = T(g"fn'; wan'ﬂdn/);
S

and

H, 7 (n)] = Hop (1) + ¥ / Pt (Fn) oyt ()
(4.22)

In Eq. (4.22) Hy,,(n) is the free field Hamiltonian for the
field y which depends explicitly on time as a consequence
of the 7 dependent mass term in the fermionic Lagrangian
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density (2.9) and y* in the interaction terms are classical
c-number sources.

The calculation of F[y™; ™| proceeds by passing to the
interaction picture for the Hamiltonian H,, [y* ()], defining

where U (17;719) is the time evolution operator of the free
field y and cancels out in the trace in (4.20). The fermionic
fields in U, , (n; no: x*) feature the free field time evolution
(2.19). The trace can be obtained systematically in pertur-
bation theory in Y. Using the results of Refs. [36,45] we

Ui o x ) = Uo(mimo)Us, (mimos x*)  (4.23)  find up to O(Y?) in the cumulant expansion
|
. _ ny m N N PN PN
iFlt 2] :—Yz/d3x1d3x2/ d’h/ dmy ot (v m)x (X, m2) G (15 x2) + 2~ (X1, i)y~ (X2, m2) G=(x13.x2)
o o

=X X )y (X, m2)G= (x5 x0) — 1~ (X1, m)xt (%0, 12)G™ (x152) 1

where
G (x1320) = (Cw(x)w(x) @ (0)y(x:):)),,  (4.25)
G=(x;3x2) = (@ (e)w (x2) g (x)w(xp)1)),,  (4.26)

and the averages over fermionic variables are given by

TI'U(' ) ),0 /(’70)
<()>W :"/Fr—l/ (4.27)
wPy (o)
We have used that normal ordering in the interaction picture
yields

Tr, (o)), () =0 (4.28)
since the initial density matrix corresponds to the (Bunch-
Davies) vacuum state for the fermionic d.o.f. Furthermore,
comparing (4.25) and (4.26) it follows that

G” (x13x5) = G= (x5 x1). (4.29)
The fermionic correlation functions G5 are identified

as the fermion loop that enters in the second-order
|

X = (7]1,)—51) etc., (424)

|
contribution of the perturbative density matrix (3.16)
[see Fig. (2)], thereby establishing a direct relation between
the perturbative approach of the previous section and the
effective action.

In a spatially flat FRW cosmology spatial translational
invariance implies that

G§(xl,x2) = G§()?1 —Xi11.12)

1 < e
=3 2 K5t m)ePET. - (430)
P
It is straightforward to find that
K5 (mam) = (K5 (m.m))” (4.31)

Therefore, we write the influence action in terms of spatial
Fourier transforms in a volume V, with

iFlrt ] =-vY / " dn, / " dma{KE ()Lt (n () = a2 () 0n)
s o Mo

+ K (s m) bz ()= () = et ()2 ()]}

In summary, the reduced density matrix for the inflaton field is given by

P (i) = / Dy;Dy; / Dy Dy eSale™ 1l p, (1 73 mo).

1 e
X)) =—=) xE(n)e it 4.32
X (X.n) \/V%xk(n) (4.32)
and performing the spatial integrals we obtain
(4.33)
(4.34)

where the total effective action that yields the time evolution of the reduced density matrix is given by (4.16), (4.33) and the

boundary conditions on the path integrals are

2 Eono) = xi(X); T (Eomp) = xp(X),

xEomo) =7i(X); 2 (onp) = (%) (4.35)
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Although the reduced density matrix is obtained by
tracing over the fermionic d.o.f., the total density matrix
evolves in time via the unitary time evolution operator;
therefore,

Trp(ns) = Trp(no). (4.36)

where the total trace corresponds to tracing over both the
fermionic and inflaton d.o.f. Taking the initial density matrix
to be given by Eq. (4.4) with (4.6), the relation (4.36) yields

/ Dysp" (s Xy =xping) = 1. (4.37)

It is convenient to introduce the center of mass ¥;(17) and
relative R;(7) variables as

Wylm) = 5 (2 n) +2 ()

Ri(m) = ()(2(’11) —)(i(’h)); (4.38)

iSere[ W, Ry 1) = Z{

P Mo

- [an [ an RN R 05) + R iz i) ¥ )|}

where / = d/dn and

1 1
Y2
Ni(nism) = 5 (K (13m2) + K5 (13 m2)]s (4.43)
ER(m3m2) = Zi(1:m2)O (1 — 1m2);
Se(mim) = =iV KL (i) = K (nism)). (4.44)

The Gaussian path integrals over ¥, R are carried out by
standard methods: introduce the classical paths W, R and
fluctuations around them z, r respectively as

(4.45)

where ‘I’%(nl);R%(m) fulfill the boundary conditions
(4.39), (4.40) and

(4.46)

thus the path integral measure becomes DyDy = DWDR
and the boundary conditions become

1 N
Wz(no) = Ve = 5 ()(E,i +%E,i)§
1 N
Wilng) =Yy, =5 Uiy + T yp)s (4.39)
Ry(no) = Ry, = (g, — 77.,);

In terms of these variables the effective action (4.16)
becomes

[ dndtR ) 500) = W R ¥ )

(4.41)

[
and require that the linear terms in ry, z; in Seg vanish. This
yields the following equations of motion for W, R¢:

2 ¢ 2 ¢ m .
72‘{',;(’71) +W (’71)?;(’71) + 2k(’71§772)‘{‘,;(’72)d’72
1

dﬂ Mo
. .
=l/ Ni(msm2) R (n2)dna, (4.47)
Mo
and
dZ ¢ ) c ny ¢
ﬁR,;('h)*'W ()RE(m) + [ Zi(naim)RE(n2)din, =0.
i m
(4.48)

Therefore the Gaussian path integrals yield
/DLPDReiSeff[‘I’,R;ﬂf] — N(;flf)eiseff[qjislysti’Rf;’If]. (4_49)
The normalization factor

N(ny) = /DrDze[Seff[Z";”-f] (4.50)
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only depends on 7, but does nor depend on the initial and
final values of the fields as a consequence of the boundary
conditions (4.46) for the fluctuations. This factor does not
need to be calculated because it is completely determined
by the unitarity condition (4.37).

