
 

Star clusters, self-interacting dark matter halos, and black hole cusps:
The fluid conduction model and its extension to general relativity

Stuart L. Shapiro*

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 1 June 2018; published 31 July 2018; corrected 25 September 2018)

We adopt the fluid conduction approximation to study the evolution of spherical star clusters and self-
interacting dark matter (SIDM) halos. We also explore the formation and dynamical impact of density
cusps that arise in both systems due to the presence of a massive, central black hole. The large N-body, self-
gravitating systems we treat are “weakly collisional”: the mean free time between star or SIDM particle
collisions is much longer than their characteristic crossing (dynamical) time scale, but shorter than the
system lifetime. The fluid conduction model reliably tracks the “gravothermal catastrophe” in star clusters
and SIDM halos without black holes. For a star cluster with a massive, central black hole, this
approximation reproduces the familiar Bahcall-Wolf quasistatic density cusp for the stars bound to the
black hole and shows how the cusp halts the “gravothermal catastrophe” and causes the cluster to re-
expand. An SIDM halo with an initial black hole central density spike that matches onto to an exterior
NFW profile relaxes to a core-halo structure with a central density cusp determined by the velocity
dependence of the SIDM interaction cross section. The success and relative simplicity of the fluid
conduction approach in evolving such “weakly collisional,” quasiequilibrium Newtonian systems
motivates its extension to relativistic systems. We present a general relativistic extension here.

DOI: 10.1103/PhysRevD.98.023021

I. INTRODUCTION

The fluid conduction approximation has been adopted
successfully to study the dynamical evolution of a spherical
star cluster, (see, e.g., [1–8]) as well as a self-interacting
dark matter (SIDM) halo (see, e.g., [7–9]). In this approach,
the ensemble of gravitating particles is modeled by a
“weakly collisional” fluid in quasistatic, virial equilibrium.
The local temperature is identified with the square of the
velocity dispersion and thermal heat conduction is
employed to reflect the manner in which orbital motion
and scattering combine to transfer energy in the system.
The basis of the heat conduction equations are moments of
the Boltzmann equation, substituting a simple model for the
collision terms.
This gravothermal fluid formalism was originally intro-

duced for the study of globular star clusters, where it has
proven to be very useful in understanding the secular
evolution of these systems on relaxation time scales. The
agreement between this fluid approach with more detailed
(e.g., Fokker-Planck) treatments comes about despite the
fact that star clusters are only weakly collisional and have
long collision mean free paths greatly exceeding the size of
the cluster, where thermalization is achieved by the cumu-
lative effect of repeated, distant, small-angle gravitational

(Coulomb) encounters. The Fokker-Planck equation treats
the phase space distribution function f, whose evolution is
driven by diffusion coefficients involving integrals of f over
the entire system.By contrast, the fluid conduction equations
evolve locally defined quantities (the density and velocity
dispersion at a given spatial coordinate), although this
approach incorporates a relaxation time scale and an effective
mean free path in the heat conductivity that are based on
global considerations and collision integrals over the entire
system. In fact, the fluid conduction descriptionmay be even
better suited to SIDM halos, for which the dominant
thermalizing particle interactions in some models may be
close-encounter, large-angle (hard-sphere) scatterings. It is
reassuring, nevertheless, that, even in the case of weakly
collisional systems such as star clusters, the fluid conduction
prescription does reproduce many of the results found in
more fundamental analyses of the (weakly) collisional
Boltzmann equation,with collisions treated viamore precise,
but computationally more demanding, Monte Carlo
approaches or direct Fokker-Planck integrations (see reviews
in, e.g., [2,10–13], and a recent summary of methods in [14],
and references therein). All of these approaches can be
extended to treat anisotropic and multicomponent systems.
An isolated, self-gravitating N-body system in virial

equilibrium will relax via gravitational encounters (scatter-
ing) to a state consisting of an extended halo surrounding
a nearly homogeneous, isothermal central core. As time
advances, the core transfers mass and energy through the
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flow of particles and heat to the extended halo. The thermal
evolution time scale of the dense core is much shorter than
that of the extended halo, which essentially serves as a
quasistatic heat sink. As the core evolves, it shrinks in size
and mass, while its density and temperature grow. Increase
of central temperature induces further heat transfer to the
halo, leading to a secular instability on a thermal (colli-
sional relaxation) time scale. The secular contraction of the
core towards infinite density and temperature but zero mass
is known as the “gravothermal catastrophe” (see, e.g., [2]).
The late-time, homologous nature of this secular instability
is well-described by the fluid conduction model, as first
shown by Lynden-Bell and Eggleton [1]. They solved the
equations by separation of variables, looking for a self-
similar solution applicable at late times.
A critical departure from the secular contraction scenario

occurs when a dynamical instability sets in, which can
occur when the particle velocities in the core, or, equiv-
alently, when the central potential, become relativistic. As
originally conjectured by Zel’dovich and Podurets [15] and
explicitly demonstrated by Shapiro and Teukolsky [16–19],
collisionless systems in virial equilibrium typically expe-
rience a radial instability to collapse on dynamical time
scales when their cores become sufficiently relativistic.
This dynamically instability terminates the epoch of secular
gravothermal contraction in clusters and leads to the
catastrophic collapse of a core of finite mass to a black
hole. The general relativistic simulations of the catastrophic
collapse of relativistic clusters, which are essentially
collisionless on dynamical time scales, by Shapiro and
Teukolsky were performed in part to explore the possible
origin of the supermassive black holes (SMBHs) that exist
at the centers of most galaxies and quasars. Such a SMBH
formation scenario might occur in relativistic clusters of
compact stars following the gravothermal catastrophe
[20–23]. A similar SMBH formation scenario may also
occur in SIDM halos, as originally proposed by Balberg
and Shapiro [24].
The existence of dense clusters of stellar-mass black

holes and/or other compact objects in the cores of galaxies
has been given a boost by the recent discovery of a swarm
of black holes, inferred to be 2 × 104 in number, within one
parsec of the supermassive black hole Sagittarius A* at the
center of the Galaxy [25]. Concentrations ranging from
several thousands to tens of thousands of stellar-mass black
holes in this region have long been predicted by numerous
investigators (see, e.g., [26–29]). Such systems in the nuclei
of other galaxies have been suggested (see, e.g., [30,31]
and references therein) as the likely sites for the formation
of the binary black holes whose mergers have been
observed by Advanced LIGO/VIRGO (e.g., [32,33]).
Here we briefly review the fluid conduction model and

solve it numerically to evolve spherical, isotropic, single
component star clusters and SIDM halos. To calibrate our
code, we first integrate the full system of equations, starting

from a Plummer model, to track the full evolution and
development of the gravothermal catastrophe in star clus-
ters. By contrast, the original treatment using this approach
for isolated star clusters (see, e.g., [1] and the summary in
[2]) only considered the late-time, self-similar behavior,
after the gravothermal catastrophe was well underway.
We then apply the model to probe the effect of a massive,
central black hole on the cluster density and velocity
profiles, and its impact on the secular evolution of the
system. While these features have been studied previously,
they have not been analyzed by solving the fluid con-
duction equations. We recover the familiar Bahcall-Wolf
([34], hereafter BW) power-law profiles that dominate the
central cusp embedded in a static, nearly homogeneous,
isothermal core of equal-mass stars: the cusp density varies
with radius as ρ ∝ r−7=4 and the velocity varies as
v ∝ r−1=2. We then show how the presence of the cusp,
which drives heat into core, eventually halts the gravo-
thermal catastrophe, causing it to reverse its contraction and
the cluster to re-expand. We predicted this behavior using a
simple homologous cluster model [35] and it was corrobo-
rated subsequently by our Monte Carlo simulations of the
two-dimensional Fokker-Planck equation for the stellar
phase space distribution function fðE; J; tÞ describing a
spherical cluster containing a central black hole [36,37]
(see also [38]).
In this paper, we next apply the fluid conduction model

