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The main contribution to the pulsar power can be calculated by assuming a rotating magnetically
dominated magnetosphere described by the force-free approximation. Although this simple model has
been used thoroughly to study pulsar magnetospheres in the flat spacetime regime, only a few works have
considered the relativistic corrections introduced by the curvature and frame-dragging effects induced by a
rotating neutron star. Here, we revisit the problem and describe pulsar magnetospheres within full general
relativity, quantifying the corrections as a function of the angular velocity, the compactness of the star, and
the misalignment angle between the spin and the magnetic dipole. We provide analytical expressions for
the pulsar luminosity by fitting our numerical results. Finally, we also analyze the effect of the relativistic
corrections on the braking index, which indicates a slight increment in its value.
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I. INTRODUCTION

Pulsars are bright sources of electromagnetic radiation,
emitting from radio to gamma-ray frequencies. Even though
the main picture—consisting of a rotating magnetized
neutron star—is rather simple, a full solution that explains
the diverse observational phenomenology still remains
elusive due to the extreme conditions found on neutron
stars. With typical radius R ¼ 10–13 km and stellar masses
between M ≈ 1.2–2.0 M⊙,

1 they are very compact astro-
physical objects, only exceeded by black holes. Moreover,
their rotation periods range from seconds tomillisecond, and
their surface magnetic field intensities, inferred by timing
properties, vary from ∼108 to ∼1015 G (see the McGill and
Australia Telescope National Facility pulsar catalogs2,3).
In a seminal work, Goldreich and Julian [1] first demon-

strated that the neutron star rotation induces electric fields
which are strong enough to strip charged particles off the
stellar surface. This mechanism and the pair production
induced by the interaction of high-energy photons eventually
populate the surrounding magnetosphere with a tenuous
plasma. In such rarefied environments, the electromagnetic
force dominates over particle inertia and leads to the force-
free assumption, which is thought to hold everywhere except
in small regions of space called gaps, where the observed

radiation is produced by means of particle acceleration. This
low-inertia limit of relativistic magnetohydrodynamics
(MHD), known as force-free electrodynamics, simplifies
the problem considerably and has been widely used to study
the global properties of pulsar magnetospheres. Assuming a
dipolar magnetic field aligned with the rotation axis of the
neutron star, a canonical model emerged, beginning with a
solution found by Contopoulos et al. [2] (CKF hereafter).
The CKF solution confirmed the basic qualitative picture
originally sketched by Goldrich and& Julian, namely, the
existence of a closed zone that corotates with the star,
together with a polar outflow along open magnetic field
lines that extends to infinity. These two regions are separated
by thin return current layers emanating from the poles and
meeting at the Y-point, where the light cylinder intersects the
equatorial plane.Beyond theY-point, there is a strong current
sheet which extends along the equator up to infinity. After
the CKF solution’s first appearance, other steady solutions
were found [3–5], displaying a Y-point located at different
positions within the light cylinder and thus raising the
question about uniqueness of the CKF solution. Time-
dependent force-free simulations later revealed that axisym-
metric solutions indeed converge to a CKF-type configura-
tion. These simulations have been developed and extended
by several authors using diverse numerical techniques. Both
aligned [5–9] and oblique [10–12] pulsar magnetospheres
have been widely studied on flat spacetime. The effects of
plasma pressure and inertia have been further included (e.g.,
Refs. [13–18]), and the assumption of a dipolar magnetic
field has been recently relaxed [19–22] by considering more
general multipolar field configurations in electrovacuum.
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On the other hand, works including curvature effects due to
general relativity (GR) are somewhat scarce. The first time-
dependent simulations incorporating GR effects appeared in
Ref. [23], reporting an approximate 20% enhancement of the
aligned rotator spin-down luminosity relative to its flat
spacetime value. Later, Ruiz et al. [24] presented a more
systematic study of the GR aligned rotator, providing fitting
formulas that show the luminosity dependence on the star
rotation and compactness. These works, although using
different numerical codes, were both performed by using
finite-difference schemes and matching the stellar ideal
MHD interior to a force-free exterior. Recently, Petri [25]
employed a pseudospectral code with discontinuous
Galerkin methods to evolve three-dimensional pulsar mag-
netospheres, modeling the neutron star (NS) by suitable
boundary conditions at the stellar surface. This work thor-
oughly analyzes the spin-down luminosity dependence on
the rotation rate and themisalignment angle between the spin
and the magnetic dipolar moment, comparing Newtonian
and GR results at a fixed compactness. More recently, there
has also been an interesting analytical approach to the slowly
rotating limit [26,27], using some tools from differential
geometry such as the exterior calculus.
In the last years, there has been significant progress

on particle-in-cell (PIC) simulations, which has allowed
the reproduction of global properties of pulsar magneto-
spheres, including self-consistently the regions of plasma
production and acceleration (see, e.g., Refs. [28–30]). One
of the general lessons emerging from these PIC simulations
is that pulsar environments are nearly force free everywhere
except for the thin return current layers and the current
sheet outside the light cylinder, where particles are pro-
duced and part of the radiation is generated. Moreover,
luminosities obtained within the PIC framework are con-
sistent with previous force-free simulations, even for the
oblique rotator case where the 1þ sin2 χ dependence on the
inclination angle χ has been retrieved [31]. Notice, how-
ever, that the inclusion of curvature—and, in particular,
the frame-dragging effects—has shown to be crucial in
allowing pair formation near the polar cap regions [32].
In this paper, we aim to elucidate the role of relativistic

