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The scotogenic model proposed by Ernest Ma represents an attractive and minimal example for the
generation of small Standard Model neutrino masses via radiative corrections in the dark matter sector.
In this paper, we demonstrate that, in addition to neutrino masses and dark matter, the scotogenic model
also allows to explain the baryon asymmetry of the Universe via low-scale leptogenesis. First, we consider
the case of two right-handed neutrinos (RHNs) N1;2, for which we provide an analytical argument why it is
impossible to push the RHN mass scale belowMmin

1 ∼ 1010 GeV, which is identical to the value in standard
thermal leptogenesis in the type-I seesaw scenario with the same washout strength. Then, we present a
detailed study of the three-RHN case based on both an analytical and a numerical analysis. In the case of
three RHNs, we obtain a lower bound on the N1 mass of around 10 TeV. Remarkably enough, successful
low-scale leptogenesis can be achieved without any degeneracy in the RHN mass spectrum. The only
necessary condition is a suppression in the N1 Yukawa couplings, which results in suppressed washout and
a small active neutrino mass of around 10−12 eV. This leads to the fascinating realization that low-scale
leptogenesis in the scotogenic model can be tested in experiments that aim at measuring the absolute
neutrino mass scale.

DOI: 10.1103/PhysRevD.98.023020

I. INTRODUCTION

The baryon asymmetry of the Universe (BAU)—
conventionally quantified in terms of the cosmic baryon-
to-photon ratio ηobsB ≃ 6.1 × 10−10 [1,2]—cannot be
explained within the Standard Model (SM) of particle
physics. It, thus, provides compelling evidence for the
existence of new physics beyond the SM. An attractive
possibility to dynamically generate the BAU in the early
Universe is baryogenesis via leptogenesis [3]. In its standard
formulation, leptogenesis is closely related to the type-I
seesaw mechanism [4–8] that aims at explaining the small
SM neutrino masses by introducing two or more sterile
right-handed neutrinos (RHNs) Ni with large Majorana
masses Mi. In standard thermal leptogenesis, the heavy
RHNs are produced through scatterings in the thermal
bath, before their CP-violating out-of-equilibrium decays
generate a primordial lepton asymmetry. This lepton asym-
metry is subsequently converted into a baryon asymmetry

by electroweak sphaleron processes. For a recent series of
review articles on leptogenesis, see Refs. [9–14].
An intrinsic limitation of standard thermal leptogenesis is

that it requires a very high RHN mass scale. In the simplest
scenario, sometimes referred to as vanilla leptogenesis,
one finds, e.g., an absolute lower bound on the mass of
the lightest RHN of aboutMmin

1 ≃ 109 GeV [15–18]. Flavor
effects allow to lower this bound by an additional order of
magnitude, Mmin

1 ≃ 108 GeV [19], but not much further.
The high RHN mass scale in standard thermal leptogenesis
is due to the fact that the CP asymmetry in RHN decays
is proportional to the product of active and sterile neutrino
masses. The tiny SM neutrino masses therefore necessitate
large RHN masses, a relation that was first pointed out by
Davidson and Ibarra (DI) [15].
A high RHN mass scale is problematic, or at least

undesirable, for several reasons. First of all, RHN masses
far above the electroweak scale preclude the possibility of
directly probing the dynamics of leptogenesis in future
collider experiments [13]. Second, in the type-I seesaw
model, the RHNs contribute to the renormalization group
running of the SMHiggs mass parameter μ2. For large RHN
masses, a μ2 parameter around the electroweak scale is
therefore necessarily fine-tuned, which may be regarded as a
naturalness problem [20]. And third, a future detection of
lepton number violation at low energies may readily rule out
high-scale leptogenesis altogether [21–23]. Taken together,
these observations serve as a motivation to seek alternatives
to the paradigmof standard thermal leptogenesis in the type-I
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seesaw model that manage to generate the BAU at a (much)
lower RHN mass scale.
The main purpose of this paper is to present a promising

example for such a low-scale alternative to standard thermal
leptogenesis. To this end, we will carry out an in-depth
study of thermal leptogenesis in Ernest Ma’s scotogenic
model of radiative neutrino masses [24]. This model, which
is arguably the simplest model of radiative neutrino masses,
is particularly attractive as it unifies the generation of SM
neutrino masses with the physics of dark matter (DM).
The scotogenic model enlarges the SM field content by a
second SUð2ÞL scalar doublet η and at least two RHNs Ni,
all of which are supposed to transform odd under an
exactZ2 symmetry. TheZ2 symmetry serves two purposes.
It stabilizes the lightest Z2-odd state, such that it becomes
a good DM candidate, if it is electrically neutral, and it
prevents the η doublet from obtaining a nonzero vacuum
expectation value (VEV), so that no neutrino masses can be
generated at tree level. This renders the SM neutrino masses
scotogenic, i.e., they only arise via radiative corrections in
the dark sector. In this way, the scotogenic model offers a
natural explanation for the suppressed masses of the active
SM neutrinos.
Leptogenesis can proceed via a variety of mechanisms in

the scotogenic model, depending on the details of the mass
spectrum in theZ2-odd sector. Here, an important question is
the choice of the mass eigenstate that is supposed to account
for DM. In principle, one faces two options. DM can either
be fermionic and consist of the lightest RHNN1 [25–27] or it
can be bosonic and consist of the lightest neutral component
in the scalar η doublet [28–36]. In the former case, the DM
relic density is sensitive to the neutrino Yukawa couplings,
while in the latter case, it mostly depends on the scalar and
gauge interactions of the particles in the η multiplet. As it
turns out, DM in the form of RHNs typically requires large
Yukawa couplings, which implies an efficient washout of
lepton asymmetry during leptogenesis [37]. In the fermionic
DM scenario, it is therefore impossible to realize ordinary
thermal leptogenesis via the decay of RHNs with a hierar-
chical mass spectrum. Instead, one has to resort to alternative
mechanisms, such as, e.g., resonant leptogenesis [38,39]
(seeRef. [40] for an explicit study). Similarly, it is possible to
generate the BAU via the Akhmedov-Rubakov-Smirnov
mechanismofRHNoscillations [41] and/or viaCP-violating
Higgs decays [42,43] in the fermionicDMcase (seeRef. [44]
for a recent study). Together with the requirement to
reproduce the DM relic abundance, all these alternative
realizations of thermal leptogenesis require some degree of
degeneracy in the RHN mass spectrum. This corresponds to
an extra physical assumption which needs to be justified by
an additional theoretical ingredient (such as, e.g., a flavor
symmetry). However, a priori, the scotogenic model does
not require any such additional assumption to explain the
low-energy neutrino data. Therefore, we shall ignore the
possibility of resonant leptogenesis and focus on the case of

hierarchical RHNs in the following. In addition, we recall
that the large Yukawa couplings in the fermionic DM case
easily lead to a violation of constraints on lepton flavor
violation [45–47]. For these reasons, we will settle for the
second option and assume that DM consists of scalar η
particles in this paper. In summary, this means that we will
consider a mass spectrum of the form,

Miþ1 ≳ 3Mi; M1 ≫ mη; ð1Þ

where i ¼ 1 or i ¼ 1, 2 andwheremη denotes themass of the
η multiplet before electroweak symmetry breaking.
There exist various studies of thermal leptogenesis in the

scotogenic model in the literature. Ma himself was the first
to point out that the scotogenic model could serve as a
simultaneous explanation of SM neutrino masses, DM, and
the BAU [37]. More detailed studies were subsequently
presented in Refs. [48–51]. However, it seems that none
of these studies is fully exhaustive. The analyses in
Refs. [48,49], e.g., focus on very particular choices for
the neutrino Yukawa couplings motivated by the exper-
imental data on the neutrino mixing angles. However, they
neglect all flavor effects in the computation of the lepton
asymmetry. This does not really capture the essence of the
problem, since unflavored leptogenesis is actually inde-
pendent of the parameters in the lepton mixing matrix [9]
[see also Eq. (21) below]. In any case, it is evident that the
studies in Refs. [48,49] only covered a small part of the
available parameter space. Meanwhile, the analysis in
Ref. [50] was mostly concerned with the study of general
parameter relations in the RHN sector. It does not intend
to reproduce the neutrino oscillation data and, thus, only
incorporates an order-of-magnitude estimate of the active
neutrino mass scale. But more importantly, it derives all
numerical results in the limit of only two RHNs. This is
surprising, as one can show on rather general grounds that
the predictions of the scotogenic model in the two-RHN
(2RHN) limit do not substantially differ from those in the
type-I seesaw model (see our discussion in Sec. IV).
Moreover, the three studies in Refs. [48–50] all resorted
to a resonant enhancement of the CP asymmetry at one
point or another. As we will see in this paper, this is actually
not necessary for RHN masses down to Mmin

