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We construct a family of models with negative gravitational mass in the context of Newtonian gravity.
We focus, in particular, on a model that reproduces the features of the so-called Dirac-Milne universe, a
matter-antimatter symmetric universe that was recently proposed as an alternative cosmological scenario
[A. Benoit-Lévy and G. Chardin, Astron. Astrophys. 537, A78 (2012)]. We perform one-dimensional
N-body simulations of these negative-mass models for an expanding universe and study the associated
formation of gravitational structures. The similarities and differences with the standard cosmological model

are highlighted and discussed.
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I. INTRODUCTION

It may seem unlikely to study cosmological structure
formation using hypothetical negative mass objects. On
the other hand, we cannot but note the strangeness of the
standard cosmological model which, although impres-
sively concordant on primordial nucleosynthesis, cosmic
microwave background (CMB), baryon acoustic oscilla-
tions (BAO), and type-1la supernovae (SN1a) luminosity
distance, features a very strange composition, with dark
matter and dark energy, two unidentified components,
supposedly representing approximately 96% of the con-
tent of the Universe.

In the standard (ACDM) model, it is also difficult to
understand the different periods of dominance and insig-
nificance of the various components of the Universe: on
one hand, dark energy is remarkably insignificant in the
very early stages of the Universe, representing less than
107120 of the energy density at that epoch, and remaining
almost completely negligible until recently. On the other,
dark energy, if it exists, is supposed to represent at present
about 70% of the Universe’s energy density and will
become strongly predominant in the future. Similarly,
matter appears as an insignificant component in the
radiation-dominated universe from the quark-gluon plasma
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transition down to temperatures of a few electron-Volts and,
after a period of matter domination, will soon become again
insignificant. We should, therefore, be ready to examine the
proposition that our description of the Universe following
the standard cosmological model, although it may represent
a fair adjustment to the experimental data, has no con-
nection with the actual composition of the Universe.

Looking for descriptions alternative to the standard
cosmological model, several authors have noted that
our Universe is very close to a “coasting” universe, i.e.,
a universe that neither decelerates nor accelerates, and
therefore behaves, at large scales (100 Mpc), as a
gravitationally empty, or Milne [1], universe. For exam-
ple, Nielsen, Guffanti, and Sarkar (NGS) [2] argue that the
present SN1a data, twenty years after the discovery of
repulsive gravity, is still unable to demonstrate convinc-
ingly the acceleration of the Universe’s expansion rate.
Similarly, by expanding on the NGS analysis, Blanchard
and collaborators [3] have shown that cosmic acceleration
by all “local” cosmological probes (at z < 3, where z is
the cosmological redshift) is not statistically compelling,
while recently the SNla data of the Hubble Space
Telescope [4] show that, at the very least, the Milne
universe appears as an excellent fit to these SN1a data.
Also, it is well known that the age of our ACDM universe
is nearly equal to the age of a Milne universe (see [5] and
references therein).
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These are motivations to look for the possibility that
negative mass particles exist in the Universe, which would
incorporate equal amounts of positive and negative mass
particles, thus appearing gravitationally empty. While neg-
ative mass solutions seem to violate blatantly the sacrosanct
energy conditions, it should be noted that counterexamples
have been found to basically all the expressions of energy
conditions (for a review, see [6]). Indeed, dark energy itself,
with a pressure equal to the negative of its energy density,
violates the strong energy condition. On the other hand,
recently, Paranjape and collaborators [7] have explicitly
constructed perfectly physically acceptable negative-mass
“bubbles” sitting in an expanding Einstein—de Sitter universe.

A further motivation to study a universe featuring equal
amounts of positive and negative mass particles is provided
by the so-called “Dirac-Milne” universe [5], i.e., a Sym-
metric matter-antimatter universe where antimatter particles
have a negative gravitational mass, which is remarkably
concordant without any adjustable parameter. Matter-
antimatter universes have been studied by Omnes and
his group in the late sixties [8], and later by Cohen, de
Rujula, and Glashow [9], and it would seem that they are
excluded by observation: annihilation at the matter-
antimatter domain interfaces produces diffuse gamma-ray
flux in the tens of MeV range that contradict existing
observational constraints, unless the size of matter and
antimatter domains exceeds significantly the gigaparsec
scale. However, these two studies suppose, quite under-
standably, that antimatter respects the equivalence principle
(EP), which lies at the heart of general relativity.

Is there a simple and natural modification of the EP
for antimatter that avoids the annihilation constraint? To
answer this question, we note that there exists a physical
system, the electron-hole gas in a semiconductor, where
pseudoparticles and their antiparticles avoid annihilation
by creating a charge-free region—i.e., a depletion zone—
under either an electric or gravitational field. In this system,
electrons gravitate and holes antigravitate [10]. The elec-
tron-hole system in a semiconductor provides a physical
implementation of Dirac’s original idea of the positron as
an electron hole in a Dirac sea. A natural redefinition of the
EP using two types of negative and positive mass carriers
(by analogy with negative and positive charge carriers) was
first proposed by Piran [11] following the simulations by
Dubinski et al. [12], where they considered underdense
regions as negative mass regions, with counterintuitive
repulsive behavior. The fact that underdense regions lead to
nonlinear structures of progressively larger size, providing
discriminating cosmological tests, has been studied, in
particular, by Sheth and collaborators [13,14].

To date, there is no clear-cut direct experimental evi-
dence on the gravitational behavior of antimatter. But this
situation may soon change, with several precision experi-
ments currently undertaken at CERN to test the gravita-
tional response of neutral antihydrogen atoms. In particular,

the first results of the Gbar [15], ALPHA-g [16], and
AEglIS [17] Collaborations should be available before
the end of this decade, and any deviation from perfect
matter-antimatter symmetry will have profound cosmologi-
cal implications.

In the present work, we first study the various sign
combinations of inertial, active, and passive gravitational
mass that could be used to define negative mass particles in
the context of Newtonian gravity. Remarkably, we find that
the system corresponding to the analog of an electron-hole
system, motivating the Dirac-Milne universe, cannot be
represented by any combination of such Newtonian masses,
whatever their signs. Instead, the Dirac-Milne scenario
must be represented by a matrix Poisson equation that
couples unconventionally the two particle species.

Subsequently, we investigate gravitational structure for-
mation in such negative-mass universes by means of numeri-
cal simulations of an expanding one-dimensional universe,
focusing in particular on the Dirac-Milne scenario.
Significantly, in this last case, simulations show that struc-
tures are produced at relatively early epochs and remain
“frozen” in the subsequent history of the Universe, without
requiring either inflation or dark matter ingredients.