and curvature effects on the spin-down luminosity of a
pulsar, by performing full three-dimensional time-
dependent simulations of force-free pulsar magnetospheres
within general relativity. The presence of the rotating
neutron star is modeled by means of suitable boundary
conditions at the stellar surface, while the exterior space-
time is approximated by the Kerr metric. It has been further
assumed that the star possesses a dipolar magnetic field as
in most previous studies. Our numerical code, based on
high-order finite-difference schemes over a multiple patch
infrastructure [33], has been extended from previous efforts
in the context of black hole magnetospheres [34], e.g.,
Ref. [33]). The numerical domain is equipped with a Kerr
metric (in appropriate coordinates) and accommodates

quite naturally the geometry of the problem. This code
has been further developed in the present work, by
including novel boundary conditions to represent the
perfectly conducting surface of the NS. The method to
deal with such boundary conditions relies on the penalty
technique [35–37] and uses the characteristic decomposi-
tion of the force-free equations employed for the evolution.
Although this numerical implementation is very different
from those of previous studies like those by Ruiz et al. [24]
and Petri [25], the results found on this paper are in good
agreement in the regimes on which they overlap. For a
final result, we provide a general expression describing the
spin-down luminosity in terms of the three adimensional
parameters that specify the pulsar: the spin rate of the
neutron star, the stellar compactness, and the misalignment
angle between spin and magnetic dipole axis.
This article is organized as follows. In Sec. II, we present

the main aspects of our numerical approach and setup.
Special attention has been devoted to the treatment of
boundary conditions at the stellar surface, while some
related technical details—as well as other examples of
application—are deferred to the Appendix. The main
results are presented in Sec. III, starting with some tests
that show the correct implementation of boundary con-
ditions and constraints behavior. We compare our numeri-
cal results with previous studies and then propose a generic
formula for the pulsar spin-down luminosity, deduced from
fittings of the numerical data. Conclusions and some
perspectives for future projects are presented on Sec. IV.
Throughout, we adopt geometrized units in which c¼G¼1
and Lorentz-Heaviside units for the electromagnetic field.

II. SETUP

Here, we are interested on modeling the magnetospheres
of neutron stars by solving a particular version of force-
free electrodynamics obtained in Ref. [38], which has some
improved properties in terms of well-posedness and involves
the full force-free current density.4 The numerical scheme to
solve these equations is based on the multiblock approach
[33,35–37], where a particular multiple patch infrastructure
has been equipped with the Kerr metric [33]. This provides a
domain perfectly adapted to the geometry of the problem,
having two global (inner and outer) boundaries with
spherical topology. This implementation has been employed
to perform accurate studies of force-free jets in black hole
spacetimes [34]. Here, we introduce, however, an important
modification to the previous scheme: we develop detailed
boundary conditions for the inner surface (placed inside
the black hole in Ref. [34]), so as to represent the perfect
conducting surface of the star.
We shall start this section by briefly summarizing

the generic features of the numerical approach. Then, we

4Similar hyperbolic formulations were presented in
Refs. [39,40].
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introduce the set of equations used to evolve the system.
Finally, we describe how to deal with the boundary
conditions for the stellar surface through the penalty
method and the initial data for the magnetic field.

A. General scheme

Our numerical domain consists of several touching grids
(i.e., there is no overlap among them, and only points at the
boundaries are sheared), commonly referred to as the
multiblock approach [33]. The equations are discretized
at each individual subdomain by using difference operators
constructed to satisfy summation by parts (SBP). In
particular, we employ sixth-order accurate difference oper-
ators on the interior and third-order ones at the boundaries.
Penalty terms [35–37] are added to the evolution equations
at boundary points. These terms penalize possible mis-
matches between the different values the characteristic
fields take at the interfaces, providing a consistent way
of communicating information between the different
blocks. More concretely, the penalization terms at the
boundary points of a subdomain (say, A) modify the
evolution equations as

∂tU
μ
A → ∂tU

μ
A þ 1

hσo

X
aðλa>0Þ

λaP
μ
ðaÞνðUν

B −Uν
AÞ; ð1Þ

where Uν
B are the values of the fields on the overlapping

points from a neighbor subdomain B and the index a labels
the different characteristic modes, with λa being their
eigenvalues and Pμ

ðaÞνð·Þ being the projectors into their

characteristic subspaces. Summation is performed only
over the incoming modes (with respect to subdomain
A), λa > 0, while h is the grid spacing along the normal
direction, and σo is the coefficient defining a discrete
scalar product [see Eq. (2) below] valuated at the boundary.
The projectors are built from the eigenbasis fUμ

ðaÞg (and

cobasis fΘðaÞ
μ g) as

Pμ
ðaÞν ≔ Uμ

ðaÞΘ
ðaÞ
ν :

For each incoming mode at one side of the interface, there
is an associated outgoing mode from the other side, and the
penalty essentially forces those values to coincide.
At each subdomain, it is possible to find a semidiscrete

energy defined by both a symmetrizer of the system at the
continuum and a discrete scalar product with respect to
which SBP holds,

hu; vi ≔ hxhyhz
X
i;j;k

ðui;j;k; vi;j;kÞσxi σyjσzk: ð2Þ

The summation by parts property of the operators implies
an energy estimate, up to outer boundary and interface
terms. The penalties are constructed such that their

contribution to the energy estimate cancel inconvenient
interface terms, thus providing an energy estimate which
covers the whole integration region across grids. Such
semidiscrete energy estimates guarantee the stability of the
numerical scheme, provided an appropriate time integrator
is chosen [41]. A fourth-order Runge-Kutta algorithm is
used for time integration in our code. We incorporate
numerical dissipation through adapted Kreiss-Oliger oper-
ators [42], which are eighth-order accurate on the interior
and fourth-order accurate at the boundaries.
Each subdomain is handed to a separate processor, while

the information required for the interfaces treatment is
communicated among them by the message passing inter-
face system. The computation for each grid may be, as well,
parallelized by means of OPENMP.