to isolated SIDM halos, following up on our original
treatment [7] of these systems. We previously explored
the gravothermal catastrophe in such systems, probing
both the late self-similar evolution of a typical system in
which the mean free path between collisions λ is initially
longer than the scale heightH everywhere (which is always
true in a star cluster), and then tracking the general time-
dependent evolution of such systems. We found that λ can
eventually become smaller than H in the innermost core, at
which point that region behaves like a conventional fluid.
At late times the core becomes relativistic and likely
unstable to dynamical collapse to a black hole, as discussed
above. We then determined the steady-state cusp that forms
around a massive central black in an ambient, static SIDM
core, solving the steady-state fluid conduction equations
both in Newtonian gravity and general relativity [8]. We
showed that the density in the cusp scales with radius as r−β

for an interaction cross section that varies with velocity as
σ ∼ v−a, where β ¼ ðaþ 3Þ=4.
By contrast, here we allow an SIDM halo to evolve in

response to the central black hole. Specifically, we consider
an SIDM halo born with a Navarro-Frenk-White (NFW)
[39] density profile by the usual collisionless, cosmological
halo formation mechanism. We assume that soon thereafter
a central density spike forms in the halo in response to the
adiabatic growth of a massive, central black hole. We then
show, by solving the fluid conduction equations, that the
spike evolves into a BW-like cusp which drives heat into
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the ambient halo, ultimately causing the core to expand, as
in the case of a star cluster.
Given the utility of the fluid conduction model as

demonstrated anew by the above applications, we present
for the first time the full set of fluid conduction equations for
following the secular evolution of a weakly collisional
system in general relativity. General relativistic simulations
have been performed for the dynamical evolution of com-
pletely collisionless systems, as summarized above, as well
as for relativistic fluid systems, such as stars. But as far as we
are aware, there have beenno implementations of a scheme to
track the secular evolution of relativistic systems that are
“weakly collisional.” Yet, as discussed above, the gravo-
thermal catastrophe in star clusters and SIDM halos can
ultimately driveNewtonian systems to a “weakly collisional”
relativistic state. The secular evolution of such a relativistic
system immediately thereafter is governed neither by the
collisionless Boltzmann (Vlasov) equation nor the “strongly
collisional” equations of relativistic hydrodynamics. It is thus
necessary to provide a general relativistic formalism to
bridge the epochs from Newtonian secular core contraction
to relativistic dynamical collapse, and we do so here.
We emphasize that by focusing on the fluid conduction

model in this paperwe in noway offer it as a substitute for the
more precise approaches mentioned above that have been
designed, at least in Newtonian theory, to track the detailed
evolutionofweakly collisional, largeN-body, self-gravitating
systems. Rather, our treatment here is presented to highlight
the robustness and versatility of a scheme that is capable of
physically reliable, first approximations to solutions of a
great many problems that can be obtained with aminimumof
computational resources and time. All calculations reported
in this paper were performed on a single laptop. In the case
of relativistic systems, we provide an approach where no
schemes have been presented previously.
In Sec. II, we present the Newtonian fluid conduction

equations for spherical, isotropic systems and cast them into
two different forms, both of which are useful numerically.
In Sec. III, we apply these equations to probe the secular
evolution of several astrophysically realistic systems. These
include a star cluster that begins as a Plummer model and
undergoes the gravothermal catastrophe, as well as a
Plummer model in which we suddenly insert a massive,
central black hole and follow the resulting dynamical
behavior. We also treat the secular evolution of SIDM halos
containing a massive, central black hole. In Sec. IV, we
present the general relativistic fluid conduction equations
for spherical, isotropic systems.
We adopt geometrized units and set G ¼ 1 ¼ c

throughout.

II. NEWTONIAN TREATMENT

The basic Newtonian fluid conduction equations are
given by [1,2,7,8]

∂M
∂r ¼ 4πr2ρ ð1Þ

∂ðρv2Þ
∂r ¼ −ρ

M þMh

r2
ð2Þ

∂L
∂r ¼ −4πr2ρ

�
D
Dt

3v2

2
þ P

D
Dt

1

ρ

�

¼ −4πr2ρv2
D
Dt

ln

�
v3

ρ

�
ð3Þ

Equation (2) is the equation of hydrostatic equilibrium,
where ρ is the matter density, v is the one-dimensional
matter velocity dispersion,M ¼ MðrÞ is the mass of matter
interior to radius r, Mh is the central black hole mass, if
present, and P is the kinetic matter pressure, which satisfies
P ¼ ρv2. Equation (3) is the first law of thermodynamics
for the rate of change of ln s, the specific entropy of the
matter, where we define s by

s ¼
�
v3

ρ

�
: ð4Þ

The quantity L is the luminosity due to heat conduction.
The time derivatives in Eq. (3) are Lagrangian, and follow a
given mass element.
For all applications considered in this paper L is a

conductive heat flux evaluated in the long mean free path
limit,

L
4πr2

¼ −3bρ
H2

tr

∂v2
∂r : ð5Þ

(But see [7], Eq. (13) for the more general case). In writing
Eq. (5), we evaluated the kinetic temperature of the particles
according to kBT ¼ mv2, where kB is Boltzmann’s constant.
The parameter b is constant of order unity andH is the local
particle scale height. The quantity tr is the local relaxation
time scale. Its functional form depends on the matter
interactions (Coulomb scattering for stars, other possibilities
for SIDM) and will be assigned below for each application.
In the absence of a massive, central black hole, the scale

height is taken to be the local Jeans length H ¼ rJ ¼
ð3v2=12πρÞ1=2 [see, e.g., [2], Eq. (1–24)] By contrast, in
the presenceof a blackhole, thematter at r that is bound to the
black hole in the cusp andmoves in a potential dominated by
the hole has a scale height that is comparable to its character-
istic orbital radius r ≪ rJ. For a system containing a black
hole it proves sufficient then to set H ¼ minðr; rJÞ, which
accommodates the matter both inside and outside the cusp.
It is straightforward to generalize the set of equations to

accommodate multicomponent systems containing par-
ticles of different masses and/or species. In such cases,
there will be separate hydrostatic equilibrium and entropy
evolution equations for each component. In each entropy
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equation, there will be, in addition to the self-interaction
heat conduction term, pairwise thermal coupling terms to
all the other components. These terms are each proportional
to the difference in the local temperatures of the compo-
nents and conduct heat from hotter to colder members
(see, e.g., [4]). The effect of these coupling terms is to drive
the system to equipartition, which in turn leads to mass
segregation. In this paper, however, we shall focus on single
component systems.
It is sometimes computationally useful to express the

evolution equations using M ¼ MðrÞ as the independent
Lagrangian variable in order to maintain adequate coverage
of the matter over the vast dynamical range of density
and radius that accompanies the gravothermal instability
or the formation of a cusp around a central black hole.
Consequently we have r ¼ rðt;MÞ, ρ ¼ ρðt;MÞ, etc., and
Eqs. (1)–(5) become

∂r
∂M ¼ 1

4πr2ρ
; ð6Þ

∂ðρv2Þ
∂M ¼ −

M þMh

4πr4
ρ; ð7Þ

L
4πr2

¼ −3bρ
H2

tr
4πρr2

∂v2
∂M ; ð8Þ

and

D
Dt

ln

�
v3

ρ

�
¼ −

1

v2
∂L
∂M : ð9Þ

The above system of equations for a virialized cluster is
quite similar in form to the equations of stellar evolution,
where one is also solving for the secular evolution of a
configuration in hydrostatic equilibrium.