II. NEWTONIAN COSMOLOGY WITH
NEGATIVE MASS

The possibility that particles with negative mass exist
has long been considered (and sometimes dismissed) in
the past [18-20], starting from the seminal work of the late
Hermann Bondi [21]. Negative mass is not necessarily
incompatible with fundamental physical laws, such as
the equivalence principle, the conservation of energy and
momentum, and Newton’s third (action/reaction) law.
Nevertheless, it does give rise to downright unusual
features [20], such as the runaway acceleration of two
opposite masses placed near each other, or the fact that,
although a positive and a negative mass will individually
fall in a gravitational field, the bound system of these two
objects will levitate and polarize, with the negative mass
levitating above the positive one [18]. In this work, our
attention will be focused on the cosmological conse-
quences of matter that displays a negative mass. This
question was raised in the context of Milgrom’s modified
Newtonian dynamics (MOND) [22]. Cosmological sim-
ulations using negative Bondi masses were also reported
in a recent study [23].

It should be added that negative effective mass is a rather
old and uncontroversial topic in such disparate fields as
materials science [24], semiconductor electronics [25], and
cold atomic gases [26]. Usually, it means that a certain
wave dispersion relation contains a negative term that can
be interpreted, by analogy, as a “negative mass.”

In the remainder of this section, we review different
models of negative mass in the context of Newtonian
gravity. Some of these models have been considered in the
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past, such as the Bondi masses mentioned above or the
standard antigravity scenario whereby unlike masses repel
and like masses attract each other. But other cases are
possible if one relaxes the hypothesis that Newtonian
gravity is fully described by a single gravitational potential
and considers instead fwo potentials. This approach,
described in more detail in Sec. II B, can be viewed as
the nonrelativistic limit of a bimetric theory of gravity
[27,28]. In this perspective, it is possible to derive a theory
that possesses the features required by the Dirac-Milne
universe proposed recently by Benoit-Lévy and Chardin
[5]. Within the Dirac-Milne cosmology, it is ordinary
antimatter that carries a negative mass. In this spirit, we
will often refer to particles with positive and negative mass
respectively as “matter” and “antimatter” although, gen-
erally speaking, negative mass particles need not be
identified with antimatter: they are just another kind of
matter that responds differently to gravitational fields.

A. Negative active or passive gravitational masses

Let us first consider the cases that can be obtained easily
by posing different signs for the various types of masses.
As is customary, we distinguish between the active m,
and passive m, gravitational masses, in addition to the
inertial mass m;. The active gravitational mass is the one
that appears on the right-hand side of Poisson’s equation:

A¢ = 4rxGp = 4nGmyn, (1)

where 7 is the number density, p the mass density, and ¢
the gravitational potential. The passive gravitational mass
relates the force to the gravitational field through:
F = —m,V¢. Finally, the inertial mass gives the relation
between velocity and momentum: p = m;r (the dot denotes
differentiation with respect to time). Therefore Newton’s
second law of motion p = F becomes

P = _(mp/mi)v¢- (2)

The equivalence principle (EP) demands that the inertial
mass be identical to the passive gravitational mass, so that a
gravitational field becomes equivalent to an acceleration.
But the EP says nothing about the active gravitational mass,
which may in principle be different. On the other hand,
Newton’s third law (the action/reaction principle) requires
that the passive and active gravitational masses be the same;
otherwise the total force acting on an isolated system of
interacting particles would be nonzero, and momentum
conservation would be violated.

Since only the ratio m,/m; appears in this Newtonian
context, we will assume that the inertial mass is positive
and consider the different signs for the active and passive
gravitational masses. All possible cases are summarized in
Table I.

TABLE I. Signs of the three types of mass for the four cases
considered in the text. The absolute values of the masses are
supposed to be the same. As only the ratio 2, /m; is relevant, we
assume for all cases m; > 0, with no loss of generality.

Active Passive
gravitational gravitational Inertial
Case  Name mass mass mass
Matter A Standard + + +
B Antiplasma - — +
Antimatter C Bondi - + +
D Anti-inertia + - +

Case A is the standard one, with all three masses being
positive. For the other cases, we consider a two-component
system composed of both matter (type-A particles in
Table I) and antimatter (types B, C, or D). Case B is the
“antiplasma” scenario, so named because it is the analog
of a two-component plasma (made of electrons and ions
interacting via the Coulomb force) but with opposite sign
for the interaction: like masses attract, whereas unlike
masses repel each other. Note that case B does not respect
the EP (m, # m;). Case C is that of the so-called Bondi
masses [21]: positive masses attract everything; negative
masses repel everything. This case respects the EP, because
m, = m;, but gives rise to some surprising features, like the
runaway acceleration of a pair of positive and negative
masses. Indeed, if a positive and a negative mass are placed
near each other, the positive mass will attract the negative
mass and the negative mass will repel the positive one: the
net result is that both masses accelerate without bound. As
only the ratio m,/m; is relevant, the case of Bondi masses
may also be viewed as a case where all three masses are
negative. This is actually necessary to ensure kinetic energy
and momentum conservation during the above-mentioned
runaway acceleration.

The case D was never considered before, at least to our
knowledge. In this case, both matter and antimatter con-
tribute in the same way to the gravitational field (because
their active gravitational masses are both positive). However,
while matter is attracted by the field, antimatter is repelled,
because it has negative passive gravitational mass. We
termed this case “antiinertia” because it can also be viewed
(by changing the signs of both m,, and m;) as a case where
both gravitational masses are positive while the inertial mass
is negative.

Finally, let us note that of the four possible cases of
Table I, only A (all masses positive) and C (all masses
negative) satisfy at the same time the action/reaction
principle and the EP.

In the rest of this work, we will deal with two-
component systems made of one positive-mass species
(case A, “matter”) and a negative-mass species (“anti-
matter”). For the latter, we will only consider cases B
(antiplasma) and C (Bondi). In the Newtonian limit and
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in the absence of two-body correlations (collisionless
approximation), such a system is governed by the follow-
ing Vlasov-Poisson equations,

) =+
ey vr-TEvg V=0 ()
ms:

Ap = 4nG(min, + mzn_), (4)

where f.(r,v, t) are the probability densities (distribution
functions) for matter (4) and antimatter (—) in the phase
space, and ny = f fidv are the number densities. All
masses have the same absolute value (|m,| = |m
|m;| = m) and their signs are given in Table I.

p|:

B. Dirac-Milne scenario

The idea of a matter-antimatter symmetric universe has
already been considered in the past [9,29], but was
excluded because annihilations at the frontiers of matter
and antimatter domains would generate a diffuse gamma
ray emission that would be in contradiction with observa-
tional data (unless the matter domain we inhabit is virtually
the entire visible universe).

Recently, Benoit-Levy and Chardin [5] considered an
alternative matter-antimatter symmetric cosmological
scenario, where the gravitational interaction between
matter and antimatter is repulsive. The latter property is
a necessary condition to avoid contact and annihilation
between matter and antimatter domains after cosmological
recombination. Such matter-antimatter repulsion could, in
principle, be achieved by cases B (antiplasma) and C
(Bondi) in Table I. However, the antiplasma scenario does
not respect the EP and implies the existence of antimatter
gravitational structures resulting from antimatter-antimat-
ter attraction, again leading to unwanted annihilation at
the boundaries between matter and antimatter regions.
The Bondi case would require a negative inertial mass to
ensure energy and momentum conservation, and displays
peculiar and counterintuitive features such as the runaway
acceleration.

