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We propose a consistency test of gravity based on the weak lensing signal of cosmic voids. For a given
void profile, as traced by galaxies, the lensing signal can vary in different gravity theories. Thus the
comparison of the lensing shear profile of such voids with the general relativistic prediction can test for
deviations from general relativity (GR). For concreteness, we calculate the expected lensing signal in two
gravity theories involving scalar fields with derivative couplings. We find that the scalar field has the
potential to boost the tangential shear both within and outside the void radius. Reversing the method, one
can infer the void central density parameter from the lensing signal, and compare to the value estimated
independently using the galaxy tracer profiles of voids. Hence, one can check for consistency between the
behavior of light and matter under the assumption of GR. We use voids traced by luminous red galaxies in
SDSS to demonstrate our methodology, finding that the void central density parameter can shift from its
GR value by up to 20% in some Galileon gravity models. Although Galileon gravity is now disfavored as a
source of cosmic acceleration by other data sets, the methods we demonstrate here can be used to test for
more general fifth force effects with upcoming void lensing data.

DOI: 10.1103/PhysRevD.98.023511

I. INTRODUCTION

Gravitational lensing by cosmological voids—under-
dense regions of the universe typically 10–100 Mpc in
size—is emerging as a promising new tool for studies of
dark energy and large-scale structure [1]. Since the detec-
tion of lensing by stacked voids in SDSS [2–4] and related
work on both theory and measurement ([5–9] and refer-
ences therein), void lensing has been measured in the Dark
Energy Survey [10], with considerable improvements to
follow in subsequent data releases. The related phenome-
non of trough lensing has been developed into a cosmo-
logical probe as well [11–13].
In particular, voids have the potential for powerful tests

of gravitational “fifth forces,” interactions induced by a new
fundamental field mediating long-range forces between
matter fields. One setting in which such fifth forces are
common is in modified theories of gravity. Many extended
gravity theories are accompanied by “screening mecha-
nisms” that strongly suppress their observable effects in
high-density regions of the universe such as the Solar

System and the interior of galaxies [14–16]. Though known
screening mechanisms (chameleon, Vainshtein, etc.) differ
in their precise details, a feature common to all is that high
density environments are generally screened.
In contrast, the low-density nature of voids means that

screening mechanisms do not operate inside them, allowing
deviations from general relativity (GR) to play at full
strength [17–19]. The aim of this paper is to study the ways
that a gravitationally coupled scalar field impacts the
lensing profiles of voids, and hence to uncover useful
phenomenology for fifth-force constraints with forthcom-
ing galaxy survey data [20–24].
Recent bounds on the gravitational wave propagation

speed using a binary neutron star merger [25–28] have
strongly constrained modified gravity theories as the
mechanism of cosmic acceleration, arguably their original
motivation (see also earlier work by [29,30]). However,
there remain some classes of theories which do not modify
the speed of gravitational waves, and hence evade these
constraints. For example:
(1) theories with nonuniversal couplings between bary-

ons and dark matter;
(2) scalar-tensor theories in which the background

value of the scalar does not evolve at low redshifts.

j _̄ϕj ≪ 1;
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(3) specialized theories within the generalized families
of Horndeski, Beyond Horndeski and DHOST
gravity, whose defining Lagrangian functions satisfy
certain constraint relations [31–35];

(4) theories containing an intrinsic mass scale signifi-
cantly greater than the mass associated to the Hubble
scale, m2

ϕ ≫ m2
H.

In the lattermost case, the interesting phenomena of the
theory are shifted towards astrophysical (subcosmological)
scales. There is a growing body of work studying the
effects of fifth forces on clusters, galaxies and the nonlinear
regime of large-scale structure formation [36,37]. This shift
towards astrophysical scales generally has the consequence
that such theories cannot successfully accelerate the uni-
verse without an additional cosmological constant.
Fifth forces can arise in many other settings, beyond

specific applications to modified gravity and late-time
cosmic acceleration. Attempts to address cosmological
problems such as the behavior of dark matter on small
scales, or baryogenesis, involve new scalar fields with long-
range interactions. Likewise, attempts to embed our
existing theories in a more fundamental model with extra
spatial dimensions can give rise to the similar interactions,
either through compactification, or as brane bending
modes. Furthermore, as shown in [38], during inflation a
scalar such as the Higgs field can acquire couplings to the
Einstein-Hilbert term at loop order, even if minimally
coupled to gravity at tree level. In all such models, the
distances/energies/densities at which these deviations from
GR are most significant are determined by the mass scales
of the underlying fundamental theory. These mass scales
could be large enough (and hence the wavelength of the
scalar fifth force short enough) for the theory to satisfy
cosmological and gravitational wave constraints, yet have
nontrivial effects on astrophysical scales.
The relevant physics we are interested in, therefore, is not

primarily focused on the question of whether modified
gravity can explain cosmic acceleration, but rather is part
of the grand program of testing gravity on all possible scales.
In particular, our question is whether there may be new light
scalar fields propagating on sub-Hubble scales. The inherent
complexity of astrophysical systems means that existing
constraints here are less developed than cosmological ones;
hencevoids can provide useful new information in this arena.
When screening is not effective, the new fields that

generically accompany modifications to GR will have
nontrivial radial profiles across the void. This modifies
the weak lensing profile of the void via two channels:

(i) Because the new field(s) act as an effective extra
source of stress energy, the gravitational potential
inside the void is no longer purely the one deduced
from baryons and dark matter. At the level of the
gravitational field equations, this means that the
Poisson equation is modified [our notation for metric
potentials is introduced in Eq. (19)]:

∇2Φ ¼ 4πGðρM þ ρeffÞ; ð1Þ

where ρeff is the effective stress-energy contribution
of the new field.

(ii) In some models, the new field further acts as an
effective source of anisotropic stress. As a result, the
lensing potential of the void is no longer equal to the
gravitational potential experienced by nearby
masses, i.e. ΨL ¼ ðΦþΨÞ=2 ≠ Ψ.