B. Evolution equations

We shall start from the covariant version of force-free
electrodynamics for the electromagnetic field Fab and
the Faraday tensor F�

ab ¼ ϵabcdFcd=2, as presented in
Ref. [38],

F̃ab∇cFbc ¼ 0 ð3Þ

∇bF�ab þ∇aϕ ¼ κnaϕ ð4Þ

F̃�bc∇aFbc ¼ 0; ð5Þ

where the field

F̃ab ≔ Fab þ σF�
ab; σ ¼ G

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p ð6Þ

was defined to extend the system outside of the constraint
submanifold, G ¼ 0, with G ≔ FabF�

ab and F ≔ FabFab

being the two electromagnetic invariants. Notice that
Eq. (3) reduces to the force-free condition, Eq. (4) is the
Faraday equation with an extra field ϕ to dynamically
control the magnetic divergence-free constraint (see, e.g.,
Refs. [43–45]), and Eq. (5) is just the generalization of the
constraint condition ∇aG ¼ 0.
A covariant hyperbolization for these equations was

found in Ref. [38], ensuring well-posedness of the sym-
metrized system (Eqs. (32) and (33) in Ref. [38]). The final
evolution equations are then obtained after performing a
standard 3þ 1 decomposition of such a system. The line
element in the adapted coordinates of the foliation is
given by

ds2 ¼ ðβ2 − α2Þdt2 þ 2βidxidtþ γijdxidxj

with α, βi, and γij being the lapse function, the shift vector,
and the intrinsic metric on the spatial slices, respectively.
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We follow the conventions adopted in, e.g., Ref. [46],
where the electric and magnetic field are taken to be Ea ≔
Fabnb and Ba ≔ F�

abn
b, with na ¼ ð1;−βiÞ=α being the

normal to the spatial hypersurfaces. Notice the magnetic
field differs in sign with respect to the usual definition,
which was the one employed in Refs. [34,38]. The spatial
Poynting vector is defined as

Si ≔ ϵijkEjBk; ð7Þ

where ϵijk is the hypersurface induced volume element.
The evolution system is finally written as follows,

∂tϕ ¼ βi∂iϕþ αDjBj − ακϕþ α

Δ2
Ẽkrk ð8Þ

∂tEi ¼
�
δik −

B̃iB̃k

B̃2

�
½βkDjEj þDjðαFkjÞ�

þ αS̃i

B̃2
DjEj þ B̃i

B̃2
½βjrj − βkẼkDjBj

− ẼkDjðαFkjÞ − αẼj∂jϕ� ð9Þ

∂tBi ¼ DjðαF�ijÞ þ βiDjBj þ αγij∂jϕ

−
α

Δ2

�
ϵijkrjB̃k þ

Ẽi

B̃2
S̃krk

�
; ð10Þ

where we have denoted Djð·Þ≡ 1ffiffi
γ

p ∂jð ffiffiffi
γ

p
·Þ and

ri ≔
α2

4
½∂iðG=α2Þ þ σ∂iðF=α2Þ�; Δ2 ≔ B̃2 − Ẽ2

Ẽi ¼ Ei − σBi; B̃i ¼ Bi þ σEi; S̃i ¼ ð1þ σ2ÞSi:

To have further control on the constraint E · B ¼ 0, we
adopt a damping strategy taken from Ref. [47],

∂tEi → ∂tEi − αδ
E · B
B2

Bi; ð11Þ

with a moderate coefficient δ ∼ 100 to enjoy the constraint
cleaning properties, while avoiding the complications of
having stiff terms which would demand implicit-explicit
schemes (as pointed out in Ref. [40]). In order to deal with
current sheets, we employ a “standard” approach in which
electric field is effectively dissipated in order to maintain
the condition that the plasma is magnetically dominated, as
discussed in Ref. [34].

C. Boundary conditions

This section is devoted to discussing the physical
conditions at the global inner and outer boundaries of
our domain and how to implement them numerically via
the penalty method. Additionally, we also incorporate an
approach introduced in Ref. [34] to restrict possible

incoming violations of the divergence-free constraint,
∇ · B ¼ 0.5

Our implementation of the penalties at the global
boundaries is motivated by the interface treatment (1),
identifying two main options: either one sets the incoming
characteristic fields to a fixed source, regardless of the
dynamics in the interior, or one may use the information
leaving the system by setting the incoming physical modes
to a particular combination of outgoing ones. The first
choice has been already employed in Ref. [34] at the
exterior surface, far away from the source, and we shall use
it again here for the outer boundary. However, this
approach is not suitable for setting the physical conditions
at the stellar surface. Instead, at the inner boundary, we
adopt the second approach, with a very specific combina-
tion of outgoing modes, as we will describe next.