In order to reproduce the Dirac-Milne universe postu-
lated by Benoit-Levy and Chardin [5], we would need a
scenario in which matter forms self-gravitating structures
such as galaxies and clusters of galaxies, whereas anti-
matter constitutes a diffuse low-density background.
This can be achieved if the following conditions are satisfied:
(1) matter attracts matter, (ii) antimatter repels antimatter, and
(iii) antimatter and matter repel each other—these conditions
are summarized in Table II. The difference with respect to
the antiplasma case is that, for the Dirac-Milne scenario,
negative masses repel each other, whereas in the antiplasma
case they attract. Also, contrarily to the Bondi case, matter
repels antimatter in the Dirac-Milne scenario.

In the Dirac-Milne scenario, matter forms gravitational
structures, whereas antimatter, being repelled by everything

TABLE II. Interactions between matter (+) and antimatter (—)
particles in the Dirac-Milne universe.

Type of matter Type of matter Interaction
+ + Attraction
- - Repulsion
- + Repulsion
+ - Repulsion

(including itself), tends to spread across all the available
space. Such spread is almost uniform, but not quite: since
matter repels antimatter, the latter is expelled from matter-
dominated overdense regions (galaxies) and forms a low-
density almost homogeneous background distributed over
the underdense regions in between matter’s gravitational
structures. This behavior precludes the occurrence of any
significant annihilation, in accordance with observation.
In the following analyses and computer simulations, we
will often make the simplifying hypothesis that antimatter
constitutes a low-density homogeneous background uni-
formly distributed everywhere in space. This approxima-
tion is justified for the study of gravitational structure
formation, as overdense regions are very much dominated
by matter anyway.

However, the Dirac-Milne scenario described in the
above paragraph does not have a proper Newtonian limit,
in the sense that no combination of the signs of the three
masses (as in Table I) can reproduce it. The Dirac-Milne
scenario can only be accounted for by two gravitational
potentials that obey two distinct Poisson equations. In the
collisionless approximation, this leads to the following
Vlasov-Poisson system:

Of &

W—'—V-Vfi—vqﬁj:'vvfﬂ::o’ (5)
A¢, =4xGm(+n, —n_), (6)
Ap_ =4nGm(—n, —n_) (7)

The above equations cannot be reduced to one of the cases
summarized in Table I. This is because there are actually
two active gravitational masses for matter, positive in
Eq. (6) and negative in Eq. (7) (for antimatter, the active
gravitational mass is always negative). It can be proven that
the above equations conserve the total momentum

P, — / / mv(f, + f_)drdy

and the total energy
m 2
Etolza (fy + fo)|v|>drdy

1 /(|V¢_|2 - Vg, ? + Ve - V¢+> dr.

87G 2
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In the remainder of this paper, we will elaborate on some
of the consequences of three of the models described so
far, namely the antiplasma, Bondi, and Dirac-Milne cases.
In particular, we will be concerned with the problem of
cosmological structure formation in an expanding universe.
But before doing that, we show in the next subsection that
all the aforementioned scenarios can be described in the
framework of a single general formalism.

C. General formalism

The representation of Newtonian gravity with two Poisson
equations, as in Egs. (6) and (7), is not entirely new. For
instance, Hohmann and Wohlfart [27] considered a general-
relativistic theory in which two classes of particles, respec-
tively, with positive and negative mass ratios m,/m;, are
described by different metric tensors. They further proved a
no-go theorem that rules out all bimetric theories where like
particles attract and unlike particles repel each other, i.e., the
analog of the antiplasma case that we described in Sec. II.
However, the Dirac-Milne scenario considered in the present
work should not be affected by this theorem. Hossenfelder
[30] also developed a similar bimetric theory which puta-
tively does not suffer from the restriction of the above-
mentioned no-go theorem [31].

All the scenarios considered in the preceding sections
can be represented in matrix form with the following
Vlasov-Poisson equations,

0
%—{—V-Vfi—V(ﬁi‘vvfi:O’ (8)
A® = 4zGmMNn, 9)
where
q>:<¢+>, n:<n+),
¢ n_
M = <M++ M) (10)
M_, M__

and M;; = +1. Thus, M, indicates the effect of matter
(+) on matter (+), M, _ the effect of antimatter (—) on
matter (+), M_, the effect of matter (4) on antimatter (—),
and M__ the effect of antimatter (—) on antimatter (—). For
instance, M, = +1 means that matter attracts matter,
M _ = —1 means that antimatter repels matter, M__ = —1
means that antimatter repels antimatter, etc.

The three cases described in Sec. II (antiplasma, Bondi,
and anti-inertia) are represented by the following matrices:

- (4 7)) )
ap -1 1 ’ Bondi — 1 -1 5

N 1 1

M., = . 11
=) (1

Note that in all the above cases the matrix M is non-

invertible, i.e., detM = 0. This is expected, as such cases
can be described by a single Poisson equation.

Let us now consider the most general case for the matrix
M. One must always have M., =1, because this is the
standard behavior of ordinary matter (attraction). The other
three elements of the matrix can be chosen freely, which
leaves us with a total of 2° = 8 possibilities. The special
case where all elements are positive is trivial, as it
corresponds to a situation where matter and antimatter
are gravitationally indistinguishable. Then we have the
three cases described by Eq. (11). This leaves us with
another four cases that cannot simply be represented by a
single Poisson equation. One of them is the Dirac-Milne
case described in Sec. II B, which yields the matrix

Moy = (_11 j) (12)

The remaining three cases can be written as

(o) =)
|\7|3:<1 _11> (13)

Note that in the cases of Egs. (12) and (13) the matrix M is
invertible, i.e., det M # 0, so that they cannot be reduced to
one single Poisson equation. All cases where the matrix is
invertible should not be affected by the no-go theorem of
Hohmann et al. [27].

It is easily shown that the matrix Poisson equation (9) is
equivalent to the following Lagrangian:

;>
Il

Vo' . Vo ~
L(p.9-) :W+®TM n. (14)

where the superscript 7 denotes the transpose matrix, and

o~ (8) =) w-( k)
¢_ n_ M, M __

Then, using the Euler-Lagrange equations

oL g 9L
. V.
one obtains the matrix Poisson equation (9).

Some final considerations on the above models are in
order here. Four of them have the unpleasant property that
the interaction between unlike particles is not symmetric—
matter attracts antimatter but antimatter repels matter, or
vice versa. This group of models include the Bondi,
anti-inertia, M,, and M; cases. As a consequence, they
all display the peculiar runaway acceleration effect that we
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described in Sec. II for the Bondi masses. This seems to be
a good argument to rule out such models.

