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We study stationary, electrically charged fluid structures encircling a rotating compact object with a
dipole magnetic field oriented along the rotation axis. This situation is described in an idealized way by the
Kerr metric and a magnetic dipole “test” field, that does not affect the spacetime. The self-gravitational and
self-electromagnetic field of the fluid are neglected and the fluid is assumed to be nonconductive and in
rigid motion. Our work generalizes a previous study by Kovář et al. [1] by taking into account the rotation
of the central object. Therefore, we focus on the influence of the rotation onto the existence and position of
bound fluid structures. Frame dragging effects allow the existence of polar clouds, which could not be
found in nonrotating case. Furthermore counterrotating equatorial tori become more preferred the faster the
central object is spinning.
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I. INTRODUCTION

Fluids take a very important role inAstrophysics. Accreted
by compact objects such as black holes or neutron stars, they
give rise to a variety of astrophysical phenomenon like active
galactic nuclei (AGN), x-ray binaries and more [2,3]. Their
investigationhowever is averychallenging issue.Thedensity,
pressure and temperature of the fluid lies in a very broad
range, so that different approaches are needed to describe
different situations,where, according to the situation,we have
to include radiation processes, turbulences, nuclear burning
electromagnetic interactions andmore. For very diluted fluids
particles do not interact and are described by the test particle
approach [4,5]. A kinetic description is used for less diluted
fluids (see [6] and citations within) whereas the magneto-
hydrodynamic (MHD) description is suitable for dense fluids
[7,8]. Drastic simplifications of the full picture are therefore
needed to build (analytic) models of accretion discs, like
the thin disc model, the slim disc model, ADAFs, Polish
Doughnuts and more (see [9] and citations within). These
models play a very important role in understanding the
general physical processes in accretion discs. They are also
used to simplify numerical simulations or serve as initial
conditions or test beds to the simulations.
Thick accretion discs with a negligible loss of mass

can be modeled analytically in a general relativistic back-
ground with the Polish Doughnut model, that uses a

hydrodynamical, perfect fluid description for the fluid.
In this model gravity plays a crucial role for building
toroidal configurations. The model was introduced 1978 for
a neutral fluid by [10] in the case of a Schwarzschild
background, then studied for Kerr [11], and later on for
more complicated backgrounds [12,13].
Magnetic fields are present during most accretion proc-

esses, produced either by the accreted fluid itself, by theobject
accreting the matter (e.g., a magnetar) or as an external
magnetic field (e.g., an interstellar one). These fieldswill have
a major effect on the accretion of plasma, or on an otherwise
charged fluid (e.g., a dusty fluid charged by its interaction
with the energetic radiation from an AGN [14]). Charged
particles in the vicinity of a neutron star’s magnetosphere
were first discussed in the 1970s [15–17], and are still of
interest e.g., in the context of accretion disc coronae.
In regards to that the Polish Doughnut model was extended.
A toroidal magnetic field produced by the fluid was added to
the model in [18], while in [1,19,20] the interaction of a
charged fluid with an external magnetic field was considered.
In this work we build up on the results in [1] and

investigate charged perfect fluids encircling compact objects
while located in a electromagnetic background field. The
charged fluid takes on structures, that are constructed within
a model derived from the conservation laws and Maxwell
equations as well as the usual assumptions of stationarity
and axial symmetry in the Polish Doughnut model. Self-
gravitational and self-electromagnetic fields of the fluid
configuration as well as the influence of the electromagnetic
background field on the spacetime are neglected in our
setting. A charge distribution has to be assigned to the fluid,
that is approximated as fully non conductive—the opposite
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approximation to the infinite conductivity assumed in the
ideal MHD approach to plasma description. The angular
momentum profile and equation of state of the fluid
configuration are chosen beforehand, so that its pressure
and energy density profile can be calculated.
The fluid encircles the compact object with a constant

angular velocity, which corresponds to an angular momen-
tum profile with an increasing angular momentum for
bigger radii. This assumption has the benefit that the
problem can be solved analytically. It was shown for the
uncharged case, that structures with a constant angular
momentum show a runaway instability [21], which leads to
an almost complete accretion of the torus by the central
object on dynamical time scales. This instability is sup-
pressed for an increasing angular momentum profile
towards bigger radii [22]. This behavior in the uncharged
case gives some motivation to the assumptions of a rigidly
rotating fluid. While equilibrium tori in rigid rotation are
impossible for the uncharged case, we show that this is not
a problem for charged fluids. The fluid is described by a
polytropic equation of state. Fluid configurations might
form bound structures anywhere around the compact
object. We will, however, focus our study on fluid con-
figurations, which centers lie either in the equatorial plane
(called equatorial tori), or on the rotation axis (referred to as
polar clouds).
After introducing a general procedure to look for

possible fluid structures, we specify to the special case
of a Kerr metric and a dipole magnetic field, that is oriented
along the symmetry axis in the Kerr metric. This combi-
nation of metric and field describes in an idealized way a
rotating compact object, that produces a magnetic dipole
field (e.g., a magnetar), while the nonconductive fluid
might describe partly ionized helium. A more realistic
magnetic field structure like the Deutsch field [23,24]
would certainly be interesting, but such a field is too
complicated to be treated within the framework presented
in this paper. Since this set up was already discussed for the
Schwarzschild metric by Kovář et al. [1], our main interest
concerns the influence of the rotation of the central object
on the shape and existence of the fluid structures.
This paper is organized as follows. In Sec. II the model

for the construction of charged fluid configurations is
described. The main pressure equations are derived from
the conservation laws and Maxwell equations and solved in
terms of an effective potential. Equations for the physical
characteristics pressure, energy density and charge distri-
bution of the fluid are given. The general procedure of how
to find possible bound fluid structures is presented in
Sec. III. In Sec. IV we specify to the case of a Kerr metric
and a dipole magnetic field. The Kerr metric and the
electromagnetic potential for a dipole magnetic field in
Kerr are given and shortly discussed. We take a look onto
the uncharged limit and discuss the behavior of the effective
potential of the fluid structures in the charged case. The

behavior of solutions for equatorial tori and polar clouds in
regards to various parameters are discussed in Secs. V and
VI respectively. For both cases examples for a fluid
structure and its physical characteristics are given.
Conclusions are given in Sec. VII.
Throughout the paper the geometrical system of units

(c ¼ G ¼ kB ¼ 1) is used. In case that the physical
(SI) units are used the quantities are indicated by the
index SI.

II. CHARGED FLUID STRUCTURES
IN AN EXTERNAL ELECTROMAGNETIC

TEST FIELD

A. General assumptions of the thick disc model

To build a charged fluid torus located in an external
electromagnetic test field, wewill follow the approachmade
in [19] and use the general setup for Polish Doughnuts [7,9].
Therefore we make the following assumptions:
(1) The fluid, which builds the accretion disc, has a

negligible effect on the spacetime metric. It therefore
serves as a “test-fluid,” positioned in a given back-
ground spacetime. The fluid is furthermore described
as a perfect fluid with a polytropic equation of state.