Using the equations of motion (4.47), (4.48) we find

iSCff[‘Piﬂ le» Rl’Rfvrlf]

= Z{’ (R ;¥ (ny) — Ry ¥ (m0)]

¥
1 [nf nf . .
g [ [ RN R .
Mo o

(4.51)

In this expression W€, R are the solutions of the equations
of motion (4.47), (4.48) with the boundary conditions
(4.39), (4.40).

To proceed further we need (i) the initial density matrix
ilp,(mo)l7i) = pyo(xi. 7:) in the Schrodinger representa-
tion, (ii) the kernels Kf(m,nz), and (iii) the solution of
the equations of motion (4.47), (4.48) with the boundary
conditions (4.39), (4.40).

A. Initial density matrix

From the expansion (2.14), we define

2i(n) = agglkn) +a’ g (kon), (4.52)

2i(n) = agg (kon) + @’ g7 (k,m),  (4.53)

where g(k,7n) obey the same wave equation as (2.12) and
are given by (2.16) with Wronskian condition

g (k.m)g (k.n) — g (k.n)g(k.n) = =i, (4.54)

The relations (4.52), (4.53) can be inverted to yield

arp = ilg"(k.nx(n) = g"(k.n)yz(m)].  (4.55)

a- = —ilg(k,n)y’ (n) = g (k,)x_z(n)]- (4.56)

Since the operators az, a% are independent of time, the
relation (4.55) can be written at the initial time 7, as

a (4.57)

i = ilg*(k, 10)x; (o) — g (k. no)xz(mo)]-

The Bunch-Davies vacuum obeys the condition (2.15) in
the Schrodinger representation at the time 7. The canonical
momentum conjugate to y is

— . 5 .
ﬂk_x;_él}l/_ B

(4.58)

=1

therefore, the condition (2.15) becomes a functional differ-
ential equation for the vacuum Schrodinger wave func-
tional at 1y, T[y;10] = (x|0),, namely

{ 5 i(g*’(k, Mo)
o 7 g*(k.no)

)x,;wo)]m; W =0 (459
with solution

Yly:no] = Ne™t 2duriri, (4.60)

where

*/ k’
Q= 4(@), (4.61)
g (k,mo)
and N is a normalization factor. Therefore the initial density

matrix for the y field in the Schrodinger representation is
given by

wiley, o) 7i) = proCin i) = Ylheisnol T [7is mols

the normalization Trp, (19) = 1 fixes the value of |N|.

In terms of the center of mass and relative variables [see
Egs. (4.39) and (4.40)]

(4.62)

1 - -
Y= E(Zl?,i +7%0); Ry, = Qi =) (4.63)

we find

p){,()()(i?)?i) = p){,O(lPia R,)
= |N‘2HE e—QR.k[‘F;_,‘P,;.,--*-:{R;J-Rf,;j] o~ iQuYL R
(4.64)

where Qp, Q; are real and given by

1
Qpi=—"7""5;
2l g(kmo) P
Qe ==Qp i[g" (k.no)g(k.ng) + 4 (k.ng)g* (k.ng)].  (4.65)

Finally from the expression (4.34), the reduced density
matrix in terms of the center of mass and relative variables
is given by

P (¥r Rping)
:N<’7f) /D\PiDRieiSeff[‘Pi-lyf-Riva;’?f]pxo(lPi’Rl.)‘

(4.66)
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This is the final form of the reduced density matrix, where
the functional integrals are simple Gaussian integrals that
can be carried out once the fermionic correlation functions
and the solutions of the equations of motion are obtained.
The normalization prefactor in (4.66) is determined from
the condition of unitary time evolution (4.37), namely

B. Fermionic correlations

The kernels IC,% defined as the spatial Fourier transforms
of the Fermionic correlation functions (4.30) are obtained
from the mode functions U, V in the field expansion (2.19),
given by (2.22)—(2.24) with (2.30). For generic fermion
mass m, the kernels do not feature a useful analytic
expression; however, assuming that the inflation scale is
much larger than the typical mass scales of the standard
model (and even beyond), we focus on the case m; << H. In
this case we use the results of Ref. [45] and X, N in (4.43),
(4.44) are given by

Y2 d2
Ni(mism) = o= [ kz]

8 |didn, -
X {5(’71 -m) - %W} (4.68)
Y2 [ &
Z(nism) = 82 [dihd’?z - kz]
— )2 42
w« {costin = )T
(4.69)

where ¢ — 07 is a short-distance regulator and —, is a
renormalization scale chosen to coincide with the ini-
tial time.

C. Solutions of the equations of motion

We solve the equations of motion (4.47), (4.48) in a
perturbative expansion in Y2 and insert these solutions in
(4.51) to obtain the effective action up to order Y?. We
begin with the zeroth-order solution to highlight several
relevant aspects and shed light on the interpretation in the
interacting case.

1. Zeroth-order solutions

The solutions of the zeroth-order equations of motion
correspond to setting Y? = 0, namely X, N, = 0in (4.47),
(4.48), yielding the free field equation of motion (2.12)
whose solutions are the mode functions g(k,n) given
by (2.16).