Of the remaining models, the antiplasma case leads to the
formation of overdense gravitational structures for both
matter and antimatter (“antigalaxies”), for which there is
no observational evidence. The numerical simulation of
this model (see Sec. VI A) also reveals some unobserved
features, such as the creation of matter and antimatter
streams with opposite velocities. A

Finally, the case described by the matrix M is similar to
the Dirac-Milne scenario, with the significant difference
that unlike masses attract each other. Again, this is bound
to lead to many annihilation events because matter and
antimatter would tend to cluster together.

All in all, the Dirac-Milne case is singled out as the most
likely candidate to reproduce the features of the alternative
cosmology proposed by Benoit-Lévy and Chardin [5].

ITI. STEADY STATES AND LINEAR
RESPONSE ANALYSIS

It is interesting to note that, out of the eight possible
cases mentioned in Sec. II C, spatially homogeneous steady
states (i.e., with n, = n_ = const and ¢, = 0) can only
exist for the antiplasma and Bondi cases. This is because
they are the only cases for which positive and negative mass
densities can compensate each other. This is not a problem
per se as ordinary gravity itself does not admit steady state
solutions.

For a Dirac-Milne universe, one can assume, to an
excellent approximation, that antimatter constitutes a homo-
geneous dilute background with density n, as was discussed
in Sec. II B. In that case, one can drop the second Poisson
equation (7) and a steady state becomes indeed possible for
n, = ng. This scenario will be justified on more physical
grounds when we introduce comoving coordinates in an
expanding frame of reference for cosmological applications,
see Sec. IV.

Hereafter, we present a linear response analysis of the
Vlasov-Poisson equations for the three cases of interest:
antiplasma, Bondi, and Dirac-Milne. We expand the dis-
tribution functions f(r,v,t) = fo(v) + f.(r.v.1), the
densities n. = ny + iy (r, 1), and the potentials ¢, (r, 1) =
¢o + ¢ (r. 1) (where the tilde denotes a small perturbation)
and only retain first-order terms. Then we Fourier analyze
the perturbations in space and time, by writing for the
density fluctuations: 7y (r,t) = iy expli(k - r — wt)], and
analogous expressions for the other first-order quantities.

A. Antiplasma

From Eq. (3), we get the relationship between the density
perturbation and the potential perturbation

iy = &/mdv. (15)

w—k-v

Using Eq. (15) together with Poisson’s equation in the
antiplasma case, we arrive at the dispersion relation

203, [ k-V,f
D(w.k)=1- JO/”Od =0, 16
(@,k) K2 o—k v (16)

where @,y = (47Gmn,)'/?> is the Jeans frequency. If

k-v < w, we can expand the denominator in the above
integral:

When the equilibrium distribution f, is a function of
v = |v| only, then the dispersion relation can be expressed
in the following way:

2wj, | 3K (v*)w3,
w? + w* ’ (17)

where (v?) = [v?fo(v)dv. Setting D = 0 then yields:
w* = 2w}, + 3K*(v?), (18)

and (v?) = v, = kzT/m for a Maxwell-Boltzmann dis-
tribution with temperature 7'. This expression was derived
earlier [32] using a fluid model. Equation (18) is almost
identical to the dispersion relation for self-gravitating
systems in the presence of a repulsive background, dis-
playing the usual Jeans instability for large wavelengths
(small k). The extra factor 2 comes from having two mobile
species, so that one should use the reduced mass m, =
mi.m’/(m'. +m') = m/2.

B. Bondi masses

In the Bondi case, the Vlasov-Poisson equations read as
follows:

aaf—tj:—l—l)'v‘fi_vqﬁ'vvfi:o’ (19)

A¢p = 4nGm(n, —n_). (20)

We note immediately that the Vlasov equations for f, are
completely identical. It is therefore useful to define g =
fi+f_and h=f,  — f_, which obey the equations

%—I—v-Vg—Vd)-va:O, (21)
%w-wx—vqﬁ.vvh:o, (22)
Ap = 42Gm / " (e, 1)dv. (23)
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We note that the equation for g is decoupled from the
equation for 4. The system (22) and (23) evolves self-
consistently independently of ¢, which is simply trans-
ported in the phase space like a passive scalar. The system
(22)—(23) looks identical to the equations of a single
gravitational species evolving in standard Newtonian grav-
ity, but there is an important difference: the distribution
function % can take both positive and negative values and
in general will have zero mean.

To perform the linear analysis, we consider Egs. (22) and
(23) and expand all quantities to first order, remembering
that at zeroth order iy = 0 and ¢, = 0. It follows that the
first-order equations reduce to the trivial free transport
equation:

Oh .

—+4v-Vhi=0. 24

o (24)
There is no field-dependent term at first order and therefore
no Jeans instability. Thus, nontrivial effects will only arise
in the nonlinear regime.

C. Dirac-Milne

As mentioned earlier on, there is no homogeneous
steady-state solution of Eqgs. (5)—(7), since antimatter acts
repulsively with respect to both matter and antimatter.
However, for the very same reason, antimatter tends to
spread throughout space thus yielding an approximately
uniform background with density n,, as was discussed in
Sec. II B. In that case, one can drop the second Poisson
equation (7) to obtain the following Vlasov-Poisson system
for positive-mass matter,

ag—:—kv-Ver—V¢+‘vvf+:0’ (25)

A¢, =4xGm(n, — ny). (26)

These are identical to the equations of ordinary gravity in
the presence of a neutralizing background. Following the
same procedure as done above for the antiplasma case, we
obtain the usual Jeans dispersion relation,

w* = -3, + 3k*(1?), (27)

which is identical to Eq. (18) except for the missing factor 2
in front of wy,.

IV. COMOVING COORDINATES AND SCALING

In this section, we introduce the comoving coordinates
used to study an expanding universe in Newtonian gravity
and adapt them to the case of a matter-antimatter universe
with both attractive and repulsive gravity. Let us consider
an expanding distribution of matter with spherical sym-
metry. Its gravitational field has only one component

E,.(r,t) that depends on time and on a single spatial
variable r. This type of system was studied extensively
in the past [33—41].

The equation of motion reads as (we ignore, for
simplicity of notation, the signs of the masses; these will
be reinstated later)

d*r
W:Er(n 1), (28)
where E, = —0,.¢ is the gravitational field. We consider an

expanding universe with scaling factor a(z) and transform
space and time as follows:

r=al(t)?, (29)
dt = b*(1)di, (30)
where comoving coordinates are denoted by an overcaret.