Clearly these two types of modifications are partially
degenerate in their resulting effects on the lensing shear
profile of the void. To understand their different influences,
consider a situation in which the new field ϕ is a
subdominant component of the energy density, i.e. ρeff ≪
ρM (inside the void, at least). Then, the modifications from
the first effect above would vanish, while modifications
from the second effect would still operate. In this paper we
will study two gravity models, corresponding to two
different terms in the simple Galileon Lagrangian. We will
see that one of these models acts via both the above effects,
while the other acts only via the first one.
A key input to our following calculations is a model for

the radial density profile of a void, which can be obtained
from fitting to either simulations or galaxy catalogs. In this
paper we will use two density profiles; one is a simple fit
from galaxy catalogs, whilst the other has enhanced
flexibility of the type identified in simulations in [39].
Comparison with real data will rely on a good under-
standing of the void-tracer connection; see, for example,
work on halo occupation distribution models in [40–43].
Likewise, a high-accuracy analysis will need to account for
the possible impact of deviations from GR on galaxy bias
relations; in the present work we neglect these, since they
are likely to be subdominant to current bias uncertainties
within GR itself [44,45].
The structure of this paper is as follows: in Sec. II we

introduce the gravity models under study, their background
equations and particular features. In Sec. III we present the
calculation of the tangential shear profile of a void, the
results of which are studied in Sec. IV. Section V summa-
rizes our results, caveats, and directions for future work.

II. GRAVITY MODELS

A. Action and motivations

As a simple framework to study deviations from GR, we
restrict ourselves to two terms from the simplest Galileon
family of gravity theories. Galileon gravity is constructed
using a scalar field, ϕ, which is characterized by its unusual
higher-derivative self-couplings [46]. Galileon fields arise
in a number of different ways, for example, having elegant
geometrical origins as the description of brane fluctuations
in the Dvali-Gabadadze-Porrati model [47,48], and describ-
ing the helicity zero component of ghost-free massive
gravity [49,50]. Furthermore, they exhibit a rich structure
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and a complex phenomenology, including Vainshtein
screening [51] near massive objects [46,52], and possessing
an S-matrix with a number of special properties [53–58].
They also face some theoretical challenges, such as
perturbations propagating superluminally around some
sources [46,59] and the existence of arguments that they
have no local, Lorentz invariant UV completions [60,61],
although there are creative attempts to circumvent some of
these [62,63].
Galileons have been of particular interest in recent years

as a possible candidate, with a particular choice of
parameters, for explaining late-time cosmic acceleration.
While the relevant parameter range for that application is
now tightly constrained, the models more generally provide
a framework for how deviations from GR might exist but
remain hidden from local tests of gravity. As we will
explain in more detail soon, it is in this spirit that we make
use of them in this paper.
We consider the simplest example of Galileons—a single

scalar field, ϕðxÞ, which obeys a shift symmetry linear in
coordinates:

ϕðxÞ → ϕðxÞ þ cþ bμxμ; ð2Þ

with c, bμ constants. Any term built out of ∂μ∂νϕ, and its
derivatives will be strictly invariant under Eq. (2). However,
there also exist special operators with fewer than two
derivatives per ϕ, which are not strictly invariant, but rather
are invariant up to a total derivative. There are three main
examples of these terms. These are the cubic, quartic and
quintic models, all of which contain higher derivatives, and
which involve three, four and five copies of the field,
respectively. In this paper we will work with only the cubic
and quartic Galileons—these terms are sufficient to demon-
strate the two “channels” for void lensing thatwedescribed in
the Introduction. We stress here that our main interest is the
effect of non-GR physics on void lensing observables, and
not the detailed specifics of Galileon gravity.
The general Galileon action up to order 4, but not

containing terms built out of ∂μ∂νϕ, is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2

X5
i¼1

ciLi − Lm

�
; ð3Þ

with

L1 ¼ M3ϕ;

L2 ¼ ∇λϕ∇λϕ;

L3 ¼
2

M3
□ϕ∇λϕ∇λϕ;

L4 ¼
∇λϕ∇λϕ

M6

× ½2ð□ϕÞ2 − 2ð∇μ∇νϕÞð∇μ∇νϕÞ − R∇μϕ∇μϕ=2�;

whereM is a mass scale. The first Galileon term, L1, can be
removed by a field redefinition and hence ignored; the
second Galileon term is merely the usual kinetic term for a
scalar field. More interestingly, the cubic Galileon corre-
sponds to using L2 and L3 (c4 ¼ 0), whilst the quartic
employs all contributions (c4 ≠ 0). In fact only ratios of the
ci appear in the Galileon field equations, allowing us to fix
one ci parameter arbitrarily. We will use this freedom to fix
c2 ¼ −1 for both models, so that the field is canonically
normalized.
The choice of the cutoff scaleM is an important factor in

determining the scales on which the new physics manifests
itself. The other important factor in this is the coupling of the
Galileon field to matter. The interplay between these two
factors is nontrivial and highly nonlinear, so that new physics
can appear in interesting and unexpected places. For this
reason, although the choice M3 ¼ MPlH2

0 allows the
Galileon field to have nontrivial dynamics on cosmological
scales, and therefore to be a candidate to explain cosmic
acceleration, there also exist other astrophysical scales at
which additional interesting new phenomena can appear.
Hereafter we will redefine the scalar field by replacing

ϕ=MPl → ϕ, rendering it dimensionless. We will also split
the scalar field into a homogeneous “background” piece
and a perturbation via ϕ ¼ ϕ̄þ φ. Note that φ is not a linear
perturbation; it is the deviation of the scalar field from its
homogeneous component, i.e. a full nonlinear perturbation.
Before proceeding to our calculation, let us comment

briefly on our choice of gravitymodels here.Asmentioned in
the Introduction, the recent observations of GW170817 and
its electromagnetic counterparts [64] constrain the speed of
gravitational waves to differ from c by less than one part in
1015, which strongly disfavors the quartic (and quintic)
Galileonmodels [26–28,65].Meanwhile, the cubicGalileon,
when required to drive cosmic acceleration, predicts a
negative sign for the integrated Sachs Wolfe effect (note
this has a positive sign in ΛCDM); this feature is disfavored
by cross-correlation analyses of galaxy surveys and cosmic
microwave background observations [25]. Hence Galileons
are no longer a leading candidate for a viable extension of
GR for explaining cosmic acceleration.
Despite this, Galileons remain a useful toy model for a

universe that expands almost identically to ΛCDM, but has
interesting fifth-force phenomenology at the nonlinear
level. Their basic features—a single new scalar degree
of freedom, second-order equations of motion, derivative
couplings and a handful of free parameters—are shared by
most of the theories of interest on astrophysical scales.
Furthermore, terms similar to the cubic and quartic
Galileons used here appear in the surviving specialized
Horndeski, Beyond Horndeski and DHOST theories—see
point 3 of our list in the Introduction. As such, we will
exploit Galileons here to lay out our void lensing meth-
odology, which can be applied to other gravity models (or
indeed as a “litmus test” for GR) in the future.
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B. Galileon background dynamics