A. Star clusters

1. Relaxation timescale

In a star cluster, relaxation is driven by multiple, small-
angle gravitational (Coulomb) encounters. The local relax-
ation time scale is given by (see e.g., [2,10])

trðstarsÞ ¼
33=2v3

4παmρ lnð0.4NÞ ;

≃ 0.7 × 109 yr

�
v

km sec−1

�
3

×

�
M⊙pc−3

ρ

��
M⊙

m

��
1

lnð0.4NÞ
�
; ð10Þ

where α ¼ 1.22, m is the stellar mass and N is the total
number of stars in the cluster.

2. Nondimensional equations

It is computationally convenient to cast the fluid con-
duction Eqs. (6)–(9) into nondimensional form. This is
accomplished by introducing a fiducial massM0 and radius
R0, in terms of which corresponding nondimensional
parameters are denoted by a tilde according to

r ¼ R0r̃;

M ¼ M0M̃: ð11Þ

The parameters M0 and R0 then define a characteristic
velocity, density, time scale, and entropy parameter,

v0 ¼
�
M0

R0

�
1=2

; 4πρ0 ¼
�
M0

R3
0

�
;

t0 ¼ tr0
1

6b
; s0 ¼

v30
ρ0

; ð12Þ

which yield corresponding nondimensional quantities,

v ¼ v0ṽ; ρ ¼ ρ0ρ̃0 t ¼ t0 t̃ s ¼ s0s̃: ð13Þ

In Eq. (12), tr0 is the relaxation time scale in Eq. (10),
evaluated for v ¼ v0 and ρ ¼ ρ0. The parameter b appear-
ing in Eqs. (8) and (12) is equal to 0.45 for star clusters [2].
Inserting Eq. (8) into Eq. (9), writing Eqs. (6)–(9) in terms
of nondimensional variables, and then dropping the tildes,
yields

∂r
∂M ¼ 1

r2ρ
ð14Þ

∂ðρv2Þ
∂M ¼ −

M þMh

r4
ρ ð15Þ

D
Dt

ln s ¼ 1

v2
∂
∂M

�
r4ρ2

�
H2

r2J

� ∂v
∂M

�
: ð16Þ

An alternative form for the entropy equation is

Ds
Dt

¼ v
ρ

∂
∂M

�
r4ρ3

3v2

�
H2

r2J

� ∂s
∂M þ r4ρv

3

�
H2

r2J

� ∂ρ
∂M

�
: ð17Þ

The optimal way of numerically integrating the fluid
conduction equations presumably would be to implement
the Henyey method, as in a typical, battle-tested, stellar
evolution code (see a description in, e.g., [40], Sec. 6–4). In
the interest of obtaining quick results with minimal code
writing or adaptation, it has proven adequate to integrate
Eqs. (14)–(16) via a straightforward explicit forward-time,
center-spaced finite-difference scheme. First, the diffusion-
like (parabolic) evolution equation (16) is integrated for-
ward in time on a time step Δt restricted by the (crudely
estimated) Courant time step,
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Δt ¼ 0.5min

�ðΔMÞ2
D

�
× C;

D ≈
r4ρ2

3v

�
H2

r2J

�
; C ≈Oð1Þ; ð18Þ

where ΔM is the grid spacing, D is an effective diffusion
constant, C is a constant Courant factor of order unity, and
the minimum is taken over all the grid points.
Next, using the value of sðt;MÞ ¼ v3=ρ obtained at the

new time, Eqs. (14) and (15) are iterated to obtain
rðt;MÞ; ρðt;MÞ and vðt;MÞ on that time. Solving
Eq. (16) in a follow-up predictor-corrector step (or adopting
a higher-order, time-centered, iterative scheme) is a refine-
ment that was tested but proven unnecessary in practice for
reliable results. The spatial differencing is second order in
the Lagrangian variable M.
For clusters containing black holes, tracking the very late

evolution and re-expansion proves difficult with the above
explicit scheme, as the Courant time step plummets when
the cusp develops and the central (Lagrangian) grid spacing
drops as the central density grows. Instead, we integrate
Eq. (17) rather than Eq. (16), grouping the terms linear in s
and evaluating s implicitly in time. Solving the resulting
linear (tridiagonal) finite-difference equations for s is no
longer governed by a Courant condition for stability, so
longer time steps tuned to the evolution time scale, and
not the decreasing conduction time scale across a central
grid point, can be exploited (i.e., C can be chosen much
larger than unity). Once s is determined on the new time
step, Eqs. (14) and (15) may be iterated as before.

3. The gravothermal catastrophe

As our first application, we track the secular evolution of
a cluster that begins as a Plummer model without a central
black hole (i.e., Mh ¼ 0).

Initial data.—A Plummer model is an equilibrium poly-
trope of index n ¼ 5 that has a finite total mass MP and an
infinite radius. We cut off the cluster at a finite radius
containing 99% of the total mass. The Plummer density,
velocity and mass profiles are given by [see, e.g., [2],
Eqs. (1-17)–(1-19)]

ρðrÞ ¼ 3MP

4πa3
1

ð1þ r2=a2Þ5=2

v2ðrÞ ¼ MP

a
1

6ð1þ r2=a2Þ1=2

MðrÞ ¼ MP
r3=a3

ð1þ r2=a2Þ3=2 ð19Þ

We use the total mass MP and the scale factor a to set the
mass and radius scale introduced in Eq. (11): M0 ≡MP

and R0 ≡ a=21=2.

Boundary conditions.—We assume regularity at the cluster
center, e.g.,

∂ρ
∂r → 0;

∂v
∂r → 0; M → 0; ð20Þ

and take the density and pressure to vanish at the surface,

ρ ¼ 0; ρv2 ¼ 0; M ¼ 1: ð21Þ
These conditions suffice to determine the system and are
implemented in the finite difference equations. For exam-
ple, Eqs. (20) and (21) are both used in finite differencing
Eqs. (16) and (17), while Eq. (21) is used in Eq. (15),
starting at the cluster surface and integrating inward.

Numerical results.—The fluid conduction system of equa-
tions were finite-differenced with 281 grid points in M,
logarithmically spaced. We set H ¼ rJ everywhere. The
evolution equation for s was integrated in time both
explicitly via Eq. (16) and implicitly via Eq. (17). In
both cases, the time step was set by Eq. (18) with C equal
to 3, although considerably higher values of C also proved
satisfactory using the implicit version, as expected. The
two sets of integrations gave results that were very
comparable; we will describe those obtained with the
explicit implementation below. Integrations with half and
twice as many grid points showed convergence with
decreasing grid spacing.
The results of the numerical integration are summarized in

Figs. 1–3. The asymptotic behavior revealed in the plots at
late times clearly exhibits the familiar gravothermal insta-
bility in a star cluster. Fig. 1 plots snapshots of the density
profile at selected times and shows that the nearly homo-
geneous core undergoes contraction on a secular time scale,
growing in central density while encompassing an ever
decreasing fraction of the total mass. Once the contraction
is well underway (t ≫ trcð0Þ, where trcð0Þ is the initial
central relaxation time scale) the density approaches the
self-similar solution of Lynden-Bell and Eggleton [1] for
gravothermal collapse. In particular, the density profile in
the envelope approaches ρ ∝ r−ð2þβÞ ∝ r−2.21, where β ¼
ð1 − ζÞ=ð2 − ζÞ and ζ ¼ 0.737 [cf. [2], Eqs. (3–33) and
(3–34)]. Fig. 2 plots snapshots of the velocity dispersion
profile at corresponding times, showing that the shrinking
core is nearly isothermal, while the envelope dispersion
scales as v ∼ ðMðrÞ=rÞ1=2 ∼ ðρr2Þ1=2 ∝ r−0.11. Fig. 3 illus-
trates good agreement with the asymptotic temporal relations
that characterize the asymptotic self-similar solution [cf. [2],
Eqs. (3–6)–(3–8), (3–46) and (3–47)]:

ρc
ρcð0Þ

¼
�
1 −

t
tcoll

�−2ð5−3ζÞ
ð7−3ζÞ ¼

�
1 −

t
tcoll

�
−1.165

;

vc
vcð0Þ

¼
�

ρc
ρcð0Þ

� ð1−ζÞ
2ð5−3ζÞ ¼

�
1 −

t
tcoll

�
−0.0550

; ð22Þ
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where tcoll is the core collapse time, at which the central
density ρc blows up to infinity while the core mass shrinks
to zero. The velocity is thus seen to change much more
slowly than the density during the collapse. We also
recover asymptotically the self-similar solution result that
the time remaining before complete collapse is a constant
multiple of the instantaneous central relaxation time
[cf. [2], Eq. (3–47)],

tcoll − t
trc

¼ 2ð5 − 3ζÞ
ð7 − 3ζÞ

1

ξc
≈ 320; ð23Þ

where ξc ≈ 3.6 × 10−3.

4. Black hole in a static ambient cluster

Here we probe the formation of the cusp around a
massive black hole Mh ≪ MP inserted at the center of the
same Plummer star cluster described in Eq. (19). We fix for
all t ≥ 0 the cluster profile outside the inner core but allow
the region near and within the black hole’s zone of
influence at r ≤ rh to relax in the presence of the hole.
Here rh ¼ Mh=v2ð0Þ, where vð0Þ is the central velocity
dispersion in the initial cluster. The velocity dispersion is
nearly constant in the core and remains unperturbed well
outside rh. We expect the cluster to evolve to the BW

FIG. 1. The gravothermal castastrophe: snapshots of the
density profile at selected times. The curved dashed red line
shows the density at time t ¼ 0. Successively higher solid blue
curves show the density at t ¼ 2.107, 2.826, 3.159, 3.313,
3.378. 3.399, and 3.402. The straight dashed black line shows
the slope for the self-similar solution, to which the envelope
asymptotes at late times. All quantities are in nondimensional
units defined in Eqs. (11)–(13), for which t0 ≈ 9.71trcð0Þ.

FIG. 2. The gravothermal catastrophe: snapshots of the velocity
dispersion profile at the same selected times depicted in Fig. 1.
The core velocity dispersion increases with time. The straight
dashed black curve shows the slope for the self-similar solution,
to which the envelope asymptotes at late times. All quantities are
in nondimensional units defined in Eqs. (11)–(13).

FIG. 3. The gravothermal catastrophe: the central density
(upper two lines) and velocity dispersion (lower two lines) as
functions of time. The solid blue lines plot the results of
integrating the full fluid conduction equations, while the dashed
black lines show the late-time self-similar slopes, Eq. (22). The
quantity tcoll is the core collapse time. All quantities are in
nondimensional units defined in Eqs. (11)–(13).
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profile in the cusp and relax to a steady-state. Once again
we take M0 ≡MP and R0 ≡ a=21=2.

Initial data.—We take rh=rcore ¼ 10−3, where the core
radius rcore is defined to be the radius at which the density
ρ falls to one-half its central value: rcore ¼ að22=5 − 1Þ1=2
or rcore ¼ 0.799 in our nondimensional units. This choice
of rh gives the black hole a massMh=MP ¼ 0.942 × 10−4,
By construction, Mh is much less than the total mass MP
of the stars in the cluster, but much greater than the mass
within the cusp (r < rh), both initially and after steady-
state is reached (MðrhÞ=Mh ¼ 4.60 × 10−6 at late times).
Accordingly, the gravitational potential of the black hole
dominates that of the stars in the cusp. This is the regime
modeled by BW. We take the same Plummer density
profile given in Eq. (19) but we solve Eq. (7) for the initial
velocity dispersion to ensure that the cluster with the
central black hole is in virial equilibrium at the start of
its secular evolution in the core. We neglect any initial
contribution within rh from stars unbound to the black
hole. They will generate a weak r−1=2 cusp [41] that will
be swamped by the cusp that forms from the bound stars
as they begin to relax.

Boundary conditions.—An ordinary star of radius R and
mass m is tidally disrupted by the black hole whenever it
passes within a radius rD, where

rD ∼ RðMh=mÞ1=3 ð24Þ
However, sufficiently compact stars, such as neutron stars
or stellar-mass black holes, may avoid tidal disruption
before reaching the marginally bound radius rmb, where

rmb ¼ 4Mh ð25Þ
in Schwarzschild coordinates. Even a main sequence star
like the sun would escape disruption if the black hole
exceeds∼108 M⊙. Any star that penetrates within rmb must
plunge directly into the black hole (see, e.g., the discussion
in [8] and references therein). To mimic either scenario we
fix a small inner radius rin within which the interior stellar
mass is set to a vanishingly small value.

r ¼ rin; M → 0; ð26Þ
which implies ρ ¼ 0 for r < rin. We put rin=rh ¼ 3.81 ×
10−2 to illustrate the effect.
The outer boundary rout is taken well outside the black

hole radius of influence but well inside the core radius:
rout ¼ 11.1rh ¼ 1.11 × 10−2rcore. At rout we match all
quantities to the Plummer model parameters, which are
held fixed during the evolution:

r¼ rout; ρ¼ ρP; ρv2¼ ρPv2P; M¼MðroutÞ: ð27Þ
With these assignments MðroutÞ=MP ¼ 2.51 × 10−7 and
MðrcoreÞ=MP ¼ 0.119.

Numerical results.—The system of equations was inte-
grated with 141 grid points covering the cluster, but with
only 75 points inside rout. The explicit form of the entropy
evolution equation, Eq. (16), with Courant factor C ¼ 1
proved adequate. The evolution of the density and velocity
profiles are shown in Figs. 4 and 5.
Relaxation drives the cusp to the familiar steady-state,

power-law BW profile, as anticipated. Removing the
constraint that the interior match to a fixed cluster core
at rout will allow the cluster to evolve, as we will see in the
next section. The BW solution for the cusp is readily seen
as a consequence of the fluid conduction equations in
steady state, in which case LðrÞ ¼ const independent of r,
according to Eq. (3). We used this result previously [42] to
derive the BW density profile from simple scaling. Now, by
setting ρ ∝ r−β and Mh ≫ M in Eq. (2), we obtain v2 ≈
½1=ðβ þ 1Þ�Mh=r inside the cusp. Requiring steady-state in
Eq. (3) gives L ¼ const, which when inserted into Eq. (5)
withH ∼ r yields β ¼ 7=4, as found by BW. The numerical
integrations are in good agreement with these steady-state
profiles.

5. Black hole in an evolving cluster

Here we begin with the same cluster and central black
hole as in Sec. II A 4 above, but now we remove all

FIG. 4. Black hole cusp in a static core: snapshots of the density
profile at selected times. The lower dashed red line shows the
density at time t ¼ 0. Successively higher solid blue curves show
the density at t ¼ 0.0764, 0.1366, 0.1862, 0.2121, 0.2241,
0.2316, 0.2395, 0.2537, and 0.3330. The solid dot indicates
the matching radius rout, outside of which the profile is held fixed.
The upper dashed black line shows the slope for the steady-state
BW solution, to which the cusp relaxes. All quantities are in
nondimensional units defined in Eqs. (11)–(13), for which t0 ≈
9.71trcð0Þ.
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constraints and allow the cluster to evolve. We are
interested in observing the competition between those
encounters that lead to the gravothermal catastrophe and
drive secular core collapse versus those arising from
heating by the black hole cusp and drive core expansion.