Note that we also introduced a scaled time 7, which defines
a new time-dependent ‘““clock.” The velocity transforms as

dr adr
ST LA 1
dt bzdt+ar (31)

where the dot stands for time differentiation with respect
to ¢. The scaled equation of motion is then

d*# a b\dr a b* .
5 +207(——— )+ b - =—=E, 32
" (a b> G T E (32)

where E(#,7) is the scaled gravitational field. As the density
must scale as p(#,7) = a*(¢)p(r, t) in order to preserve the
total mass, we scale the gravitational field as E(?, 1) =
a*(1)E,(r, 1), so that Poisson’s equation remains invariant
in the scaled variables.

Next, we consider a locally planar perturbation embedded
in this expanding universe and denote the corresponding
comoving coordinate X. In this locally planar system,
Poisson’s equation can be approximated by its one-
dimensional counterpart: 0, E = —4zGp(%,1). The simula-
tions presented in the next sections will all be performed in
this one-dimensional planar reference frame.

A. Symmetric universe with positive
and negative masses

In a universe filled with equal amounts of positive-mass
and negative-mass matter, the scaling factor a() should be
linear in time, because over large distances attractive and
repulsive gravitational fields cancel each other. Therefore,
we take

a(t) = t/1, (33)
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where ¢ is an “initial” time corresponding to the epoch when
the Universe becomes transparent to radiation and, therefore,
dominated by matter (in the Dirac-Milne cosmology its value
is different from the 3.8 x 10° years after the big bang of
standard cosmology [5]—more details on this will be given
in the next section). In the following, the subscript “0” is used
systematically to refer to quantities evaluated at this initial
time. For the function b(¢) that determines the scaling of time
we use: b(t) = (t/ty)"/?, which has the advantage of
rendering the friction term time-independent in Eq. (32).
We stress that, while the choice of a(¢) is dictated by
cosmological considerations, the choice of b(t) is rather
arbitrary and can be made with the purely pragmatic aim of
making the scaled equations easier to solve, either numeri-
cally or analytically. In this case the relationship between
the real time ¢ and the scaled time 7 is exponential: ¢ =
toexp(7/1y), and the equation of motion becomes
d>x  1dx IS 24
a7 + P exp(—i/1p)E. (34)

Note that 7 = 0 when ¢ = ¢,.

Defining the scaled velocity #, we obtain Hamilton’s
equations,

dx

— =19 35

G0 (35)
dd N ~ D
— = —t/ty)E ——, 36
G~ o E - (36)

from which one can deduce the corresponding one-
dimensional Vlasov-Poisson system for the scaled distri-
bution functions F, (7, 9, 7). For the antiplasma and Bondi
cases, they read as follows,

OF . OF. my . . OF, 10(dF.)
—=+ —L et - =0, (37
o Vas Twmr o 1 o (37)
OFE
% = —47{Gm(ﬁ+ - l,’\l_), (38)

+

where the values of m >

Table I.

For the Dirac-Milne case, we assume that antimatter
(negative mass particles) expands constantly under the
repulsive action of all other particles (positive and negative)
and can thus be modeled as a uniform repulsive background
with n_(r,t) = ny/a*(t), where n, is a constant initial
density. This is not completely exact, as antimatter is also
ejected from overdense matter-dominated regions (see
Sec. II B) leading to a depletion zone, but still constitutes
a very good approximation for the study of structure
formation. It is easy to see that, with the scaling defined
above, the scaled version of the Vlasov-Poisson equa-
tions (5) and (6) for the positive-mass particles becomes

and m should be read from

OF,  OF, OF, 10(0F,)

- i f; =0, (3
a7 " Pax T e T o (39)
OF .
T —4xGm(i, — ng). (40)

The forthcoming numerical simulations for the antiplasma,
Bondi and Dirac-Milne scenarios, will be based on the
solution of Egs. (37) and (38) and (39) and (40).

B. Einstein—de Sitter cosmology

For comparison, we briefly review the basic equations
for the comoving coordinates in the standard Einstein—de
Sitter (EdS) cosmology, without dark energy [38]. For a
critical universe, the scale factor behaves as: a(r) =
(t/t5)*3. In addition, taking b(t) = (¢/t,)"/?, the scaled
equation of motion (32) becomes autonomous (all coef-
ficients are time-independent):

s 1dx 2. .
T T “41)
Poisson’s equation in d dimensions can be solved exactly
for a constant density n, yielding the gravitational field:
E= —wl,x/d. At steady state, this field must exactly
cancel the third term on the left-hand side of Eq. (41),
yielding the following relationship between #, and w:

2
wloly = o (42)

The corresponding Vlasov-Poisson equations in comoving
coordinates read as [38]

OF _OF .OF 1 O(iF)

Ok .
e —4zGm (i — ny), (44)

where the harmonic term in Eq. (41) has been incorporated
into Poisson’s equation (44).

The fact that all coefficients in Egs. (41) or (43) and (44)
are time-independent signals that a stationary solution of
the scaled equations represents a self-similar solution in the
real coordinates. Note also that, for an expansion in /3 the
product w;(f)t is constant in time, i.e.: @; (1)t = wot.

Another relevant difference between the FEinstein—de
Sitter and the Dirac-Milne scenarios is that in the latter
the scaled gravitational field decreases exponentially with
the scaled time, whereas it is constant in the former. An
important consequence of this mathematical fact (con-
firmed by the forthcoming simulations) is that gravitational
structure formation in a Dirac-Milne universe stops after a
time that is a small multiple of #,, while it continues
indefinitely in the Einstein—de Sitter case.
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V. TIME SCALES

Before presenting the results of the numerical simu-
lations, it is instructive to identify the principal time scales
involved in the problem under study. Two such time scales
are the inverse of the initial Jeans frequency w;, =
VA4rGmn, and the time ¢, defined as the time when
the Universe becomes transparent to radiation (end of
recombination epoch). The third time scale is related to
the importance of nonlinear effects.

To determine the Jeans frequency, we use the current
estimate for today’s average baryonic matter density of the
Universe, i.e., 0.25 protons/ m? (there is no need for dark
matter in the Dirac-Milne universe):

pbaryon(now) =418 x 10_28 kg/m3

Following Benoit-Lévy and Chardin [5], recombination
should occur at f, = 14 x 10° years in a Dirac-Milne
universe, compared to 380000 years for standard cosmol-
ogy. Thus, 7, = 14 x 10° y ~ 103t,, and since the expan-
sion factor is linear in ¢, today’s mass density should be
multiplied by 10° in order to obtain p, at ¢ = t,. Finally,
we get

C()J()to ~ 8.3. (45)

At the present epoch, this parameter takes the value
@ nowlnow ~ 0.26.

A third time scale is given by the initial density
fluctuations, which determines the typical time scale over
which nonlinear effects become important (known as the
bounce time in plasma physics [42]). This nonlinear time
t,; can be written as

W0t = \/ 1o/ 1 (46)
where 71, is the amplitude of the initial density fluctuations
(which depends on their wavelength 1).