1. Inner boundary

We shall think of the stellar surface as a perfectly
conducting layer that separates the force-free exterior from
the interior of the star, and let us denote by S its three-
dimensional world volume. Our domain extends from the
surface exterior Sþ, in the force-free regime. However, the
boundary conditions will be induced by the perfectly
conducting fluid at the surface interior S−.
Continuity across S of the Faraday equation, dF ¼ 0,

guarantees there are no jumps in the pullback to S of the
electromagnetic tensor. Notice, however, that discontinu-
ities on the remaining components of F may result from the
presence of surface charges and/or current densities at the
conducting layer. The jump conditions ½A�≡ Aþ − A− at
the interface can bewritten in terms of the comoving electric
and magnetic field ea ≔ Fabub and ba ≔ F�

abu
b (i.e., where

ua is the four-velocity of the corotating plasma), namely,

n · ½b� ¼ 0; n · ½e� ¼ q ð12Þ

n × ½b� ¼ j; n × ½e� ¼ 0: ð13Þ

The definition of the fields at S− arises from interior
structure of the magnetic field in the star and the perfect
conductor condition for the electric field ea ¼ 0. These
values propagate for some of the components to the exterior
solution through the junction conditions, namely,

n · bþ ¼ n · b− ¼ fðr; θ;ϕÞ; ð14Þ

n × eþ ¼ n × e− ¼ 0; ð15Þ

where fðr; θ;ϕÞ is an arbitrary function defined by the
magnetic field structure in the interior of the star. In

5We refer the interested reader to Ref. [34] [specifically,
Eqs. (3) and (4)] and also to Ref. [45] for more details on this
method.
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addition, as noticed in Ref. [48], the force-free condition
e · b ¼ 0 implies the normal component of the corotating
electric field must vanish as well (i.e., n · eþ ¼ 0; there are
no induced charges) whenever the magnetic field is not
tangential to the stellar surface.
On the other hand, the ideal MHD condition ea ¼ 0 also

allows one to easily translate the conditions applied to the
comoving electromagnetic fields to the fiducial ones,
namely, Ei ¼ −ϵijkvjBk. The velocity vector vi is con-
structed as the projection of the four-velocity ua ¼
Wðna þ vaÞ, with W ¼ ð1 − viviÞ−1=2 being the Lorentz
factor.
Let us assume then an axisymmetric star, with a surface

located at r ¼ R (i.e., such that the normal vector is radial),
that rotates with four-velocity ua ¼ ka þ Ωηa, with ka ≡
ð∂tÞa and ηa ≡ ð∂ϕÞa being the two Killing vector fields of
the Kerr spacetime. Thus, the resulting boundary conditions
for the electric and the magnetic fields can be written as

Br ¼ fðr; θ;ϕÞ; αEi ¼ ϵijkðβj þΩηjÞBk; ð16Þ
where Er is to be enforced only if the magnetic field is
not completely tangent to the star (i.e., Br ≠ 0). Although
written in a slightly different notation, the prescription for
the tangential components of the electric field in (16) is
equivalent to that given in Ref. [25]. Notice also that the
remaining components of the magnetic field are free; the
junction conditions involve unknown surface currents, so
they can not be fixed.
To numerically implement these boundary conditions,

we proceed as follows. We will keep the normal magnetic
field fixed to its interior value, Br ¼ Br

oðθÞ, by enforcing it
at each Runge-Kutta substep as was done in Ref. [9]. The
electric field components (16), on the other hand, are going
to be prescribed by applying the penalty method to the
incoming physical modes. That is,

∂tUμ → ∂tUμ þ 1

hσo

X
aðλa>0Þ

λaU
μ
ðaÞL

ðaÞ
ν ðUν

o −UνÞ; ð17Þ

where LðaÞð·Þ are a set of operators that must have a very
precise structure in order to guarantee control of the
semidiscrete energy by the penalties, namely,

LðaÞð·Þ ≔ Θa
>ð·Þ − Ra

bΘb
≤ð·Þ: ð18Þ

Here, the cobasis elements Θa
> represent incoming modes,

while Θb
≤ represent the outgoing and zero modes. The idea

is that one prescribes incoming physical modes at the
boundary, combining information of the remaining char-
acteristic modes. The coefficients Ra

b might be interpreted
as reflection coefficients and must be solved according to
the particular condition one wishes to impose. Guidance in
doing so is provided by an observation regarding the action
of the penalties on the boundary fields, namely, that they
will dynamically enforce

LðaÞ
ν ðUν

o −UνÞ ¼ 0; ð19Þ

from which it is deduced that the operators LðaÞð·Þ must
project into the space of field components to be specified
[in our case, for example, the electric field components
involved in (16)], while Uo will act as a source, allowing
one to describe inhomogeneous boundary conditions.
In the Appendix, we provide the reader with the specific

boundary operators, LðaÞð·Þ, to enforce condition (16). We
construct these operators, going from the electrovacuum
case (i.e., Maxwell theory) to the full force-free system
(8)–(10). In between, we will discuss a simpler version of
force-free electrodynamics often used, that might help one
to understand the transition to the full theory.

2. Outer boundary

The implementation of the outer boundary condition
might be thought of as a fictitious interface with an external
field, Uext, that is, setting the penalties as

∂tUμ → ∂tUμ þ 1

hσo

X
aðλa>0Þ

λaP
μ
ðaÞνðUν

ext −UνÞ; ð20Þ

which prescribes the incoming physical modes according to
a fixed source we control. Thus, in Ref. [34] for instance,
Uext represented a uniform magnetic field threatening the
black hole magnetosphere, sourced by a distant accretion
disk. As in the pulsar case, there are no expected external
electromagnetic sources, and we will set Uν

ext ¼ 0, corre-
sponding to maximally dissipative boundary conditions.
This means no physical signals would enter through
the outer surface and all waves reaching it will leave the
domain without reflections. In practice, we will bring the
exterior field smoothly to zero from its initial data con-
figuration value. This way, we prevent the penalties from
introducing spurious perturbations that would propagate
inward.