Initial data.—We adopt the same initial data as in the
previous section.

Boundary conditions.—We adopt the same black hole-
induced inner boundary condition as in the previous section,
Eq. (26). The outer boundary for such an isolated, freely
evolving cluster is set at the cluster surface via Eq. (21).

Numerical results.—We employ a grid of 141 points to
integrate the system of equations, using the entropy
evolution in the form given by Eq. (17) and solving it
implicitly. A variable Courant constant C was chosen for
the time step set by Eq. (18), increasing from C ¼ 5 at early
times to C ¼ 2 × 1012 at late times. The key reasons for the
increase in C are the huge growth in ρwith time at the inner
boundary of the cusp and the fact that Δt as given by
Eq. (18) plummets like ρ−3 in this region.
The evolution of the cluster is summarized in Figs. 6

and 7. The early evolution in the cusp for t≲ 0.23 proceeds
much as did in the previous application, where the ambient
cluster was held fixed beyond the outer core. During this
epoch the cusp, where the relaxation time scale is shortest,

evolves in response to the presence of the black hole and
again approaches a BW profile. But during an intermediate
evolutionary phase when 0.23≲ t≲ 11.5 the cluster inter-
actions trigger incipient gravothermal core collapse. During
this epoch the cusp maintains a BW profile with a density
that smoothly matches onto the ever-increasing core
density just outside rh. The late evolution when t≳ 11.5
is characterized by secular core re-expansion. Heating from
the cusp drives the expansion, causing the core density and
velocity disperion to fall and the outer mass shells to
increase in radius. We predicted such expansion from a
simple homologous cluster model in [35] and probed its
detailed nature by solving the Fokker-Planck equation by
Monte Carlo simulations in [36,37] (see also [38]). It is
reassuring to see that the fluid conduction approach
recovers the same qualitative behavior when a massive
black hole resides at the center of a cluster.

B. Self-interacting dark matter

We have applied the fluid conduction approximation to
track the secular evolution of isolated SIDM halos in
previous studies. Our initial application [7] treated the
secular gravothermal catastrophe in Newtonian halos sub-
ject to elastic, velocity-independent interactions. There we

FIG. 5. Black hole cusp in a static core: snapshots of the
velocity dispersion profile at the same selected times depicted in
Fig. 4. Successively lower solid curves are at increasing time. The
solid dot indicates the matching radius rout, outside of which
the profile is held fixed. The straight dashed black curve shows
the slope for the steady-state BW solution, to which the cusp
relaxes. All quantities are in nondimensional units defined in
Eqs. (11)–(13).

FIG. 6. Black hole influence on cluster evolution: snapshots of
the density profile at selected times. The lower dashed red line
shows the density at time t ¼ 0. Successively higher solid blue
curves show the density at t ¼ 0.1286; 0.1844; 0.2163; 0.2306;
0.3447; 5.954; 9.611; 10.98; 11.44; 11.48 and 11.51 (gravother-
mal collapse). Successively lower dotted blue curves then show
the density at t ¼ 11.53, 11.81, 14.36, 23.11 and 62.50
(re-expansion). The upper dashed black line shows the slope for
the steady-state BW cusp solution. All quantities are in nondimen-
sional units defined in Eqs. (11)–(13), for which t0 ≈ 9.71trcð0Þ.
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showed that in typical halos λ, the mean free path for
scattering, is much larger than the scale height H initially,
but once the contracting core evolves to sufficiently high
density, the inequality is reversed in the innermost regions.
This central region then behaves like a hydrodynamic fluid
core surrounded by a weakly collisional halo. We suggested
[24] that black hole formation is an inevitable consequence
of the gravothermal catastrophe in SIDM halos once the
core becomes sufficiently relativistic, as it becomes radially
unstable and undergoes dynamical collapse. This scenario
may produce the massive seed black holes that later merge
and accrete gas to become the supermassive black holes
observed in most galaxies and quasars.
We returned to the subject recently when we applied the

fluid conduction approximation to model the steady-state
distribution ofmatter around amassive black hole at the center
of a weakly collisional SIDM halo [8]. There we allowed the
interactions to be governed by a velocity-dependent cross
section σ ∼ v−a, solved the steady-state equations both in
Newtonian theory and general relativity and showed that the
SIDM density in the cusp scales as ρ ∼ r−β away from the
cusp boundaries, where β ¼ ðaþ 3Þ=4, while its velocity
dispersion satisfies v2 ≈ ½1=ðβ þ 1Þ�Mh=r or v ∼ r−1=2. For
a ¼ 4 the interaction cross section has the same velocity
dependence as Coulomb scattering and we recover the BW

profile. In this case, the solution we found applies to stars in a
star cluster as well as SIDM. These steady-state calculations
assumed that the ambient halo outside the cusp remained
static, as we did in Sec. II A 4 above for star clusters.
Missing from the above steady-state analysis is a time-

dependent calculation that shows how the SIDM density and
velocity profiles secularly evolve away from their initial
configurations. Those initial configurations likely include a
central density spike that arises early on, following the
appearance and adiabatic growth of a central supermassive
black hole on time scales shorter than the dark matter self-
interaction relaxation time, trðSIDMÞ. The spike then
evolves on the time scale trðSIDMÞ into aweakly collisional
cusp and the entire halo then expands in response to the heat
driven into the halo by the cusp. We shall perform a
simulation that illustrates this behavior below.

1. Relaxation time scale

In a SIDM, halo relaxation is driven by elastic inter-
actions between particles. The relaxation time scale is the
mean time between single collisions and is given by

trðSIDMÞ ¼ 1

ηρvσ

≃ 0.8 × 109 yr

��
η

2.26

��
ρ

10−24g cm−3

�

×

�
v�

107cm sec−1

��
v
v�

�
1−a

�
σ0

1 cm2g−1

��
−1

ð28Þ

where σ ¼ σ0ðv=v�Þ−a is the cross section per unit mass and
the constant η is of order unity. For example, η ¼ ffiffiffiffiffiffiffiffiffiffi

16=π
p

≈
2.26 for particles interacting elastically like billiard balls
(hard spheres) with a Maxwell-Boltzmann velocity distri-
bution [see [43], Eqs. (7.10.3), (12.2.9) and (12.2.13)].1

We note again that for a Coulomb-like cross section, where
a ¼ 4, trðSIDMÞ scales the same way with v and ρ as
trðstarsÞ: tr ∝ v3=ρ.

2. Nondimensional equations

We modify the scalings for ρ0 and t0 defined in Eqs. (12)
and (13) by choosing instead

ρ0 ¼
�
M0

R3
0

�
; t0 ¼ tr0

1

6b
1

4π
; ð29Þ

while keeping the other scalings the same. Here tr0 is given
by Eq. (28), evaluated for v ¼ v0 and ρ ¼ ρ0. For a gas of
hard spheres with a Maxwell-Boltzmann distribution the
coefficient b in Eq. (5) can be calculated to good precision

FIG. 7. Black hole influence on cluster evolution: snapshots of
the velocity dispersion profile at the same selected times depicted
in Fig. 6. The straight dashed black curve shows the slope for the
steady-state BW cusp solution, to which the cusp quickly relaxes.
Once the dispersion velocity adjusts to the density cusp, the solid
curves show successively higher core dispersions with increasing
time (gravothermal collapse). The dotted curves then follow,
showing successively lower core dispersions with increasing time
(re-expansion). All quantities are in nondimensional units defined
in Eqs. (11)–(13).