(2) The considered spacetime is axially symmetric and
stationary. In Boyer-Lindquist coordinates the met-
ric takes the form

ds2¼gttdt2þ2gtϕdtdϕþgrrdr2þgθθdθ2þgϕϕdϕ2:

ð1Þ

It is required that the electromagnetic test field
is stationary and axially symmetric as well. This
implies that in a certain gauge the electromagnetic
vector potential has the form

Aμ ¼ ðAt; Aϕ; 0; 0Þ: ð2Þ

(3) The fluid is also axially symmetric and stationary,
with purely circular motion. The four velocity for
that case can be written as

Uμ ¼ ðUt; Uϕ; 0; 0Þ: ð3Þ

Specific angular momentum and angular velocity are
defined as

l ¼ −
Uϕ

Ut
; ω ¼ Uϕ

Ut ; ð4Þ

and are connected by the relation

ω ¼ −
lgtt þ gtϕ
lgtϕ þ gϕϕ

: ð5Þ
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Finally the t-component of the four-velocity can be
derived by using the normalization condition, and
takes the form

ðUtÞ2 ¼ −
1

gtt þ ωgtϕ þ ω2gϕϕ
: ð6Þ

B. Pressure equations for a charged fluid

The pressure equations in a thick disc model can now be
derived by solving the conversation law

∇νTμν ¼ 0; ð7Þ

where ðTμνÞ is the energy momentum tensor and ∇ν

indicatest the covariant derivative. In case of a charged
fluid tori, it can be split into two terms, a matter term
(Tμν

MAT) and an electromagnetic term (Tμν
EM),

Tμν
MAT ¼ ðϵþ pÞUμUν þ pgμν; ð8Þ

Tμν
EM ¼ 1

4π

�
Fμ

γFνγ −
1

4
FγδFγδgμν

�
; ð9Þ

where Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ is the electro-
magnetic tensor, Aμ the axially symmetric and stationary
total electromagnetic potential, and ϵ and p denote the
energy density and pressure of the fluid.
In this case the Maxwell equations

∇νFμν ¼ 4πJμ; ð10Þ

∇ðγFμνÞ ¼ 0 ð11Þ

have to be considered as well to derive the pressure
equations. Here Jμ ¼ ρqUμ þ σFμνUν is the four-current,
with the conductivity σ and charge density ρq. By assuming
that the internal electromagnetic field produced by the
charged fluid is much smaller than the external test field
(Fμν

INT ≪ Fμν
EXT), and by further demanding that the con-

ductivity vanishes (σ ¼ 0), we derive [25]

∇νT
μν
EM ¼ −Fμν

EXTJν with Jμ ¼ ρqUμ: ð12Þ

By using Eq. (7), this leads to the following main equation

∇νT
μν
MAT ¼ Fμν

EXTJν: ð13Þ

In case of a neutral fluid, Eq. (13) reduces to Eq. (7), where
Tμν then contains the matter term only. Note that the
assumption of zero conductivity is a necessary condition
for the self-consistency of the model. A nonzero conduc-
tivity would allow radial electric currents. This is, however,
in contradiction to the thick disc model, where a circular
motion of the fluid is required.

The pressure equations for a charged thick disc located in
an external electromagnetic test field now follow directly
from Eq. (13) [19]

∂μp ¼ ðpþ ϵÞð∂μ lnðUtÞ − l∂μω

1 − ωl

þ ρq
pþ ϵ

ðUt∂μAt þ Uϕ∂μAϕÞÞ: ð14Þ

The electromagnetic force on the charged fluid in μ-
direction is

repulsive for 0 <

attractive for 0 >

�
ρq

pþ ϵ
ðUt∂μAt þUϕ∂μAϕÞ: ð15Þ

Because of the discussed symmetries of the model
Eq. (14) is different from zero only for μ ¼ θ, r, leading
to two pressure equations.

C. Integrability condition—restrictions
to the charge distribution

For the pressure Eq. (14) to be solvable, the integrability
condition

∂μð∂νpÞ ¼ ∂νð∂μpÞ ð16Þ

has to be satisfied. In case of an uncharged fluid, where the
last term in Eq. (14) vanishes, Eq. (16) is fulfilled, if the
fluid has a barotropic equation of state ϵ ¼ ϵðpÞ (see e.g.,
[9]). By keeping the assumption of a barotropic equation of
state and by setting

K ¼ ρq
pþ ϵ

ð17Þ

the last term in Eq. (14) has to satisfy

∂μ½KUtð∂νAt þ ω∂νAϕÞ� ¼ ∂ν½KUtð∂μAt þ ω∂μAϕÞ�
ð18Þ

to fulfill the integrability condition (16). For Eq. (18) to
hold we have to specify some additional constraint on the
charge distribution ρq contained in K, and/or the radial
distribution of the angular momentum l, which is related to
ω [see Eq. (4)].
We will here restrict our model further, by assuming the

charged fluid to be in a rigid rotation, and set ω to be
constant. Equation (18) can then be written as

∂μ½KUt∂νðAt þ ωAϕÞ� ¼ ∂ν½KUt∂μðAt þ ωAϕÞ�: ð19Þ

In analogy to demanding a barotropic equation of state to
make the first term of (14) satisfy the integrability con-
dition, we can now easily fulfill the integrability condition
(19) for the second term by assuming
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KUt ¼ fKðSÞ; for S ¼ At þ ωAϕ; ð20Þ

where fKðSÞ is an arbitrary function of S. Here S
corresponds to an electromagnetic potential acting on a
charged particle with an angular velocity ω on a circular
orbit. Curves of a constant S will coincide with curves of
constant fKðSÞ.
Note that if one of the two components At, Aϕ vanishes,

the assumption of rigid rotation of the fluid is not necessary
anymore and the condition for the charge distribution
reduces to KUα ¼ fKðAαÞ.

D. Solutions of the pressure equations

The pressure Eq. (14) can be rewritten in terms of an
effective potential h defined by

h ¼ Γ − 1

Γ

�Z
p

0

dp
pþ ϵ

�
: ð21Þ

Using

P ¼ 1

ðUtÞ2 ¼ −ðgtt þ ωgtϕ þ ω2gϕϕÞ; ð22Þ

Equation (14) read

∂μhðr; θÞ ¼
Γ − 1

Γ

�
−
∂μP
2P

þ fKðSÞ∂μS

�
; ð23Þ

where we used the assumption of rigid rotation (∂μω ¼ 0),
and the condition for the charge distribution in Eq. (20).
The prefactor Γ−1

Γ is necessary later on to describe the
physical characteristics in terms of h in a nice way.
Integrating Eq. (23) leads to the following effective
potential h,

h ¼ Γ − 1

Γ

�
−
1

2
lnP þ

Z
fKðSÞdS

�
þ h0: ð24Þ

Here h0 is an integration constant. It allows to choose the
point ðr; θÞ, where the effective potential becomes zero.
If an explicit equation for ϵðpÞ is given, the pressure p,

energy density ϵ and charge density ρq of the fluid can be
expressed in terms of h. As can be seen from Eq. (21),
equipotential surfaces of h coincide with surfaces of
constant pressure p, and therefore of constant ϵ as well.
A bound solution for a stationary charged fluid structure

(e.g., an equatorial torus) in the given setup exists if we can
find a local maximum for the effective potential h at a
position ðrc; θcÞ. The point ðrc; θcÞ then defines the center
of the structure, and the outer edge is given by h ¼ 0, where
also the pressure vanishes [see Eq. (21)]. Necessary
existence conditions for fluid structures are therefore
given by

∂θhðrc; θcÞ ¼ 0; ∂rhðrc; θcÞ ¼ 0: ð25Þ

Furthermore, to guarantee that the local extrema is indeed a
maximum, the Hessian matrix for h

H ¼
� ∂2

rrh ∂2
rθh

∂2
θrh ∂2

θθh

�
ð26Þ

has to be negative definite at the point ðrc; θcÞ. This gives
the sufficient conditions

∂2
rrhðrc; θcÞ < 0 and detðHÞðrc; θcÞ > 0: ð27Þ

Saddle points ðrs; θsÞ can behave as so called cusp
points, when they occur additionally to the maximum in a
solution for the fluid structure. If the integration constant h0
is chosen such that h ¼ 0 at the saddle point, it might serve
as a point where fluid material can flow out of the structure
(e.g., out of the thick disc). However, since several saddle
points can occur at various positions and h-values for some
solutions, not every saddle point will actually behave as a
cusp point for a given structure.
A projection of the pressure equations (14) onto the

magnetic field lines or orthogonal to the electric field lines
annihilates the contribution of the magnetic ðAϕÞ or electric
ðAtÞ part of the electromagnetic potential Aμ to the effective
potential hðr; θÞ along the B-field or orthogonal to the
E-field. This property was used by Henriksen and Rayburn
[17] to simplify their discussion on the co-rotating zone of a
pulsar magnetosphere. In case of a solely magnetic poten-
tial A ¼ ð0; 0; 0; AϕÞ the procedure leads to a vanishing
contribution of the electromagnetic interactions along the
magnetic field lines, as it was also discussed for the charged
fluid tori in the vicinity of a dipole magnetic field in
Schwarzschild spacetime [1]. However, because of the
frame dragging effect, the electromagnetic potential of the
dipole-magnetic field contains an electric part ðAt ≠ 0Þ in
the Kerr case. A projection can be found, for which the
contribution of Aμ to hðr; θÞ vanishes. It has to be a
combination of the two named directions determined by
the B- and E-field, but depending now additionally on the
angular velocity ω of the fluid.
Even though interesting, a simplified expression of

hðr; θÞ along some ω-dependent direction is not helpful
in our search for local extrema of hðr; θÞ, and will therefore
not be discussed in more detail.