D. Initial data

We describe the spacetime around the rotating neutron
star by the Kerr metric, which is parametrized by the mass
M and spin a. The metric in Kerr-Schild form can be
written as

ds2 ¼ ðηab þHlalbÞdxadxb; ð21Þ

where ηab is the flat metric and la is a null covector with
respect to the flat and the whole metric. In Cartesian
coordinates ðt; x; y; zÞ,6 the metric functionH takes the form

6Sometimes referred as the Kerr-Schild Cartesian coordinates
or the Kerr-Schild frame (see, e.g., Ref. [49]).
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H ¼ 2Mr
r2 þ a2z2=r2

ð22Þ

r2 ¼ 1

2
ðρ2 − a2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðρ2 − a2Þ2 þ a2z2

r
ð23Þ

ρ2 ¼ x2 þ y2 þ z2; ð24Þ

and the covector la reads

la ¼
�
1;
rxþ ay
r2 þ a2

;
ry − ax
r2 þ a2

;
z
r

�
: ð25Þ

Assuming a homogeneous and spherically symmetric
neutron star of radius ρ ¼ R, we can fix the dimensionless
moment of inertia I ≔ I=MR2 to the value 2=5 (see, e.g.,
Refs. [25,26]). This choice allows us to relate the star
angular velocity Ω with the spin parameter in units of the
stellar radius, namely,

a
R
¼ 2

5
ΩR: ð26Þ

Notice that, for the spin range of realistic pulsars
a=R≲ 0.15, the Kerr spacetime is rather close to the metric
of a neutron star in the slowly rotating limit, which is often
used in the literature (e.g., Refs. [25–27,50]). Indeed, their
metric components differ by less than 1% from ours in
this range.
There are two other important dimensionless quantities

that characterize the problem. The first one is the surface
rotation velocity,

vs ≔
R
RLC

; ð27Þ

which ranges from 10−4 to 10−1 in realistic pulsars. Here,
RLC ¼ Ω−1 denotes the usual light cylinder radius in flat
spacetime. The second quantity is the star compactness,

C ≔
M
R
; ð28Þ

which coincides with the definition given by Ruiz et al.
[24] for their compaction and differs in a factor 2 with other
definitions like those in Refs. [25,27,50]. The compactness
has a theoretical upper limit given by C < 4=9 [51], and
for typical model of neutron star interiors, its value is
around C ∼ 0.2.
We shall assume the magnetosphere is initially populated

with a dipolar magnetic field given by the potential [52]

Aϕ ¼ 3μsin2θ
4M

�
1þ r2

2M2
lnð1 − 2M=rÞ þ r

M

�
; ð29Þ

where μ is the magnetic dipole moment. The electric and
magnetic fields arising in our foliation of Schwarzschild
spacetime are just

Br
o ¼

3μ cos θðr2 log ð1 − 2M
r Þ þ 2MðM þ rÞÞ

4M3r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ 1

q

Bθ
o ¼

3μ sin θð2MðM − rÞ þ rð2M − rÞ log ð1 − 2M
r ÞÞ

4M3r2ðr − 2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ 1

q

Eϕ
o ¼ 3μð2Mðr −MÞ þ rðr − 2MÞ log ð1 − 2M

r ÞÞ
2M2r3ðr − 2MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ 1

q ;

whereas the other components vanish. Notice that this is an
exact stationary solution of Maxwell vacuum equations for
Schwarzschild but not for Kerr and that the magnetic field
will only approximately satisfy the constraint ∇ · B ¼ 0
on Kerr spacetimes. However, its value is dynamically
kept very close to zero by using the divergence cleaning
approach and constraint preserving boundary conditions.
We will show evidence of such dynamic control of the
constraint later on (see Fig. 3).
Notice also that in the Newtonian limit r

2M ≫ 1 (where
α → 1 and βi → 0) the magnetic field reduces to the usual
flat space result in an orthonormal tetrad êλ,

Br̂
o ¼

2μ cos θ
r3

; Bθ̂
o ¼

μ sin θ
r3

; ð30Þ

with vanishing electric field.
In order to avoid transient initial currents and sharp

profiles of the fields, the star will be smoothly brought from
rest to its final angular velocity Ω by using a time-
dependent function,

1

2
Ω½1 − cosðπt=tsÞ� if 0 ≤ t ≤ ts; ð31Þ

with ts usually chosen to be around 1=5 of the rotation
period. To abandon axial symmetry, we shall simply tilt the
magnetic dipole axis of the initial configuration on the
x–z plane, while keeping the rotation axis of the star (i.e.,
and the spacetime) unchanged on the z-direction. Tilting
the dipole axis corresponds to the following change of
Cartesian coordinates,

x0 ¼ x cos χ þ z sin χ y0 ¼ y z0 ¼ z cos χ − x sin χ;

with χ being the inclination angle, whereas for imposing
the normal component of the magnetic field at the inner
boundary, it will be necessary to keep track of the
accumulated rotation phase during the evolution and apply
it to the initial field to get the boundary data for Br.