1 ∼ 10 TeV.
Finally, the analysis in Ref. [51] studied thermal lepto-
genesis in two-Higgs-doublet models from a more general
perspective. It properly accounted for the low-energy
neutrino data, but only provided a few analytical estimates
and refrained from actually solving the corresponding set of
Boltzmann equations. A more comprehensive summary of
leptogenesis studies in extensions of the scotogenic model
as well as other scotogenic-like models of radiative
neutrino masses can be found in Ref. [52].
The above considerations motivate us to revisit thermal

leptogenesis via the decay of hierarchical RHNs in the
scotogenic model and to reevaluate the important question
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as to what extent the leptogenesis scale can be lowered in
this model. In doing so, we will attempt to present trans-
parent analytical arguments wherever possible.
The remainder of this paper is organized as follows. In the

next section, we will introduce the scotogenic model and
summarize its key features. In Sec. III, we will then collect
all expressions that are necessary to study leptogenesis in
the scotogenic model. Next, in Sec. IV, we will first discuss
the case of two RHNs. This will lead us to the important
conclusion that the 2RHN case does not really allow for
any improvement over standard thermal leptogenesis in the
type-I seesawmodel. In Sec.V,wewill finally turn to the core
of our analysis and present a detailed analytical and numeri-
cal discussion of the three-RHN (3RHN) case. Section VI
contains our conclusions.

II. THE SCOTOGENIC MODEL

We begin by summarizing the main properties of Ma’s
scotogenic model of radiative neutrino masses [24]. The
new fields in this model are two or more RHNs Ni as well
as an inert Higgs doublet η. The interaction Lagrangian of
these fields is reminiscent of the type-I seesaw scenario,

LN;η ¼ −hαil̄α
L η̃Ni þ

1

2
MiN̄iðNcÞi þ H:c:; ð2Þ

with the Yukawa couplings hαi, the SM lepton doublets
lα
L ≡ ðναL;αLÞT (α ¼ e, μ, τ), the conjugate scalar doublet

η̃≡ iσ2η� and the Majorana masses Mi. Note that hηi ≠ 0
would break the Z2 symmetry. Therefore, unlike in the
seesaw scenario, no Dirac mass term is generated upon
electroweak symmetry breaking. The scalar sector of the
model includes the SM Higgs doubletH as well as the inert
doublet η and is described by the potential

VðH; ηÞ ¼ −μ2H†H þm2
ηη

†ηþ λ1
2
ðH†HÞ2 þ λ2

2
ðη†ηÞ2

þ λ3ðH†HÞðη†ηÞ þ λ4ðH†ηÞðη†HÞ

þ λ5
2
½ðH†ηÞðH†ηÞ þ ðη†HÞðη†HÞ�; ð3Þ

where all λi can be chosen real without loss of generality.
After electroweak symmetry breaking, the physical

scalar states can be identified as H ¼ ð0; ðvþ hÞ= ffiffiffi
2

p ÞT
and η ¼ ðηþ; ðηR þ iηIÞ=

ffiffiffi
2

p ÞT with masses

m2
h ¼ λ1v2;

m2
η� ¼ m2

η þ
v2

2
λ3;

m2
ηR ¼ m2

η þ
v2

2
ðλ3 þ λ4 þ λ5Þ;

m2
ηI ¼ m2

η þ
v2

2
ðλ3 þ λ4 − λ5Þ; ð4Þ

where the SM Higgs doublet VEV v ¼ 246 GeV appears.
In the following, we shall assume that λ4 � λ5 < 0 and
λ5 > 0. In this case, both the real scalar ηR and the real
pseudoscalar ηI are lighter than the complex scalar η�.
Moreover, given our assumptions in Eq. (1), ηI turns out to
be the lightest state in the entire dark matter sector. This
renders ηI the DM candidate in our model. The case of inert
doublet DM in the scotogenic model is well studied, and it
is found that, for the mass range [28–36]

534 GeV ≤ mηI ≲ 20 TeV; ð5Þ
the correct relic abundance can be achieved, while all
constraints are evaded by adjusting the scalar couplings
accordingly. On the other hand, for the purposes of lepto-
genesis, the only relevant scalar coupling turns out to be λ5.
Given the fields and couplings introduced above, the

active neutrino mass matrix turns out to be [24,53]

ðMνÞαβ ¼
X
i

Mih�αih
�
βi

32π2
½Lðm2

ηRÞ − Lðm2
ηIÞ�; ð6Þ

where the function L helps us to simplify our notation,

Lðm2Þ ≔ m2

m2 −M2
i
ln

�
m2

M2
i

�
: ð7Þ

We note that m2
ηR −m2

ηI ¼ v2λ5 and, hence, the two real
scalars ηR and ηI become degenerate in the limit λ5 → 0.
The masses in Eq. (6) then vanish and one can define a
global Uð1Þ lepton number symmetry. Therefore, λ5 is a
naturally small coupling in the sense of ’t Hooft [54].
It is convenient to introduce an adapted Casas-Ibarra (CI)

parametrization [55] for the Yukawa matrix h. For this
purpose, we rewrite Eq. (6) in matrix form as

Mν ¼ h�Λ−1h†; ð8Þ
where we introduced the diagonal matrix Λ with entries

Λi ≔
2π2

λ5
ξi
2Mi

v2
ð9Þ

and

ξi ≔
�
1

8

M2
i

m2
ηR −m2

ηI

½Lðm2
ηRÞ − Lðm2

ηIÞ�
�−1

: ð10Þ

The parameters ξi are of order one in most of the parameter
space of interest. Note that we split the inverse mass scales
Λi into factors which are also present in the type-I seesaw,
2Mi=v2, and additional factors which are characteristic of
the scotogenic model, ð2π2=λ5Þξi. Following the notation
of Ref. [55], the in general complex symmetric mass matrix
Mν is diagonalized by the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) leptonic mixing matrixU [56,57] viaDν ¼
UMνUT , and we find that the Yukawa couplings can be
written as
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hαi ¼ ðUD ffiffiffiffiffiffi
Mν

p R†D ffiffiffi
Λ

p Þ
αi
; ð11Þ

where the arbitrary complex matrix R satisfies RRT ¼ 1.

III. INGREDIENTS FOR LEPTOGENESIS

We now turn to the discussion of thermal leptogenesis
in the scotogenic model. Our main goal in this paper will
be to gain an analytical understanding of leptogenesis
in the scotogenic model. In particular, we wish to high-
light the relevant parameter relations that eventually result
in the observed BAU. As we will see, this will provide us
with new and valuable insights regarding the interplay of
the active and sterile neutrino masses that significantly
extend the existing results in the literature. Therefore, to
keep the discussion clear and concise and to facilitate the
analytical treatment, we will restrict our analysis to only
the most important physical effects. That is, we will focus
on the decays and inverse decays of N1 neutrinos as well
as on the corresponding ΔL ¼ 2 washout processes. The
asymmetries generated in N2;3 decays together with any
preexisting B − L asymmetry are negligible because of
strong washout effects either mediated by the N1 or the
N2;3 themselves. Accordingly, the initial or previously
generated asymmetry is almost entirely washed out and
only the N1 contribution survives. Possible corrections
to our analysis (which we will neglect) include ΔL ¼ 1

scatterings [58,59], thermal corrections [17,60], flavor
effects [61,62] and quantum kinetic effects [63,64]. A
more comprehensive analysis taking into account some or
even all of these effects is left for future work.
Let us now collect the various expressions and quan-

tities that are necessary to describe thermal leptogenesis in
the scotogenic model. Our conventions and notation are
based on Refs. [18,62]. The analytical relations from
Ref. [18] that we will use in this paper are also valid for
our model because the underlying Boltzmann equations
turn out to be identical (cf. Sec. V B). As in standard
thermal leptogenesis, we have to distinguish between a
weak washout and a strong washout regime. The different
regimes are characterized by different values of the decay
parameter