In what follows, we will impose the usual requirement
that the Galileon field drives cosmic acceleration by setting
M3 ¼ MPlH2

0. Doing this will allow us to determine the
void lensing signal of the most popular models in the recent
literature. As explained above, future studies will likely
focus on models with heavier mass scales. The Friedmann
equation of Galileon gravity is (considering the late-time
universe, where only pressureless matter and the Galileon
field are relevant)

3H2 ¼ 8πGρ̄m −
1

2
_̄ϕ
2 þ 6

c3
H2

0

H _̄ϕ
3 þ 45

2

c4
H4

0

H2 _̄ϕ
4 ð4Þ

and the equation of motion for the homogeneous compo-
nent of the scalar field is

− ð ̈ϕ̄þ 3H _̄ϕÞ þ c3
H2

0

ð12H _̄ϕ ̈ϕ̄þ6 _H _̄ϕ
2 þ 18H2 _̄ϕ

2Þ

þ c4
H4

0

ð54H2 _̄ϕ
2 ̈ϕ̄þ 36 _HH _̄ϕ

3 þ 54H3 _̄ϕ
3Þ ¼ 0; ð5Þ

where overdots denote physical time derivatives.

C. The tracker ansatz

The simultaneous solution of Eqs. (4) and (5) is greatly
simplified by the use of the tracker ansatz. This is an
approximation for the evolution of the homogeneous
component of the Galileon field, and has been shown to
hold extremely well for Galileon models [66–68]. The
tracker ansatz is defined as follows:

H _̄ϕ ¼ ξH2
0; ð6Þ

where ξ is a dimensionless constant. Indeed, it was shown

in [69] that any Galileon model whose solution for _̄ϕ does
not follow the tracker trajectory by z ≃ 1 is inconsistent
with Planck measurements of the CMB temperature power
spectrum. Furthermore, the behavior of the Galileon field at
z > 1 has a negligible impact on the CMB, so it is safe to
adopt the tracker ansatz for all redshifts.
A further implication of the tracker ansatz is a reduction

of the free parameters needed to characterize a Galileon
model. To see this, we substitute Eq. (6) into Eq. (4). This
converts the Friedmann equation to a fourth-order poly-
nomial in H:

E4 ¼ E2ΩM0a−3 −
1

6
ξ2 þ 2c3ξ3 þ

15

2
c4ξ4; ð7Þ

whereE ¼ H=H0. Evaluating the above expression at z ¼ 0
gives

−
1

6
ξ2 þ 2c3ξ3 þ

15

2
c4ξ4 ¼ 1 − ΩM0: ð8Þ

Similarly, using the tracker ansatz in Eq. (5) and evaluating at
z ¼ 0 yields

�
3 −

_H
H2

��
−
1

3
þ 2c3ξþ 6c4ξ2

�
¼ 0: ð9Þ

The second square bracket here must vanish, since the first
cannot do so for a general background expansion rate.
Together, Eqs. (8) and (9) give two algebraic constraints
relating the parameters ξ, c3 and c4. After solving these
constraints, the cubic Galileon (c4 ¼ 0) has no free param-
eters remaining (other than the standard cosmological
parameters), whilst the quartic model has one free parameter.
These constraints are therefore (our expressions are equiv-
alent to those of [25]):
Cubic: All parameters are fixed by the value of ΩM0:

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 −ΩM0Þ

p
≃ 2.05 ð10Þ

c3 ¼
1

6ξ
≃ 0.08: ð11Þ

Quartic: Here we take the one free parameter to be ξ, the
tracker constant of proportionality. Then we have

c3 ¼ −
2

ξ3
ð1 −ΩM0Þ þ

1

2ξ
ð12Þ

c4 ¼
2

3ξ4
ð1 − ΩM0Þ −

1

9ξ2
: ð13Þ

We will use these constraints to fix some of our Galileon
model parameters. For a given value of ξ, Eq. (7) becomes a
quadratic equation for E2. Choosing the solution that gives
real H, the Hubble rate is then given by

EðaÞ2 ¼ 1

2

h
ΩM0a−3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

M0a
−6 þ 4ð1 −ΩM0Þ

q i
: ð14Þ

Compared to Eqs. (4) and (5), this represents a remarkable
simplification of the background evolution for our models.

D. Quasistaticity and pathologies

Whilst the tracker ansatz is strongly supported by
measurements of the cosmological background expansion
rate, another commonly used assumption is surrounded by
a higher degree of uncertainty. The quasistatic (QS)
approximation is a statement about the relative timescales
that characterize cosmological structure formation. It states
that cosmological structures evolve on approximately
Hubble timescales, and hence that the time derivatives of
linear cosmological perturbations are expected to be
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suppressed compared to their spatial derivatives (which
vary on significantly sub-Hubble scales).
In addition to the metric potentials, the QS approxima-

tion is usually assumed to also apply to the perturbations of
any new fields present in a modified gravity theory, i.e.
j∂iφj ≫ j _φj for the Galileon field. This treatment has been
shown to hold on scales larger than the sound horizon of the
scalar field [70] in several theories [71,72] (though see [73]
for a study of structure formation in Galileon gravity
without the QS approximation). However, these results
do not guarantee that the QS approximation holds for all
theories. Indeed, the QS assumption has been called into
question by the discovery that Galileons display patholo-
gies in certain regimes of cosmological structure formation.
Specifically, [74,75] have found that the solution for the
Galileon field profile becomes imaginary inside voids of a
certain depth and redshift. The region of imaginary sol-
utions does not span the entire void, but occupies a central
region whose radius varies with void depth and redshift. We
will meet these pathologies in our own results in Sec. IV.
Whether these unphysical solutions signal a real break-

down of Galileon theories, or are an artifact of the break-
down of the QS approximation, remains to be seen. The full
set of Galileon field equations, free of the QS approxima-
tion, is a complex set of coupled, nonlinear partial differ-
ential equations with derivative interactions, and requires a
thorough numerical treatment beyond the scope of this
paper. However, in what follows we will at least attempt to
explain why these pathologies occur, and pursue a careful
delineation of the parameter regime (in void depth vs
radius) in which they arise.