However, instead of using these complex mode func-
tions, and in order to separate the real from the purely
imaginary contribution to the effective action, we use the
real mode functions

g ko) =[5 r, (-tn
g-(k.n) = [— ’ﬂ P, (). (4.70)

which describe the growing (¢g,) and decaying (g_)
solutions for super-Hubble modes and satisfy the
Wronskian condition

g (k,n)g-(k,n) — g_(k,n)g(k,n) = —1. (4.71)

These real mode functions are related to the complex mode
functions g(k,n) (2.16) as

i
k) = —=e3%H2g (k,n) —ig_(k,n)].  (4.72
g(k.n) 7 l9,(k.n) —ig_(k.n)].  (4.72)
For a (nearly) massless inflaton field for which v, = 3/2,

in the super-Hubble limit —kn — 07 these solutions behave
as

1 1
9. (ki) = szn; g-(k,n) = §k3/2’72- (4.73)

In terms of these mode functions the general solution of
(4.47) for Y> = 0 is given by
Yelm) = Qugs(km) + Prg-(k,mi),  (4.74)

with the coefficients Q,, P, fixed by the boundary con-
ditions (4.39). We find

Dy nyss
_ \P];i k[’?f ’11}
* Dilny;no)

D[y 1]

= , 4.75
kt Dy [’1f§ '70] ( )

\Pi('ll)

where we introduced

Dy[nisma] = g4 (ko) g-(ksma) = g4 (ks ) g— (ko). (4.76)

The equation of motion for R® for Y?> =0 with the
boundary conditions (4.40) has a similar solution,

D[171: 1]

> . 4.77
“F Dilnys o) @.77)

‘ Dy[ngini]
k[’7fs’70]

Our goal is to obtain the effective action and entangle-
ment entropy to leading order in Y?; therefore, we input
the zeroth-order solution (4.77) for R¢ in the second line
in (4.51) because Ny  Y2.
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2. Perturbative solution

As discussed in detail in Ref. [45] upon integration by parts the self-energy term in the equation of motion (4.47)

becomes

" y2¥m) y2 [(
4 (1 10) e () digy = — ——~ In
/no k(’11 ’12) k(’h) Uy i & o) [

In obtaining this expression, we have neglected the con-
tribution from the lower limit (5y) in the integration by
parts; these contributions are finite and perturbatively small
(since the mode functions are assumed to be deeply sub-
Hubble at the initial time) as ; — 0 which is the limit of
interest in this work. As discussed in Ref. [45], the first
two terms are absorbed into mass and wave function
renormalization.

In particular, as shown in this reference, after absorbing
the quadratic divergence o 1/¢* independent of 7, into an

intermediate renormalized mass M the fully renormalized
mass (up to one-loop) My(ny) obeys the relation

M M) Y2 ln[(‘ﬂo)} (4.79)

H> H> 272 €

Because M? does not depend on 1, the combination on the
right-hand side of (4.79) is invariant under a change of
scale 1y. As discussed in Ref. [45], the scale 7, is chosen so
that the renormalized mass M%(1,) = 0, and choosing —7
to coincide with the onset of slow roll inflation yields a
power spectrum that is scale invariant for ¥ = 0 and the
departure from scale invariance is a consequence of the
interaction. See discussion in Sec. VII below.

Since we are primarily concerned with the asymptotic
super-Hubble limit, we adopt here the renormalization
procedure detailed in Ref. [45] absorbing these two terms
in the corresponding renormalizations and focus solely on
the contribution from the third term in (4.78).

We consider a perturbative solution of (4.47) of the form

Welm) = W5 ((m) + ¥ (m) - (4.80)

where ‘I‘% 0(171) is given by the zeroth-order solution (4.75),
¥, (1) Y2 etc. After renormalization (see details in
Ref. [45]) the first-order correction ‘P% | obeys the equation
d ,
d_’ﬁly,cg,l () + W=(m)¥ , (1)

= Ik;m] + iRy Era(m) + iR/}"fékJ(ﬂl)’ (4.81)

where

_,,0)} {dQ‘Pé(m) N kz‘P‘;(m)}

Y2 /m {;11 —112] d
+— In —_—
4 o (—’70) dn,

d>¥e
Loostion =[St s s | w479
|
2 m 1 — N2 d
Ik;m] = —Zy—ﬂz/% dn In {7("(_”0’7) )} an
w< ( )
x&me—mnk%%}, (4.82)

and we have used the zeroth-order equation of motion
(4.47) (with X, = 0; N, =0) with Wi(n,) = k> =2/}
neglecting M%/H? < 1 with M?% the renormalized inflaton
mass, and

r Dy [’If; 1)
Skaln Z/Nn;n — = dn,, 4.83
k l( 1) o k( 1 2) Dk[']f, ;/]0] 2 ( )
ny D ;
Eea(m) = Nk(’?l;’?z)Mdlh- (4.84)

o Dy[nsimo)

For the growing mode T/%o(’h) = g, (k,n,) we find in
the super-Hubble limit —k#; — 0
Y? k, 3
g+ (k.m) (m [m]

I [k;nl]:—— __>+...’ (485)
M 27 17% 2

o

where the dots stand for subleading terms in this limit,
whereas for the decaying mode ‘P%O(I’[z) =g_(k,n,) we

find that /_[k;5,] — Y? x (constant) in the same limit, in
other words without secular terms.

The inhomogeneous equation (4.82) can be solved by
introducing the Green’s function of the differential operator
on the left-hand side of (4.82) with retarded boundary
conditions,

GR(m.m) = Gelm.m]®(ny — ), (4.86)

where

Gl o] = =Dl ma). (4.87)

In the super-Hubble limit of both arguments we find

1 2 2
@Mwﬂ*—@—@} (4.88)

3l m

023515-13



DANIEL BOYANOVSKY

PHYS. REV. D 98, 023515 (2018)

In terms of this Green’s function it follows that

Wi 0n) = / " Gl ma {1l ) + iRz &1 (1)

Mo
+ iR;:,ffk,z(ﬂz)}d’h;

W (o) = W (1), = 0. (4.89)

|'70

Writing the zeroth-order solution as a combination of g,
it is straightforward to find that up to and including O(Y?)