K1 ≔
Γ1

Hðz1 ¼ 1Þ ; ð12Þ

with the N1 decay width Γ1, the Hubble parameter H and
z1 ≔ M1=T with temperature T of the photon bath.
Leptogenesis occurs above the electroweak scale during
the era of radiation domination. The Hubble parameter can
therefore be expressed in terms of T as follows:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8π3g�
90

r
T2

MPl
¼ Hðz1 ¼ 1Þ 1

z21
; ð13Þ

where g� is the effective number of relativistic degrees
of freedom (d.o.f.)1 and MPl ≃ 1.22 × 1019 GeV is the
Planck mass. The regimes that are typically distinguished
are the weak washout regime for K1 ≲ 1 and the strong
washout regime for K1 ≳ 4, with a transition region in
between.
Next, we calculate the CP asymmetry parameter ε for

Ni → lα
Lη, l

α
Lη

� decays, which leads us to

εiα ¼
1

8πðh†hÞii
X
j≠i

�
f

�
M2

j

M2
i
;
m2

η

M2
i

�
Im½h�αihαjðh†hÞij�

−
M2

i

M2
j −M2

i

�
1 −

m2
η

M2
i

�
2

Im½h�αihαjHij�
�
: ð14Þ

In this expression, the function f originates from the
interference of the tree-level diagram with the one-loop
vertex correction and is given by

fðrji; ηiÞ ≔ ffiffiffiffiffi
rji

p �
1þ ð1 − 2ηi þ rjiÞ

ð1 − ηiÞ2
ln

�
rji − η2i

1 − 2ηi þ rji

��
;

ð15Þ

with rji ≔ M2
j=M

2
i and ηi ≔ m2

η=M2
i . In the limit ofmη ¼ 0

this reduces to the well-known result [65]

fðrji; 0Þ ¼ ffiffiffiffiffi
rji

p �
1þ ð1þ rjiÞ ln

�
rji

rji þ 1

��
: ð16Þ

Similarly, we obtain for the self-energy contributions

Hij ≔ ðh†hÞij
Mj

Mi
þ ðh†hÞ�ij: ð17Þ

However, if we neglect flavor effects and therefore sum
over the final-state flavor α, the second term in Hij may be
omitted since it will not contribute to the imaginary part in
Eq. (14). In this case, we obtain the simpler expression

εi ¼
1

8πðh†hÞii
X
j≠i

Im½ðh†hÞ2ij�
1ffiffiffiffiffirji

p Fðrji; ηiÞ ð18Þ

where we defined

Fðrji; ηiÞ ≔ ffiffiffiffiffi
rji

p �
fðrji; ηiÞ −

ffiffiffiffiffirji
p
rji − 1

ð1 − ηiÞ2
�
: ð19Þ

Furthermore, the decay width Γ1 that appears in the decay
parameter K1 can be calculated to be

1The effective number of relativistic d.o.f. g� is given by g� ¼
114.25 for two RHNs and g� ¼ 116 for three RHNs.
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Γ1 ¼
M1

8π
ðh†hÞ11ð1 − η1Þ2: ð20Þ

Finally, before we turn to the different cases of two and
three RHNs, it is worth having a closer look at the
frequently appearing expression h†h. Using the CI para-
metrization, we find from Eq. (11) that

ðh†hÞij ¼
ffiffiffiffiffiffiffiffiffiffi
ΛiΛj

p ðRDMν
R†Þij: ð21Þ

Here, m̃ ≔ RDMν
R† only depends on the masses of the

active neutrinos through DMν
≔ diagðm1; m2; m3Þ and the

(complex) CI parameters, whereas the dependence on
other parameters like Mi and λ5 appears by means of
Λi. Interestingly enough, the matrix h†h is independent of
the PMNS matrix U. This indicates that the CP-violating
phases relevant for leptogenesis are independent of the
CP-violating phases in the PMNS matrix.2 Similarly, it
shows that unflavored leptogenesis is insensitive to the
values of the neutrino mixing angles (see our discussion in
the Introduction regarding the analyses in Refs. [48,49]).

IV. TWO RIGHT-HANDED NEUTRINOS

Using the formulas from the previous section and
specifying them to the case of two RHNs, we can check
whether low-scale leptogenesis is feasible in this scenario.
With two RHNs, only two active neutrinos obtain a nonzero
mass and we distinguish between normal ordering (NO)
and inverted ordering (IO),

DNO
Mν

¼ diag

�
0;

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

q
;

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q �
;

DIO
Mν

¼ diag

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δm2

31

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

21 − Δm2
31

q
; 0

�
; ð22Þ

where Δm2
ij ≔ m2

i −m2
j . To avoid duplicating equations,

we introduce the notation mh for the heaviest active
neutrino and ml for the lightest (massive) active neutrino.
In the case of only two RHNs, the matrix R in Eq. (11)

becomes a function of only one complex rotation parameter
z ¼ zR þ izI [66], where zR ∈ ½0; 2πÞ and zI ∈ R. We can
therefore readily maximize the CP asymmetry in Eq. (18)
over all possible values of z,

jε1j≲ 3π

4λ5v2
ξ2ðmh −mlÞM1: ð23Þ

Here, we used that jFðr21; η1Þj≲ 3=2 for a hierarchical
RHN mass spectrum. This is essentially the DI bound [15],

except for the additional factor ð2π2=λ5Þξ2 [see Eq. (9)].
It is interesting to note that the factormh −ml suggests that,
in the 2RHN case, the CP asymmetry parameter can be
larger for NO than for IO.
The final baryon-to-photon ratio ηB ¼ −Cε1κ1 follows

from ε1 after multiplication with an efficiency factor κ1,
which accounts for the effect of washout, and a conversion
factor C ≃ 0.01 [18], which accounts for sphaleron con-
version and entropy production after the generation of the
lepton asymmetry. The efficiency factor κ1 is a function of
the decay parameter K1, for which we obtain

K1 ¼
2π2

λ5
ξ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45

64π5g�

s
MPl

v2
m̃11ð1 − η1Þ2: ð24Þ

For 0 ≤ λ5 ≤ 4π and 3mη ≤ M1 (or η1 ≤ 1=9), we find that
K1 cannot become smaller than Kmin

1 ≃ 10. For large parts
of the parameter space, K1 is even significantly larger,
K1 ∼ 103 and above. We are therefore always in the strong
washout regime. This means that we can safely assume
N1-dominated leptogenesis and neglect washout through
scattering effects. Additionally, the large value of K1 also
enables us to use the approximation for the efficiency factor
in the strong washout regime [18],

κ1ðK1Þ ≃
1

1.2K1½lnK1�0.8
: ð25Þ

Taking everything together, we find

ηB ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3g�
1.22 · 45

s
M1

MPl

ξ2
ξ1

Fðr21; η1Þ
ð1 − η1Þ2

1

½lnK1�0.8
·

×
ðm2

h −m2
l Þ sinð2zRÞ sinhð2zIÞ

½−ðmh −mlÞ cosð2zRÞ þ ðmh þmlÞ coshð2zIÞ�2
;

ð26Þ

where K1 inside the logarithm is again given by the
expression in Eq. (24). One interesting aspect of this formula
is that ηB only depends logarithmically on λ5 (through K1),
which means that it has only a minor influence on the
generated baryon asymmetry. Furthermore, sinceK1 ∼ 1=λ5,
the baryon asymmetry ηB actually decreases if λ5 is
decreased; so the perturbative limit λ5 ¼ 4π allows for the
largest generated baryon asymmetry. Remarkably enough,
this is contrary to the naive expectation that a smaller value
of λ5 would result in a larger baryon asymmetry in
consequence of a larger CP asymmetry. Let us now fix
the scalar coupling λ5 at 4π and maximize ηB over the CI
parameters zR and zI. Using the experimentally measured
value ηobsB ≃ 6.1 × 10−10, we can then derive a lower limit on
the mass M1 of the lightest RHN that still allows for
successful leptogenesis,

2This situation changes once flavor effects are taken into
account. In this case, the CP asymmetry parameters εiα also
depend on factors of the form h�αihαj [see Eq. (14)] that are
sensitive to the CP-violating phases in the lepton sector at low
energies.
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MNO
1;min ∼ 1010 GeV and MIO

1;min ∼ 1012 GeV: ð27Þ
These numbers are basically identical to those that one
obtains in the strong washout regime (K1 ≳ 10) of
standard type-I leptogenesis. The reason that in this
scenario not much changes is that, in the strong washout
regime, we have ηB∼ε1=K1∼Im½ðh†hÞ2�=ðh†hÞ2 (neglect-
ing logarithmic dependencies) and thus all the prefactors
that enter into h†h, like λ5, cancel. We conjecture that this
is a generic feature of radiative neutrino mass models in
which the active neutrino mass matrix is only modified by
more or less simple multiplicative factors. However, this
statement relies on being in the strong washout regime,
which can depend on, among other factors, the mass of the
lightest active neutrino, as we will see in the next part,
when looking at the 3RHN case.