1For a brief discussion of some cosmologically and physically
viable choices for σ0 and a see [8] and references therein.
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from transport theory, and has the value of b ≈ ð25=64Þffiffiffiffiffiffiffiffiffiffi
2π=3

p
≈ 0.565 [cf. [44], Sec. 10, Eq. (7.6) and problem 3,

and [2], Eq. (3–35)]. For a gas obeying a Coulomb
scattering cross section b ≈ 0.45 [2]. The resulting non-
dimensional equilibrium Eqs. (14) and (15) are unchanged
but the entropy evolution Eq. (16) now becomes

D
Dt

ln s ¼ 1

v2
∂
∂M

�
r4ρ2v4−a

�
H2

r2J

� ∂v
∂M

�
; ð30Þ

while Eq. (17) becomes

Ds
Dt

¼ v
ρ

∂
∂M

�
r4ρ3

3va−2

�
H2

r2J

� ∂s
∂M þ r4ρv5−a

3

�
H2

r2J

� ∂ρ
∂M

�
:

ð31Þ
The above equations apply to the long mean-free path

(LMFP) limit that characterizes the early and longest
secular evolution phase of an SIDM halo and the phase
we wish to probe here. For the more general equations that
handle the transition from the early LMFP phase to the late,
short mean free path (SMFP) phase, when such a transition
occurs, see [7].

3. The gravothermal catastrophe

We previously treated in Ref. [7] the evolution of a
SIDM halo in the absence of a black hole and with a
velocity-independent (a ¼ 0) interaction cross section
using the fluid conduction equations, and we will not
repeat the analysis here. There we showed how a halo can
evolve from the (self-similar) LMFP regime to the SMFP
regime in the inner core of the halo and discussed how the
catastrophic collapse of the core can naturally provide the
seed for a supermassive black hole at the halo center. We
discussed this SIDM-black hole formation scenario in
greater detail in Ref. [24].

4. Black hole in a static ambient cluster

As mentioned in Sec. I, this scenario was treated in
Ref. [8], both in Newtonian and general relativistic gravi-
tation. We took a ¼ 4 for the velocity dependence in the
SIDM interaction cross section in the example we worked
out. We noted that any depletion in the DM density deep in
the spike due to DM annihilation [45–47] would be washed
out by self-interactions. We refer the reader to that paper for
further details.

5. Black hole in an evolving halo

Here we consider the full evolution of a SIDM halo,
formed in the early Universe with an NFW profile, that
houses a massive seed black hole at its center. We assume
that the black hole grew adiabatically (e.g., by accretion) to
supermassive size early on and that a SIDM central density
spike formed in response the hole. We further assume that
the appearance and adiabatic growth of the black hole took

place on a time scale shorter than the SIDM relaxation time
scale, Eq. (28), so that the density profile in the spike
assumed a (power-law) form, appropriate for a collisionless
spike responding to an adiabatically growing black hole in
a power-law halo distribution [45]. We then simulate below
how SIDM collisions drive the density spike to a weakly
collisional cusp around the hole and how heating from the
cusp drives the subsequent expansion of the halo.

Initial data.— Here we adopt a simplified halo profile that
highlights the interior (cuspy) regions of an NFW halo
containing a density spike around a central supermassive
black hole. The density profile is given by

ρðrÞ ¼ 0; r ≤ 4Mh ðcapture regionÞ;
¼ ρhðrh=rÞγsp ; 4Mh < r ≤ rh ðspikeÞ;
¼ ρhðrh=rÞγc ; rh < r ≤ RH ðhaloÞ: ð32Þ

Defining MH to be the total mass of the SIDM halo, RH
the halo radius and Mh the mass of the black hole, we set
the scaling parameters M0 ¼ MH, R0 ¼ RH=25 and rh ¼
Mh=v20. We take Mh=MH ¼ 10−2, which gives rh=RH ¼
4 × 10−4. The density parameter ρh is determined by
substituting Eq. (32) into Eq. (1), integrating over the
entire SIDM halo and setting the resulting mass equal to
MH. The velocity profile is determined by substituting
Eq. (32) into Eq. (2) and integrating inward from the
surface to find vðrÞ.
We choose γc ¼ 1, consistent with the standard NFW

inner region profile. For a spike that forms about an
adiabatically growing supermassive black hole we then
require γsp ¼ ð9 − 2γcÞ=ð4 − γcÞ [45], which yields γsp ¼
2.33. We set a ¼ 4 in the velocity-dependent SIDM
interaction cross section as we did in Ref. [8].
We note that with the adopted initial data, MðrhÞ=Mh ¼

4.8 × 10−5. Hence the black hole greatly dominates the
potential well inside the inner spike. In fact, given the
adopted density profile, the black hole plays a dominant
role out to r=RH ∼ 0.1, at which radius MðrÞ ¼ Mh.

Boundary conditions.—As we did in Sec. II A 4, Eq. (26),
we mimic the capture of matter by the black hole by fixing
a small inner radius rin within which the interior SIDM
mass is a vanishingly small value. We set rin=RH ¼
3.80 × 10−5. At the surface we again employ exterior
vacuum boundary conditions, Eqs. (21).

Numerical results.—We use 281 logarithmically spaced
grid points spanning seven decades in M to solve the
system of equations. The evolution equation for s was
integrated implicitly using Eq. (31). Results are summa-
rized in Figs. 8 and 9.
Fig. 8 shows that early on the initial central spike evolves

to a standard weakly collisional cusp around the black
hole. For a ¼ 4 the cusp exhibits the usual BW profile.
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This happens early because the relaxation time is shortest in
the cusp: trðrhÞ=tr0 ¼ 0.11, where trðrhÞ is the initial
relaxation time at r ¼ rh. Shortly afterwards the cuspy
NFW density profile tends to smooth out and develop a
flatter core outside the cusp. For the period 0≲ t=t0 ≲ 295
the cluster undergoes gravothermal core collapse. For
t=t0 ≳ 295 the density in the black hole cusp generates
enough heat to eventually reverse core collapse and drive
re-expansion of the halo, as predicted.
The velocity dispersion shown in Fig. 9 quickly relaxes to

the anticipated BW solution v2 ≈ ð4=11ÞMh=r in the BH
cusp. The dispersion flattens out outside the black hole
cusp as a flatter, nearly isothermal density core grows around
the cusp. As the halo expands, the velocity dispersion in the
core steadily decreases inmagnitude, as required by thevirial
theorem in an expanding, self-gravitating system, and the
black hole cusp region grows in time.

III. GENERAL RELATIVISTIC TREATMENT

The above applications demonstrate the utility of the
hydrodynamic conduction approximation for tracking the
secular evolution of weakly collisional, self-gravitating,
N-body systems in Newtonian gravitation. This motivates
us to develop a similar approach in general relativity for
virialized systems with strong gravitational fields and
constituents moving at velocities approaching the speed
of light. We previously provided such an approach to study
the special case of steady-state SIDM cusps around massive
black holes in halo centers [8]. Here we develop the
formalism to track the time-dependent evolution of more
general, weakly collisional, spherical systems. Our treat-
ment, albeit approximate, is designed to fill a gap, as we are
not aware of any other approach that has been employed to
treat relativistic systems in this physical regime.
The starting point of our analysis is the metric of a

quasistatic, spherical spacetime, which may be written as

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2dΩ2; ð33Þ

where e2Λ ≡ 1=ð1 − 2MðrÞ=rÞ and MðrÞ is the total mass-
energy of the configuration inside radius r. The relativistic
versions of the Newtonian hydrostatic equilibrium Eqs. (1)
and (2) are the TOV equations,

∂MðrÞ
∂r ¼ 4πr2ρ; ð34Þ

∂P
∂r ¼ −ðρþ PÞMðrÞ þ 4πr3P

rðr − 2MðrÞÞ ð35Þ

and

∂Φ
∂r ¼ MðrÞ þ 4πr3P

rðr − 2MðrÞÞ ; ð36Þ

FIG. 8. Black hole influence on SIDM halo evolution: snap-
shots of the density profile at selected times. The lower dashed
red line shows the density at time t ¼ 0. Successively higher solid
blue curves show the density at t ¼ 18.09, 61.45, 97.95 and 294.8
(gravothermal collapse). Successively lower dotted blue curves
show the density at t ¼ 539.5; 2.527 × 103 and 2.938 × 104 (re-
expansion). The upper dashed black line shows the slope for the
steady-state BW cusp solution. All quantities are in nondimen-
sional units [see Eq. (29)].