E. Physical characteristics

The choice of the equation of state determines the
connection between pressure and energy density.
Following Kovář et al. [19] and tro [20] we choose a
polytropic equation of state for the fluid,

p ¼ κϵΓ; ð28Þ
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where κ and Γ are the polytropic coefficient and exponent
respectively.
The pressure p, energy density ϵ and specific charge

density q ¼ ρq
ϵ are then given in terms of the effective

potential h. By plugging Eq. (28) into Eq. (21) we find

p ¼
�
eh − 1

κ
1
Γ

� Γ
Γ−1
; ð29Þ

ϵ ¼
�
eh − 1

κ

� 1
Γ−1
: ð30Þ

By further defining the specific charge density q ¼ ρq
ϵ and

using (17) we get

q ¼ ρq
ϵ
¼ Keh: ð31Þ

The total mass and charge of the charged fluid structure can
be calculated by integrating the mass density ρ and the
charge density ρq over the whole volume V of the structure,

M ¼
Z
V
ρdV; ð32Þ

Q ¼
Z
V
ρqdV: ð33Þ

Up to now, the introduced setup for charged fluid
structures in an external magnetic field has not made
any statements concerning the mass density ρ. However,
by introducing a suitable assumption for ρ as ρ ¼ ρðϵ; pÞ,
the mass density can also be derived from the effective
potential h. In the nonrelativistic limit an appropriate
assumption would be ρ ≈ ϵ.
Following the approach in [19], the magnetic field

strength of the fluid torus B is approximated at the edge
rout of the torus by a charged ring that contains the charge
of the whole torus Q and rotates at the same angular
velocity ω,

B ≈
ωQ

πðrout − rcÞ
: ð34Þ

The total mass and charge of a fluid structure as well as its
magnetic field strength have to be sufficiently low to not
violate the assumptions of our model. If the effective
potential h for a solution is found, these requirements
restrict the possible choices for h0 or the polytropic
coefficient κ.
Here the magnetic field strength B, the dipole moment B,

the chargeQ, the angular velocity ω and the radius r are all
given in dimensionless units. By removing the normaliza-
tion in terms of M, they can be transferred back into SI
units:

QSI ¼ Mc2
ffiffiffiffiffiffiffiffiffiffi
4πϵ0
G

r
Q; BSI ¼

c
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πϵ0G

p B;

ωSI ¼
c
M

ω; BSI ¼
c

M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πϵ0G

p B;

rSI ¼ Mr: ð35Þ

Here G is the gravitational constant, ϵc the electric constant
and M ¼ Gm

c2 , where m is the mass of the central object.

III. CONSTRUCTION OF CHARGED
FLUID STRUCTURES

If the spacetime metric and the electromagnetic potential
of the external test field show, next to the required axial
symmetry and stationarity, a mirror symmetry at θ ¼ π

2
, and

are furthermore differentiable at θ ¼ 0, than the following
procedure can be used to find charged fluid structures in the
given setting.
The first step is to make sure, that the existence

conditions (25) are fulfilled for a given position ðrc; θcÞ,
where the structure’s center is located. Due to the required
symmetries and assumptions the first condition in (25) will
always be fulfilled for θc ¼ 0, π

2
, π. We will therefore focus

our search for fluid structures to
(i) tori centered in the equatorial plane (θc ¼ π

2
), and

(ii) polar clouds centered on the polar axis (θc ¼ 0; π).
The second condition in (25) can be used as a normalization
condition for the function fKðSÞ connected to the charge
distribution. From Eq. (23) we get the following relation
that has to hold at the center of the structure,

fKðSÞðrc; θcÞ ¼
∂rP
2P

1

∂rS

����
r¼rc;θ¼θc

≕ b: ð36Þ

If gðSÞ is an arbitrary normalized function of S, meaning
gðSÞ ¼ 1 at the point ðrc; θcÞ, then we can choose fKðSÞ as
follows so that the second existence condition in (25) is
always satisfied,

fKðSÞ ¼ bgðSÞ: ð37Þ

In a second step one has to make sure, that the conditions
for a local maximum (27) are fulfilled. In case of an
electromagnetic potential Aμ and a spacetime metric with a
mirror symmetry at θ ¼ π=2 (and the metric and electro-
magnetic potential being differentiable), the mixed partial
derivatives of h vanish at θ ¼ 0, π

2
, and the conditions for

the maximum reduce to

∂2
rrhðrc; θcÞ < 0; ∂2

θθhðrc; θcÞ < 0: ð38Þ

By using the result (24) in the sufficient conditions (38) we
find
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0 >
Γ − 1

Γ

�
−P∂2

rrP þ ð∂rPÞ2

þP
∂rP
∂rS

�
∂2
rrSþ f0K

fK
ðSÞð∂rSÞ2

������
r¼rc
θ¼θc

; ð39Þ

0 >
Γ − 1

Γ

�
−∂2

θθP þ ∂rP
∂rS

∂2
θθS

�����
r¼rc
θ¼θc

: ð40Þ

(Please note that for saddle points the right-hand sides in
(39) and (40) are both nonzero, but only one of the two
inequalities is satisfied). While (39) can be satisfied for
arbitrary angular velocities ω by a proper choice of fKðSÞ,
the second inequality can be fulfilled by restricting the
choice for ω. In the case that is discussed in the following
we choose the arbitrary function gðSÞ in Eq. (37) explicitly,
before satisfying both conditions (39) and (40) by a
restriction to the choice of ω. By doing so it is possible
to compare our results with the work by Kovář et al. [1],
which is the Schwarzschild limit to our setup (also defining
gðSÞ first helps to not run into crazy charge distributions).
According to Eq. (15), a repulsive electromagnetic force

acts on the charged fluid in the radial direction, if fKðSÞ∂rS
is bigger than zero, and an attractive force otherwise. At the
extrema re of h (which include cusp points at θ ¼ π=2, 0
and the center rc of the structure), by using the connection
given in (36), the condition for a repulsive electromagnetic
force reduces to

∂rPj r¼re
θ¼0;π

2

> 0: ð41Þ

After a local maximum in the effective potential is found,
the integration constant h0 is chosen to determine the outer
edge of the fluid structure. If the edge of the structure
passes through a saddle point of the potential, this might
create a cusp point. Finally, one has to make sure, that the
initial assumption of a negligible electromagnetic field of
the fluid structure is still valid (Fμν

INT ≪ Fμν
EXT). This can be

accomplished by setting the density of the charged fluid
sufficiently small by choosing the scaling factor κ in the
equation of state (28) accordingly. Limits to the diluteness
of the fluid are given by the magnetohydrodynamic
approach, which needs to still be applicable.