V. THREE RIGHT-HANDED NEUTRINOS

The most crucial difference between the 3RHN case and
the 2RHN case is that, with three RHNs, we are not
necessarily in the strong washout regime. This is due to the
fact that, in this case, the CI parametrization R has three
instead of one free parameter—it can be written as the
product of three complex rotation matrices Rðz23Þ, Rðz13Þ,
and Rðz12Þ—and thus the accessible parameter space is
vastly extended. Furthermore, we make two important
observations. First, the factor of ð2π2=λ5Þξ1, which is
peculiar to the scotogenic model, can only increase K1

in the relevant parameter space [see Eq. (24)]. Second, an
explicit calculation shows that m̃11 ¼ ðRDMν

R†Þ
11

≥ ml.
These insights, together with the values for MPl, v, etc.,
imply that

K1 ≳ 103
�
ml

eV

�
ð1 − η1Þ2: ð28Þ

Consequently, we are in the strong washout regime as long
as ml ≳ 10−3 eV and η1 ≉ 1 (or mη ≉ M1). In this regime,
we end up with the same result as in the 2RHN case for
NO or standard type-I leptogenesis, Mmin

1 ∼ 1010 GeV.
However, with three RHNs, the distinction between NO
and IO disappears because the mass difference of the
heaviest and lightest (massive) active neutrinos is (nearly)
identical in both cases.
For the maximally possible CP asymmetry, we find by

explicit calculation that it is independent of z23. Moreover,
an explicit parameter scan indicates that the optimal
values for NO are z12 ¼ 0 and z13R ¼ �z13I , where the
relative sign of z13I determines the overall sign of the CP
asymmetry. For IO, one similarly obtains z12R ¼ π=2,
z12I ¼ 0 and z13R ¼ π=2� z13I . In close resemblance to
the 2RHN case, we arrive at a DI-type bound,

jε1j≲ 3π

4λ5v2
ξ3ðmh −mlÞM1; ð29Þ

which again includes a factor of ð2π2=λ5Þξ3 that derives
from the structure of the active neutrino mass matrix in the
scotogenic model.
To study leptogenesis in the 3RHN case, we split the task

into an analytical and a numerical part. First, we will
analytically solve the scenario without ΔL ¼ 2 washout,
then determine when ΔL ¼ 2 washout starts to become
important, and finally confirm and extend our analytical
understanding with a numerical analysis.

A. Analytical insights

In the case with three RHNs and negligible ΔL ¼ 2
washout, we have to find a new solution strategy because we
are no longer automatically in the strong washout regime for
all possible values of λ5 and therefore Eq. (25) does not hold
anymore. However, we can always make use of the coupling
λ5 to achieve the maximally possible ηB ¼ −Cε1κ1. To do
so, let us consider the connection between ε1 andK1 through
λ5. From Eqs. (24) and (29), we find K1 ∼ 1=λ5 and ε1 ∼
1=λ5 (which also holds in the nonoptimized case), so ε1 ∼
K1 and therefore ηB ∼ κ1ðK1ÞK1. This means that, in order
to maximize the baryon asymmetry ηB, we have to choose λ5
such that κ1ðK1ÞK1 becomes maximal. Taking into account
κ1ðK1Þ as determined in Ref. [18], we find for thermal as
well as for vanishing initial N1 abundance that, to a good
approximation, K1;opt ≈ 3 maximizes ηB, corresponding to
κ1;opt ≈ 0.15. This leaves only ε1 to be optimized.
Recasting Eq. (24) as λ5;optðK1;optÞ and using it in the

expression for ε1, we can optimize over the CI parameters.
We find the same optimal CI parameters as for the DI-type
bound [cf. the discussion above Eq. (29)], with z13I now

being fixed to the optimal value z13I ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml=ð2mhÞ

p
.3

Therefore, the optimal value of λ5 after optimization over
the CI parameters becomes

λ5;opt ≈ 4πξ1

�
ml

10−3 eV

�
ð1 − η1Þ2: ð30Þ

Neglecting η1 and using ξ1 ∼ 1, we find that, for a lightest
active neutrino mass ml > 10−3 eV, i.e., in the strong
washout regime, the optimal value for λ5 is 4π, as expected
from the 2RHN case. Larger λ5 values would violate
perturbativity and are, hence, not allowed.
On the other hand, the situation drastically changes if we

consider one small active neutrino mass, m2
l ≪ m2

h, which
allows us to explore the weak washout regime. In this case,
we find for the upper limit of the baryon-to-photon ratio

3This is the largest allowed value of z13I ensuring that the mass
parameter m̃11 remains ofOðmlÞ. This guarantees thatK1 is small
while ε1 is large. The same procedure applies to z12I ; however,
the z12-dependent contribution to the CP asymmetry ε1 is
subdominant compared to the z13-dependent contribution. Thus,
maximizing ε1 while minimizing m̃11 yields z12 ¼ 0.
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ηB ≲ 3 × 10−21
�

M1

GeV

�
ξ3
ξ1

mh

ml
ð31Þ

and therefore for the lower limit on the mass M1,

Mmin
1 ≈

ξ1
ξ3

ml

mh
2 × 1011 GeV: ð32Þ

This expression, which is valid for ml ≲ 10−3 eV down to
the point where ΔL ¼ 2 washout starts to become impor-
tant, clearly shows the relevance of the mass of the lightest
active neutrino. The reason why we can achieve lower
values of Mmin

1 compared to standard thermal leptogenesis
is that, in the scotogenic model, the new parameter λ5
enables us to go to the sweet spot of the N1 decay
parameter, K1 → K1;opt ≈ 3, while keeping all other param-
eters fixed. However, this optimization can only enlarge K1

and cannot be continued to arbitrarily small values of λ5.
As we will see, using λ5 in this way also increases the
ΔL ¼ 2 washout [51], which will, in combination with the
electroweak sphalerons dropping out of equilibrium, even-
tually provide us with an absolute lower bound on M1.
Next, let us discuss the effect of ΔL ¼ 2 washout

processes in the thermal bath. These processes consist of
two-to-two scatterings, lη ↔ l̄η� and ll ↔ η�η�, that are
mediated by RHNs in the intermediate state and that violate
lepton number by two units. To determine their effect on
the final asymmetry, we first compute the rate of ΔL ¼ 2
washout processes, ΓΔL¼2, in units of Hz. To do so, we use
the averaged matrix element squared from Ref. [18] and
take into account the modified CI parametrization for
the Yukawa couplings in the scotogenic model in Eq. (11).
This procedure results in4

ΔW ¼ ΓΔL¼2

Hz1
¼ 36

ffiffiffi
5

p
MPl

π
1
2gl

ffiffiffiffiffi
g�

p
v4

1

z21

1

λ25
M1m̄2

ξ : ð33Þ

Here, we also assumed η1 ≈ 0, for simplicity. The factor
gl ¼ 2 in Eq. (33) counts the internal d.o.f. per active
neutrino ναL or per charged lepton αL. The effective mass
parameter m̄ξ is defined as follows:

m̄2
ξ ≔

X
i;j

ξiξjRe½ðRDMν
R†Þ2ij�

≈ 4ξ21m
2
l þ ξ22m

2
h2
þ ξ23m

2
h; ð34Þ

where the last line uses the previously determined optimal
CI parameters. This expression for ΔW is identical to the
result in Ref. [18], only with an additional factor of