In summary, we have identified three distinctive time

scales for this problem:

(i) The inverse of the Jeans frequency w;, which
determines the rate of the Jeans instability, see
Egs. (18) and (27);

(i) The recombination time #,, which acts as an initial
time in our model. Note that if w4ty < 1 the friction
term in Eq. (34) dominates from the start, so that
cosmological structures will never have time to
form. In contrast, if w,yty > 1, structures will keep
forming for very long times. The value w;yty ~ 8.3
that we find for the Dirac-Milne universe is suffi-
ciently large to allow for structure formation at the
beginning of the matter-dominated epoch. Such
structure formation should stop at a time (x~10° y)

relatively close to the present epoch, as will be
shown in the forthcoming simulations;

(iii) The nonlinear time scale 7,;,, which plays an im-
portant role in the Bondi scenario, for which no
Jeans-like instability exists, and gravitational struc-
tures can only form via nonlinear couplings. Note
that this “parameter” is actually a dynamical quan-
tity, as the level of fluctuations changes in time in
the case of an instability. Thus, its initial value may
not be the relevant one for the later evolution in
the antiplasma and Dirac-Milne scenarios, where the
initial stages of the evolution are dominated by the
Jeans instability.

In the forthcoming numerical simulations, we will use units
in which ny = w;y = 1, so that the relevant dimensionless
parameters are @yt and @ t,;.

Note that in the EdS scenario there are only two relevant
time scales, because the product w;oty = 1/2/3 ~0.82 is
fixed by Eq. (42). Further, in the EdS case the product
w; (1)t = wyty is an invariant, i.e., it is the same for all
epochs, whereas it decreases (as t~'/2) in the Dirac-Milne
case. This simple fact illustrates a fundamental difference
between the EdS and Dirac-Milne universes. In the former,
w;(t)t is of order unit at all epochs, so that structure
formation occurs all along the life of this type of universe.
In contrast, the Dirac-Milne universe starts with a relatively
large value w,y?, = 8.3, which then decreases and becomes
lower than unity near the present epoch, so that structure
formation eventually stops.

To put it somewhat figuratively: the EdS universe is a
universe that never ages and produces “offsprings” (i.e.,
structures) during its entire lifetime. The Dirac-Milne
universe ages with time and after a certain epoch (corre-
sponding roughly to w;(¢)t ~ 1) it becomes “sterile” and
begets no further gravitational structures.

VI. NUMERICAL RESULTS

In this section, we present the results of numerical
simulations of the three models with negative mass
considered so far, namely the antiplasma, Bondi, and
Dirac-Milne scenarios, with particular emphasis on the
latter case. For comparison, we will also show some results
obtained with a standard Einstein—de Sitter cosmology. The
simulations were performed using an N-body code that
solves the equations of motion (34) for N interacting
particles. For N — oo the N-body problem tends to its
mean-field limit, described by the Vlasov-Poisson equa-
tions discussed in the preceding sections. Typical simu-
lations employed N = 2.5 x 10° particles.

As mentioned in the preceding sections, we consider a
three-dimensional expanding spherically symmetric uni-
verse and then study planar perturbations in the comoving
coordinates. This effectively reduces the problem to one
spatial dimension in the local comoving coordinate X,
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Antiplasma case. Left frames: Matter density p(x, ) for positive mass (red) and negative mass (blue) particles at four different

times. Right frames: Corresponding distributions in the scaled phase space. The small rectangle (right column, third panel) indicates the
region that is zoomed in on Fig. 2. Time is measured in years elapsed after the big bang.

which will be represented in the numerical results. More
details on the model can be found in Refs. [35-38]. Since
we use a one-dimensional approximation, the “particles”
are in fact infinite sheets of mass m (in absolute value).
Boundary conditions are taken to be spatially periodic with
period L. The initial velocity spread is very small (except
for the Bondi case which, lacking a linear instability, must
be strongly excited in order to observe some interesting
dynamics).

In all presented results, time is expressed in years elapsed
since the big bang (+ = 0). Density is expressed in terms of
ng. The units of space and gravitational field are somewhat
arbitrary: once we have fixed a certain unit of time (say w7,
as was done in the code), space is measured in units of a
certain length 4 and the gravitational field in units of a7
Thus, 4 disappears from the scaled equations of motion (32)
and (41): one chooses an arbitrary value for it, and then all
lengths are measured in terms of this unit.

In all cases, the initial density is the sum of a spatially
uniform term p, = mn, and a small perturbation p with
power spectrum | |> ~ kP, where k is the wave number.
Initial power spectra of this form, with p € [0,4], were
used in a number of earlier works on structure formation
[36,40]. In the present work, we take p =2, which
produces a spectrum that is largest at small wavelengths,
and then study the clustering of matter at increasingly larger
scales, until the size L of the box is reached.

We start by briefly showing a few results on the
antiplasma and Bondi cases, then turn to a more extensive
comparison between the Dirac-Milne and FEinstein—de
Sitter cosmologies.

A. Antiplasma and Bondi cases

As was discussed in Sec. Il A, the antiplasma case is
subject to a Jeans instability with growth rate of the order of
the Jeans frequency w; . Consequently, the system quickly
departs from the initial equilibrium and develops nonlinear
structures. These structures are shown in snapshots of the
matter density and phase-space distributions taken at
different instants, as depicted in Fig. 1.

As particles of like masses attract and particles of unlike
masses repel, we observe the segregation of clumps of
positive and negative matter, visible in the density plots.
Interestingly, there is also a segregation in velocity space,
with two counterpropagating streams made of positive and
negative particles appearing. Thus, the Jeans instability
extracts gravitational potential energy from the system
(initially at rest in the comoving frame) and converts it
into kinetic drift energy. Nevertheless, by zooming in on
one of the streams, one still observes plenty of intricate
gravitational structures, as is shown in Fig. 2. Here and in
other forthcoming figures, the zoom region changes with
time because it follows the trajectories of the particles that
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FIG. 2. Antiplasma case. Zooms of the region denoted by a small rectangle in Fig. 1 (right column, third panel). Left frames: matter

density; Right frames: phase space.

are contained initially in a given region of the phase space
at a chosen time (here, the small rectangle in the phase-
space plot in Fig. 1.

This behavior may seem counterintuitive, but performing
the linear analysis of an equilibrium consisting of two
counterpropagating streams, reveals that such equilibrium
is (for large enough drift velocities) stable, in contrast to the
one-stream initial conditions which is unstable as was
shown in Sec. Il A. Thus, the system evolves from an
unstable equilibrium (one stream with zero mean velocity)
to a stable equilibrium (two streams with finite and opposite
velocities). Note also that this is exactly the opposite
situation compared to a two-component plasma, for which
one-stream equilibria are stable whereas two-stream equi-
libria are unstable [43,44]. This peculiar behavior in the
phase space constitutes one further reason to rule out the
antiplasma scenario for cosmological applications.