E. Analysis quantities

We shall compute the spin-down luminosity as the
integrated Poynting flux on spherical shells,
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L ≔
Z

pr ffiffiffiffiffiffi
−g

p
d2w; ð32Þ

where pa ≔ −Tabkb is the conserved electromagnetic four-
momentum[withTab being the electromagnetic stress-energy
tensor and ka ¼ ð∂tÞa being the Killing vector field], pr ≡
paðdrÞa is its radial component, andd2w is the differentials of
the angular coordinates (see, e.g., Refs. [34,53]).7 We will
consider the spin-down luminosity to be the one computed at
the light cylinder, as in thework of Petri [25], while Ruiz et al.
[24] have taken instead the asymptotic value, which might
depend on the numerical resistivity and dissipation of the
numerical scheme at the current sheet.
The spin-down power of the aligned rotator has been

estimated analytically in flat spacetime, yielding a depend-
ence proportional to μ2Ω4 (in geometrized units). This
relation turned out to be quite accurate, agreeing within a
factor close to unity with most numerical simulations in flat
spacetime (see, e.g., Ref. [54] and references therein).
Therefore, it is common to set

Lo ¼ μ2Ω4 ð33Þ
as a reference luminosity in order to rescale the results. The
power of Ω appearing on (33) is directly related with
another interesting quantity, known as the braking index n,
defined as _Ω ¼ −KΩn or, equivalently, n ¼ ΩΩ̈= _Ω2.
Since the spin-down luminosity is associated to the star

rotational energy loss by L ¼ −IΩ _Ω, one can formally
derive n in terms of the luminosity and the surface rotation
velocity vs, as was done in Ref. [21],

n ¼ Ω
L
dL
dΩ

− 1 ¼ vs
L

dL
dvs

− 1: ð34Þ

The braking index measures how the spin period and its
derivatives changewith time, and it can be inferred from the
physical mechanism regulating the spin-down. For the
aligned point-dipole magnetic field, this quantity is known
to give exactly n ¼ 3. However, considering neutron stars
of finite size—as well as allowing curvature effects and
misalignment—induces deviations from this value, as we
shall see in Sec. III C.

III. NUMERICAL RESULTS

In this section, we present a detailed numerical study of
the pulsar magnetosphere, mainly focusing on how the
general relativistic effects impact the resulting spin-down
luminosity. First, we study the aligned case, when the
magnetic dipole coincides with the spin of the star and
the solution is axially symmetric. Our code reproduces the

well-known properties of the aligned rotator magnetosphere
on flat spacetime. Basic tests of our numerical implementa-
tion are included here, as is a convergence analysis of the
luminosity for different numerical resolutions and evidences
of the correct behavior of the solenoidal constraint. Later, we
incorporate the full general relativistic effects and compare
our results with previous studies. We have carefully inves-
tigated the Poynting luminosity dependence on stellar sur-
face velocity vs and compactness C [see (35) and Fig. 7] and
then generalized it to the casewhere themagnetic dipole and
rotation axes are not aligned, thus adding the dependence
with the misalignment angle χ [see (36) and Fig. 10]. Our
main result is summarized in a fitted formulawhich is a good
approximation for any star, depending only on three adimen-
sional parameters: the surface velocity vs ¼ R=RLC, the
stellar compactnessC ¼ M=R, and themisalignment angle χ
between the spin and the magnetic dipolar moment. Finally,
we have used this generic formula to estimate corrections to
the braking index in terms of these three parameters.

A. Aligned rotator

1. Magnetic field topology and tests

Our simulations reproduce all the well-known features
of an aligned rotator in flat spacetime (see, e.g., Refs. [5–7,
9,13,15]). The late time solutions exhibit a closed zone that
corotates with the star, extending up to the light cylinder.
This zone ends on a Y-point at the equatorial plane from
where a strong equatorial current sheet begins. Our
maximally dissipative boundary conditions allow us to
place the outer numerical boundary fairly close to the
central region, at around 4RLC. The evolution reaches
steady state after ∼2 rotational periods of the star. A typical
equilibrium solution is depicted in Fig. 1, showing the
global magnetic field structure of the magnetosphere: lines
represents the poloidal magnetic field, and color illustrates
the toroidal component. Notice that some of the field lines
close outside the light cylinder due to effective resistivity of
the current sheet, but the corotating region with vanishing
toroidal magnetic field remains within the light cylinder.
The luminosity is constant between the stellar surface and

the light cylinder, as expected from conservation of the
electromagnetic energy-momentum tensor. Beyond the light
cylinder, the energy flux slowly decreases with radius due to
dissipation at the equatorial current sheet. Figure 2 displays
the luminosity, integrated on spherical surfaces, as a function
of the radius for a typical late-time solution of the aligned
rotator. The curves correspond to various numerical resolu-
tions Nθ × Nϕ × Nr with Nr ¼ 2Nϕ ¼ 4Nθ. Clearly, the
flux is already converging for amoderate resolutionNθ ¼ 40.
We generally employ a higher resolution, with Nθ ¼ 80, for
the results presented in this paper. We confirmed numerically
that the resulting luminosities, normalized conveniently with
Lo ¼ μ2Ω4, do not depend on the given angular velocity Ω
but only on the adimensional relation vs ¼ R=RLC ≡ RΩ.