IV. THE CASE OF A KERR METRIC WITH
A MAGNETIC DIPOLE TEST FIELD

In this work we want to discuss possible charged fluid
structures around a rotating compact object, that produces a
dipole magnetic field. This field is aligned to the rotation
axis of the compact object. This situation will be described
by a Kerr metric with an external dipole magnetic test field.
The results are then compared to the Schwarzschild limit
discussed in [1], and the charged fluid structures found in
[20] in case of a Kerr metric with an external homogeneous

magnetic field. A sketch of the considered situation is
shown in Fig. 1. Obviously, both the Kerr metric and the
potential of the dipole magnetic test field have the required
symmetries (axial symmetry, stationarity, and mirror sym-
metry to θ ¼ π

2
) for the construction procedure outlined in

Sec. III.
To motivate our considered model, we first want to

shortly sum up the discussion in Kovář et al. [1], about
which scenario could be described (in a very idealized
way) by the given model of a charged, nonconducting
fluid circulating in a Kerr (Schwarzschild in [1]) back-
ground with a dipole magnetic test field (see [1] for
details).
The central object of mass m, that is mimicked by the

Kerr-metric, should be very compact, so that the radius
does not exceed 3M, where M is the Schwarzschild radius
given by M ¼ Gm=c2. The object produces the magnetic
dipole field, which is considered in our model. A compact
rotating neuron star with a strong magnetic dipole field of
B ¼ 108T could be described like that in a very idealized
way, especially since we further have to assume that the
dipole field has to be oriented along the rotation axis of the
neutron star.
A fluid with a nonvanishing charge, but zero-conductivity

might describe a partly ionized helium fluid, in case of
high pressures and low temperatures, which implies high
densities.
An open question is still, how the given charge distri-

bution within the fluid is reached, which is necessary so
that the integrability condition is satisfied, and if the
distribution is stable.
A mathematical description of the Kerr metric and the

electromagnetic potential of the dipole magnetic test field
will be given in the following before discussing the
behavior of the effective potential h at the equatorial plane
and the poles, both in the case of a charged fluid as well as
the uncharged limit.

FIG. 1. Sketch of the considered situation. The dipole magnetic
test field is aligned to the rotation of the compact object (e.g., a
magnetar).
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A. Kerr metric and the magnetic potential

The Kerr metric in Boyer-Lindquist coordinates and
geometrical units c ¼ 1, G ¼ 1 is given by

ds2 ¼ Σ
Δ
dr2 þ Σdθ2 þ sin2ðθÞ

Σ
½ðr2 þ a2Þdϕ − adt�2

−
Δ
Σ
½asin2ðθÞdϕ − dt�2; ð42Þ

where

Σðr; θÞ ¼ r2 þ a2cos2ðθÞ; ð43Þ

ΔðrÞ ¼ r2 − 2rþ a2: ð44Þ

Here we further normalized all quantities with respect to the
mass m of the central object such that they are dimension-
less. Accordingly, a is the normalized angular momentum
0 ≤ a. The horizons of a Kerr black hole are given by
ΔðrÞ ¼ 0, i.e., r� ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
.

The frame dragging effect in Kerr spacetime connects
ϕ- and t- components via cross terms in the metric. This
leads to an At-component in the description of the dipole
magnetic field. This term will locally give rise to an electric
part in the field. The electromagnetic potential for a dipole
magnetic test field in Boyer-Lindquist coordinates is given
by [26]:

At ¼ −
3

2

aB
ξ2Σ

�
−ðr − cos2ðθÞÞ þ 1

2ξ
ln
r − 1þ ξ

r − 1 − ξ

× ðrðr − 1Þ þ ða2 − rÞcos2ðθÞÞ
	
; ð45Þ

Aϕ ¼ −
3

4

Bsin2θ
ξ2Σ

ððr − 1ÞΣþ 2rðrþ a2Þ

−
1

2ξ
ln
r − 1þ ξ

r − 1 − ξ
ðχ − 4ra2ÞÞ; ð46Þ

where ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
,

χðr; θÞ ¼ ðr2 þ a2Þ2 − ΔðrÞa2 sin2 θ; ð47Þ

and B is the dipole moment of the external magnetic field.
One can show that Aϕ ≥ 0 holds for all r > rþ and for all θ
if B > 0, while At changes signs depending on θ (At ≤ 0
for r > rþ, θ ¼ π=2; At ≥ 0 for r > rþ, θ ¼ 0.).
In the case a ¼ 0, the electromagnetic potential reduces

to the magnetic dipole test field in Schwarzschild space-
time [27],

At ¼ 0; ð48Þ

Aϕ ¼ −
3

4
Bsin2θ

�
rþ 1 −

r2

2
ln

r
r − 2

�
: ð49Þ

Here the potential only contains a ϕ-component and the
electric component the field vanishes.
In the extremal Kerr case (a ¼ 1), the electromagnetic

potential reduces to [28]

At ¼ −
B

2ðr − 1Þ2Σ ðrsin2ðθÞ − 2ðr − 1Þcos2ðθÞÞ; ð50Þ

Aϕ ¼ −
B sin2ðθÞ
2ðr − 1Þ2Σ ððr − 1Þðrþ cos2ðθÞÞ − 2r3Þ: ð51Þ

The electromagnetic potential components fall off and
approach zero for big values of r, while At approaches
zero faster than Aϕ. For θ ≠ 0, the components diverge at
the outer horizon to �∞.

B. Uncharged limit

Before discussing the general case it gives some insight
to have a look on the limit where the charge of the fluid or
the B-field vanishes. Solutions for tori or polar clouds exist
if h has a local maximum at θc ¼ 0, π=2 respectively. We
will show in the following that for the uncharged case no
equilibrium structures in rigid rotation can be found.
In the uncharged case the effective potential h given in

(24) reduces to hjq¼0 ¼ Γ−1
Γ ð− 1

2
lnPÞ≕ Γ−1

Γ T1. The behav-
ior of T1 is shown in Fig. 2 for θ ¼ π=2 and θ ¼ 0. It is
immediately clear that h (for both q ¼ 0 and q ≠ 0) is only
defined for P > 0 and diverges to þ∞ at P ¼ 0, where the
fluid would reach luminal motion.
Let us first discuss the case of polar clouds (θ ¼ 0). Then

P is given by

Pjθ¼0 ¼
ΔðrÞ

r2 þ a2
; ð52Þ

which is independent from ω and approaches one in the
limit r → ∞. Then it is clear that in the uncharged case the

(b)

rr

− 1
2

ln(P)|θc=0 − 1
2

ln(P)|θc=π/2(a)

FIG. 2. − 1
2
Pjθ¼θc

plotted over r for (a) θc ¼ 0 and
(b) θc ¼ π=2. Gray and black lines correspond to a ¼ 1 and
a ¼ 0 respectively. Solid lines correspond to ω ¼ 0.09, dashed
lines correspond to ω ¼ 0.12 and dash-dotted lines correspond to
ω ¼ 0.15. The region for r in which the term has real values
shrinks with rising values of ω, since superluminal motion of the
fluid is reached faster.
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effective potential h diverges at the (outer) horizon r ¼ rþ
and vanishes for r approaching infinity,

lim
r→∞

hjq¼0;θ¼0 ¼ lim
r→∞

�
−
1

2
lnPjθ¼0

�
¼ 0: ð53Þ

A necessary condition for the existence of polar clouds is
that the first derivatives of h vanish on the axis θ ¼ 0. The
first derivative of T1 with respect to r is given by

∂rT1jθ¼0 ¼ −
1

2Pjθ¼0

2ðr2 − a2Þ
ðr2 þ a2Þ2 ; ð54Þ

which becomes zero only at r ¼ a ≤ rþ. This behavior of
T1 for θ ¼ 0 is shown in Fig. 2(a). Therefore, in this case no
polar clouds are possible.
Now lets turn to equatorial tori (θ ¼ π=2). The function