‘P%(’h) = 049+ (k,ny) + Prg_(k.my)

+ iR]_{:ih’l (k,f’]l) + iR]thZ(k?']l)’ (490)

where Q,, P, are coefficients fixed by the boundary
conditions (4.39) and the §. are the perturbatively cor-
rected mode functions with the following limits:

G (k.no) = g+ (k, no), (4.91)

g (konp) = g (ko)1 4+ Y2F o (kong) + -] (4.92)

Using the results of Ref. [45] we find that in the super-
Hubble limit —kn, — 0*

F o (kny)= or 2{ln( kng)—2In(—kn ;) In(—kng)} +--,
(4.93)
F_(k,ns) = Y? x (finite constant), (4.94)

the dots in (4.93) stand for subleading terms in the super-
Hubble limit. The functions &y, (k,n;) in Eq. (4.90) are
obtained from the integrals in (4.89) and satisfy

ha(kong) =0 Kk, =0 (4.95)
their explicit expressions are given in appendix (A) [see
(A7), (A8)]. Fixing the coefficients Q,, P, to satisfy the
boundary conditions (4.39) yields

Dylngini] Dini;
lP%(’?l) =¥, ,.k f. 1 i ~k[’71‘770]
Dy[n 3 mo) Dy[n s 1)
+ iRy Hy(k.m) + iR; Ha(k.my),  (4.96)
with
Dk[m;’?z] = 94 (ko) g-(ksmp) = 4 (ksm2)g- (k. i),

(4.97)

1
and

Dylnisnol

Hi,(k,ny) = hyo(km) Dylnsinol’

H, »(k,no)

= hyo(k,nys)

Gathering the results above, the effective action (4.51)
becomes

iSeff [‘Ill ’ lev Ri ) Rf,ﬂf]

i I:,i(\P—I:.iAk’i +lP_]:’ka’,' + iR];iCk.i + iR/szk,i)

‘I’ Akf+‘P Bk,f—l—iR];,l.Ck.f—ﬁ—iR];ka_f)

1 1

2 2

where the explicit form of the various coefficients is given
in Appendix A. An important aspect of these coefficients is
that they are all real; this is the main advantage of having
introduced the real mode functions g. (k, 7).

The Gaussian functional integrals in (4.66) can now be
carried out, yielding the reduced density matrix

p (Y. Rping) = NTI; exp{—ak‘l’g,f‘I’_,;,f — PR (R ;4

— i ¥z Rz} (4.100)

with A/ a normalization factor determined by the condition
(4.67), and

¥ = ff); (4.101)

B = 41k J3k+Dk1_Ckf+Akf%1:kzl~k) 2
" % = Der = ﬁgk : (4.102)
W = Q:k (A, ,4;21,02 _C- ﬁ’ (4.103)

where Qg ,,Q;, are given in terms of the real mode
functions at 5, by Egs. (Al) and (A2) in Appendix A,
respectively. We do not quote the expression for y; which is
cumbersome and, as explained in detail below, not relevant
either for the power spectrum or the entanglement entropy.

The coefficients J, D, C are all of O(Y?) and A, B~
O(1) + O(Y?); therefore, the squared term in f3; must be
computed up to O(Y?).

'Since hy, Y? we considered the mode functions to zeroth
order.
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D.Y=0

Before we analyze the reduced density matrix including
the contribution from the fermionic correlations, it will
prove informative to consider first the ¥ = 0 case for which
Jip3=Ci=Cry=Dy;=Dyy=0. The coefficients
A, B for this case are gathered in Appendix B
[see Egs. (B2)—~(B7)], and the coefficient y; in (4.100) is
given by

1

=————|A;; +Q QpiDlny, . (4.104
QR,sz[’?fvnO][ ki T Qi+ QriDlngmoll. ( )

Yk

Using the results for the coefficients in Appendix B and
after straightforward algebra, we find

ap = Qp(117), (4.105)
=%, (4.106)

4
Ve = Q7). (4.107)

where Qg . (177), € (177) are the coefficients (A1), (A2) with
o = 1y In terms of the complex mode functions g(k,7)
(2.16) related to g, (k, n) by Eq. (4.72), these coefficients are
the same as those of Eq. (4.65) with 1y — 5. Replacing
these coefficients in the reduced density matrix (4.100)
we find that it has exactly the same form as the initial
density matrix (4.63) but with ‘P,—{»,i,R,;J. - ¥ f,R]z ; and
Qp i Qi = Qg (117), Q1 (n7). In other words, the reduced
density matrix for ¥ = 0 at # = #; is simply the initial pure
state density matrix evolved in time from 77y up to 17 with the
free field Hamiltonian, namely

P e ping) = Lhepnd Y g, (4.108)

Py 5oem) — N _| (% o by
P Gy ping) —NerXp{ K4 +ﬁk> el ig A2 iy)

This expression makes manifest that if f, = a;/4 the
reduced density matrix describes a pure state since it is
identified as the product of a wave functional times its
complex conjugate. Therefore the results (4.109), (4.110)
imply that in presence of interactions the reduced density
matrix describes a mixed state. This is in agreement with the
perturbative calculation in Sec. III, and the discussion for
the Y = 0 case above.

The entanglement entropy of this mixed state is the Von-
Neumann entropys; it is given by

where T is the Schrodinger wave functional describing the
Bunch-Davies vacuum state at time 7.

Of course this is expected; in absence of interactions the
reduced density matrix is simply the initial density matrix
propagated in time with the unitary time evolution operator.
However, it is reassuring, as well as an important check,
that the formalism described above yields the expected
result in the noninteracting limit.