7Notice this definition is consistent with the one in Ref. [25],
written in an slightly different language, namely, L ≔R
SL
ðE ∧ HÞr̂dS.
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The behavior of the solenoidal constraint ∇ · B⃗ ¼ 0 on
a typical run is displayed in Fig. 3, where the quotient
jj∇ · Bjj2=jjBjj2 is plotted as a function of time for Kerr,
Schwarzschild, and flat spacetimes. As can be seen, its
value remains always smaller than 10−3, thus showing
decent control of the constraint during the evolution. Even
on Kerr spacetime—where the initial data slightly violate
the solenoidal constraint—we observe the divergence
cleaning mechanism act to keep its value small, and
moreover it ends up driving it to a value similar to that
of Schwarzschild after an initial transient.

2. Comparison with previous results

For concreteness, we shall consider here full GR
simulations at a high but still realistic star compactness
C ¼ 0.25. As previously observed in Ref. [25], we find that
including curvature effects does not significantly change
the field topology. It does, however, compress the poloidal
magnetic field lines toward the neutron star equator, as can
be seen in Fig. 4. Gravitational effects have been also
shown to considerably affect the polar cap structure (see,
e.g., Refs. [26,32,50]). As a result, there is an enhancement
of the spin-down luminosity, as we shall see below.
Figure 5 displays the Poynting luminosities for several

3210
t / τ

||∇.Β||2

Flat
Schw
Kerr

0

0.0002

0.0004

0.0006

0.0008

0.001

FIG. 3. Aligned rotator.—The normalized divergence of the
magnetic field jj∇ · Bjj2=jjBjj2 is plotted as a function of time (in
units of the rotation period τ ¼ 2π=Ω). The solenoidal constraint
is kept under control by the divergence cleaning techniques.

FIG. 1. Aligned rotator.—Global structure of the aligned pulsar
magnetosphere. Black lines represent the poloidal magnetic field,
while the color scale corresponds to the toroidal magnetic
component, Bϕ.

1 2 3 4
r / R

LC

L / L
o

Nθ = 20

Nθ = 40

Nθ = 80

Nθ = 120

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 2. Aligned rotator.—Poynting luminosity as a function of
radius, computed with different numerical resolutions Nθ × Nϕ ×
Nr and using Nr ¼ 2Nϕ ¼ 4Nθ.

FIG. 4. Aligned rotator.—Some representative poloidal field
lines that illustrate the qualitative effects due to curvature. Red
lines depict Newtonian solutions, while blue ones correspond to
the GR results.
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spin rates vs ¼ f0.025; 0.05; 0.1; 0.2; 0.3; 0.4g and com-
pares these with the results of Ruiz et al. [24] and Petri [25].
It can be seen that our numerical data are in very good
agreement with these previous studies, despite using a
different formulation of force-free electrodynamics and
numerical methods. In particular, we notice that in the
range between vs ≃ 0.1 and vs ≃ 0.3 the three models
coincides almost perfectly. For this particular case with
C ¼ 0.25, we find an enhancement of the total emitted
power due to relativistic effects of about 15% for vs ¼ 0.1,
30% for vs ¼ 0.2, and even larger for higher spin rates. It it
worth mentioning that Petri reported a discrepancy with
Ruiz et al. with respect to the aforementioned increments.
We do not observe such discrepancies and thus believe that
it may be related with a misinterpretation of the numerical
data of Ruiz et al., which used a rather different setting and
notation.
Figure 6 compares the luminosities resulting from full

GR simulations with those on the Newtonian regime. In the
slow rotation limit, both GR and flat spacetime solutions
seem to approach a similar value close to Lo. This is
consistent with the fact that relativistic corrections tend to
disappear for small values of vs, as pointed out recently by
Ref. [26] for comparisons made at fixed μ in the regime
R=RLC ≪ 1. For spin rates vs ≳ 0.05, deviations become
apparent: Newtonian luminosities slightly decrease with
rotation, while GR solutions increase their values signifi-
cantly. Although one may distinguish among curvature
effects associated with the spacetime mass and spin, they
might be difficult to disentangle. We try to isolate the
influence of stellar compactness from frame-dragging
effects by setting a ¼ 0 (i.e., the Schwarzschild metric).

The results are shown in the top panel of Fig. 6, where it can
be noticed that frame dragging only produces a modest
enhancement for vs ≳ 0.1. It has been argued that the
frame-dragging effect is being compensated by an effective
reduction of the angular velocity, which happens at the
Kerr metric (see, e.g., Ref. [32]) but not in Schwarzschild.
The bottom panel of Fig. 6 presents the non-normalized
luminosity as a function of the surface velocity on the
logarithmic scale, from where an effective braking index
might be obtained. Our results compare well with those
found by Petri [25], although we get slightly different
values for the braking indices: we estimated n ¼ 2.94 for
flat spacetime and n ¼ 3.17 for GR (Fig. 6, bottom image),
whereas he gets n ¼ 2.97 and n ¼ 3.12, respectively.8

0.025 0.05 0.1 0.2 0.50.01

1

1.2

1.4

1.6

L / L
o

this work
Petri
Ruiz et al.

FIG. 5. Aligned rotator.—Poynting luminosities (normalized
with Lo ¼ μ2Ω4) that include the effects of general relativity at a
fixed compactness, C ¼ 0.25. Our results (blue triangles/solid
lines) are compared with previous numerical studies at several
rotation rates vs. Green asterisks/dotted lines represent the data
taken from Fig. 22 of Petri [25], while the red dashed curve was
constructed by fitting the values from Table II of Ruiz et al. [24]
(evaluating at C ¼ 0.25).
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L

Flat
Kerr
n=3
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FIG. 6. Aligned rotator.—Spin-down luminosity dependence
on spin rate, vs. (Top panel) Comparison among Newtonian and
GR (Schwarzschild and Kerr, at C ¼ 0.25) solutions. (Bottom
panel) Effective braking indices yield n ¼ 2.94 and n ¼ 3.17 for
flat and Kerr spacetimes, respectively.