For the Bondi case, as we saw in Sec. III B, there is no
linear instability. Therefore, we need to introduce very large
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fluctuations in the system’s initial condition in order to
observe some structure formation. If the initial fluctuations
are low, then no gravitational structures are formed in the
subsequent evolution. The most salient feature observed in
the simulations is that, in contrast to the antiplasma case,
positive and negative particles clump together to form
“neutral” regions (see Fig. 3, which only shows one eighth
of the total computational box for clarity). Also the structures
form very early in the evolution and remain basically
unchanged thereafter.

B. Dirac-Milne and Einstein—de Sitter universes

We now turn to the more interesting case of the Dirac-
Milne universe and its comparison with the Einstein—de
Sitter case. As was mentioned in Sec. IVA, one can
simplify the treatment by assuming that the negative-mass
component remains uniform in the comoving coordinates,
so that only positive-mass particles need to be simulated.
The initial conditions are identical for both sets of
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Bondi case. Left frames: Matter density p(x, ¢) for positive mass (red) and negative mass (blue) particles at three different

times. Right frames: Corresponding distributions in the scaled phase space. Time is measured in years elapsed after the big bang.
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simulations, although the physical initial time (¢, represent-
ing the recombination epoch) is of course not the same.

The matter density and phase-space distributions for the
Dirac-Milne case are provided in Fig. 4 and a zoom is
shown in Fig. 5. At first sight, structure formation occurs
similarly to the standard (EdS) case, driven by the Jeans
instability [35-38]. However, some crucial differences are
noticeable. In particular, structure formation starts earlier
and stops before the present epoch. Indeed, almost no
significant changes can be seen in the density and phase-
space distributions from the present epoch onwards.
Mathematically, this is due to the fact that, in the
comoving equations of motion (36), the relative impact
of the friction term increases with respect to the gravi-
tational field. Indeed, the scaled velocity in the phase-
space plots of Fig. 4 initially increases under the action of
the Jeans instability, but later decreases rapidly because of
the effect of the friction term in the comoving equations
of motion. Structure formation halts when this latter term
becomes dominant.

Let us now compare this behavior with that observed for
the Einstein—de Sitter universe, which was already simu-
lated in earlier works [35-38]. The matter density and

phase-space distributions are plotted in Fig. 6, and two
consecutive zooms in Figs. 7 and 8. In accordance with
previous results, the formation of gravitational structures
continues for all times, as is particularly clear from the two
zooms. The self-similar nature of the matter distribution in
the phase space is also apparent: two snapshots taken at
different scales (but at the same time) look qualitatively
similar, indicating that there is no intrinsic spatial scale for
this system. This fact has led us, in earlier works, to compute
a fractal dimension for the matter distribution [36,38].
These features are the hallmark of a critical universe.

This different behavior is in accordance with our dis-
cussion of Sec. V, where we pointed out that the Dirac-
Milne universe “ages” with time, meaning that it ceases to
produce gravitational structures. In contrast, the EdS
universe does not age and continuously generates new
structures at all scales.

Another difference between the Dirac-Milne and EdS
cases is that in the former the (scaled) velocity range of
the particles decreases after an initial growth (Fig. 4),
whereas in the latter it constantly increases (Fig. 6). This
signals a change in behavior for the Dirac-Milne universe,
which should roughly correspond to the epoch where
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. structure formation ends. In order to understand the
10 X T DiracMilne = 3 relevance of this quantity, let us go back to the definition
e Einstein-de Sitter » - of the scaled velocity, Eq. (31), which can be rewritten as
102¢ o E a
: . " v=—5b+H(t)r, (47)
< - .l b
£ 10'F . . 3 o
: . where H(t) = a/a is the Hubble parameter. The first term
100k . :xg‘xxxxx on the right-hand side of Eq. (47) represents the so-called
g xxxxxxxxxxxxxxxxxxxxxxxxx peculiar velocity of the masses (residual velocity in the
xxrxxx""""‘xxx ‘ ‘ ‘ ‘ ‘ ‘ " comoving reference frame), while the second is the Hubble
'10'1 L : H : 13 ’
105 106 107 108 10° 1010 10 10'2 103 10 redshift term. In Fig. 9, we plot the evolution of the “thermal
t(y) peculiar velocity, defined as v,, = ((v — Hr)?)!/2, where the

FIG. 9. Time evolution of the thermal peculiar velocities, for

the EdS and Dirac-Milne universes.

average is taken over all the particles. The difference is clear:
for Dirac-Milne, the spread of the peculiar velocities first
increases, reaches a peak, and then decreases continuously.
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Structure formation halts when v, starts decreasing, i.e.,
around 7, =~ 10° years. We also note that this time corre-
sponds roughly to the time when the parameter w,(7)t
reaches unity. Indeed, for the Dirac-Milne case,

£\ —1/2 t\-1/2
a)J(Z)t:(l)JotO [_ ~ 8.3 [_ (48)
0 0

becomes equal to unity for 7, ~ 69ty ~ 10° y. This is in
agreement with our earlier discussion in Sec. V.

Peculiar velocities of clusters of galaxies have been
estimated by measuring their impact on the cosmic micro-
wave background spectrum [45]. A compilation of several
peculiar velocity surveys was published in recent years
[46]. These surveys consistently showed that the observed
velocities exceed the prediction of the ACDM model by a
factor of ~5. Although the discrepancy between the Dirac-
Milne and EdS predictions is even higher, our result (Fig. 9)
goes in the right direction. A proper comparison between
the ACDM and Dirac-Milne cosmologies will be studied in
a forthcoming work.

Finally, we show in Fig. 10 the power spectra of the
matter density for the EdS and Dirac-Milne cases. Both
spectra begin (at t = ;) as a power law |p;|> ~ k? with
p =2upto ky.x = 27/d, where d ~ 1 is the average initial
interparticle distance. For larger wave numbers, the
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FIG. 11. Wave number corresponding to the peak in the power

spectrum for the Dirac-Milne and Einstein—de Sitter universes as
a function of time, in comoving coordinates.

spectrum is flat (white noise), simply because there are
not enough particles to resolve such short distances.

Initially, the low wave-number amplitudes (leftmost part
on Fig. 10) are amplified but keep their shape intact: this is
the linear stage of the instability. The linear growth rate of
gravitational structures observed in these simulations is
significantly larger for the Dirac-Milne case compared to
the EdS one. However, it is also well known that the linear
growth is faster for the concordant ACDM model than for
the EdS case—see e.g., Ref. [47]—so that our Dirac-Milne
result again appears to go, at least qualitatively, in the right
direction.