E.Y#0

The term proportional to y; (a real coefficient) in the
exponent in (4.100) is purely imaginary corresponding to a
pure phase in the final density matrix which does not
contribute to the power spectrum or the entanglement
entropy and will be neglected in the analysis below.
While this final expression for the reduced density matrix
(4.100) with the coefficients (4.101)—(4.103) is cumbersome
and unwieldy, we are primarily focused on the super-Hubble
limit, where progress can be made by analyzing the behavior
of the various coefficients to extract the leading behavior.
The details of such analysis are provided in Appendix C with
the main result to leading order given by [see the final
Egs. (C13) and (C14)]

1
a=—-, 4.109
= E o) (4.109)

(073 >
Bo=S0 4 P )l @110

V. ENTANGLEMENT ENTROPY FROM THE
EFFECTIVE ACTION

Going back to the original variables y;, 7, [see
Egs. (4.39) and (4.40)], the final reduced density matrix
reads

g ~ . -~
-2 (ﬁk - Z)x,; s f] } exp{—iri(rz X _i; — Xz X if)}

(5.1)

Sov ==Y _nIn(4,), (52)

where 4, are the eigenvalues of the density matrix, namely

[ P2 Gz @ules) = 2®uly). (53

The normalization condition (4.37) yields ) ,4, = 1. The
second line in (5.1), i.e., the phase, does not contribute to
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the eigenvalue equation because it can be absorbed into the
wave functions, e74®,(y;) - ®,(y;). Therefore this
total phase can be safely set to zero in the reduced density
matrix; it does not contribute to either the entropy or the
power spectrum. The entropy of Gaussian density matrices
has been originally obtained in the seminal work of
Refs. [62-66]. We present an alternative to these methods
that allows us to establish a closer relation to mixed states in
statistical physics. We recognize that setting to zero the
phase in (5.1) and introducing the definitions

% + P = sz(nf ) coth F/Tik(%f))} :
B — %= Wilng) 54
4 2sinh [T:/(V;f)}
yielding
Wi (ng) = 2[Brey]'/?;
48,
o [_ VTV:((W%)] - [%;112 ; H =& (55

the reduced density matrix (5.1) is similar in form to the
Schrodinger representation of the density matrix of
decoupled harmonic oscillators, each in thermal equilib-
rium with temperature T (ns) [67], namely

P U Zeng) = Z7 (gl eXp{—Z Hilny)
k

— Ti(ny)

JEENED

with

[

Hk(’?f) =5 [”;}'ﬂ_;‘g + Wk(’]f))(;}')(-/}]‘ (5.7)

2

Z~! is the normalization factor, and 7_y is the canonical

momentum conjugate to yz. As Y? = 0 it follows from

Eq. (4.110) that p; — a;/4 and Ty(n;) — 0; therefore, we

recover the ground state density matrix as discussed above.
The eigenfunctions up to a normalization factor are

@, (rs) o Hy [V Wixslexp[-Wilz,))]. - (5.8)

where H, are Hermite polynomials, with eigenvalues

An = [1=&1EL, (5.9)
where &, is given by Eq. (5.5) and we used the normali-
zation condition (4.37). This normalization condition along
with the expression for the entanglement entropy imply
that the eigenvalues must fulfill the conditions 0 < 1, < 1.

The fulfillment of this condition is discussed in detail in
Sec. VII below.

These results agree with those of Refs. [62—-64] obtained
with different methods. Finally the entanglement or Von-
Neumann entropy is given by

& In(r)
Sy ==3 (1 —g) + XKL 50
> {m0-a)+ 52X 60

For super-Hubble modes and to leading order in Y? it
follows from the relation (4.110) that

Y2
S = Zf+(k, ny)
2

- 4872

{In>(~kny) = 21n(~kig) In(—kpo) . (5.11)

This is one of the important results in this study.

VI. POWER SPECTRUM

The power spectrum is given by (3.22) from which it is
clear that the phase in (5.1) is irrelevant. In terms of the
reduced density matrix (5.1) we need

/D;(f()(,;f)(_,;f)ﬂ’()(f,;?f = X730y

1 1. g+(k»ﬂ) %
2o 29+(kv’7) 5 [L+ Y F (ko) + -],

(6.1)

where F, is given by Eq. (4.93) and we used the
normalization (4.37). The secular growth of the correction
term F, as —kn — 0, leading eventually to a breakdown
of the perturbative expansion, can be systematically
resummed via the dynamical renormalization group
[68,69]. Following the treatment in Ref. [45] we implement
this resummation program to obtain a renormalization
group improved power spectrum. Returning to the pertur-
bative solution to the equation of motion, Eq. (4.80), we
consider that the zeroth-order solution is given by the
growing mode, namely, we take

W< (m) = Qugy (kom), (6.2)

in Eq. (4.80), and consider only the term I[k;#,] in the
inhomogeneity of the first-order equation of motion (4.81),
because this term yields the dominant secular growth at
long time in the super-Hubble limit. After renormalization
and following the steps leading to Eq. (4.92) we find

Ve () = Qg ko)1 + Y2 F (ko) +--]. (6.3)
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We introduce a (wave-function) renormalization of the
amplitude, Z[77], and an arbitrary renormalization scale 7 to
write the amplitude Qr as

Or = Qi Z[):  ZW =1+Yu[fl+---. (64

Inserting this expansion in the solution (6.3) yields

We(n) = Oglitlg (k)1 + Y2(F (ko) + 21 [f))) + -]
(6.5)

The perturbative expansion is improved by choosing the

coefficient z; [z] to cancel the secularly growing correction

from F, at the (arbitrary) scale #, namely

¥e(n) = Qglilg (k.m)[1 +Y*(F  (kon) = F o (k.p) +- ).
(6.6)