III. VOID CALCULATION

A. Density profiles and void sizes

In the next subsection we will calculate the gravitational
fields associated with a spherical underdensity. Although
any given void is likely to be nonspherical, the averaged
density profile of all voids in a given sample (of sufficient
size) should be spherical to a very good approximation. In
this paper we will make use of two different density profiles
that have been explored in the literature. The first of these
profiles is a simple cubic fit, whilst the second profile has
greater flexibility; it has additional parameters controlling a
compensation ridge around the void, and hence can be used
for a wider range of void sizes (smaller voids of around
10–30 Mpc=h tend to be compensated by an external ridge,
whilst larger ones with RV ≳ 50 Mpc=h do not [39]).
One may question whether it is valid to use void profiles

originally derived from GR simulations, or fitted to survey
data assuming GR, for our work here. Given a measured
galaxy profile, obtaining the matter profile responsible for
lensing may require some modeling in a GR context.
Assuming that galaxies are linearly biased, which is likely
to be valid at scales ∼Rv=2 [76], the GR matter density

profile is simply a rescaled version of the galaxy profile.
The scaling factor is set by the galaxy bias, which is known
from the galaxy autocorrelation function. On scales closer
to the void center, a GR based mock catalog is required to
model the relation of the matter profile to galaxies. This is
an area of ongoing research [76,77], and it remains to be
determined fully whether such relations are significantly
affected by deviations from GR.
However, prior work on the cubic Galileon [78] [as well

as on fðRÞ theories [79,80]] indicates that the density
profiles of voids are not significantly altered in these
theories. These works found that any changes were at
the level of a few percent or less (we describe the generic
reasons to expect small effects in the density profile in
Sec. IVA). Such effects are small compared to the error
bars of the SDSS void lensing data we use in this paper
(Fig. 3), but will need to be accounted for with future
measurements. For the present, we proceed to use the GR-
based density profiles for tests of Galileon gravity; as we
will see in Sec. IV, the impact of modified gravity on the
lensing signal can still be substantial.
The form of the simpler profile is

δðRÞ ¼ δv½1 − R3� 0 < R < 1 ð15Þ

δðRÞ ¼ 0 R > 1; ð16Þ

where δ ¼ δρ=ρ̄ is the density fluctuation about the mean
matter density ρ̄, and R ¼ r=RV is the radial coordinate in
units of the void radius RV . The single parameter δv then
describes the maximum central density contrast of the void.
Introduced in [4], this is a simpler form of the cubic profile
originally studied in [81,82].
The flexible profile we use is [39]

δðRÞ ¼ δv

�
1 − ðR=s1ÞαÞ
1þ ðR=s2Þβ

�
; ð17Þ

where again δv is the maximum density contrast. Variants
of this profile have been explored in [10,78], where it was
found to provide a good fit to voids in simulations of
alternative gravity theories (as well as in ΛCDM). Clearly
the disadvantage of this profile is a larger number of
parameters to be fitted. An in-depth study of the effects of
all five parameters can be found in [78], and we will keep
most of these fixed at their best-fit values. We will,
however, study the effects of ridge height on the tangential
shear signal at large radii in Sec. IV B. The fiducial values
of the parameters in Eq. (17) are

α ¼ 3 s1 ¼ 0.9

β ¼ 7 s2 ¼ 1.1: ð18Þ

Generically, one may expect the void size function and
central underdensity distribution to differ in alternative
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theories of gravity (although, as we discussed above, the
shapes of the profiles seem to be largely unaffected). The
additional force component mediated by the scalar field
typically acts to evacuate matter from a void more quickly,1

enhancing the number of strongly underdense voids. A full
treatment of the issue requires a study of voids in numerical
simulations of modified gravity, which is beyond the scope
of this paper. In Sec. IV B we will address this issue in part,
by comparing the probability distribution functions of the
central underdensity in two models.

B. Semilinearized field equations

We now proceed to calculate the behavior of the
gravitational and Galileon fields over voids with the
aforementioned density profiles. We keep the Galileon
field and matter perturbations fully nonlinear, but the
perturbations to the gravitational metric remain small.
We describe them using the following metric convention
(in conformal Newtonian gauge):

ds2 ¼ −ð1þ 2ΨÞdt2 þ ð1 − 2ΦÞðdr2 þ r2dΩ2Þ: ð19Þ

In what follows we will rescale the radial coordinate as
χ ¼ aH0r. The full field equations are lengthy and given in
[68]; we will not reproduce them here. After making the
quasistatic approximation and integrating once over the
radial coordinate, the equations simplify to two equations
for the metric perturbations:

Φ;χ
χ

¼ 1

A4

�
Ωm0a−3

δM
r3

þ A1

�
φ;χ
χ

�
þ A2

�
φχ

χ

�
2
�
; ð20Þ

Ψ;χ
χ

¼ 1

B3

�
B0

�
Φ;χ
χ

�
þ B1

�
φ;χ
χ

�
þ B2

�
φ;χ
χ

�
2
�
; ð21Þ

where subscript commas indicate derivatives. These are
supplemented by the equation of motion for the scalar field:

0 ¼ C1

φ;χ
χ

þ C2

�
φ;χ
χ

�
2

þ C3

�
φ;χ
χ

�
3

þ C4

Φ;χ
χ

þ C5

Ψ;χ
χ

þ C6

φ;χ
χ

Φ;χ
χ

þ C7

φ;χ
χ

Ψ;χ
χ

: ð22Þ

Here, the quantities Ai, Bi and Ci, defined in the Appendix,
are functions of the background cosmology, and hence
depend only on time.
Using Eqs. (20) and (21) to eliminate derivatives of Φ

and Ψ, Eq. (22) simplifies to a third-order algebraic
polynomial for φ;χ =χ:

0 ¼ η01
δM
r3

þ ðη11δM=r3 þ η10Þ
�
φ;χ
χ

�
þ η20

�
φ;χ
χ

�
2

þ η30

�
φ;χ
χ

�
3

: ð23Þ

The functions ηi, defined in the Appendix, are linear
combinations of the Ai, Bi and Ci. The true polynomial
order of Eq. (23) depends on which of the Galileon terms
are present. In the cubic Galileon one has η30 ¼ η11 ¼ 0,
and Eq. (23) is then a quadratic equation in φχ=χ. For the
quartic Galileon, the equation is cubic in φχ=χ. Hence, in
both cubic and quartic models, there are multiple branches
of solutions.
This raises the question of which branch of solutions is

the physically realized one? The standard protocol here is
to select the branch for which φ;χ=χ → 0 as δM=r3 → 0, on
the grounds that there cannot be a self-sustained field
configuration for φ in the absence of any mass fluctuation.
We will adopt this convention in the absence of any
pathologies, which are signaled by the onset of complex
solutions for φ;χ=χ. If the dynamics drive the system into a
pathological region, we will then instead choose the
remaining real solution, if one exists (we will see in
Sec. IV C that there is no ambiguity in this choice). If
all solution branches become imaginary in a particular
region of void parameter space and radius, then we deem
the theory and/or approximations used to be pathological
(and therefore meaningless) there. We will set such regions
to zero values in our plots.
Having selected the appropriate solution branch for

φ;χ=χ, we use this in Eqs. (20) and (21) to calculate
derivatives of metric potentials. We can also straightfor-
wardly take a second radial derivative of (20) and (21),
although wewill not show the resulting lengthy expressions
here. We then have in hand all the quantities necessary to
calculate a void lensing signal.

C. Lensing integrals

The lensing convergence of a void, κ, is obtained by
integrating the sum of the second derivatives of the metric
potentials along the line of sight to the void:

κ ¼ 1

4πGΣcrit

1

2

Z
∇2ðΦþ ΨÞdl; ð24Þ

¼ 1

4πGΣcrit

a2H2
0

2

Z �
Φ;χχþΨ;χχþ

2

χ
ðΦ;χþΨ;χÞ

�
dl; ð25Þ

where, in the second line, we have written the derivatives in
our scaled radial coordinate, χ ¼ aH0r. The critical density
of a lensing system, Σc, is defined in terms of the angular
diameter distance DAðzÞ as

1In the quartic Galileon model, for some values of the tracker
parameter ξ, the scalar can actually act to suppress gravitational
forces.
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ΣcritðzL; zsÞ ¼
c2

4πG
DAðzsÞð1þ zLÞ−2
DAðzLÞDAðzL; zsÞ

; ð26Þ

where zs and zL are the redshifts of the source and lens
(in this case, the void) respectively, and the ð1þ zLÞ−2
factor is due to our use of comoving coordinates. We set
Σ−1
critðzL; zsÞ ¼ 0 for zs < zL in our computations.
The observable quantity of interest here is the differential

surface mass density,

ΔΣðrÞ ¼ Σcðκ̄ − κÞ; ð27Þ
where κ̄ is the mean convergence as a function of radius
from the center of the void, given by

κ̄ ¼ 2RV

R2

Z
R

0

yκðyÞdy: ð28Þ

The distances to the source galaxies and void are not needed
for the calculation of an individual void lensing profile; that
said, the source and void redshift distributions are needed
when calculating the stacked void lensing profile for an entire
survey. Note thatΔΣ is in fact the projected effective density
profile of the lensing void.2 However, Eq. (27) can equiv-
alently bewritten asΔΣ ¼ Σcrit × γt, where γt ¼ κ̄ − κ is the
lensing tangential shear, soΔΣ also carries themodifications
to the lensing signal. We will express most of our results in
terms of ΔΣ, since it is a convenient variable for comparing
theory and measurements.

IV. RESULTS

In this section we present the results of our calculation for
the void shear profiles, showing the impacts both of devia-
tions from GR and of variations of the void density profile.
We also examine the reported onset of pathological behavior
for someparts of thevoid parameter space.All calculations in
this section use best-fit values for the standard cosmological
parameters from the Planck results [83].

A. Gravity models

Figure 1 shows the expected tangential shear profiles for
voids governed by general relativity and by the cubic and
quartic Galileon models, for the void density profile of
Eq. (17). Based on the discussion of Sec. III A, we use the
same input void density profile for all three gravity models
(upper panel), and study their differing lensing predictions
(lower panel).
We plot the quantity ΔΣ=RV, which—for a fixed void

profile at least—is independent of void size, since ΔΣ
scales linearly with void radius [see Eq. (28)].3

It is clear from Fig. 1 that the cubic Galileon model,
having no free parameters after imposition of the tracker
ansatz, gives rise to significant deviations from the GR
tangential shear signal. There is a factor of ∼2 boost in the
lensing signal compared to the GR predictions, at
all radii.
As described in the Introduction, modified gravity

theories can alter the lensing signal via two channels:
(i) by contributing to the effective energy density on the rhs
of the Poisson equation, and (ii) by creating effective
anisotropic stress such that Φ ≠ Ψ. Using Eq. (21) and the
expressions in the Appendix, one can see that the cubic
Galileon does not generate any effective anisotropic stress.
Consequently, all the deviations between the GR and cubic
Galileon curve in Fig. 1 must arise from the effective
energy density of the Galileon field.
Initially it may seem surprising that the Galileon field

can have such a substantial effect on the lensing profile,
whilst its effects on the matter distribution within the void
are much smaller (see Sec. III A). The reason underlying
this is the relative evolutionary timescales of the matter
distribution and the scalar field profile. Since the Galileon
field is designed to drive cosmic acceleration (at least in the
model considered here), it only becomes a significant
fraction of the energy budget of the universe at late times,
z < 1 typically (see [84] for the evolution of spherical
perturbations in a comparable gravity model). The void
density profile has largely been determined before these

FIG. 1. Upper panel: The void density profile of Eq. (17),
shown here with a central depth δv ¼ −0.5 and the fiducial
parameters of Eq. (18). Lower panel: Corresponding tangential
shear profiles in GR, the cubic Galileon and the quartic Galileon
gravity theories. Recall (from Sec. II C) that after applying the
tracker ansatz the cubic Galileon has no free parameters, whilst
the quartic Galileon has one; we take this here to be ξ ¼ 1.9. This
figure is shown at z ¼ 0.