ð2π2=λ5Þ2 for the scotogenic model in front and a slightly
modified effective mass m̄ξ.
Assuming that the ΔL ¼ 2 washout becomes important

after the baryon asymmetry generation is finished, we can
split the two different washout contributions and use

κtot1 ¼ κ1e
−
R

∞
zB

dzΔW ð35Þ

for the total efficiency factor. The time zB when the baryon
asymmetry generation is finished has been calculated in
Ref. [18] and is given by zBðK1 ≈ 3Þ ≈ 3.5. Since the case
of vanishing initial N1 abundance is similar but worse
(lower κ1) compared to the case of thermal initial abun-
dance, we will focus on the latter from now on. We,
however, caution that, for small N1 couplings, a thermal
initial abundance can no longer be generated via the usual
inverse decays in the thermal bath. In this case, we have to
assume some additional interactions at high temperatures
that first yield a thermal N1 abundance and then freeze out
before the onset of leptogenesis. For our purposes, it will
not be necessary to specify the exact nature of these
additional interactions. As an example, we merely mention
that an extra gauge interaction mediated by a heavy Z0
vector boson could possibly help establish a thermal N1

abundance (see Ref. [67] and references therein). Apart
from that, we will simply use the assumption of thermal
initial conditions as a working hypothesis.
Explicitly calculating the integral in Eq. (35) and taking

into account Eq. (30) with η1 ≈ 0 and Eq. (32) for the
smallest possible M1, we obtain the following expression:

Z
∞

zB

dzΔW ≈
9

ffiffiffi
5

p
MPl · 105 GeV

7π
5
2gl

ffiffiffiffiffi
g�

p
v4

eV2

mlmh

1

ξ1ξ3
m̄2

ξ : ð36Þ

We expect that ΔL ¼ 2 washout becomes important as
soon as

R∞
zB
dzΔW > 0.1, which corresponds to a 10%

decrease of κtot1 . If we further assume that ξi ∼ 1, we find
that ΔL ¼ 2 washout becomes relevant for

ml ≲ 10−6 eV: ð37Þ

This criticalml value at which ΔL ¼ 2 washout becomes
important is derived using a rigid relation between λ5 andml
[seeEq. (30)]. The numerical analysis in the next sectionwill,
however, show that the true critical value of ml is actually
smaller by roughly one order of magnitude, ml ≲ 10−7 eV,
while still approximately fulfilling Eq. (32) forMmin

1 . As we
will see, this is mostly the outcome of a less rigid relation
between λ5 and ml.

B. Numerical insights

Complementary to our analytical calculations, we also
perform a fully numerical analysis of leptogenesis in the
scotogenic model. This will allow us to validate our

4A similar expression can be found in Refs. [18,51]. The
authors of Ref. [18] used v ¼ 174 GeV, whereas we work with
v ¼ 246 GeV.
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analytical results and provide us with further insights. Let
us consider the Boltzmann equations for N1-dominated
leptogenesis including the effect of ΔL ¼ 2 washout,

dNN1

dz1
¼ −D1ðNN1

− Neq
N1
Þ; ð38Þ

dNB−L

dz1
¼ −ϵ1D1ðNN1

− Neq
N1
Þ −WtotNB−L; ð39Þ

with the z1-dependent quantities

D1 ¼ K1z1
K1ðz1Þ
K2ðz1Þ

; ð40Þ

Wtot ¼ W1 þ ΔW; ð41Þ

W1 ¼
1

4
K1z31K1ðz1Þ; ð42Þ

Neq
N1

¼ z21
2
K2ðz1Þ: ð43Þ

Here, Kiðz1Þ denote the modified Bessel functions of the
second kind and ΔW is given by Eq. (33). The final B − L
asymmetry Nf

B−L can be converted to the baryon-to-photon
ratio ηB ¼ CNf

B−L, withC ≈ 0.0088.5 One might worry that
the asymmetry generated in the η–η̄ sector through N1

decays (cf. Ref. [68]) is not accounted for in the Boltzmann
equations. However, for values of λ5 ≳ 10−4, as are relevant
in our case, the ηη ↔ HH interactions mediated by the λ5
coupling are strong enough for the asymmetry carried by
the inert doublets to be negligible.
Based on the Boltzmann equations (38) and (39), we

perform a parameter scan of leptogenesis in the scotogenic
model, the result of which is shown in Fig. 1. In this figure,
we depict the maximally possible baryon-to-photon ratio
ηB in the ml −M1 parameter plane, since we are interested
in the lowest possible M1 and want to illustrate the strong
dependency ofMmin

1 on the active neutrino massml. For all
points in the plot with ηB > ηobsB (above the red line), the
observed baryon-to-photon ratio can be achieved by appro-
priate choices of λ5 and the CI parameters.
Using the numerical results from Fig. 1, we can find an

approximate expression for the upper limit of the baryon-
to-photon ratio in the region where M1 ≫ mη and ΔL ¼ 2
scatterings are important, which can be compared to
Eq. (31) for the regionwhere those scatterings are negligible.
Approximately, we find

ηB ≲ 1.6 × 10−14
�
ml

eV

�
−0.19

�
M1

GeV

�
0.58

: ð44Þ

The comparison with Eq. (31), which has exponents of −1
for ml and 1 for M1, shows a weaker dependence on both
variables since the exponents are closer to zero. This is also
reflected in a bigger spacing between the contours in the
corresponding region of Fig. 1.
For further insights, Fig. 2 gives an impression of how λ5

and the decay parameter K1 evolve in dependence of M1

andml for the correct baryon-to-photon ratio ηB (cf. the red
line in Fig. 1). The transition between the regime in which
ΔL ¼ 2 scatterings are negligible and where they are
important is well visible as a kink in the decay parameter
K1. As long as ΔL ¼ 2 scatterings are negligible, K1 is
constant and of Oð1Þ, while we have to resort to the weak
washout regime otherwise. The reason that the constant
value of K1 ≈ 1.5 differs from K1;opt ¼ 3 as used in the
analytical calculation, is that K1;opt ¼ 3 leads to a reason-
ably accurate expression for ηB while enabling us to treat
the two different cases of thermal and vanishing initial N1

abundance simultaneously, which would not be possible
for smaller values of K1. Furthermore, Fig. 2 also shows
how the dependence of λ5 on ml changes when ΔL ¼ 2

scatterings become important around ml ≈ 10−6 eV, which
is the “less rigid relation”mentioned at the end of Sec. VA.
In the context of the small λ5 values that appear in

our scenario, one has to check that they are compatible with
the constraints coming from direct detection via inelastic

FIG. 1. Resulting baryon-to-photon ratio ηB maximized over
λ5 ∈ ½10−6; 4π� of a parameter scan in the ml −M1 plane for
mη ¼ 550 GeV, λ3 ¼ 1, λ4 ¼ −1, M2 ¼ 100.5M1, M3 ¼ 101M1,

z12 ¼ 0, z13R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml=ð2mhÞ

p ¼ z13I , z23 ¼ 0, and NO. The red
line shows the part of the scan that reproduces the observed value
ηB ¼ 6.1 × 10−10, the black line depicts the analytical solution
given by Eq. (32) with ξ1=ξ3 ≈ 1.2 valid for ml ≳ 10−6 eV
[cf. Eq. (37)], and the orange star marks the lowest possible
M1 and ml for which the baryon asymmetry is generated before
the SUð2Þ sphalerons fall out of equilibrium.

5The conversion factor is given by C ¼ 3=4Csphg0�=g� with
Csph ¼ 8=23, g0� ¼ 43=11, and g� ¼ 116. Note that, in the
sphaleron conversion factor Csph, we account for the presence
of two Higgs doublets in our model. Likewise, the effective
number of relativistic d.o.f. g� accounts for the presence of three
RHNs in our model at high temperatures.
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scattering. From Fig. 2, we can see that, for the observed
baryon-to-photon ratio, we have λ5 ≳ 5 × 10−5. Using the
expression for the limit from direct detection via inelastic
scattering from Ref. [49], together with the experimental
data from XENON100 [69], we find that, in our case, λ5 has to
be bigger than 3 × 10−6, which is fulfilled.
In addition to the parameter scan with some fixed

parameters, we also choose specific points in the ml −M1

plane that reproduce the measured ηB and perform a
complete scan over all CI parameters and λ5. Since the
complete scans do not show any possible significant
improvement through the variation of other parameters,
we are confident that Fig. 1 does, indeed, depict the lowest
possible Mmin

1 . Small improvements are possible in the
region where ΔL ¼ 2 washout is important. However, these
improvements are not bigger than the systematic uncertain-
ties of our simplified approach in which we neglect flavor
effects, etc. (see the discussion in Sec. II).
There are several aspects that can be seen from Fig. 1.