As time increases, nonlinearities start to play a predomi-
nant role and the spectra take a characteristic shape that is
qualitatively similar both in the Dirac-Milne and the EdS
cases, as can be seen from Fig. 10. At low wave numbers
(region I), the spectrum is still of the type |pi|*> ~ k2, a
remnant of the initial condition. At larger wave numbers, an
intermediate region (II) appears, characterized by a power-
law spectrum with negative exponent, slightly steeper for the
Dirac-Milne (p = —0.78) compared to the EdS (p = —0.67)
case. This power-law region is rather robust (it extends over
roughly four decades) and constitutes the signature of
hierarchical clustering in the phase space, as was seen in
the previous plots (Figs. 4 and 6). For even larger wave
numbers, the spectra are again flat (region III).

The spectra display a peak separating regions I and II,
which can be taken as the typical cluster size at a certain
epoch. In both cases, the peak initially moves towards
smaller and smaller wave numbers (larger scales), although
quite noticeably faster for the Dirac-Milne case (Fig. 11).
But for longer times (> 10° y) the behaviors diverge: for
EdS, the position of the peak k., (7) keeps moving to
larger and larger scales (eventually reaching the size of the
computational box, at which point the simulation would not
be valid anymore), whereas for Dirac-Milne it saturates at a
constant value. A similar saturation effect is also expected
for ACDM. At the present epoch, the typical cluster size in

comoving coordinates (£ ~ k; I ) is almost two orders of

eak
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magnitude larger for the Dirac-Milne universe compared to
the EdS case. We also stress that such cluster size is
determined primarily by nonlinear effects occurring during
the matter-dominated epochs.

In summary, Figs. 10 and 11 clearly show that, compared
to EdS, structure formation begins earlier and proceeds
initially faster in the Dirac-Milne scenario. However, the
production of new gravitational structures does not continue
forever (as in EdS), but rather stops a few billion years after
the big bang. This confirms the intuition that structure
formation is linked to the dimensionless parameter w,(7)t,
as mentioned in Sec. V. For the Dirac-Milne case, this
quantity is large at recombination (ot =~ 8.3) so that
structures initially form quickly and efficiently; then it
decreases (as ~!/2) and, when it falls below unity, structure
formation halts. In contrast, for EdS, w;(t)t = @ty =

\/2/3 is constant and of order unity for all times, so that
structure formation occurs at a moderate rate for all epochs.

As a closing remark to this section, we note that here we
compared the Dirac-Milne universe to the EdS case
mainly for reasons of computational simplicity. This
should be accurate enough for matter-dominated epochs
(i.e., between recombination and the vacuum epoch), after
which the full ACDM model should be used instead of the
simpler EdS. Both the Dirac-Milne and the ACDM
models describe a universe that “ages” with time, meaning
that structure formation halts after a certain time (see
Sec. V). Interestingly, the Dirac-Milne cosmology can
reproduce this feature of the observed universe without
resorting to dark energy. The time scales of structure
formation in the Dirac-Milne and ACDM universes are not
too different either. Indeed, for ACDM, structure forma-
tion ends when: a()/a(tyow) = (t/taow) > = (R,,/Qx) "/,
which (using the current estimations for the normalized
densities: Q,, = 0.3, Q, = 0.7) yields t = 15 = 0.65¢,,y, &
9 x 10° y. This is larger than the equivalent “freezing”
time 7, ~ 10° y defined above for the Dirac-Milne cos-
mology, but in both cases structure formation ended
before the present epoch. Also keep in mind that this is
a rather crude estimate of 7.. A closer inspection of the
phase-space portraits (Fig. 4, and other snapshots not
shown here) suggests that structure formation stops some
time between 10 and 10'° years after the big bang, which
is approximately compatible with ACDM.

VII. DISCUSSION AND CONCLUSIONS

The scope of this work was twofold. Firstly, we
developed a general formalism that allows for the existence
of negative masses in a Newtonian framework. The family
of models that we obtained includes not only those that
can be defined by the different signs of the active, passive,
and inertial masses, but also a more general class that can
only be characterized by a set of rwo Poisson’s equations
for the gravitational potential. These models could be

viewed as the Newtonian limit of some bimetric extension
of General Relativity. There is a total of seven nontrivial
models that can be constructed in this way.

We produced circumstantial evidence that only one of
these models possesses the right features that make it
compatible with the alternative “Dirac-Milne” cosmology
recently proposed by Benoit-Levy and Chardin [5]. This
scenario assumes a universe composed of equal amounts of
matter and antimatter, in which the latter antigravitates.
In the model that we propose to simulate the Dirac-Milne
scenario, all gravitational interactions between matter and
antimatter are repulsive, except for matter-matter inter-
actions, which must of course be attractive. These features
imply that antimatter is ejected from overdense matter-
dominated regions (galaxies), while spreading out in
underdense regions to form a uniform dilute repulsive
background, with very few annihilation events occurring, in
accordance with observations.

In a cosmological context, it is this repulsive background
that induces an expansion rate linear in time, a(t) ~ 1,
for the Dirac-Milne universe, faster than the expansion rate
of the matter-dominated epochs in the standard cosmological
model, which scales as a(t) ~ t*/3. Hence, the Dirac-Milne
universe does not suffer from the horizon problem and does
not need primordial inflation to explain the current homo-
geneity at large scales. Indeed, the dilute repulsive back-
ground could be viewed as a cosmological constant that
decreases in time, with the corresponding vacuum energy
decreasing volumetrically as a~>; see Egs. (39) and (40).

The second purpose of this work was to study the
implications of the Dirac-Milne cosmology on gravitational
structure formation. To do this, we devised a local one-
dimensional model embedded in a three-dimensional
spherically expanding universe and performed N-body
simulations of both a Dirac-Milne and an Einstein—de
Sitter (Q,, = 1,Q, =0) universe. In both cases we
observed gravitational structure formation, with clusters
and subclusters developing from an almost uniform initial
condition. After the nonlinear stage of the evolution is
reached, both models display a power-law behavior in the
wave-number spectrum of the matter density—with, how-
ever, one crucial difference: whereas for EdS the formation
of structures continues indefinitely, for the Dirac-Milne
universe it stops a few billion years after the big bang,
after which time the gravitational structures stay frozen in
comoving coordinates. Today, the typical size of the
structures should be over an order of magnitude larger
in the Dirac-Milne universe.

In this work, for the sake of computational simplicity, we
compared the Dirac-Milne universe to the FEinstein—de
Sitter case, which should be accurate for matter-dominated
epochs before the effect of the cosmological constant has
become dominant. Nevertheless, for a proper analysis of
structure formation, the Dirac-Milne scenario should be
compared to the standard ACDM model. It should be
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possible to do this in the framework of the present one-
dimensional approach, thus keeping the computational cost
relatively low. The results of such comparison will be
reported in future works. For the time being, we can
conclude that the Dirac-Milne universe generates hierar-
chical structures compatible with those observed in our
Universe, and whose formation halts at an epoch earlier
than the present one, as is also the case for the standard
cosmological model. All in all, these preliminary results are

encouraging and deserve to be further verified and quanti-
tatively compared both with observations and with the
predictions of the standard ACDM scenario.
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