2To see this, note that the integrand of Eq. (24) can be replaced
using Eq. (20).

3The subtlety here is that, in reality, small and large voids tend
to have slightly different profiles, see Sec. IV B.
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redshifts are reached. A related point concerns the galaxy
profile. Since galaxies form in the high density environ-
ments of halos, the relation of galaxies to matter is likely to
remain close to that in GR, except possibly for lower mass
halos. We do not consider the details of the galaxy-matter
density fields any further.
The quartic Galileon is an example of a theory which

can modify lensing via both of the channels above. Despite
this, the quartic curve in Fig. 1 shows only a moderate
further enhancement relative to the cubic galileon predic-
tion. This is due to the effect of the constraints in Eqs. (10)–
(13), which fix the value of c4 used to be small relative to
c3. Quantitatively, using ξ ¼ 2.05 in the quartic galileon
gives c3 ≃ 0.08, similar to the cubic value, but c4 ≃ −1.5 ×
10−5 (and for ξ ¼ 1.9 as shown in Fig. 1, c3 ≃ 0.06 and
c4 ≃ −5 × 10−3). This explains why the variation of the
lensing amplitude between the cubic and quartic models is
less significant than their shared substantial difference from
GR. However, Fig. 2 shows that the tangential shear profile
of the quartic galileon is quite sensitive to small variations
away from ξ ¼ 1.9, particularly for ξ < 1.9.
Note from Figs. 1 and 2 that, despite significant variation

around the void radius and at a few radii out (r=RV ∼ 2–3),
the null of the tangential shear remains fixed at r ∼ 1.5Rv in
all cases. The reason for this is as follows: the void density
profile determines the radius at which the void is exactly
compensated, i.e. δMð< rÞ → 0. In Sec. III B we selected
the physical branch of solutions such that ϕ;χ=χ → 0 at the
same radius. Since the void density profile used is the same
for all gravity models (see discussion in Sec. III A), the
potential derivatives [Eqs. (20) and (21)] vanish at the same
radius for all gravity models. Via Eq. (25), this then ensures
that the null ofΔΣ is unchanged by variations of the gravity

model. This property should hold true for any model of
gravity that does not appreciably impact the void density
profile.

B. Void profiles

In Sec. III A we introduced two void density profiles: a
simple cubic fit, and a compensated ridge profile. For ease
of comparison, most of the figures in this paper employ the
latter profile. In Fig. 3 we show the corresponding density
and tangential shear profile for the cubic fit, together with
data obtained from voids identified by [4] in the SDSS
DR7-Full LRG catalog of [85]. As reported in [4], a void of
central depth δv ≃ −0.5 provides a good fit to the data
in GR.
In the lower panel we further show a corresponding set of

tangential shear profiles in the cubic Galileon model. It is
clear that the cubic Galileon produces a higher amplitude
lensing signal than in GR (this can be seen, for example, by
comparing the two curves with δv ¼ −0.5), and that this
enhancement persists out to distances well beyond the void
radius.
We will use the void lensing data and covariance (as per

the methods of [4]) to obtain the posterior probability of δv
for the cubic Galileon. It is easy to see by eye from Fig. 3
that a cubic Galileon model with δv ∼ −0.4 provides a good
fit to the SDSS data points (compared to δv ∼ −0.5 in GR).
Hence we expect there to be some shift in the distribution of
δv for different gravity models.

FIG. 2. The effect of varying ξ in the quartic Galileon model;
in the cubic Galileon model this parameter is fixed to ξ ∼ 2.1.
The void density profile and parameters are the same as in
Fig. 1.

FIG. 3. Upper panel: The cubic density profile of Eq. (15).
Lower panel: The corresponding shear profiles in GR and the
cubic Galileon model. Overplotted are SDSS void lensing
measurements.
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Figure 4 shows our results. These confirm that in
the cubic Galileon, the best-fit δv shifts towards more
shallow voids than in GR. This makes sense, since a
given value of δv produces a larger lensing signal in the
cubic Galileon than it does in GR—see Fig. 1. Reversing
the argument, a given lensing signal maps back onto
shallower void in the cubic Galileon than it does
in GR.
We will not pursue here a more detailed comparison of

our theoretical predictions to current observations. This is
due to significant uncertainties in obtaining the mass profile
of voids from their galaxy tracer profiles, in gravity models
outside of GR. A careful analysis using mock catalogs
would be required to obtain these constraints; we leave this
to a future work.
In Fig. 5 we return to the flexible density profile and

regular GR, and demonstrate the variation in tangential
shear induced by the presence of the compensation ridge.
In reality, ridge height is inversely correlated with void
radius, and hence correlated with void depth (i.e. small,
deep voids have pronounced ridges, see Fig. 1 of [39]).
Here we wish to disentangle the effects of void depth and
ridge height, which we can do by varying the parameter s2
of Eq. (17) but keeping δv fixed. Although the other
parameters in Eq. (18) can also affect the height of this
ridge, s2 has the most significant effect (see Fig. 8 of
[78]). We see from Fig. 5 that the presence of an exterior
ridge significantly boosts the shear profile at large radii,
and shifts the minimum of the shear profile to larger radii.
Whilst we have not done a detailed analysis here, it is

evident (even by eye) that the SDSS measurements in
Fig. 3 do not support the existence of a compensated
ridge, and would rule out large values of s2. With future

higher signal-to-noise measurements, one can bin voids by
size, since smaller voids have more prominent ridges.
Given that deviations from GR tend to boost lensing at
large radii, much like a ridge does, ridge features need to
be studied in cosmological simulations and carefully
accounted for when using lensing measurements to test
gravity. A subtlety here is that the choice of void tracer
and void finder can impact the analysis [10,19,86,87].