First, it clearly shows that the lower bound on the N1 mass
crucially depends on the lightest active neutrino mass ml.
This is a novel realization which, to our knowledge, has not
yet been pointed out in the literature. Second, the analytical
approximation as stated in Eq. (32) is in very good
agreement with the numerical simulation. We are therefore
confident that our analytical understanding indeed captures
the relevant parameter relations. Third, our analytical
approximation is a good approximation for even smaller

ml values than expected [see Eq. (37)], as we already
anticipated at the end Sec. VA. Fourth, even with ΔL ¼ 2

washout being important, Mmin
1 still decreases with ml,

which one might not necessarily expect.
Although a precise analytical understanding for the

region below ml ≲ 10−7 eV, in which ΔL ¼ 2 washout
is important, is difficult to come by, we can quantitatively
describe what is happening and determine a global lower
bound on Mmin

1 . In our case, the way that small values of
ml are achieved is through a suppression of the N1 Yukawa
couplings. However, these Yukawa couplings also deter-
mine the N1 decay width [see Eq. (20)]. Smaller values of
ml therefore correspond to a longer N1 lifetime. This, in
turn, leads to a partial circumvention of the ΔL ¼ 2
washout because the lepton asymmetry is generated later,
explaining why Mmin

1 decreases with ml.
Nonetheless, there is a limit on how far this is possible

and, hence, a limit on Mmin
1 , since the lepton asymmetry

generated in N1 decays has to be transformed into a baryon
asymmetry by electroweak sphalerons. After sphalerons
fall out of equilibrium around Tsph ≈ 130 GeV [70], this
conversion is no longer possible. Therefore, we demand
that the generation of the baryon asymmetry completes
before zB;sph ¼ M1=Tsph. Solving the Boltzmann equations
with the optimal λ5 value for smallml of λ5 ∼ 10−4, we find
zB ≈ 3.0 × 10−5ðml=eVÞ−0.56 and a fit to the small-ml

region of Fig. 1 provides Mmin
1 ≈ 4.6 × 107ðml=eVÞ0.30.

Combining both fits with the constraint zB < zB;sph, we first
find ml ≳ 2 × 10−12 eV and finally

Mmin
1 ∼ 104 GeV: ð45Þ

This is the main result of our paper. Our analysis demon-
strates that the scotogenic model with three RHNs allows to
realize successful leptogenesis for N1 masses down to
∼10 TeV. The corresponding parameters for which this is
possible are given above and in the description of Fig. 1.
Most notably, a small N1 mass requires an extremely light
active neutrino with a mass ofOð10−12Þ eV. The parameter
values corresponding to Mmin

1 ∼ 104 GeV determine the
neutrino Yukawa matrix via the CI parametrization in
Eq. (11) together with the PMNS matrix for which we
used the best-fit PDG16 values [1] with the Majorana
phases set to zero. Let us explicitly state this matrix for
illustrative purposes:

h ¼

0
B@

1 × 10−8 þ 2 × 10−9i 8 × 10−4 þ 0 · i −4 × 10−4 þ 7 × 10−4i

1 × 10−9 − 6 × 10−9i 9 × 10−4 þ 7 × 10−5i 4 × 10−3 þ 3 × 10−15i

1 × 10−8 − 6 × 10−9i −7 × 10−4 þ 8 × 10−5i 4 × 10−3 þ 1 × 10−13i

1
CA: ð46Þ

FIG. 2. Dependence of the scalar coupling λ5 and the decay
parameter K1 on M1 and ml, respectively, for the observed
baryon-to-photon ratio ηB (cf. the red line in Fig. 1).
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This Yukawa matrix looks perfectly natural.6 We, thus,
conclude that no particular tuning of parameters seems
necessary to generate the baryon asymmetry. The only
physical assumption we have to make is that the Yukawa
couplings of the N1 neutrino must be suppressed compared
to those of the N2;3 neutrinos; see also footnote 3. Quali-
tatively, this directly links our findings to the Sakharov
conditions for successful baryogenesis [71]: in order to
ensure that N1 decays occur sufficiently out of equilibrium,
we need h1α ≪ 1, whereas a sufficiently large CP asym-
metry is achieved by a sizable h2=3α. Similar, qualitative
observations have already been made in Ref. [29].
Apart from that, the Yukawa couplings in Eq. (46) have a

rather generic and natural structure: the large hierarchies
among the different entries are not much larger than those
in the charged-lepton Yukawa matrix, and the small
absolute values are protected by a global Uð1Þ symmetry
which emerges as h → 0. For the same reason, ml is stable
against radiative corrections, too. At this point, it is also
important to realize that our optimization in terms of the
complex angles in the CI parametrization was not much
more than a technical trick. Choosing particular values for
the complex angles z12, z13, and z23 must not be considered
fine-tuning, as long as the corresponding physical quan-
tities, i.e., the Yukawa couplings hαi do not show any signs
of fine-tuning.
The necessary small masses of the lightest active

neutrino for low-scale leptogenesis (ml ∼ 10−12 eV) are
an interesting aspect of the model that makes this region of
parameter space accessible to experiments. The tritium beta
decay experiment KATRIN [72], e.g., intends to perform a
direct measurement of the mass of the electron neutrino,
m2

νe ≔
P

ijUeij2m2
i . It will soon start operation and might

falsify low-scale leptogenesis in the scotogenic model, if it
should find evidence for a lightest active neutrino mass
close to its design sensitivity, ml ∼ 0.2 eV. Similarly, the
PROJECT 8 Collaboration is currently pioneering the
development of a next-generation tritium end-point experi-
ment based on the detection of single-electron cyclotron
radiation [73]. Once fully developed into a neutrino mass
experiment, this approach will allow to probe the entire
active neutrino mass range down to ml → 0 in the case of
an inverted mass hierarchy.

VI. CONCLUSION

The scotogenic model is the simplest model of radiative
neutrino masses and an attractive framework for the
unified description of SM neutrino masses, DM, and
baryogenesis. In this paper, we revisited thermal lepto-
genesis in the scotogenic model, demonstrating that it
allows to accommodate low-scale leptogenesis via the

decay of hierarchical RHNs down to rather low RHN
masses. In our analysis, we explicitly distinguished
between the cases of two and three RHNs. In both
cases, we derived a Davidson-Ibarra-type bound on the
CP asymmetry. For two RHNs, we argued that lepto-
genesis inevitably occurs in the strong washout regime.
Consequently, this scenario does not substantially differ
from standard thermal leptogenesis in the type-I seesaw
model. In an explicit analytical calculation, we showed
that this follows from the fact that all new prefactors in
the scotogenic model essentially cancel. Therefore, for a
normal SM neutrino mass hierarchy, the lightest RHN
must have a mass of at least Mmin

1 ∼ 1010 GeV, while for
an inverted mass hierarchy, it must have a mass of at least
Mmin

1 ∼ 1012 GeV.
In the 3RHN case, the difference between normal and

inverted ordering is negligible and the weak washout
regime becomes accessible. However, the efficiency of
washout and, hence, Mmin

1 strongly depend on the mass
of the lightest active neutrino ml. For ml ≳ 10−7…−6 eV,
the effect of ΔL ¼ 2 washout is negligible and Mmin

1 is
directly proportional to ml. For smaller ml masses, the
ΔL ¼ 2 washout becomes important. Nevertheless, even
in this regime, the bound on M1 can still be lowered by
delaying the decay of the N1 neutrinos. As we were able
to demonstrate, this can be achieved by assuming sup-
pressed N1 Yukawa couplings. The generation of the
lepton asymmetry is then delayed which allows to circum-
vent part of the washout. This mechanism is limited by
the requirement that leptogenesis must end before the
electroweak sphalerons drop out of equilibrium. In total,
we thus obtained a global lower limit on the mass of the
lightest RHN of Mmin

1 ∼ 104 GeV. This result needs to be
compared with the typical mass bound in standard thermal
leptogenesis, Mmin

1 ∼ 109 GeV, which is larger by around
five orders of magnitude. We therefore conclude that, in
the scotogenic model, one is able to lower the energy scale
of leptogenesis compared to the standard type-I seesaw
case quite significantly—without any degeneracy in the
RHN mass spectrum!
Another important consequence of the small N1 Yukawa

couplings is a very light active neutrino mass eigenstate.
In the case of the lowest possible N1 mass,M1 ∼ 104 GeV,
we found that the lightest active neutrino must have a mass
of around ml ∼ 10−12 eV. This is an intriguing prediction
that will be tested in future experiments that aim at
measuring the absolute neutrino mass scale.
Our analysis in this paper only accounted for the most

important effects that are relevant to the generation of the
lepton asymmetry: decays and inverse decays of RHNs as
well as the associated ΔL ¼ 2 washout processes. In this
way, we were able to perform most of our calculations
analytically and in a comparatively transparent fashion.
In particular, we thus arrived at two important results that
are complementary to existing results in the literature.