Since the solution ‘P‘E (n) does not depend on the scale 7, it
obeys the dynamical renormalization group equation [68,69]

d¥<(n)
k
—Y = 7
pr 0, (6.7)
namely, to leading order in Y
dQz 7] _ dF ., (k.7)
— 2 Y20 + =0 6.8
ol (638)

The solution of this equation is

il = Ozl exp[Y*(F . (k. 7)) = F.(k,7i"))].  (6.9)
We choose the scale 77* to correspond to the time at which the
mode of wave vector k crosses the Hubble radius, namely
—kij* = 1 for two reasons: (i) at this time scale the corrections
to the mode functions are within the perturbative regime and
the amplitude has not changed substantially, (ii) at this scale it
follows from (4.93) that 7 (k,77*) = 0. With this physically
motivated choice, and now finally setting #7 = 7, the renorm-
alization group improved growing solution is

(1) = Qxlpegy (k,m)e Felen

¢ (6.10)

where Oz, = Qj up to perturbatively small (and nonsecular)
corrections in Y2 is the amplitude at “Hubble crossing.” The
dynamical renormalization group improved solution is equiv-
alent to the solution obtained via the quantum master equation
as shown in Ref. [38].

Replacing this renormalization group improved solution
into the analysis of the previous section is tantamount to
replacing

Gy (ks ) = gy (k.)e?™ 7 (k) (6.11)
in all expressions leading to the reduced density matrix.
Using the leading order result (5.11) we obtain the power
spectrum for super-Hubble wavelengths at the end of the

inflationary era

2

P(k) = il e8&(ny)

= (6.12)

This result establishes a direct relationship between the
corrections to the power spectrum and the entanglement
entropy (5.10).

VII. DISCUSSION

Several aspects of the results obtained in the previous
sections merit discussion.

(i) The perturbative argument indicates that the growth of
the entanglement entropy is associated with the production
of fermion-antifermion pairs which becomes enhanced
when the physical wavelength of the scalar fluctuation
becomes super-Hubble. As pair production is enhanced and
these d.o.f. are traced out of the total density matrix to yield
the reduced density matrix for the scalar fluctuations, more
and more information is lost in coarse graining these d.o.f.
This information loss is manifest as a growth of entropy
[51]. The effective action confirms this interpretation since
the term responsible for the mixing is a consequence of the
interactions and fermion pair production. The growth of
entropy for super-Hubble fluctuations has also been found
numerically in Ref. [39] in a different model with the
inflaton coupling to a massless scalar field conformally
coupled to gravity [38,44]. Our study thus confirms the
growth of entropy upon tracing over “unobserved” d.o.f.
providing an analytic description of the entanglement
entropy for super-Hubble modes within a very different
context of the inflaton Yukawa coupled to fermions.

(i) The fact that the entanglement entropy and the
corrections to the power spectrum are correlated is under-
stood from the fact that both are determined by the inflaton
self-energy, namely the fermion-antifermion loop. In the
perturbative approach this is manifest in the matrix ele-
ments of the reduced density matrix, see Fig. 2, and in the
effective action by the fermionic correlators (4.25), (4.26)
which determine the self-energy and are obviously given by
the loop in Fig. 2.

At the one-loop level the effective action is Gaussian;
therefore, a relationship between the entanglement entropy
and the corrections to the inflaton correlator up to order Y?
is expected. What is perhaps unexpected is that the
relationship is given by Eq. (6.12), namely in the form
of a running of the power spectrum.

(ii1) As discussed in detail in Ref. [45], if we restore the
renormalized mass, keeping M%(n,) # 0, the power spec-
trum becomes
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2 My
Plk) = L1 il v ) (7.1)
4n?
the exponent can be combined in the form
Mi(no) _ Y? 2
——lIn|—k In[—kn] +——1In?[—kn]. (7.2
(M) bl ot 2wl (7.2

As is shown in Sec. IV [see Eq. (4.79) and discussion
below it] and in Ref. [45], the term in the bracket is
invariant under a change of scale 7, thus the total power
spectrum is indeed independent of this renormalization
scale. However, choosing 7, to coincide with the beginning
of slow roll and setting the renormalized mass to vanish at
this scale leaves the scale 7, as a remnant in the power
spectrum. This is similar to the emergence of a renorm-
alization scale in renormalized correlation functions that
break scale invariance.

(iv) The correction to the power spectrum and the
entanglement entropy are determined by the factor

2

Y
Y2 (kony) = 22 {In*(~kny) — 2In(=kny) In(~kno) }.

(7.3)

Considering that the total number of e-folds Ny =
In(no/ns) ~ 60 and that the wave vectors k of cosmological
relevance cross the Hubble radius about 10 e-folds before
the end of inflation at 7, it follows that

Y2F  (k,np) S10x Y2 (7.4)
Even considering that Hubble crossing occurs at the
beginning of inflation, —k#y ~ 1 (still super-Hubble today)
yields

Y2F  (k.np) S30 x Y2, (7.5)
Therefore, with ¥ < 107! this contribution is positive and
small and perturbation theory is valid. In particular the
condition 0 < 4, < 1 for the eigenvalues of the normalized
(mixed state) reduced density matrix and the expression for
the entanglement entropy is fulfilled. Therefore, 4, can be
safely assigned a probability interpretation for the whole
range of wave vectors that cross the Hubble radius between
the beginning and end of inflation for moderate Yukawa
couplings.

There is a caveat in this argument. In principle, allowing
the wave vector k to be arbitrarily small it could lead to
Y2F ,(k,ns) > 1. This possibility results in a breakdown of
perturbation theory. While the dynamical renormalization
group provides a systematic resummation for the power
spectrum, there is no natural manner to extend this well
understood resummation framework to the entanglement

entropy. Such resummation program for the entanglement
entropy remains to be studied further.