C. The pathological regime

As alluded to in Sec. II D, it is known that Galileon
gravity suffers from pathological solutions under certain
conditions. By “pathological,” we mean that the solutions
for the scalar field radial derivative ϕ;χ=χ, become imagi-
nary, and hence the lensing calculation laid out here
breaks down.
As we have noted, Eq. (23) is a polynomial in ϕ;χ=χ—

the order of which depends on the model—and hence will
generally possess multiple solutions. For the cubic
Galileon, Eq. (23) is a quadratic polynomial in ϕ;χ=χ with
entirely real coefficients, so any complex solutions must
form a conjugate pair. Hence both solutions become
pathological simultaneously. This is in contrast to the
quartic Galileon, for which Eq. (23) is a cubic polynomial
in ϕ;χ=χ. Though the quartic Galileon also forms pairs of
complex solutions in certain void regimes, we have verified
that the physical value of ϕ;χ=χ (the one which tends to zero
as δM=r3 → 0) corresponds to the one remaining real

FIG. 4. The best-fit values of the void central density parameter
δv, as inferred from the lensing profiles of the SDSS DR7-Full
LRG catalog. The black curve is for GR, while the dashed, blue
curve assumes the cubic Galileon model. We assume that the
relation of galaxies to mass is not altered in modified gravity,
based on simulation studies (Barreira et al., 2015).

FIG. 5. Upper panel: Realizations of the density profile in
Eq. (17), with varying values of s2. This parameter mainly
controls the height of the compensating ridge. Lower panel:
Corresponding shear profiles in GR. The lensing amplitude and
the location of the minimum of the signal are affected substan-
tially by the ridge height.
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solution of the cubic polynomial. Hence, the quartic
Galileon remains pathology-free inside voids.4

Figure 6 compares a set of tangential shear profiles for
several void depths in the cubic and quartic Galileon
models, for the density profile of Eq. (17). One can see
the onset of the singularity at r=RV ∼ 0.6 in the cubic
Galileon void with δv ¼ −0.7, whilst the corresponding
quartic Galileon profile remains pathology-free. We set the
shear profile to zero within the pathological regime. This
shift in boundary conditions substantially affects the shear
profile outside the pathological regime.
Figure 7 shows the onset of pathological behavior for the

cubic Galileon, in a parameter space of void redshift and
central density. For δv ≤ −0.7, the regime of complex
solutions first begins at small radii inside the void, and
expands outwards as z → 0. For deeper voids, the onset of
the pathologies occurs at higher redshifts.
The color scale of Fig. 7 indicates the smallest radii for

which real solutions for ϕ;χ=χ exist; we denote this in units
of the void radius as Rsing ¼ rsing=RV . This plot is con-
structed using the flexible void density profile, Eq. (17),
with the default parameter values of Eq. (18). However, we
find that the onset of the pathological regime has only a
very weak dependence on the void density profile, at least
for the two profiles used in this paper.
The significance of this pathological regime is a par-

ticularly pressing question. One possibility is that it signals

a breakdown of one of the assumptions used in the
calculation of Sec. III. Alternatively, it may be a true
sickness of the cubic Galileon theory itself. As we explain
below, it seems likely that this behavior is related to a
breakdown of the quasistatic approximation (Sec. II D) at
late times and in deep voids.
It was shown in [25] that, using the cubic Galileon, and

using the same tracker ansatz as we have used here, the
gravitational potentials Φ and Ψ grow at late times in the
universe on cosmological scales. This is in sharp contrast to
the usual behavior of ΛCDM, in which gravitational
potential wells decay after the matter era. This effect is
sufficiently strong to put the cubic Galileon into ∼7.8σ
tension with measurements of the galaxy-ISW cross-
correlation from Planck and the WISE survey. Figure 1
of [25] shows that the lensing potential begins to diverge
away from its ΛCDM evolution below z ≃ 0.5, which
approximately coincides with the onset of pathologies
for the deepest voids, as shown in our Fig. 7. Such rapid
evolution of the gravitational potentials may violate the
quasistatic assumption that their time derivatives are
negligible compared to their spatial derivatives.
Indeed, one can see from the full, unapproximated set of

equations presented in [74] that, at late times, the temporal
and spatial derivatives of Φ enter at the same order. It is
easy to believe that non-negligible values of _Φ and _Ψ could
then completely alter the character and solution of the
Galileon field equations, perhaps removing the complex
solutions altogether. A concrete proof of this hypothesis
requires a dedicated numerical investigation using the full

FIG. 6. Variation of lensing tangential shear with void depth
and gravity model, for the density profile of Eq. (17), shown for
z ¼ 0, RV ¼ 23 Mpc. One can see the onset of pathological
behavior for the cubic Galileon case with δv ¼ −0.7 (top panel,
red curve). All void profile parameters except δv are held at the
default values of Eq. (18).

FIG. 7. Parameter space showing the onset of pathologies in the
cubic Galileon, for the density profile of Eq. (17). The color map
indicates the radius of the pathological region, in units of RV . For
example, for the dark blue regions no pathologies are present
anywhere throughout the void; for the reddest region in the lower
right corner, pathologies are present for all radii 0 < Rsing ≲ 0.8,
where Rsing ¼ rsing=RV .

4We note that the quintic Galileon—which we do not discuss
in this paper—has the unusual feature of displaying pathologies
inside overdense regions [68].
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equations of [74]. Such work is beyond the scope of the
present paper. However, our work here usefully delineates
the approximate boundaries in void depth and redshift up to
which the quasistatic calculations can be used.