6The smallness of some of the imaginary parts is due to our
choice of z23 ¼ 0 and not necessary for successful leptogenesis.
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1) It is, in fact, not possible to realize low-scale leptogenesis
in the scotogenic model if one is to work with two RHNs
only. 2) On the other hand, in the 3RHN case, it is possible
to realize low-scale leptogenesis in the scotogenic model,
and in that case, it is not even necessary to assume an
approximate RHN mass degeneracy. In future work, it
will be interesting to refine the results of our analysis by
incorporating several effects that were neglected in this
paper. This includes flavor effects, ΔL ¼ 1 scattering
processes, and a more careful treatment of kinematic effects
in the regime of large η masses, mη ∼M1. We expect that
such a refined analysis may still lower the absolute lower
bound onM1 by a factor ofOð1 � � � 10Þ, similar to standard
thermal leptogenesis. Apart from that, we are confident that
our qualitative findings will remain unchanged: the scoto-
genic model is a promising alternative to the type-I seesaw

model that allows to lower the energy scale of thermal
leptogenesis by many orders of magnitude.

ACKNOWLEDGMENTS

The authors thank Jackson D. Clarke and P. S. Bhupal
Dev for their valuable contributions at the early stages of
this project. The authors are also grateful to Tommi Alanne,
Vedran Brdar, Marco Drewes, Thomas Hambye, Teresa
Marrodan Undagoitia, and Stefan Vogl for helpful dis-
cussions towards the completion of this project. M. P. is
funded by the International Max Planck Research School
for Precision Tests of Fundamental Symmetries (IMPRS-
PTFS). This project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant
Agreement No. 674896 (K. S.).

[1] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,
100001 (2016).

[2] P. A. R. Ade et al. (Planck Collaboration), Astron. As-
trophys. 594, A13 (2016).

[3] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
[4] P. Minkowski, Phys. Lett. B 67, 421 (1977).
[5] T. Yanagida, Conf. Proc. C 7902131, 95 (1979).
[6] T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980).
[7] M. Gell-Mann, P. Ramond, and R. Slansky, Conf. Proc. C

790927, 315 (1979).
[8] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44,

912 (1980).
[9] P. S. B. Dev, P. Di Bari, B. Garbrecht, S. Lavignac, P.

Millington, and D. Teresi, Int. J. Mod. Phys. A 33, 1842001
(2018).

[10] M. Drewes, B. Garbrecht, P. Hernandez, M. Kekic, J.
Lopez-Pavon, J. Racker, N. Rius, J. Salvado, and D. Teresi,
Int. J. Mod. Phys. A 33, 1842002 (2018).

[11] B. Dev, M. Garny, J. Klaric, P. Millington, and D. Teresi, Int.
J. Mod. Phys. A 33, 1842003 (2018).

[12] S. Biondini et al., Int. J. Mod. Phys. A 33, 1842004 (2018).
[13] E. J. Chun et al., Int. J. Mod. Phys. A 33, 1842005 (2018).
[14] C. Hagedorn, R. N. Mohapatra, E. Molinaro, C. C. Nishi,

and S. T. Petcov, Int. J. Mod. Phys. A 33, 1842006 (2018).
[15] S. Davidson and A. Ibarra, Phys. Lett. B 535, 25 (2002).
[16] W. Buchmuller, P. Di Bari, and M. Plumacher, Nucl. Phys.

B643, 367 (2002); 793, 362(E) (2008).
[17] G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A.

Strumia, Nucl. Phys. B685, 89 (2004).
[18] W. Buchmuller, P. Di Bari, and M. Plumacher, Ann. Phys.

(Amsterdam) 315, 305 (2005).
[19] S. Blanchet and P. Di Bari, Nucl. Phys. B807, 155 (2009).
[20] F. Vissani, Phys. Rev. D 57, 7027 (1998).
[21] F. F. Deppisch, J. Harz, and M. Hirsch, Phys. Rev. Lett. 112,

221601 (2014).

[22] F. F. Deppisch, J. Harz, M. Hirsch, W.-C. Huang, and H.
Päs, Phys. Rev. D 92, 036005 (2015).

[23] J. Harz, W.-C. Huang, and H. Päs, Int. J. Mod. Phys. A 30,
1530045 (2015); Adv. Ser. Dir. High Energy Phys. 25, 207
(2015).

[24] E. Ma, Phys. Rev. D 73, 077301 (2006).
[25] J. Kubo, E. Ma, and D. Suematsu, Phys. Lett. B 642, 18

(2006).
[26] D. A. Sierra, J. Kubo, D. Restrepo, D. Suematsu, and O.

Zapata, Phys. Rev. D 79, 013011 (2009).
[27] D. Suematsu, T. Toma, and T. Yoshida, Phys. Rev. D 79,

093004 (2009).
[28] L. L. Honorez, E. Nezri, J. F. Oliver, and M. H. G. Tytgat,

J. Cosmol. Astropart. Phys. 02 (2007) 028.
[29] T. Hambye, F. S. Ling, L. L. Honorez, and J. Rocher, J. High

Energy Phys. 07 (2009) 090; 05 (2010) 066(E).
[30] E. M. Dolle and S. Su, Phys. Rev. D 80, 055012 (2009).
[31] L. L. Honorez and C. E. Yaguna, J. High Energy Phys. 09

(2010) 046.
[32] A. Goudelis, B. Herrmann, and O. Stål, J. High Energy

Phys. 09 (2013) 106.
[33] M. Krawczyk, D. Sokolowska, P. Swaczyna, and B.

Swiezewska, J. High Energy Phys. 09 (2013) 055.
[34] M. A. Díaz, B. Koch, and S. Urrutia-Quiroga, Adv. High

Energy Phys. 2016, 8278375 (2016).
[35] C. Garcia-Cely, M. Gustafsson, and A. Ibarra, J. Cosmol.

Astropart. Phys. 02 (2016) 043.
[36] D. Borah and A. Gupta, Phys. Rev. D 96, 115012 (2017).
[37] E. Ma, Mod. Phys. Lett. A 21, 1777 (2006).
[38] A. Pilaftsis, Phys. Rev. D 56, 5431 (1997).
[39] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B692, 303

(2004).
[40] D. Suematsu, Eur. Phys. J. C 72, 1951 (2012).
[41] E. K. Akhmedov, V. A. Rubakov, and A. Yu. Smirnov, Phys.

Rev. Lett. 81, 1359 (1998).

