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A unification of dark matter and dark energy based on a dynamical spacetime theory is suggested.
By introducing a dynamical spacetime vector field χμ as a Lagrange multiplier, conservation of an energy
momentum tensor Tμν

ðχÞ is implemented. This Lagrangian generalizes the “unified dark energy and dark

matter from a scalar field different from quintessence” [Phys. Rev. D 81, 043520 (2010)], which did not
consider a Lagrangian formulation. This generalization allows the solutions which were found previously,
but in addition to that also nonsingular bouncing solutions that rapidly approach to the ΛCDM model. The
dynamical time vector field exactly coincides with the cosmic time for the a ΛCDM solution and suffers a
slight shift (advances slower) with respect to the cosmic time in the region close to the bounce for the
bouncing nonsingular solutions. In addition, we introduce some exponential potential which could enter
into the Tμν

ðχÞ stress energy tensor or be coupled directly to the measure
ffiffiffiffiffiffi−gp

, giving a possible interaction

between dark energy and dark matter, and could explain the coincidence problem.

DOI: 10.1103/PhysRevD.98.023506

I. INTRODUCTION

Dark energy (DE) and dark matter (DM) constitute most
of the observable Universe. Yet the true nature of these two
phenomena is still a mystery. One fundamental question
with respect to these phenomena is the coincidence
problem, which is trying to explain the relation between
dark energy and dark matter densities. In order to solve this
problem, one approach claims that the dark energy is a
dynamical entity and hopes to exploit solutions of the
scaling or tracking type to remove dependence on the
initial conditions. Others left this principle and tried
to model the dark energy as a phenomenological fluid
which exhibits a particular relation with the scale factor
[1], the Hubble constant [2], or even the cosmic time
itself [3].
Unifications between dark energy and dark matter from

an action principle were obtained from K-essence-type
actions [4] or by introducing a complex scalar field [5].
Beyond those approaches, a unified description of dark
energy and dark matter using a new measure of integration
has been formulated [6–10]. Also, a diffusive interaction
of dark energy and dark matter models was introduced in
[11,12], and it has been found that diffusive interacting dark

energy–dark matter models can be formulated in the
context of an action principle based on a generalization
of those two-measures theories in the context of quintes-
sential scalar fields [13,14], although these models are not
equivalent to the previous diffusive interacting dark
energy–dark matter models [11,12].
One has to take now into consideration the measure-

ments on 17 August, 2017, of multimessenger gravitational
wave astronomy which are in contradiction to many
modified theories of gravity predictions. These observa-
tions commenced with the detection of the binary neutron
star merger GW170817 and its associated electromagnetic
counterparts [15]. Both signals place an exquisite bound on
the speed of gravity to be the same as the speed of light.
This constraint rejected many modifications to general
relativity [16–21] and also many unifications between dark
energy and dark matter.
A model, which also continues to be valid after the

GW170817 event, for a unification of dark energy and dark
matter from a single scalar field ϕ was suggested by Gao,
Kunz, Liddle, and Parkinson [22]. Their model is close to
traditional quintessence and gives dynamical dark energy
and dark matter but introduces a modification of the
equations of motion of the scalar field that apparently
are impossible to formulate in the framework of an action
principle. The basic stress energy tensor which was
considered in addition to the Einstein equation was
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Tμν ¼ −
1

2
ϕ;μϕ;ν þ UðϕÞgμν; ð1Þ

where ϕ is a scalar field and UðϕÞ is the potential for that
scalar. Assuming homogeneous and isotropic behavior, the
scalar field should be only time dependent ϕ ¼ ϕðtÞ. Then
the kinetic term − 1

2
ϕ;μϕ;ν is parameterizing the dark matter,

because it contains only energy density with no pressure,
and UðϕÞgμν is parameterizing the dark energy. The basic
requirement for this stress energy tensor is its conservation
law ∇μTμν ¼ 0. By assuming a constant potential
UðϕÞ ¼ const, the model provides from the potential the
traditional cosmological constant and the kinetic term of
the scalar field is shown to provide, from the conservation
law of the energy momentum tensor, that the kinetic term
dependence has a dustlike behavior:

−
1

2
∇μðϕ;μϕ;νÞ ¼ 0 ⇒ _ϕ2 ∼

1

a3
: ð2Þ

This simple case refers to the classical ΛCDM model. The
special advantage of this model is a unification of dark
energy and dark matter from one scalar field and has an
interesting possibility for exploring the coincidence
problem.
The lack of an action principle for this model brought us

to a reformulation of the unification between dark energy
and dark matter idea put forward by Gao, Kunz, Liddle, and
Parkinson [22] in the framework of a dynamical spacetime
theory [23,24], which forces conservation of the energy
momentum tensor in addition to the covariant conservation
of the stress energy momentum tensor that appears in the
Einstein equation. In the next section, we explore the
equations of motion for these theories. In the third section,
we solve analytically the theory for constant potentials
which reproduce the ΛCDM model with a bounce, which
gives a possibility to solve the initial big bang singularity.
In the last section, we solve the theory for an exponential
potential which gives a good possibility for solving the
coincidence problem.

II. DYNAMICAL SPACETIME THEORY

A. A basic formulation

One of the basic features in the standard approach
to theories of gravity is the local conservation of an energy
momentum tensor. In the field theory case, it is derived as
a result rather than a starting point. For example, the
conservation of energy can be derived from the time
translation invariance principle. The local conservation
of an energy momentum tensor can be a starting point
rather than a derived result. Let us consider a four-
dimensional case where conservation of a symmetric
energy momentum tensor Tμν

ðχÞ is imposed by introducing
the term in the action

SðχÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
χμ;νT

μν
ðχÞ; ð3Þ

where χμ;ν ¼ ∂νχμ − Γλ
μνχλ. The vector field χμ called a

dynamical spacetime vector, because of the energy density
of Tμν

ðχÞ, is a canonically conjugated variable to χ0, which is

what we expected from a dynamical time:

πχ0 ¼
∂L
∂ _χ0 ¼ T0

0ðχÞ: ð4Þ

If Tμν
ðχÞ is independent of χμ and having Γ

λ
μν being defined

as the Christoffel connection coefficients (the second-order
formalism), then the variation with respect to χμ gives a
covariant conservation law:

∇μT
μν
ðχÞ ¼ 0: ð5Þ

From the variation of the action with respect to the metric,
we get a conserved stress energy tensor Gμν (in appropriate
units), which is well known from the Einstein equation:

Gμν ¼ 2ffiffiffiffiffiffi−gp δ
ffiffiffiffiffiffi−gp

δgμν
½Lχ þ Lm�; ∇μGμν ¼ 0; ð6Þ

where Gμν is the Einstein tensor, Lχ is the Lagrangian
in (3), and Lm is an optional action that involves other
contributions.
Some basic symmetries that hold for the dynamical

spacetime theory are two independent shift symmetries:

χμ → χμ þ kμ; Tμν
ðχÞ → Tμν

ðχÞ þ Λgμν; ð7Þ

where Λ is some arbitrary constant and kμ is a Killing
vector of the solution. This transformation will not change
the equations of motion, which means also that the process
of redefinition of the energy momentum tensor in the action
(3) will not change the equations of motion. Of course, such
a type of redefinition of the energy momentum tensor is
exactly what is done in the process of normal ordering in
the quantum field theory, for instance.

B. A connection to modified measures

A particular case of the stress energy tensor with the
form Tμν

ðχÞ ¼ L1gμν corresponds to a modified measure

theory. By substituting this stress energy tensor into the
action itself, the determinant of the metric is canceled:

ffiffiffiffiffiffi
−g

p
χμ;μL1 ¼ ∂μð

ffiffiffiffiffiffi
−g

p
χμÞL1 ¼ ΦL1; ð8Þ

where Φ ¼ ∂μð ffiffiffiffiffiffi−gp
χμÞ is like a “modified measure.” A

variation with respect to the dynamical time vector field
will give a constraint on L1 to be a constant:
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∂αL1 ¼ 0 ⇒ L1 ¼ M ¼ const: ð9Þ