(v) It is convenient to introduce the “pivot” scale ky =
—1/n; corresponding to the scale that crosses the Hubble
radius at the end of inflation, in terms of which

2
Y2.7-'+(k,17f):—%712{2NT1n(k/kf)+ln2(k/kf)} (7.6)

with k < k. The power spectrum (6.12) can now be written
in terms of a correction to the index on, and running «; as

H\ 2/ k\ on+a,In(k/kp)
k)= |— — , 7.7
P (5) () &
with
NyY? Y2
51’15 = — 37[2 N a, = _6_]'[2’ (78)

suggesting a hierarchy a; ~ny/Np;-- -

We note that a change of the “pivot” scale k; results in a
change of the overall amplitude and a change of dng; these
changes have been discussed also in Ref. [70].

Therefore we find a correction to the index n, and a
negative running «, but not a running of the running, g, ~ 0
to this order.

(vi) A corollary of this study is that even in absence of
(scalar) fields that could contribute to entropy perturba-
tions, the coupling of the inflaton to other d.o.f. that do not
contribute directly to cosmological perturbations and are
“traced over” lead to entropy production. This entangle-
ment entropy is different from a thermal entropy, but
nevertheless imply a loss of information and must be
included in the entropy budget both during and post-
inflation. Thus even without explicit entropy perturbations,
the entanglement entropy resulting from particle produc-
tion contributes to the entropy budget during the infla-
tionary stage.

(vii) Caveats: We have established a relation between
the entanglement entropy and corrections to the power
spectrum for inflaton fluctuations, not for curvature per-
turbations. The latter are the perturbations relevant for
temperature anisotropies; therefore, a comparison between
the results obtained here and the observational data are not
very meaningful. Although our analysis so far does not
apply directly to curvature perturbations, it suggests that
the underlying fundamental physical processes, namely
self-energy loop corrections of “unobserved” spectator
fields, will lead to similar results for them. This expectation
is borne out of the analysis in Ref. [31], that showed the
emergence of secular logarithms from loops of “spectator”
fields.
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VIII. CONCLUSIONS AND FURTHER QUESTIONS

The main premise of our study is that the coupling of the
inflaton to the d.o.f. that populate the postinflationary
reheating phase, influence the dynamics of the inflaton
during inflation. We consider the inflaton Yukawa coupled
to light fermions, assuming that the scale of inflation is
much higher than the electroweak scale. The full density
matrix is evolved in time from an initial factorized vacuum
state and the fermionic d.o.f. are traced out of the full
density matrix yielding a reduced mixed density matrix
whose time evolution is determined by a nonequilibrium
effective action. A perturbative study of the reduced density
matrix reveals that profuse fermion pair production when
the wavelengths of the inflaton fluctuations become super-
Hubble, result in growth of the entanglement entropy.

We obtain the one-loop effective action which confirms
that the fermionic self-energy leads to secular growth of
inflaton correlations and the entanglement entropy. The
entanglement entropy is a manifestation of the information
loss in the effective field theory [51], arising from tracing
over the “unobserved” d.o.f. As more fermion pairs are
produced, tracing these d.o.f. out of the density matrix
implies more information loss and a concomitant growth in
the entanglement entropy.

We establish a direct relation between scale invariance
violations of the inflaton power spectrum and the entan-
glement entropy, P(k) = Py(k) exp{8&;} with Py(k) the
unperturbed (scale invariant) power spectrum and Von-
Neumann entanglement entropy S,y = —> ;[In(1 — &)+

58 ln(fk)]
1=&;
— 2 {2NyIn(k/k;) +In>(k/ks)} with ¥ the Yukawa
coupling, N the total number of e-folds during inflation,
and k; a “pivot” scale corresponding to the mode that
crosses the Hubble radius at the end of inflation. The

correction to the index and its running are given by

. For super-Hubble fluctuations we find &, =

NyY? Y2
- a = (8.1)

3z’ ST on?’

ong =

with vanshing running of the running S, ~ 0 to the order
considered.

A corollary of our study is that even in absence of scalar
entropy (isocurvature) perturbations, the coupling to the
inflaton to d.o.f. that are not directly observed and are
integrated out into an effective action contribute to entropy
production during the inflationary stage as a consequence
of the production of correlated pairs. This entropy, different
from the thermal variety, is imprinted on the power
spectrum of fluctuations and must be included in the
cosmological entropy budget.

A. Further questions

In this article we focused on studying the influence
of “unobserved” d.o.f. upon the inflaton. It remains to

understand how to implement the formulation presented
here to curvature perturbations, in particular addressing the
important issue of gauge invariance. Therefore, while the
results obtained here are indicative of the effect of d.o.f. that
are traced over, and the physical reasons (self-energy
corrections from particle production) for the correlation
between entanglement entropy and corrections to (near)
scale invariance are clear, such relation for curvature
perturbations must be studied further.

Although the relation between the entanglement entropy
and scaling violations of the power spectrum is fundamentally
important as a characterization of the corrections from
“unobserved” d.o.f., it is not clear whether these corrections
will be observationally distinguishable from those of “ordi-
nary” slow roll, or other sources such as isocurvature
perturbations. Thus the observational consequences of the
results in this study highlighting the influence of d.o.f. that do
not directly seed curvature perturbations and the relation with
entanglement entropy production remain to be studied further.

It would be very tantalizing if CMB observations can
discriminate between scaling violations in the form of
corrections to the tilt and running induced by “unobserved”
d.o.f. from those predicted by slow roll. Such observation
may open the window to glean other d.o.f. beyond the
inflaton in inflationary cosmology.
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APPENDIX A: COEFFICIENTS IN EQ. (4.99)

In terms of the real mode functions g4 (k,ng) the
coefficients Qp r, €, in Eq. (4.65) are given by

o= 7 (k. no) + g2 (k.mo). (A1)
Rk

Qi

Qnx (A2)

= —[gs (k, no) g4 (k. mo) + g-(k,no)g-(k, no)].