LOW-SCALE LEPTOGENESIS IN THE SCOTOGENIC … PHYS. REV. D 98, 023020 (2018)

023020-11

https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1143/PTP.64.1103
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1142/S0217751X18420010
https://doi.org/10.1142/S0217751X18420010
https://doi.org/10.1142/S0217751X18420022
https://doi.org/10.1142/S0217751X18420034
https://doi.org/10.1142/S0217751X18420034
https://doi.org/10.1142/S0217751X18420046
https://doi.org/10.1142/S0217751X18420058
https://doi.org/10.1142/S0217751X1842006X
https://doi.org/10.1016/S0370-2693(02)01735-5
https://doi.org/10.1016/S0550-3213(02)00737-X
https://doi.org/10.1016/S0550-3213(02)00737-X
https://doi.org/10.1016/j.nuclphysb.2007.11.030
https://doi.org/10.1016/j.nuclphysb.2004.02.019
https://doi.org/10.1016/j.aop.2004.02.003
https://doi.org/10.1016/j.aop.2004.02.003
https://doi.org/10.1016/j.nuclphysb.2008.08.026
https://doi.org/10.1103/PhysRevD.57.7027
https://doi.org/10.1103/PhysRevLett.112.221601
https://doi.org/10.1103/PhysRevLett.112.221601
https://doi.org/10.1103/PhysRevD.92.036005
https://doi.org/10.1142/S0217751X15300458
https://doi.org/10.1142/S0217751X15300458
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1103/PhysRevD.73.077301
https://doi.org/10.1016/j.physletb.2006.08.085
https://doi.org/10.1016/j.physletb.2006.08.085
https://doi.org/10.1103/PhysRevD.79.013011
https://doi.org/10.1103/PhysRevD.79.093004
https://doi.org/10.1103/PhysRevD.79.093004
https://doi.org/10.1088/1475-7516/2007/02/028
https://doi.org/10.1088/1126-6708/2009/07/090
https://doi.org/10.1088/1126-6708/2009/07/090
https://doi.org/10.1007/JHEP05(2010)066
https://doi.org/10.1103/PhysRevD.80.055012
https://doi.org/10.1007/JHEP09(2010)046
https://doi.org/10.1007/JHEP09(2010)046
https://doi.org/10.1007/JHEP09(2013)106
https://doi.org/10.1007/JHEP09(2013)106
https://doi.org/10.1007/JHEP09(2013)055
https://doi.org/10.1155/2016/8278375
https://doi.org/10.1155/2016/8278375
https://doi.org/10.1088/1475-7516/2016/02/043
https://doi.org/10.1088/1475-7516/2016/02/043
https://doi.org/10.1103/PhysRevD.96.115012
https://doi.org/10.1142/S0217732306021141
https://doi.org/10.1103/PhysRevD.56.5431
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1140/epjc/s10052-012-1951-z
https://doi.org/10.1103/PhysRevLett.81.1359
https://doi.org/10.1103/PhysRevLett.81.1359


[42] T. Hambye and D. Teresi, Phys. Rev. Lett. 117, 091801
(2016).

[43] T. Hambye and D. Teresi, Phys. Rev. D 96, 015031 (2017).
[44] S. Baumholzer, V. Brdar, and P. Schwaller, 2018.
[45] A. Adulpravitchai, M. Lindner, and A. Merle, Phys. Rev. D

80, 055031 (2009).
[46] T. Toma and A. Vicente, J. High Energy Phys. 01 (2014) 160.
[47] A. Vicente and C. E. Yaguna, J. High Energy Phys. 02

(2015) 144.
[48] S. Kashiwase and D. Suematsu, Phys. Rev. D 86, 053001

(2012).
[49] S. Kashiwase and D. Suematsu, Eur. Phys. J. C 73, 2484

(2013).
[50] J. Racker, J. Cosmol. Astropart. Phys. 03 (2014) 025.
[51] J. D. Clarke, R. Foot, and R. R. Volkas, Phys. Rev. D 92,

033006 (2015).
[52] Y. Cai, J. Herrero-García, M. A. Schmidt, A. Vicente, and

R. R. Volkas, Front. Phys. 5, 63 (2017).
[53] A. Merle and M. Platscher, J. High Energy Phys. 11 (2015)

148.
[54] G. ’t Hooft, NATO Sci. Ser. B 59, 135 (1980).
[55] J. Casas and A. Ibarra, Nucl. Phys. B618, 171 (2001).
[56] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 34, 247 (1957) [Sov.

Phys. JETP 7, 172 (1958)].
[57] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys.

28, 870 (1962).
[58] M. A. Luty, Phys. Rev. D 45, 455 (1992).

[59] M. Plumacher, Z. Phys. C 74, 549 (1997).
[60] C. P. Kiessig, M. Plumacher, and M. H. Thoma, Phys. Rev.

D 82, 036007 (2010).
[61] S. Blanchet, P. Di Bari, D. A. Jones, and L. Marzola,

J. Cosmol. Astropart. Phys. 01 (2013) 041.
[62] S. Antusch, P. Di Bari, D. A. Jones, and S. F. King, Nucl.

Phys. B856, 180 (2012).
[63] W. Buchmuller and S. Fredenhagen, Phys. Lett. B 483, 217

(2000).
[64] A. De Simone and A. Riotto, J. Cosmol. Astropart. Phys. 08

(2007) 002.
[65] L. Covi, E. Roulet, and F. Vissani, Phys. Lett. B 384, 169

(1996).
[66] A. Ibarra and G. G. Ross, Phys. Lett. B 591, 285 (2004).
[67] J. Racker and E. Roulet, J. High Energy Phys. 03 (2009)

065.
[68] J. Racker, Nucl. Part. Phys. Proc. 273–275, 334 (2016).
[69] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. D

84, 061101 (2011).
[70] M. D’Onofrio, K. Rummukainen, and A. Tranberg, Phys.

Rev. Lett. 113, 141602 (2014).
[71] A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967)

[Usp. Fiz. Nauk 161, 61 (1991)].
[72] A. Osipowicz et al. (KATRIN Collaboration), arXiv:hep-ex/

0109033.
[73] A. A. Esfahani et al. (Project 8 Collaboration), J. Phys. G

44, 054004 (2017).

HUGLE, PLATSCHER, and SCHMITZ PHYS. REV. D 98, 023020 (2018)

023020-12

https://doi.org/10.1103/PhysRevLett.117.091801
https://doi.org/10.1103/PhysRevLett.117.091801
https://doi.org/10.1103/PhysRevD.96.015031
https://doi.org/10.1103/PhysRevD.80.055031
https://doi.org/10.1103/PhysRevD.80.055031
https://doi.org/10.1007/JHEP01(2014)160
https://doi.org/10.1007/JHEP02(2015)144
https://doi.org/10.1007/JHEP02(2015)144
https://doi.org/10.1103/PhysRevD.86.053001
https://doi.org/10.1103/PhysRevD.86.053001
https://doi.org/10.1140/epjc/s10052-013-2484-9
https://doi.org/10.1140/epjc/s10052-013-2484-9
https://doi.org/10.1088/1475-7516/2014/03/025
https://doi.org/10.1103/PhysRevD.92.033006
https://doi.org/10.1103/PhysRevD.92.033006
https://doi.org/10.3389/fphy.2017.00063
https://doi.org/10.1007/JHEP11(2015)148
https://doi.org/10.1007/JHEP11(2015)148
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.1016/S0550-3213(01)00475-8
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1103/PhysRevD.45.455
https://doi.org/10.1007/s002880050418
https://doi.org/10.1103/PhysRevD.82.036007
https://doi.org/10.1103/PhysRevD.82.036007
https://doi.org/10.1088/1475-7516/2013/01/041
https://doi.org/10.1016/j.nuclphysb.2011.10.036
https://doi.org/10.1016/j.nuclphysb.2011.10.036
https://doi.org/10.1016/S0370-2693(00)00573-6
https://doi.org/10.1016/S0370-2693(00)00573-6
https://doi.org/10.1088/1475-7516/2007/08/002
https://doi.org/10.1088/1475-7516/2007/08/002
https://doi.org/10.1016/0370-2693(96)00817-9
https://doi.org/10.1016/0370-2693(96)00817-9
https://doi.org/10.1016/j.physletb.2004.04.037
https://doi.org/10.1088/1126-6708/2009/03/065
https://doi.org/10.1088/1126-6708/2009/03/065
https://doi.org/10.1016/j.nuclphysbps.2015.09.047
https://doi.org/10.1103/PhysRevD.84.061101
https://doi.org/10.1103/PhysRevD.84.061101
https://doi.org/10.1103/PhysRevLett.113.141602
https://doi.org/10.1103/PhysRevLett.113.141602
https://doi.org/10.3367/UFNr.0161.199105h.0061
http://arXiv.org/abs/hep-ex/0109033
http://arXiv.org/abs/hep-ex/0109033
https://doi.org/10.1088/1361-6471/aa5b4f
https://doi.org/10.1088/1361-6471/aa5b4f