FIG. 9. Black hole influence on SIDM halo evolution: snap-
shots of the velocity dispersion profile at the same selected times
depicted in Fig. 8. The straight dashed black curve shows the
slope for the steady-state BW cusp solution. All quantities are in
nondimensional units.
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where ρ is the total mass-energy density. The evolution of
the system is again governed by the entropy equation,
whereby Eq. (3) now becomes

dρ
dτ

−
ρþ P
n

dn
dτ

¼ nT
ds
dτ

¼ −∇aqa − aaqa ¼ 0; ð37Þ

where τ is proper time, n is the proper particle number
density, T is the kinetic temperature, aa is the particle four-
acceleration, and qa is the heat flux four-vector. Here we
adopt the classical Eckart formulation of relativistic con-
duction [48] (see also [49]) which is adequate for illus-
trative purposes, leaving for future implementation more
refined formulations that address the issue of noncausality
and other subtleties. We follow our analysis in Ref. [8] and
model the particles (stars or SIDM) as a perfect, nearly
collisionless, relativistic gas where at each radius all the
particles have the same local speed but move isotropically.
We may then set at each radius P≡ nkBT ¼ ρv2, where kB
is Boltzmann’s constant and v is the one-dimensional
velocity dispersion measured by an observer in a static,
orthonormal frame. We also have ρ ¼ γρ0, where ρ0 ¼ mn
is the rest-mass density, m is the particle mass and
γ ¼ 1=ð1 − 3v2Þ1=2. These relations give kBT ¼ γmv2.
Equation (37) may then be written as

ρv2
d
dτ

ln

�ðγ2 − 1Þ3=2
ρ0

�
¼ −∇aqa − aaqa: ð38Þ

For a virialized system in a (quasi)static, spherical
gravitational field the only nonzero component of qa is
qr, where

qr ¼ −
κ

jg00j1=2
∂ðTjg00j1=2Þ

∂r ; ð39Þ

and where κ is the effective thermal conductivity and
g00 ¼ −e2Φ. We determine κ for our weakly collisional
(LMFP) systems by first considering the conductivity
of a relativistic, strongly collisional (SMFP) gas of
hard-spheres [50]:

κ ¼ 3

64π

kB
σh

ðζ þ 5G −G2ζÞ2ζ4K2ðζÞ2
ðζ2 þ 2ÞK2ð2ζÞ þ 5ζK3ð2ζÞ

: ð40Þ

In the above equation, ζ ¼ m=kBT, Kn is a modified
Bessel function of the second kind, G ¼ K3ðζÞ=K2ðζÞ,
and σh ¼ d4=4, where d is the sphere diameter. Next we
write σh in terms of the mean-free path λ, for which

λ ¼ τcvm ¼ 1

4πσhn

�
γ2

1þ γ2

�
1=2

; ð41Þ

where vm ¼ ffiffiffi
3

p
v is the mean three-dimensional speed and

τc is the collision time [51]. We then substitute λ for σh in

Eq. (40), using Eq. (41), and, following the prescription in
Refs. [1,2] for modifying the SMFP result to estimate the
conductivity in a weakly interacting (LMFP) gas, we
multiply λ by ðH=λÞðH=vmtrÞ.
In nonrelativistic (NR) regions where ζ ≫ 1, γ ≈ 1 and

ρ ≈ ρ0, this prescription yields

κ ≈
75

64
ð2πÞ1=2ρ0vλ

kB
m

→
75

64

�
2π

3

�
1=2

ρ0
H2

tr

kB
m

ðNRÞ

ð42Þ

which, together with Eq. (39) and the Newtonian relations
qr ≈ L=4πr2 and g00 ≈ −1 leads to Eq. (5) for the hard-
sphere value of b ¼ ð25=64Þ ffiffiffiffiffiffiffiffiffiffi

2π=3
p ¼ 0.565 quoted pre-

viously. The appropriate value of tr is given by Eq. (10) for
stars and by Eq. (28) for SIDM particles. We again note that
Ref. [2] adopts b ¼ 0.45 as a better fit to more detailed
models of Newtonian, isotropic star cluster evolution. We
also note that we should set η ¼ ffiffiffi

6
p ¼ 2.44 in Eq. (28) for

SIDM particles moving isotropically at a locally constant
speed vm. The value of the scale height H to assign already
has been discussed in Sec. II, below Eq. (5).
In extreme relativistic (ER) regions where ζ ≪ 1, vm → 1

and γ ≫ 1, we have

κ ≈ 2λρ0
kB
m

→ 2ρ0
H2

tr

kB
m

ðERÞ ð43Þ

Here tr for a relativistic SIDM gas may be approximated by
the collision time τc:

tr ≈
1

σρ0v

�
γ2

1þ γ2

�
1=2

→
1

σρ0
ðERSIDMÞ; ð44Þ

where σ (cross section per unit mass) was defined in
Eq. (28). The relaxation time for repeated, small-angle
scattering for stars in a relativistic cluster is calculated
in Appendix and is given by

tr ≈
33=2v3

8πmρ0 ln ð0.4NÞ
�

γ2

1þ 6γ2v2

�
2

;

→
1

32πmρ0 lnð0.4NÞ ðER starsÞ; ð45Þ

where v → 1=
ffiffiffi
3

p
in the ER limit.

We note that the conductivity described above only takes
into account thermal transport generated by elastic colli-
sions between particles. However, there are other, dissipa-
tive processes that may contribute to the flux of kinetic
energy. In dense clusters of compact stars, for example,
these processes include gravitational radiation, specifically
gravitational bremsstrahlung, leading to the dissipative
formation of binaries and their subsequent merger
[15,22,23]. Also important in dense stellar systems are

STUART L. SHAPIRO PHYS. REV. D 98, 023021 (2018)

023021-12



stellar collisions and mergers, as well as binary heating
(see [2,52,53] and references therein). In SIDM halos,
there also may be particle annihilation. These dissipative
processes can be especially important when the particle
velocities become relativistic, although when the cores of
virialized, large N-body systems secularly evolve to a
sufficiently high central redshift (≳0.5) they typically
become unstable to dynamical collapse, as suggested by
Zel’dovich and Podurets [15] and demonstrated by Shapiro
and Teukolsky [16–19] (but see [54] for a counterexample).
In any case, it is possible to incorporate such effects by,
e.g., adding appropriate heating and cooling terms on the
right-hand side of Eq. (37), but such an extension we shall
omit in this preliminary analysis.
Evaluating Eq. (38) using ar ¼ ∇r ln jg00j1=2 ¼ ∂rΦ,

Eqs. (33) and (39) yield

ρv2
d
dτ

ln

�ðγ2 − 1Þ3=2
ρ0

�
¼ 1

eΦþΛr2
∂r½κe−Λr2∂rðTeΦÞ�

þ κ

eΦþ2Λ ∂rðTeΦÞ∂rΦ: ð46Þ

In some numerical applications, it can prove helpful to
employ a Lagrangian variable as the independent coordi-
nate, as we did in our Newtonian treatment. The logical
choice is the rest-mass M0ðrÞ, where