This situation corresponds to the two-measures theory
[25–27], where, in addition to the regular measure of
integration in the action,

ffiffiffiffiffiffi−gp
includes another measure

of integration which is also a density and a total derivative.
Notable effects that can be obtained in this way are the
spontaneous breaking of the scale invariance, the seesaw
cosmological effects [25], the resolution of the 5th force
problem in quintessential cosmology [28], and a unified
picture of both inflation and slowly accelerated expansion
of the present Universe [29,30]. As we mentioned before in
the introduction, the two-measures theory can serve to
build unified models of dark energy and dark matter.
Usually, the construction of this measure is from four

scalar fields φa, where a ¼ 1, 2, 3, 4:

Φ ¼ 1

4!
εαβγδεabcd∂αφ

ðaÞ∂βφ
ðbÞ∂γφ

ðcÞ∂δφ
ðdÞ; ð10Þ

and then we can rewrite an action that uses both of these
densities:

S ¼
Z

d4xΦL1 þ
Z

d4x
ffiffiffiffiffiffi
−g

p
L2: ð11Þ

As a consequence of the variation with respect to the
scalar fields φa, assuming that L1 and L2 are independent
of the scalar fields φa, we obtain that for Φ ≠ 0 it implies
that L1 ¼ M ¼ const as in the dynamical time theory with
the case of (9).

III. DE-DM UNIFIED THEORY FROM
DYNAMICAL SPACETIME

A suggestion of an action which can produce DE-DM
unification takes the form

L ¼ −
1

2
Rþ χμ;νT

μν
ðχÞ −

1

2
gαβϕ;αϕ;β − VðϕÞ: ð12Þ

Consisting of an Einstein Hilbert action (8πG ¼ 1),
quintessence, and dynamical spacetime action, when the
original stress energy tensor Tμν

ðχÞ is the same as the stress

energy tensor (1), Gao and colleagues used

Tμν
ðχÞ ¼ −

1

2
ϕ;μϕ;ν þ UðϕÞgμν: ð13Þ

The action depends on three different variables: the scalar
field ϕ, the dynamical spacetime vector χμ, and the metric
gμν. Therefore, there are three sets for the equation of
motions. For the solution, we assume homogeneity and
isotropy; therefore, we solve our theory with a Friedmann-
Lemaître-Robertson-Walker (FLRW) metric:

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − Kr2
þ r2dΩ2

�
: ð14Þ

According to this ansatz, the scalar field is just a function of
time ϕðtÞ and the dynamical vector field will be taken only
with a time component χμ ¼ ðχ0; 0; 0; 0Þ, where χ0 is also
just a function of time. A variation with respect to the
dynamical spacetime vector field χμ will force conservation
of the original stress energy tensor, which in Friedmann-
Lemaître-Robertson-Walker metric (FRWM) gives the
relation

ϕ̈þ 3

2
H _ϕþU0ðϕÞ ¼ 0: ð15Þ

Compared with the equivalent equation which comes from
the quintessence model, this model gives a different and
smaller friction term, as compared to the canonical scalar
field. Therefore, for an increasing redshift, the densities for
the scalar field will increase slower than in the standard
quintessence.
The second variation with respect to the scalar field ϕ

gives a nonconserved current:

χλ;λU
0ðϕÞ − V 0ðϕÞ ¼ ∇μjμ; ð16aÞ

jμ ¼ 1

2
ϕ;νðχμ;ν þ χν;μÞ þ ϕ;μ; ð16bÞ

and the derivatives of the potentials are the source of this
current. For constant potentials the source becomes zero,
and we get a covariant conservation of this current. In a
FLRW metric, this equation of motion takes the form

ϕ̈ð_χ0 − 1Þ þ _ϕ½χ̈0 þ 3Hð_χ0 − 1Þ�
¼ U0ðϕÞð_χ0 þ 3Hχ0Þ − V 0ðϕÞ: ð17Þ

Substituting the term of the potential derivative U0ðϕÞ from
Eq. (15):