The remaining coefficients in Eq. (4.99) are given by the
following expressions:

{ d Dk[’/lf;nl]-}
ki P ’
dmy | Di[ngsnoll ) g =,
. _{ d _Dk[ﬂfﬂll]_} (A3)
g dm _Dk[ﬂfﬂlo]_ '71:’7,[’
5 _{ d 'Dk[m;no]'}
ki = Y57 1R 1. .. 1 ’
dny [ Di[nginoll ) y=n,
BT
By, — {i Dol } , (A4)
dim [Dilnginoll )y =,
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d
Cri=<—-—H;(k.n } ;
o= {ammen |
C { d H,(k )} (A5)
— > ’]/I )
k.f a1 1 .
d
Dy = {—Hz(k’m)} ;
dr]l n=Mo
d
Dy s = d—Hz(kJ?l) , (A6)
1 m=ny
where H,(k,n;) are given by (4.98) with
m ny D [7] ’77\]
ko)== [ dns [ Dyl N )
Mo 1o k[ﬂleo]
(A7)

m ny Dylns.n
hz(k,m):—/ d’?z/ d’73Dk[’I1,’12]1\/1<(’72J73>M
Mo o

Dy[nns.mo)’
(A8)
Ny o Dilngoml Dylng.n2]
e [ [T a2 D)
Y e T e T Dol T Dilngmo)
(A9)
iy - Dyl mo) Dy [, 10
JZk:/ d’h/ dny = Ni(n.m) .
o o Dylny.no) Dy[ns.mo)
(A10)
ny nf Dy[ne ni) DAY
J3p = dn, dn, SUAL k( 15 Z)M-
o o Dln . no) Dy[ns.no)
(A1)

APPENDIX B: COEFFICIENTS FOR Y =0

In this case only the coefficients A, B in Eq. (4.99) are
different from zero. From (A3) and (A4) with

Dilnisna) = Dilniina)

=g (k) g-(kiny) — g4 (ksnp)g—(k,ny),  (B1)
we find
Ak,i_ di P (Bz)
Dy [ns:mo]
Ay = — 1 (B3)
w Dylngino)’

1
Bri=- Dylnsino)’ (B4)
_ 4
Brr = Dy[ngino)’ (B)
where
d; = g.(k.np)g(king) — ¢ (kino)g—(k.ng),  (B6)
dy = g.(k,ng)g-(kino) — g, (ksno)g-(k.ns). — (B7)

APPENDIX C: ANALYSIS OF COEFFICIENTS
FOR Y # 0 IN THE SUPER-HUBBLE LIMIT

For this analysis we consider that the renormalized mass
of the inflaton field is Mg < H therefore taking v, = 3/2
in the mode functions. The coefficient By ; only contributes
to the phase of the reduced density matrix (4.99), namely
the coefficient y; in Egs. (4.100), and (5.1); therefore. is not
relevant for either the power spectrum or the entanglement
entropy as discussed in the text. The main ingredients in the
analysis of the super-Hubble limit —k# — O are

1 1
_ . _ 2 13/2,2
gy (k,n) = oy g-(kon) =2 k5, (C1)

gi(kvrlf) = gi—(kv ’1f)[1 + Yzfi(k»’?f)} (C2)

with

F (ko) = 5 (02 (k) = 2~k o)} 4+

(C3)
F_(k.ny) = finite constant. (C4)
Therefore, it follows that
Dylng,nol = g4 (k. ng)g—(k, no);
Dylng.no] = g (k.np)g-(k.1mo). (Cs)

Furthermore, from Eq. (4.91) and the Wronskian condition
(4.71) we find

By; = —(Di[np.mo))™":
Ay = [1+ Y2F (k.n)](Di[ng.no)) ™" (Co)
and
_ g-(k.no) ~
g = LI 0(1) &
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The super-Hubble limit of the kernel Ny (n,,7,) given by
Eq. (4.68) is dominated by the delta function. Therefore for
the terms that involve the nested integrals of Ny (i,7,),
we integrate by parts the contribution from the upper
limits that vanish because D[y, 5] =0, and that of the
lower limit yields a perturbatively small correction without
secular logarithms. In the integrands we take D(n/, ] ~
g+ (k.np)g- (k. m).
To leading order we find

Jox = Y? x finite constant; a=1,2,3,

Cix D, =~ Y? x finite constant. (C8)
Up to O(Y?) in the squared bracket of (4.102) we need

the products

0 0 0 0 = _
J3,kA1(<,}’ Dk,,-A;(c,}, Ck,fAi,}; A]E,}:<Dk[’7fv’70]) L

From the above results we find that these products yield

terms of the form

Y2(Dlns.no))™! (C10)

which are subleading compared to the Y2 lnz(—kn)
(Dilny.mo))™" terms in Ay f.
Terms of the form

Y?(constant)(Dy[ns. no]) "

Y2(Dilng.nol) ™ o Y2(knp) (Delng.mo))™  (C11)

from the coefficients C, D in (4.103) are subleading
perturbative corrections as compared to the terms of
O(1) and can be safely neglected.

Therefore up to leading order in Y? and secular loga-
rithmic terms we find

1

TP [QF  + (Aki + Q14)%].

W, = (C12)
1 1

" dan(Dilngmo))? P lkany)’

(C13)

273

and

B, Ai,f [(Ak,i +Q4)? _ 1} B lAz.f 0

N = L= 1+ Y2 (k).
4Qp | 40 Lp 44w, 4[ +YFL (k)]

(C14)
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