P reads

Pjθ¼π
2
¼ 1

r
ð2 − rþ 4aω − ðrðr2 þ a2Þ þ 2a2Þω2Þ; ð55Þ

which now depends on the angular velocity ω. Figure 3
shows Pjθ¼π=2 ¼ 0 as a function of r and the angular
velocity ω for different values of a. The condition P > 0 is
satisfied between the two solutions ω1, ω2 of P ¼ 0 plotted
in this figure. For a ¼ 0 the two solutions are symmetric,
whereas for a > 0 they become asymmetric showing the
frame dragging effect. Here larger values of ω are favored,
in particular for small radii. Note that in the ergoregion,
which is given by rþ < r < 2 for θ ¼ π=2, it is required
that ω > 0. In Fig. 2(b) it is shown that bigger values of ω

reduce the allowed range of radii, where the effective
potential is defined.
The effective potential does not show any local maxi-

mum for θ ¼ π=2. This is because the second derivative
of T1,

∂2
rrT1jθ¼π

2
¼ ðωð2a2 þ r3Þ − 2aÞ2 þ 2r3

r3ð2a2 þ r3ÞPjθ¼π
2

þ ð∂rPÞ2
2P2

����
θ¼π

2

ð56Þ

is always positive for Pjθ¼π
2
> 0. Therefore, equatorial tori

are also not possible.
Like in the Schwarzschild case no equilibrium can be

found for fluid structures in rigid rotation in case of an
uncharged fluid or a vanishing B-field.

C. Charged case

We will now discuss some general features of the
charged case, before we explicitly construct equilibrium
solutions in the next sections. As we showed in the
preceding subsection, a bound solution is only possible
if the second term in Eq. (24) ðR fKðSÞdSÞ does not vanish.
The function fKðSÞ describes the charge distribution
throughout the torus or polar cloud. The interaction of
the fluid with the electromagnetic field results in a repulsive
force in direction of ν, if

fKðSÞ∂νS ¼ fKðSÞð∂νAt þ ω∂νAϕÞ > 0: ð57Þ

[see Eqs. (15), (17) and (20)]. This force stabilizes the fluid
so that equilibrium solutions can be found. The term
fKðSÞ∂νAt in Eq. (57) corresponds to an electric field
acting on a charged fluid, while the second term
fKðSÞω∂νAϕ corresponds to the Lorentz force acting on
a moving charge in a magnetic field. Both terms might
independently result in an attractive or a repulsive force in
direction of ν, depending on the choice of ω.
In the following discussions we will set fKðSÞ to

fKðSÞ ¼ kSn: ð58Þ

Here k is a scaling factor correlated to the overall strength
of the charge of the fluid and is determined according to
Eq. (36) as k ¼ b=Snðrc; θcÞ. The exponent n determines
how strongly the charge distribution changes with S, which,
in turn, changes along the fluid structure.
The behavior of S ¼ At þ ωAϕ is shown in Fig. 4 on the

equatorial plane θ ¼ π=2 and the axis θ ¼ 0. From the plot
and the discussion of At and Aϕ in Sec. IVA it is clear that
Sjθ¼0;π

2
approaches zero for r → ∞. On the equatorial plane

S diverges at the outer horizon r ¼ rþ to �∞, depending
on the choice of ω,

FIG. 3. Pjθ¼π=2 ¼ 0 as a function of r and ω for different values
of a. The blue dashed line shows the limit of a ¼ 0. From black to
light gray the value of a rises in 0.2- steps to a ¼ 1. The fluid of
the torus can only rotate at r with an ω for which Pjθ¼π=2 > 0,
which is fulfilled in the area enveloped by the graphs. The shift,
especially at small radii, of allowed ω to larger values as a grows
is due to the frame dragging effect.
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lim
r→rþ

Sjθ¼π
2
¼

(−∞;ω < 2arþðrþ−1Þ
ða2þr2þÞ2−4a2rþ

þ∞;ω > 2arþðrþ−1Þ
ða2þr2þÞ2−4a2rþ

: ð59Þ

In the θ ¼ 0 case, S does not depend on ω since
Aϕjθ¼0

¼ 0. It furthermore does not diverge at the horizon,
but reaches the value Sðr ¼ rþ; θ ¼ 0Þ ¼ 3Ba

4ðξþξ2Þ.
The effective potential has the symmetry

hða;ω; BfKðSÞÞ ¼ hð−a;−ω;−BfKðSÞÞ: ð60Þ

Since fKðSÞ ¼ ρq
pþϵU

t, and Ut > 0, the change BfKðSÞ →
−BfKðSÞ implies either a flip of the B-field or a change of
the fluid’s charge to −ρq. The symmetry allows us to
restrict the discussion to a ≥ 0.
To find tori solutions at the equatorial plane the exponent

n in Eq. (58) will be picked from the natural numbers
(n ¼ 0; 1; 2;…), since Sjθ¼π=2 ≤ 0 at some radii for certain
ω. In contrast to that, in case of polar clouds Sjθ¼0 > 0 for all
radii independent of ω. Here n can be chosen from the real
numbers.

V. EQUATORIAL TORI

To construct solutions for equatorial tori, we follow the
procedure introduced in Sec. III and search for areas ofω and
rc, where local maxima of the effective potential h can be
found. These areas will be influenced by the choice of the
remaining parameters n and a. k in Eq. (58) is already
determined by satisfying the necessary conditions, while the
values of the magnetic dipole B and κ and Γ from the
polytropic equation of state do not influence the existence
conditions for a local maximum in the effective potential.
First we recall from the discussion in Sec. III that both the

necessary conditions (25) for a maximum of the effective
potential h hold on the equatorial plane if we normalize the
charge distribution function fKðSÞ according to (36) and
(37). Furthermore, the general conditionP > 0 [see (22) and
(24)] has to hold, which we already discussed in Sec. IV B,
see Eq. (55) and Fig. 3. It therefore remains to investigate the
sufficient conditions (39) and (40) for the case θc ¼ π=2.
Let us first discuss the influence of the rotation parameter

a on the existence of tori in the equatorial plane. Fig. 5

(b)(a)

FIG. 4. The potential Sjθ¼θc
plotted over r for (a) θc ¼ 0 and

(b) θc ¼ π=2. Gray and black lines correspond to a ¼ 1 and a ¼
0.5 respectively. Solid lines correspond to ω ¼ 0.04 for a ¼ 0.5,
and to ω ¼ 0.21 for a ¼ 1. Dashed lines correspond to ω ¼ 0.12
for a ¼ 0.5 and to ω ¼ 0.6 for a ¼ 1. While Sjθ¼0 is independent
of ω and for a < 1 approaches a finite limit at the outer horizon,
Sjθ¼π=2 diverges either to þ∞ or −∞ at the horizon, depending
on the value of ω.

FIG. 5. Extremal points of the effective potential h for θc ¼ π=2, n ¼ 2, and three different values of a as functions of rc and ω. The
scaling parameter k from Eq. (58) is chosen such that the conditions in (25) for an extremum are satisfied, hence k changes throughout
the plot. The extremal point corresponds to a local maximum in the white region. The value of a effects the size and position of this
region. Points in the light red (light gray) area correspond to a maximum in θ-direction only (∂2

rrh > 0), while points of the blue
(medium gray) area correspond to a maximum only in r-direction (∂2