½1 − 2_χ0 − 3Hχ0�ϕ̈ −
�
χ̈0 − 3Hþ 9

2
Hð_χ0 þ χ0HÞ

�
_ϕ

þ V 0ðϕÞ ¼ 0: ð18Þ
The last variation, with respect to the metric, gives the
stress energy tensor that is defined by the value of the
Einstein tensor:

Gμν ¼ gμν
�
1

2
ϕ;αϕ

;α þ VðϕÞ þ 1

2
χα;βϕ;αϕ;β þ χλϕ;λU0ðϕÞ

�

−
1

2
ϕ;μððχλ;λ þ 2Þϕ;ν þ χλ;νϕ;λ þ χλϕ;ν

;λÞ

−
1

2
ðχλϕ;μ

;λϕ
;ν þ χλ;μϕ;λϕ

;νÞ: ð19Þ

For the spatially homogeneous, cosmological case, the
energy density and the pressure of the scalar field are,
respectively,
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ρ¼ _ϕ2

�
_χ0

�
1−

3

2
H
�
−
1

2

�
þVðϕÞ− _ϕ_χ0ðU0ðϕÞþ ϕ̈Þ;

ð20aÞ

p ¼ 1

2
_ϕ2ð_χ0 − 1Þ − VðϕÞ − χ0 _ϕU0ðϕÞ: ð20bÞ

Substituting the potential derivative U0ðϕÞ from Eq. (15)
into the energy density term, makes the equation simpler:

ρ ¼
�
_χ0 −

1

2

�
_ϕ2 þ VðϕÞ; ð21Þ

which no longer has dependence on the potential UðϕÞ or
its derivatives. Those three variations are sufficient for
building a complete solution for the theory. Let us see a few
simple cases.

IV. THE EVOLUTION OF THE
HOMOGENEOUS SOLUTIONS

A. A bouncing ΛCDM solution

In order to compute the evolution of the scalar field and
to check whether it is compatible with the observable
Universe, we have to specify a form for the potentials. Let
us take a simplified case of constant potentials:

UðϕÞ ¼ C; VðϕÞ ¼ ΩΛ: ð22Þ
Overall, in the equations of motion, only the derivative the
potentialUðϕÞ appears, not the potential itself. Therefore, a
constant part of the potential UðϕÞ does not contribute to
the solution. However, VðϕÞ, as we shall see below, gives
the cosmological constant. The conservation of the stress
energy tensor from Eq. (15) gives

_ϕ2 ¼ 2Ωm

a3
; ð23Þ

whereΩm is an integration constant which appears from the
solution. From the second variation, with respect to the
scalar field ϕ, a conserved current is obtained, which from
Eq. (18) gives the exact solution of the dynamical time
vector field:

_χ0 ¼ 1 − κa−1.5; ð24Þ
where κ is another integration constant. Eventually, the
densities and the pressure for this potentials are given by
(21). By substituting the solutions for the scalar _ϕ and the
vector _χ0 (in units with ρc ¼ 8πG

3H2
0

¼ 1), we get

ρ ¼ ΩΛ −
Ωκ

a4.5
þΩm

a3
; ð25aÞ

p ¼ −ΩΛ −
1

2

Ωκ

a4.5
; ð25bÞ

where Ωκ ¼ κΩm. Notice that Ωm and Ωκ are integration
constants the solution contains and ΩΛ is a parameter from
the action of the theory. We can separate the result into three
different “dark fluids”: dark energy (ω ¼ −1), dark matter
(ω ¼ 0), and an exotic part (ω ¼ 1