∂M0

∂r ¼ 4πr2ρ0eΛ: ð47Þ

The resulting set of equations then becomes

∂M
∂M0

¼ γð1 − 2M=rÞ1=2; ð48Þ

∂r
∂M0

¼ γð1 − 2M=rÞ1=2
4πr2ρ

; ð49Þ

∂P
∂M0

¼ −ðρþ PÞM þ 4πr3P
rðr − 2MÞ

∂r
∂M0

; ð50Þ

∂Φ
∂M0

¼ M þ 4πr3P
rðr − 2MÞ

∂r
∂M0

; ð51Þ

ρv2
∂
∂τ ln

�ðγ2 − 1Þ3=2
ρ0

�

¼ 1

eΦþΛr2
∂M0

�
κe−Λr2∂M0

ðTeΦÞ ∂M0

∂r
��∂M0

∂r
�

þ κ

eΦþ2Λ ∂M0
ðTeΦÞ∂M0

Φ
�∂M0

∂r
�

2

:

The last (evolution) equation reduces to

ρv2
∂
∂t ln

�ðγ2 − 1Þ3=2
ρ0

�
¼ 4πρ

γ
∂M0

�
κ4πρr4

γ
∂M0

ðTeΦÞ
�

þ κð4πρr2Þ2
γ2

∂M0
ðTeΦÞ∂M0

Φ: ð52Þ

In obtaining the final form of the evolution equation, we
used the relation ∂τ ≈ e−Φ∂t, which holds since the mean
fluid velocity is everywhere negligible in a virialized,
spherical, quasistatic system. By implementing Eq. (52),
the evolution advances on hypersurfaces of constant
coordinate time t (proper time at infinity).
There are then seven unknowns—M; r; P;Φ; ρ; ρ0, and v

(or T)—that are determined as functions of M0 by solving
the five relations Eqs. (48)–(52) and using the two auxiliary
(equation of state) relations for P and ρ0. The kinetic heat
flux generated by the interactions can be calculated from

L
4πr2

¼ jqaqaj1=2 ¼ jqrjð1 − 2M=rÞ1=2; ð53Þ

using Eq. (39).
A subset of the relativistic equations was employed in

Ref. [8] to solve for the steady-state distribution of matter in
the cusp around a massive black hole a the center of a
weakly collisional clusters of particles. Included in this
study were star clusters and SIDM halos. There the central
mass of the black hole dominated the cusp and the
spacetime was static Schwarzschild. Applications involv-
ing the full set of equations to study clusters that secularly
evolve into the relativistic regime are planned for the future.
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APPENDIX: RELAXATION TIME SCALE FOR
RELATIVISTIC GRAVITATIONAL

ENCOUNTERS

Here, we provide an approximate calculation of the
relaxation time scale due to the cumulative effect of
multiple, small-angle, gravitational encounters in a cluster
of (point) particles moving at relativistic speeds. We begin
by treating the scattering of one test star,m, taken at rest, by
another star M moving at speed V relative the first. Since
we are only interested in small-angle deflections, which are
caused by distant encounters, we can take the moving star
M to follow a straight line trajectory at an impact parameter
b ≫ M from the test star. We then adopt the impulse
approximation to determine the motion imparted to the test
star by the gravitational field of the moving star. We take
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the trajectory of the moving star to be along the z axis,
z ¼ Vt, and the test star to lie along the x axis at x ¼ b.
The impulse, imparted to the test star by the distant, weak
field of the moving star, results in a velocity Δv⊥m ≪ 1
perpendicular to the trajectory of the moving star along
the −x direction. This velocity may calculated from the
Newtonian equation of motion acting on the test star,

d2x
dt2

¼ −
∂ΦN

∂x ; ðA1Þ

where ΦN ¼ −h00=2 is the Newtonian potential arising
from the moving star M and h00 is the leading order
perturbation to the flat spacetime metric, gab ¼ ηab þ hab
induced by M. Here ηab is the Minkowski metric. The
perturbation ha0b0 at the test star in a frame in which M at
rest is easily obtained from linear general relativity (see
[49], exercise 18.3),

h0000 ¼ hx0x0 ¼ hy0y0 ¼ hz0z0 ¼
2M
r0

;

ha0b0 ¼ 0; a0 ≠ b0; ðA2Þ

where r0 ¼ ðb2 þ V2t02Þ1=2. The perturbation h00 appearing
in Eq. (A1) is then obtained from ha0b0 above by performing
a Lorentz boost back to the initial rest frame of the test
star, using t0 ¼ γðt − VzÞ ¼ γt, where γ ¼ 1=ð1 − V2Þ1=2.
This yields

ΦN ¼ −
h00
2

¼ −
M

ðb2 þ γ2V2t2Þ1=2 ð2γ
2V2 þ 1ÞÞ: ðA3Þ

Inserting Eq. (A3) into Eq. (A1) and integrating d2x=dt2

from t ¼ −∞ to t ¼ þ∞ gives

Δv⊥m ¼ 2M
bV

ð1þ 2γ2V2Þ
γ

: ðA4Þ

The momentum imparted to the test star along −x is
P⊥
m ¼ γmmΔv⊥m ≈mΔv⊥m, so by momentum conservation

M acquires a momentum P⊥
M ¼ γMΔv⊥M ¼ −P⊥

m alongþx.
This gives, for the velocity imparted to M,

Δv⊥M ¼ 2m
bV

1þ 2γ2V2

γ2
: ðA5Þ

We note that Eq. (A5) reduces to the correct Newtonian
result for low velocities,

Δv⊥M ≈
2m
bV

; V ≪ 1: ðA6Þ

For high velocities, Eq. (A5) gives

Δv⊥M ≈
4m
b

; V → 1; ðA7Þ

for which the resulting deflection angle is familiar from
light bending,

tan α ≈ α ≈
Δv⊥M
V

≈
4m
b

; V → 1: ðA8Þ

Assuming that M receives repeated, randomly oriented
impulses from multiple perturbers in time Δt, its cumu-
lative, mean-squared perpendicular velocity kick becomes

hðΔv⊥MÞ2i ¼
X
i

ðΔv⊥MÞ2i

→
Z

bmax

bmin

�
2m
bV

1þ 2γ2V2

γ2

�
2

dNp

¼ 8πm2nΔt
V

ln

�
bmax

bmin

��
1þ 2γ2V2

γ2

�
2

; ðA9Þ

where dNp ¼ nðVΔtÞð2πbdbÞ is the number of perturbers
and n is their number density. Here, bmax is the character-
istic scale of the system, while bmin is the impact parameter
corresponding to large-angle (π=2) scattering. The relax-
ation time tr can then be defined as the time Δt required for
the cumulative perpendicular velocity kick to equal the
initial velocity, hðΔv⊥MÞ2i ¼ V2, which gives

tr ≈
V3

8πmρ0 lnðbmax
bmin

Þ

�
γ2

1þ 2γ2V2

�
2

: ðA10Þ

For most applications it is reasonable to approximate the
logarithmic factor as in Ref. [2] for Newtonian clusters:
lnðbmax=bminÞ ∼ lnð0.4NÞ, where N is the total number of
stars. Even for relativistic systems, we expect that bmin ∼m
and, by the virial theorem, ðNmÞ=bmax ∼ V2 ∼ 1, for which
bmax=bmin ∼ N ≫ 1. Setting V2 ¼ v2m ¼ 3v2 gives

tr ≈
33=2v3

8πmρ0 ln ð0.4NÞ
�

γ2

1þ 6γ2v2

�
2

: ðA11Þ

We observe that in the nonrelativistic limit Eq. (A11)
gives a relaxation time within a factor of two of the value
quoted in Eqs. (10) and Ref. [2]. In the highly relativistic
limit, Eq. (A11) gives a time that scales similarly with v and
ρ0 and is just a numerical factor (36) times smaller than the
nonrelativistic value.
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