θθh > 0). Points in the dark red (dark gray) area correspond to local
minima in h. In the black area ðUtÞ2 < 0, so no solutions are possible there. ∂rS ¼ 0 and S ¼ 0 are plotted as solid and dashed black
lines respectively. They mark two borders of the area, where maxima in r-direction are present. ∂rS ¼ 0 marks also a border of the area
of maxima in θ-direction. This comes due to the fact, that ∂rS and S appear in the denominator in the inequalities (39) and (40).
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shows the two sufficient conditions (39) and (40) together
with P > 0 as functions of rc and ω for different values of
a. The white areas indicate where all conditions are
satisfied so that a maximum of the effective potential
exists and a torus can be constructed. Since the scaling
parameter k in Eq. (58) is chosen according to Eqs. (36) and
(37), the value of k changes throughout the plot. For the
Schwarzschild case a ¼ 0 the plot is symmetric in the
angular velocity ω and tori can be found for positive and
negative values of ω quite close to the central object. For
bigger a however the white area moves to even smaller
radii in the corotating case, while in the counterrotating
case it moves to bigger radii. This behavior, found for the
counterrotating case, is also seen in case of a homogeneous
electromagnetic test field [20]. For a ¼ 0.4 the white area at
positive ω, corresponding to corotating tori solutions, has
decreased in size. For a ¼ 1 the area has nearly vanished
and corotating tori solutions can only be found at extremely
small radii rc < 1.4 and very high angular velocities.
Within this setup counterrotating tori seem to be favored
for bigger values of a.
For all the white parameter areas in Fig. 5, where tori

solutions can be found, ∂rP > 0 holds, which corresponds
to a repulsive force on the charged fluid in radial direction
(see Sec. III), which implies that the inequality (57) is
satisfied for ν ¼ r. While for ω < 0 both terms in (57)
correspond to a repulsive force on the torus in r-direction,
for ω > 0 the electric part ∂rAt and the magnetic part
ω∂rAϕ have opposite signs. Depending on the value of ω as
given in (59), one of the two terms will dominate the
divergence at r ¼ rþ. The charge of the fluid or the
direction of the B field have then to be chosen such that
the dominant term at r → rþ leads to a repulsive force on
the torus. The other term, however, counteracts to the
repulsive force. This leads to the reduction of the white
parameter area in Fig. 5 for bigger values for a and ω > 0.

Figure 6 pictures the influence of the second parameter n
onto the size of the white parameter areas ðrc;ωÞ, where
tori solutions can be constructed. As one can see in Fig. 6
the white area increases for bigger n. The parameter n
influences the area of possible solutions only by its
contribution to the first sufficient condition ∂2

rrh < 0 given

in (39), where
f0K
fK
ðSÞ ¼ n

S for a fKðSÞ as given in Eq. (58).
If the prefactor of n in (39) is negative, which happens if
∂rP∂rS=S < 0, then the parameter area, where the first
sufficient condition (39) holds, will increase for bigger n.
This is also pictured in Fig. 7, where we directly compare
the development of the areas corresponding to condition

FIG. 6. Extremal points of effective potential h for θc ¼ π=2, a ¼ 0.4 and three different values of n ¼ 5, 3, 1 as a function of rc and
ω. The plot for n ¼ 2 is already presented in Fig. 5(b). For a detailed description see the caption of Fig. 5. Higher values of n lead to a
bigger white area, and therefore increase the parameter set of ðrc;ωÞ for which solutions for equatorial tori can be found.

FIG. 7. Extremal points of h for θc ¼ π=2 and a ¼ 0.4. The
value of k changes throughout the plot, to satisfy the conditions in
(25) for an extremum. Points in the colored area between the
curves correspond to a maximum in r-direction. Of the three areas
(I,II,III), where maxima can be found, area I and III grow for
bigger n, while area II shrinks for bigger n. In the black area
ðUtÞ2 < 0, so no solutions are possible there.
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(39), represented in Fig. 6 as the sum of the blue (medium
gray) and white areas, for different values of n. At the
regions I and III, that contribute to the white area in Fig. 6,
∂rP∂rS=S < 0 is satisfied and they therefore grow for
bigger values of n. The higher the changes in the charge
distribution, indicated by a bigger value of n, the bigger the
range of parameters ðrc;ωÞ, where solutions can be found.
Even though not explicitly shown here in a plot, we want to
mention, that no solutions for a bound equatorial structure
can be found for fKðSÞ ¼ const (corresponding to n ¼ 0)
for 0 ≤ a ≤ 1.
For comparison with earlier related studies of charged

equilibrium structures [1,19,20] we now introduce a new
parameter μ ¼ kðωBÞnþ1 used instead of the scaling factor
k introduced in (58). In Figs. 5 and 7 we always chose k
such that the necessary conditions (25) hold, which means
that k changes throughout the plots. In contrast, Fig. 8
shows the negative effective potential −h along the equa-
torial plane for different values of a and ω, but for constant
values of μ and exponent n. Due to the assumption of rigid
rotation the extrema of the curve have to move closer
together for bigger absolute values jωj of the angular
velocity. The same effect can be seen for changing the
rotation parameter a to higher values and negative ω.
Intuitively, this can be traced back to the frame dragging
effect, due to which the same value of ω should appear
smaller in a locally nonrotating reference frame in the case
of bigger a. The torus center (appearing in Fig. 8 as the
minimum of −h) moves toward smaller radii for an
increasing a or jωj. If a or jωj are chosen too big or small
for the remaining parameters of ðμ; n; a;ωÞ the minimum
and one maximum in Fig. 8 vanish and no bound solution
can be found for the respective set of parameters. The torus

solution might possess an inner cusp, through which the
accretion onto the central object can occur, if the inner
maximum of −h has a smaller value than the outer one. In
the opposite case an outer cusp might exist, where material
outflow away from the central object is possible. As we can
see in Fig. 8 a slight change of jωj or a to smaller values can
change the found structure from one with an inner cusp to
one with an outer cusp. It might even result in the vanishing
of the bound solution [see curve for a ¼ 0.7 in Fig. 8(a) or
curve for ω ¼ −0.1149 in Fig. 8(b)].
The plotted curves for the effective potential−h show the

same structure as in the Schwarzschild case, discussed by
Kovář et al. [1].
To make sure, that the internal magnetic field B of the

charged torus can be neglected compared to the external
magnetic test field B, the polytropic coefficient κ of the
equation of state (28) will be chosen such that j BB j < 0.05.
To estimate the magnetic field created by the fluid structure,
Eq. (34) is used. The fluid has to be diluted enough, so that
the named assumption is not violated. For the examples
presented in Fig. 9 with a dipole moment B ¼ 4.2 × 10−7

(corresponding to BSI ¼ 108 T) of the external field and a
polytropic exponent Γ ¼ 5=3, the polytropic coefficient
was set to κ ¼ 2 × 107.
We finally discuss two specific examples of tori in the

equatorial plane. To highlight the effects of the rotation
parameter a as compared to the Schwarzschild case
analyzed in [1] we choose an extremal Kerr spacetime
with a ¼ 1. Both solutions have the same set of parameters
related to the charge distribution fKðSÞ of the torus, namely
n ¼ 2 and μ ¼ kðωBÞ2 ¼ −1.929, but rotate with a differ-
ent angular velocity ω. The equipotential surfaces, energy
density and specific charge distribution are plotted for the
two cases in Fig. 9. For the first solution we chose
ω ¼ −0.11, which then possesses an outer cusp, while
the second solution with ω ¼ −0.1129 has an inner cusp.
Both structures are located at rather small radii. The
first torus is centered at rc ≈ 3.66, with a central energy
density ϵc ≈ 8.939 × 10−16 and specific charge density qc≈
6.711 × 106. The second torus has rc ¼ 3.45 [which was
used to determine the value of μ applied in both cases, using
Eqs. (37) and (58)], with ϵc ≈ 3.451 × 10−15 and qc ≈
7.457 × 107. The total charge of the tori are Q ¼ 4.78 ×
10−8 and Q ¼ 4.23 × 10−7 respectively. The specific
charge distribution decreases towards bigger radii in both
cases, meaning the fluid is more strongly charged closer to
the central object.
The same course in the charge distribution is present in the

example for rigid rotation in the Schwarzschild case.
However, the example discussed by Kovář et al. [1] is a
very tiny structurewith a diameter of d ≈ 0.02. This structure
obviously has amuch smaller central density and total electric
charge Q ∼ 10−13. The specific charge density lies in the
same order of magnitude with qc ≈ 6.2 × 106.