2
), which is responsible for

the bounce (for κ > 0). FromEq. (23), the solution produces
a positive Ωm, since it is proportional to _ϕ2. For ΩΛ the
measurements for the late Universe forces the choice of this
parameter to be positive. However, for other solutions (in the
context of anti–de Sitter space, for instance), this parameter
could be negative from the beginning.
In Fig. 1, we can see the effective potential for different

values of Ωκ. For Ωκ ¼ 0, the solution returns to the known
ΛCDMmodel. However, for Ωκ < 0, we obtain a bouncing
solution which also returns to the ΛCDM for late time
expansion.
In addition to those solutions, there is a strong corre-

spondence between the zero component of the dynamical
spacetime vector field and the cosmic time. For ΛCDM,
there is no bouncing solution κ ¼ 0, and therefore, from
Eq. (24), we get χ0 ¼ t that implies that the dynamical time
is exactly the cosmic time. For bouncing ΛCDM (see
Fig. 2), we obtain a relation between the dynamical and the

FIG. 1. Plot of the effective potential. For Ωκ ≠ 0, there is a
bouncing universe with dynamical dark energy.

FIG. 2. Plot of _χ0 vs the cosmic time.

DAVID BENISTY and EDUARDO I. GUENDELMAN PHYS. REV. D 98, 023506 (2018)

023506-4



cosmic time with some delay between the dynamical time
and the cosmic time for the early Universe (in the bouncing
region). For the late Universe, the dynamical time returns
back to run as fast as the cosmic time again. This relation
between the dynamical and the cosmic time may have an
interesting application in the solution to “the problem of
time” in quantum cosmology which will discussed else-
where. Notice that the dynamical time is a field variable
while the cosmic time is a coordinate. The scale parameter
evolution depicted in Fig. 3 can show us the initial
conditions where _aðtÞ ¼ 0, because at that point aðtÞ is
a minimum. In addition, for all cases the initial condition
for the scale parameter is not zero að0Þ ≠ 0. These features
imply a bouncing universe solution.

B. Interacting DE-DM

1. Autonomous system method

For studying the evolution of the scalar field in the case
of interacting DE-DM, we address more generic potentials.
For instance,

UðϕÞ ¼ C; VðϕÞ ¼ ΩΛe−βϕ; ð26Þ

where β > 0 (if not, we can perform the transformation
ϕ → −ϕ). In the limit β → 0, the solution returns to the
constant potentials case, and therefore the model is con-
tinuously connected to ΛCDM, at least as far as the
background evolution is concerned. The first equation of
motion (15) gives us the last case (23) or in this form

ϕ̈ ¼ −
3

2
H _ϕ: ð27Þ

The equation of motion with respect to the scalar field ϕ
can be expressed with a new dimensionless parameter:

δ ¼ _χ0 − 1; ð28Þ

which represents the difference of the rates of change
between the zero component of the dynamical spacetime
vector and the actual cosmic time. The equation of motion
(17) in terms of this variable gets the form

_ϕ

�
_δþ 3

2
Hδ

�
¼ βVðϕÞ: ð29Þ

Notice that for β ¼ 0 the relation for δ ¼ 2κa−1.5 is
Eq. (24). The main equations of the dynamical system
are given by the following dimensionless quantities:

x ¼
_ϕffiffiffi
6

p
H
; y ¼

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp
ffiffiffi
3

p
H

; ð30Þ

where x and y are represent the density parameters of the
kinetic (dark-matter-like) and potential (dark-energy-like)
terms, respectively. With those three new parameters
ðx; y; δÞ, the equation of motion with respect to the metric
is written as

ð1þ 2δÞx2 þ y2 ¼ 1: ð31Þ
Assuming low values of β, the dynamical time and the

cosmic time approximately coincide (see Fig. 3), and
therefore δ ≈ 0. The phase portrait in that case should
not deviate too much from a closed circle. Hence, Eq. (30)
can be written by the following autonomous system
equations:

dx
dτ

¼ −
3x
4
ðx2 − 1þ 3y2Þ; ð32aÞ

dy
dτ

¼ −
y
4
ð−9þ 3x2 þ 9y2 þ 2

ffiffiffi
6

p
xβÞ; ð32bÞ

where τ ¼ ln a. The equation of state ω also can be
written as

ωχ ¼
1

2
ð1 − x2 − 3y2Þ: ð33Þ

The properties of a few fixed points for the exponential
potential are presented in Table I. In addition, the phase
plane of the autonomous system shown in Fig. 4, with the
points that are mentioned in the table. The features of the
fixed points can separate to two cases.