V. CONCLUSIONS

Cosmological tests of gravity are evolving rapidly. When
new tools or observations arise, they allow us to probe
current models in hitherto-unexplored regimes, sometimes
uncovering stark predictions and invalidating the models in
question. This information then sculpts the next suite of
ideas regarding extensions of GR and mechanisms for
cosmic acceleration.
Recently, gravitational waves have provided a prime

example of this. The gravitational lensing of voids is an
equally novel field that has similar potential for probing the
behavior of gravity in low-density environments. This
regime is notably orthogonal to all established high-
precision tests of gravity, since no comparable low-density
environment exists inside the Galaxy. Furthermore, there is
reason to believe that any gravitational fifth forces must
undergo suppression in high-density environments, leaving
the door open for unscreened phenomena to manifest
themselves in voids.
In this paper we have studied the lensing signatures of a

family of gravity models, Galileons, which invoke a single
scalar field with derivative interactions. The models chosen
are not intended to represent realistic models of late-time
cosmic acceleration; indeed, whilst this work was in
preparation, the LIGO-VIRGO Consortium and collabo-
rating experiments announced results which eliminated the
quartic Galileon as a viable extension of general relativity.
However, they provide relatively simple and clean exam-
ples of modifications to GR that contain higher derivative
interactions. Our work should provide a useful study of the
typical phenomenology that can be produced by a non-
trivial scalar field propagating on the scales of tens of
megaparsecs.
Let us summarize here some of our observations on how

deviations from GR can affect void shear profiles:
(i) The effective stress-energy contribution of a scalar

field to the Poisson equation can produce significant
deviations from GR void lensing profiles, even if
void shapes in modified gravity are very little
changed from those of GR voids [78–80].
Variations amongst the gravity models studied

here impacted the amplitude of the shear profile, but
did not shift its zero crossing; the lensing signal
beyond the void radius was also typically boosted.
Our findings are consistent with those of [68].

(ii) As shown in Fig. 4, the inferred distribution of the
central underdensity, δv, is changed by approximately
20% in cubic Galileon gravity, compared to in GR.
If one assumes that the galaxy-mass connection is
unaltered, then the galaxy tracer profile of voids can be

used to estimate δv independently, thus providing
a consistency test of the theory. In future work,
reliable mock catalogs and dedicated, model-specific
simulations of alternative gravity theories will be
needed to obtain high-confidence constraints.

(iii) The widely used quasistatic and tracker approxima-
tions have significant impacts on void lensing. The
tracker approximation implies theoretical constraints
(Sec. II C) which can affect the lensing amplitude in
a nonintuitive way, by fixing some of the gravity
model parameters. The quasistatic approximation is
the likely cause of the mathematical singularities
occurring in the deepest voids at low redshift. One
should examine the behavior of any gravity theory
carefully in this regime (low z and large jδvj) before
applying a quasistatic treatment.

Of course, it is possible that gravitational models other than
those studied here could produce different phenomenology.
On large cosmological scales, where linear perturbation
theory is valid, one may build unified frameworks that
encompass many gravity different models, and use these to
perform generalized calculations [88–93]. At present there
is not an equivalent treatment applicable to fully nonlinear
scales (although for a recent idea see [94,95]); the best one
can do is to investigate an array of models, and attempt to
extract general common behaviors.
From an observational viewpoint, the overall enhance-

ment of void lensing—plus the boost in the shear profile
outside the void radius for compensated voids—provide a
potentially accessible handle on these theories of gravity.
The errors on the tangential shear measured by the full Dark
Energy Survey (DES) [96,97] will be at least a factor of 2
smaller than those published in the DES Year 1 analysis,
which indicates encouraging prospects for constraining the
phenomenology seen here. Likewise, the abundance of
voids itself provides a route to constrain the dark energy
parameters fw0; wag; forecasts for the Euclid and WFIRST
[98] satellites are given in [99].
Void lensing with the Euclid and LSST surveys will

provide major advances in the statistical errors and redshift
coverage of the void sample. With voids that extend to
z ∼ 1, one may also pursue possible evolution in the lensing
enhancement due to modified gravity theories. We hope to
forecast the potential of voids in these surveys to constrain
deviations from GR in a future work.
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APPENDIX

Here we give expressions for the coefficients appearing
in Eqs. (20)–(23) [68]. All are functions of the background,
homogeneous value of the scalar field, and primes indicate
derivatives with respect to ln a. ξ is the constant parameter
appearing in the tracker ansatz, Eq. (6), and c3 and c4 are
parameters of the Galileon Lagrangian, Eq. (3). Note that ξ,
c3 and c4 are not all independent—see Sec. II C:

A1 ¼ −2c3ξϕ̄0 − 12c4ξ2ϕ̄0 ðA1Þ

A2 ¼ 6c4ξϕ̄0 ðA2Þ

A4 ¼ 2 − 3c4ξ2ϕ̄02 ðA3Þ

B0 ¼ −2 − c4ξ2ϕ̄02 ðA4Þ

B1 ¼ 4c4

�
−ξ2ϕ̄0 −

3

2
ξ2ϕ̄00

�
ðA5Þ

B2 ¼ 2c4ξϕ̄0 ðA6Þ

B3 ¼ −2þ 3c4ξ2ϕ̄02 ðA7Þ

C1 ¼ 1 − 2c3

�
4ξþ ξ

ϕ̄00

ϕ̄0

�
− c4

�
26ξ2 þ 6ξ2

ϕ̄00

ϕ̄0

�
ðA8Þ

C2 ¼ 4c3 þ 6c4

�
2ξþ ξ

ϕ̄00

ϕ̄0

�
ðA9Þ

C3 ¼ −4c4 ðA10Þ

C4 ¼ 2c4ð3ξ2ϕ̄00 þ 2ξ2ϕ̄0Þ ðA11Þ

C5 ¼ −2c3ξϕ̄0 − 12c4ξ2ϕ̄0 ðA12Þ

C6 ¼ −4c4ξϕ̄0 ðA13Þ

C7 ¼ 12c4ξϕ̄0 ðA14Þ

η01 ¼ −
A4ΩM

a3
ðB0C5 þ B3C4Þ ðA15Þ

η10¼−A4ðA4B3C1þA1B3C4þA1B0C5þA4B1C5Þ ðA16Þ

η11 ¼ −
ΩM

a3
A4ðB0C7 þ B3C6Þ ðA17Þ

η20 ¼ −A4½A1B0C7 þ A1B3C6 þ A2B0C5 þ A2B3C4�
− A4

2ðB1C7 þ B2C5 þ B3C2Þ ðA18Þ

η30¼−A4½A2B0C7þA2B3C6þA4ðB2C7þB3C3Þ�: ðA19Þ
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