(a) (b)

FIG. 8. The negative effective potential −h along the equatorial
plane for n ¼ 2, μ ¼ kðωBÞnþ1 ¼ −1.929 and different values of
(a) the rotation parametera and (b) the angular velocityω. In (a)we
chose ω ¼ −0.1129, and a runs from 0.7 (dark blue) to 1 (lightest
blue) in steps of Δa ¼ 0.075. In (b) we us the extremal a ¼ 1 and
ω runs from−0.1109 (dark blue) to−0.1149 (lightest blue) in steps
of Δω ¼ −0.001. Due to rigid rotation the area of r, where a fluid
torus can exist, shrinks with a growing value of jωj. The same
behavior can be found in (a) for a shrinking value ofa. For bigger a
and jωj, ω < 0 the torus center moves to smaller radii.
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VI. POLAR CLOUDS

We will now discuss the construction of equilibrium
structures centered on the axis θ ¼ 0, π, termed polar
clouds. It was shown in [1] that such structures can not exist
in the Schwarzschild case. The rotation however induces
an electric field on the axis θ ¼ 0, π given by

Frt ¼ −
3aB
ξ2Σ

�
ðr2 − a2Þ 1

2ξ
ln
r − 1þ ξ

r − 1 − ξ
− r − a2

�
; ð61Þ

which may counteract the gravitational attraction. Note that
all other components of the electromagnetic tensor vanish
on the axis θ ¼ 0, π and, therefore, polar clouds are
symmetric with respect to the equatorial plane.

An equilibrium structure can be constructed if the
effective potential h has a local maximum, which happens
if the necessary conditions (25) and the sufficient con-
ditions (39) and (40) hold along with the general condition
P > 0, see (22). As in the case of equatorial tori discussed
in the forgoing section, for θ ¼ 0, π the necessary con-
ditions can be fulfilled by normalizing the charge distri-
bution function according to (36) and (37). The condition
P > 0 reduces for θ ¼ 0 to r > rþ, where rþ is the outer
horizon. Therefore, we now discuss the two sufficient
conditions (39) and (40). As the rotation of the central
object is crucial for the existence of polar clouds, we focus
on the influence of a.
The first sufficient condition (39), which corresponds to

a maximum in radial direction only, becomes independent

FIG. 9. Two examples A,B of equatorial tori with n ¼ 2, μ ¼ kðωBÞnþ1 ¼ −1.929 and a ¼ 1. Solution A is presented in the first row
(a,c,e), where ω ¼ −0.11. Solution B is presented in the second row (b,d,f), where ω ¼ −0.1129. The first column (a,b) shows the
effective potential in the form of −h, the second column (c,d) the energy density distribution ϵ, and third column (e,f) the specific charge
distribution q. A red shade indicates smaller values, while a yellow shade indicates bigger values of −h, ϵ and q respectively. The torus
center is marked with a small circle in (a–d). Equipotential curves of the cusp points are plotted as dashed lines in (a,b). The energy
density ϵ falls off from ϵc at the center to zero at the edge of the torus. Solution A shows an outer cusp, allowing matter to outflow from
the torus through the cusp away from the central object. The central energy density is given by ϵc ≈ 8.939 × 10−16, while the specific
charge q decreases towards bigger radii from q ≈ 6.711 × 106 at the dashed line to q ≈ 4.149 × 106 at the dash dotted line. The total
charge of the torus is Q ≈ 4.78 × 10−8 or QSI ≈ 8.197 × 1012mnAs, where mn is the mass of the central object in solar masses.
Solution B shows an inner cusp, allowing matter outflow through the cusp onto the central object. The central energy density
is ϵc ≈ 3.451 × 10−15. The specific charge q decreases towards bigger radii from q ≈ 9.470 × 107 at the dash dotted line to
q ≈ 7.457 × 107 at the dashed line. The total charge of the torus is Q ≈ 4.23 × 10−7 or QSI ≈ 7.26 × 1013mnAs.
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of ω for θc ¼ 0. It is therefore presented in Fig. 10(a) as a
function of ðrc; nÞ for different values of a. The area of rc,
satisfying the condition for a maximum in r-direction,
grows towards smaller radii for bigger values of a. In the
limit rc → ∞ the condition (39) holds for all n > −2=3,
while for rc → rþ n diverges to þ∞ for a < 1 in order to
satisfy the condition. For a ¼ 1 the first sufficient condition
is satisfied for n > −1 at rc → rþ. If a is not too close to
a ¼ 1, say below a ¼ 0.99, for n < −2=3 no maximum
exists for any value of rc.
The second sufficient condition (40), which corresponds

to a maximum in θ-direction only, is presented in Fig. 10(b)
for the parameter space ðrc;ωÞ and different values of a.
This condition is independent of the parameter n, and can
only hold for co-rotating clouds ω > 0.
An attractive force towards the rotation axis, produced

by the Lorentz-force on the rotating charged fluid
(fKðSÞ∂θS < 0 for some area 0 < θ < Δθ), is necessary
to find a local maximum of h at the poles. A local
maximum further requires a repulsive force in r-direction,
which is created on the polar axis solely by the local electric
field component, arising from At, and acting on the charged
fluid. Aϕ and its derivatives vanish on the polar axis.
This requirement determines how the torus is charged
ðfKðSÞ∂rAtjθ¼0 > 0Þ. Since ∂rAtðr; θ ¼ 0Þ < 0, fKðSÞ has
to be negative on the polar axis as well as in some area
0 < θ < β, for which Sðr; θÞ does not change its sign. An
attractive force can now only be achieved close to the polar
axis, if ∂θS ¼ ∂θAt þ ω∂θAϕ > 0. Since ∂θAt < 0 and
∂θAϕ > 0 for 0 < θ < π=2 and r > rþ, this condition

can only be satisfied in the corotating case ω > 0. This
result coincides with the one found by tro [20] for a
homogeneous magnetic test field and a central object
without a net charge (e ¼ 0 in their notation).
The area, where condition (40) holds, i.e., where maxima

in θ-direction exist, is largest for small a > 0. However,
keep in mind, that the scaling factor k in the overall charge
distribution of the fluid, given by fKðSÞ, changes through-
out the plot to satisfy the necessary condition in (25) for an

FIG. 10. The two sufficient conditions (a) (39) and (b) (40) for
θc ¼ 0. The scaling factor k changes throughout the plots to
satisfy the necessary conditions (25) at ðθc ¼ 0; rcÞ. (a) A local
maximum only in r-direction exists for parameter sets ðrc; nÞ
from the dark blue area for a ¼ 0.1. The area grows for bigger a
(indicated by lightening up the blue color) from a ¼ 0.3, 0.5, 0.7,
0.9 to a ¼ 1 (white). For the meaning of the red dotted line at
n ¼ −2=3 see the text. (b) A local maximum only in θ-direction
occurs for parameter sets ðrc;ωÞ from the white area for a ¼ 1.
The area grows for smaller a from a ¼ 0.9, 0.7, 0.5, 0.3 to a ¼
0.1 (blue color). For large values of a the allowed values of rc are
bounded from below. In the black areas in (a) and (b) the
corresponding sufficient condition (39) [for (a)] or (40) [for (b)]
are not fulfilled for any 0 ≤ a ≤ 1.

FIG. 11. Different plots of the negative effective potential −h
along the rotation axis (θ ¼ 0) for n ¼ −1=2, μ ¼ kðωBÞnþ1 ¼
−0.596 and different values of a. The effective potential h is
independent of ω for θ ¼ 0. The rotation parameter a runs from
0.2 (dark blue) to 0.4 (lightest blue) in steps of Δa ¼ 0.05. For
bigger a the torus center moves to bigger radii.