FIG. 3. Plot of the scale parameter vs the cosmic time. In any
case, _χ0 ≈ 1.

TABLE I. The properties of the critical points for the expo-
nential potential.

Name Existence Stability Universe

A All β Unstable � � �
B All β Stable for β >

ffiffi
3
2

q
Dark matter

C All β Asymptotically stable Dark energy
D β >

ffiffi
3
2

q
Unstable saddle point Unified DE-DM
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One case is when β <
ffiffi
3
2

q
and all of the solutions are

flowing into a dark energy dominated universe [point C
ðx ¼ 0; y ¼ 1Þ]. The dark matter dominated universe is an
unstable point [point B ðx ¼ 1; y ¼ 0Þ] that the universe
goes though which corresponds to the dark matter epoch. In
any case, point A [ðx ¼ 0; y ¼ 0Þ, which represents no dark
matter and no dark energy, does not really exist because
of the contradiction to Eq. (31). However, if the initial
condition starts close to this point, it is driven into dark

energy dominance eventually, as you can see in Fig. 5.
Also, for this case the shape of the phase portrait looks
as a circle, which ensures our assumption about the
identification between the dynamical spacetime and the
cosmic time.

In the second case, β >
ffiffi
3
2

q
and there are two stable fixed

points. One for dark energy (C) and one for dark matter (B).
If the initial conditions are close enough to those points,
it will be attracted into them. In addition, a saddle point D

FIG. 4. The phase plane for different values of β.

FIG. 5. The evolution of DE-DM ratios and eδ ∼ 1 for small values of β.
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�
x ¼

ffiffi
3
2

q
1
β ; y ¼

ffiffiffiffiffiffiffiffiffi
2β2−3

p ffiffi
6

p
β

�
is obtained. For this point, the

ratio between the pressure and the density is ω ¼ − 2
3
þ 1

β2
.

Some solutions are attracted to this point, but eventually
they are repelled to the closer point. However, the case of

β >
ffiffi
3
2

q
contradicts the assumption that β is small enough

in order not to deviate from ΛCDM. Also, for this case the
shape of the phase portrait deviates from a circle, which
implies a big deviation between the dynamical spacetime
and the cosmic time.
This modification, which adds one exponential potential,

is not the most general case, since we could also add
an additional potential which would enter into the Tμν

ðχÞ.
We suspect that some form of the potentials which are
more general could cause pointD to become stable and will
lead us to a more comprehensive understanding of the
cosmic coincidence problem, which we will investigate in
the future.

2. Evolution of physical quantities

In order to assess the viability of the model, let us see
how some physical quantities change vs the redshift (z).
The connection between the cosmic time derivative and a
redshift derivative is

d
dt

¼ −HðzÞðzþ 1Þ d
dz

; ð34Þ

which has been obtained from the scale factor dependence
on z, aðzÞ ¼ a0

zþ1
. Figure 5 describes the cosmological

energies densities Ωm and ΩΛ vs the redshift. For the
β ¼ 0 case, which refers to ΛCDMmodel (any time we can
set Ωκ to be zero or small), we can see that in earlier times
Ωm becomes dominant; for earlier times, that is, for the very
early Universe, Ωκ (which we have taken to be very small
except for the very early Universe) dominates. For different
values of β, we can see a slight shift from ΛCDM, which
should be more dominant in the early Universe. The
variable δ, that measures the difference in the evolution
of the dynamical time and the cosmic time, which in the
case of β ¼ 0 gives a contribution that can be parametrized
by Ωκ, has been taken to be very close to zero in all cases
except for the very early Universe, because there a strong
impact exists, close to the bounce that replaces now the
traditional big bang.
In Fig. 6, we can see the evolution of the equation of state

of the whole Universe as a function of the redshift. It
behaves as cold dark matter dominated at higher redshifts
and dark energy for the lower redshifts. The behavior does
not tremendously change for those values of the redshift,
but the deviations are measurable.
The set of potentials that were suggested in this section

have a nice feature which reduces the dependence on the
number of quantities. In this way, a suggestive and

convenient parametrization of the solution uses the variable
δ ¼ _χ0 − 1, which contains all the dependence on χ0. In the
future, it would be interesting to investigate how different
potentials would affect the physical quantities of the
Universe. However, unlike other models of dark energy
and dark matter, even a trivial assumption of constant
potentials leads directly to a unification of dark energy and
dark matter. In any case, any generalization should assume
a constant potential asymptotically.