FIG. 12. Effective potential in form of −h of a polar cloud
solution for n ¼ −0.5, μ ¼ kðωBÞnþ1 ≈ −0.596, a ¼ 0.3, and
ω ¼ 0.1. A red shade indicates smaller values, while a yellow
shade indicates bigger values of −h. The center of the cloud at
rc ¼ 6 is marked with a small circle, the equipotential curve of
the cusp point is plotted as a dashed line. The solution shows an
inner cusp, allowing matter outflow through the cusp onto the
central object.
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extremal point at ðθc ¼ 0; rcÞ. According to Eqs. (36) and
(58), k diverges for ∂rS → 0, which is the case for rc → ∞
or a → 0. For small a, solutions can be found for a wide set
of parameters ðrc;ωÞ, however a strongly charged fluid is
required in this case.
Figure 11 shows the negative effective potential −h

along the rotation axis θ ¼ 0, π for different values of a, but
for constant values of μ ¼ kðωBÞn and exponent n. The
repulsive effect of the electric field component Frt, given in
(61), grows for bigger values of a, as it is the result of the
frame dragging effect. This effect manifests in the plot as
the growing maximum of −h for bigger a. The center of the
polar cloud, which corresponds to a minimum in Fig. 11,
moves toward bigger radii for an increasing a. It can be
seen in Fig. 11 that a minimum only exists for very specific

values of a, and that it vanishes and no bound solution for a
polar cloud can be found if a is not chosen appropriately for
the respective set of parameters. The polar cloud solution
might possess an inner cusp on the rotation axis, if the inner
maximum of−h is smaller than zero,−hjr¼rc < 0. An outer
cusp can not exist, since the effective potential does not
diverge at any r > rc, but approaches zero for θ ¼ 0 (see
Sec. IV B and IV C). Outflows from the polar cloud away
from the central object, might still occur at cusp points
located at θ ≠ 0.
Finally we construct a specific example of a polar cloud,

using the procedure introduced in Sec. III. The equipoten-
tial surfaces of a polar cloud with an inner cusp for a ¼ 0.3,
n ¼ −0.5, ω ¼ 0.1 and rc ¼ 6 are plotted in Fig. 12. The
corresponding energy density and specific charge distri-
bution are plotted in Fig. 13, where, like in the case of
equatorial tori, Γ ¼ 5=3, and κ ¼ 2 × 107 was used for an
external field with a dipole moment B ¼ 4.2 × 10−7.
Again, the condition j BB j < 0.05 is satisfied, so that the
magnetic field produced by the polar cloud can be neglected
compared to the external field. At the center the polar cloud
has a central energy density of ϵc ≈ 1.5832 × 10−15, and a
specific charge density of qc ≈ −1.730 × 107. The polar
cloud has a total charge of Q ≈ 9.80 × 10−7. The absolute
value of the specific charge distribution jqj increases toward
bigger radii.

VII. SUMMARY AND CONCLUSION

In this work, we studied the existence of stationary
charged fluid structures around a central object with an
electromagnetic test field, that does not contribute to the
spacetime. We assumed that both the spacetime and the
electromagnetic test field are stationary, axially symmetric,
and mirror symmetric with respect to the equatorial plane.
The fluid is assumed to move in this background without
influencing it, which implies that it has a small charge and
mass as compared to the central object and the electro-
magnetic test field. We further assume a perfect fluid with a
polytropic equation of state and zero conductivity, with
spatial motion in azimuthal direction only. To satisfy the
resulting integrability condition, we required a constant
angular velocity throughout the fluid structure, i.e., rigid
rotation, and a charge distribution in the fluid that is given
by a function of the potential of the electromagnetic test
field. In this work we focus our attention on stationary fluid
structures centered on the equatorial plane, named equa-
torial tori, and on structures centered on the axis of
symmetry, named polar clouds. The procedure described
here can then be used to construct fluid structures for any
spacetime and electromagnetic test field, that satisfy the
named conditions.
In the second part we specify the discussion to the case

of a Kerr spacetime with a dipole magnetic test field, which
is a direct generalization of the Schwarzschild case

(a) (b)

FIG. 13. (a) Energy density distribution ϵ and (b) specific
charge distribution q of a polar cloud solution (corresponding
potential shown in Fig. 12) for n ¼ −0.5, μ ¼ kðωBÞnþ1 ≈
−0.596, a ¼ 0.3, and ω ¼ 0.1. The center of the cloud at
rc ¼ 6 is marked with a small circle in (a). A red shade indicates
smaller values, while a yellow shade indicates bigger values of ϵ
and q respectively. The energy density ϵ falls off from ϵc at the
center to zero at the edge of the cloud. Through the inner cusp at
r ≈ 3.5 matter can be accreted by the central object. The polar
cloud has a central energy density of ϵc ≈ 1.5832 × 10−15. The
absolute value of the specific charge jqj increases towards bigger
radii from q ≈ −1.040 × 107 at the dash dotted line to q ≈
−1.730 × 107 at the dashed line. This behavior of the charge
distribution is opposite to the ones found for the examples of
equatorial tori shown in Fig. 9, where jqj decreases towards
bigger radii. The total charge of the polar cloud is Q ≈ 9.80 ×
10−7 or QSI ≈ 1.68 × 1014mnAs, where mn is the mass of the
central object in solar masses.
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discussed by Kovář et al. [1]. It could describe an idealized,
rather compact rotating neutron star, which produces a
dipole magnetic field, that is oriented along the rota-
tion axis.
In this scenario we then studied in detail the existence

conditions for equatorial tori and polar clouds. We con-
firmed that in the uncharged limit, meaning an uncharged
fluid or a vanishing test electromagnetic field, both types of
structures can not exist for a rigidly rotating fluid. For the
general charged case we found that the rotation of the
central object has a major impact on the region of existence
of stationary structures in parameter space. This can be
traced back to the interplay of the electromagnetic test field
and the frame dragging, which induces a timelike compo-
nent in the potential associated with an electric part of the
magnetic dipole field. In the case of equatorial tori this
causes for high spins of the central object a preference for
counter rotating tori in the equatorial plane. For polar
clouds the rotation is even more essential, as this kind of
structure cannot exist at all in the non rotating case. As
the magnetic field vanishes along the symmetry axis, the
electric field is the only part which can balance the
gravitational attraction. We found that for a small rotation
of the compact object polar clouds can exist for a wide
range of central radii rc, which seems to be counterintuitive
at first glance in view of the nonrotating limit. However, for
small values of the rotation the electric field is weak, as
expected, which needs to be compensated by an extremely
high charge of the fluid, which is physically unrealistic and
may also violate the assumptions within our model.
Furthermore, both in the case of counterrotating equatorial
tori, and polar clouds the center of solutions are found
farther away from the black hole for higher spins of the
central object.
We also discussed fluid structures which allow an

outflow toward or away from the central object, encoded
by the existence of cusps in the effective potential. Tori
and polar clouds that possess an inner or outer cusp (the

latter occurring only in the tori case) can be found by
slightly varying the set of parameters like the angular
velocity of the fluid, the spin of the central object, or a
parameter introduced by the choice of the function that is
connected to the charge distribution (corresponding to n
in the discussed case). We explicitly constructed examples
with inner and outer cusps and discussed their physical
characteristics.
An open question is the choice of the function, depend-

ing on the electromagnetic potential only, that is connected
to the charge distribution within the torus. For the simplest
approach—setting the function to constant—no solutions
for equatorial tori can be found for 0 ≤ a ≤ 1. Are there
restriction to the free choice of the function, so that the
torus solution is stable? In general it should also be
possible, to choose the function such that the total charge
of the torus vanishes. This is however not a straight forward
task. Including self-fields—let it be it gravitational or
electromagnetic—could bring the model closer to the
description of realistic accretion discs. It would also be
very interesting to consider a fluid with nonzero conduc-
tivity. However, in this case radial motion within the fluid is
to be expected, which can maybe be handled perturbatively.
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[19] J. Kovář, P. Slaný, C. Cremaschini, Z. Stuchlík, V. Karas,

and A. Trova, Phys. Rev. D 90, 044029 (2014).

[20] A. Trova, K. Schroven, E. Hackmann, V. Karas, J. Kovář, P.
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