V. DISCUSSION AND FUTURE WORK

In this paper, the unified dark energy and dark matter
from a scalar field different from quintessence is formulated
through an action principle. Introducing the coupling of a
dynamical spacetime vector field to an energy momentum
tensor that appears in the action determines the equation
of motion of the scalar field from the variation of the
dynamical spacetime vector field or effectively from the
conservation law of an energy momentum tensor, as in
Ref. [22]. The energy momentum tensor that is introduced
in the action is related but not, in general, the same as the
one that appears in the right-hand side of the gravitational
equations, as opposed to the non-Lagrangian approach of
Ref. [22], so our approach and that of Ref. [22] are not
equivalent. However, in many situations the solutions
studied in Ref. [22] can be also obtained here, but there
are other solutions, in special nonsingular bounce solutions
which are not present in Ref. [22].
In those simple solutions, the dynamical time behaves

very close to the cosmic time. In particular, in solutions
which are exactly ΛCDM, the cosmic time and the dynami-
cal time exactly coincidewith each other. If there is a bounce,
the deviation of the dynamical time with respect to the
cosmic time takes place only very close to the bounce region.
The use of this dynamical time as the time in theWheeler–de
Witt equation should also be a subject of interest.
In principle, we can introduce two different scalar

potentials: one coupled directly to
ffiffiffiffiffiffi−gp

and the other
appearing in the original stress energy tensor Tμν

ðχÞ. So far,

FIG. 6. The equation of state of the Universe for different
values of β.
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for the purposes of starting the study of the theory, we have
introduced only a scalar potential coupled directly to

ffiffiffiffiffiffi−gp
and shown that this already leads to an interacting dark
energy–dark matter model, although the full possibilities of
the theory will be revealed when the two independent
potentials are introduced.
Possible signatures for this model or for more general-

ized forms could be identified from the cosmological
perturbation theory. For instance, the perturbation for the
scalar field is clear. However, the perturbation for the vector
field could be represented with more degrees of freedom
which can reproduce a different power spectrum for the
cosmic microwave background (CMB) anisotropies, for
instance. But, more than this, the model that was suggested
in the last part was only with an exponential potential.
However, many combinations of potentials are applicable
for testing the evolution for the energy densities and using
data fitting for those models. The benefits for these models
are that they still preserve the speed of gravity equal to the
speed of light and also that arise from an action principle.
Researching those families of solutions with more general
potentials could help solve the coincidence problem.
The effects studied in the context of the bouncing

solution, which can prevent the initial big bang singularity,
could have consequences for the radially falling solutions,
since as we have seen the kappa term can introduce a
repulsive force that prevents the big bang singularity; there
will very likely be a corresponding effect when we study

radial collapse of matter, and then the analogous term, that
in the homogeneous cosmology solutions prevents the big
bang singularity, will in this case prevent the collapse to
very high densities. This will, in turn, suppress the structure
formation at low redshifts as compared to the expectations
from the perturbations observed in the CMB, thus maybe
explaining the σ8 [31–33] -Ωm tension. Notice that this
effect on perturbations can take place even for constant
potentials, that is, without modifying the standard ΛCDM
homogeneous background, since in the homogeneous
background the κ term acts only in the very early Universe.
Finally, another direction for research has been started by

studying models of this type in the context of higher-
dimensional theories, where they can provide a useful
framework to study the “inflation-compactification” epoch
and an exit from this era to the present ΛCDM epoch could
be further explored [34].
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