8A plausible explanation for this small discrepancy is that Petri
has considered smaller rotation rates (like vs ¼ 0.01) where the
trend is very close to n ¼ 3. Thus, when fitting the curves, he gets
effective braking indices closer to this value.
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3. Dependence on compactness and surface velocity

In order to analyze quantitatively the general dependence
of the spin-down luminosity on gravitational effects, we
have considered different stellar compactness at various
rotation rates. By using our numerical results, we have been
able to derive a fitting formula for the spin-down lumi-
nosity of an aligned rotator as a function of star compact-
ness C ¼ M=R and surface velocity vs ¼ R=RLC. An
excellent fit of the numerical data was achieved with

LðC; vsÞ ¼ Lof1.035 − 0.41vs þ ð0.16þ 3.9vsÞC9.8v3sC
þ ð11vs − 0.9ÞC2g: ð35Þ

Figure 7 displays constant-C (top panel) and constant-vs
(bottom panel) sections of the fit (35), along with their
corresponding numerical data. These plots give an idea
of how the aligned rotator luminosities vary on the two
parameters vs and C as well as illustrate the quality of the

fitting formula obtained. Clearly, the higher the compact-
ness, the larger the enhancement of the luminosity, with
more impact on those stars that rotate faster. Notice that
the luminosity in the plot in the bottom panel has been
normalized with the value for zero compactness [i.e.,
Lflat ≡ LðC ¼ 0; vsÞ ¼ Loð1.035 − 0.41vs] for representa-
tion proposes only. Finally, notice that we could find stable
solutions for a star’s compactness up to C ≈ 1=3. Beyond
that limit, simulations become unstable near the stellar
surface, probably due to the presence of a light ring. Note,
however, that this value is outside the range of allowed
compactness ratios, as constrained by observations
(M ∼ 1.1–2 M⊙, R ∼ 10–14 km, so that C ∼ 0.1–0.3).

B. Misaligned rotator

We study now the pulsar magnetospheres for the mis-
aligned cases, occurring when the dipolar magnetic field of
the star is inclined at an angle χ with respect to its rotation
axis. Again, our simulations reproduce previous results in
the literature of a misaligned rotator in flat spacetime. Our
numerical evolutions settle to the steady state after about
two stellar rotation periods. As can be seen in Fig. 8, the
magnetic field topology on the μ −Ω plane is reminiscent
of the aligned solution with closed and open zones. The
current sheet starts at the intersection of the closed zone
with the light cylinder and oscillates around the rotational
equator. The Poynting fluxes are again constant between
the stellar surface and the light cylinder, where they are
measured. The energy dissipation at the current sheet
decreases as the misalignment angle increases, as reported
in Ref. [18] for the Newtonian case.

0.025 0.05 0.1 0.2 0.4

L / L
o

C = 0.0

C = 0.15

C = 0.25

0 0.1 0.2 0.3

L / L
flat

= 0.05

= 0.1

= 0.2

1

1.2

1.4

1.6

1

1.2

1.4

FIG. 7. Aligned rotator.—Spin-down luminosity dependence
on the surface velocity at C ¼ f0.0; 0.15; 0.25g (top image) and
on stellar compactness for vs ¼ f0.05; 0.1; 0.2g (bottom image).
Numerical data are displayed along with the relevant sections of
the fit (35), and luminosities were normalized with Lo ¼ μ2Ω4

and Lflat ≡ LðC ¼ 0; vsÞ, respectively.

FIG. 8. Misaligned rotator.—Poloidal and toroidal magnetic
field obtained with vs ¼ 0.2 and misalignment angle χ ¼ 30°.
Lines z represents the magnetic field in the μ −Ω plane, whereas
the color scale corresponds to the magnetic component perpendi-
cular to the plane.
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Including the effects of general relativity does not change
dramatically this qualitative picture. In Fig. 9, the equilib-
rium solution of the orthogonal rotator in GR is compared
to the one obtained in the Newtonian regime. The equa-
torial field lines in both cases resemble the Deutsch solution
inside the light cylinder and exhibit a spiral structure
outside, with the GR (blue) lines being more curved than
the Newtonian (red) ones due to the gravity pull.
Quantitatively, the presence of spacetime curvature enhan-
ces the spin-down luminosity in the misaligned case,
although it depends softly on the compactness and the
surface velocity. We have evolved the magnetospheres
varying the inclination angles χ for three different rotation
rates, comparing the luminosities between the Newtonian
and the general relativistic regimes of a star with compact-
ness C ¼ 0.25. The values of the luminosity obtained from
our simulations were fitted by the following expression:

LðC; vs; χÞ
LðC; vs; χ ¼ 0Þ ¼ 1þ ð1.24þ 8.14vsCÞsin2χ: ð36Þ

Figure 10 summarizes these results. Numerical data for
vs ¼ f0.05; 0.1; 0.2g (at fixed compactness C ¼ 0.25) are
displayed together with their corresponding curves taken
from (36). Notice for flat spacetime solutions the normal-
ized luminosity L=Lðχ ¼ 0Þ does not depend on the
surface velocity, and thus there is just a single curve
describing the zero compactness cases. Interestingly, the
relation L ∝ k1 þ k2sin2χ proposed by Spitkovsky in
Ref. [10] fits the numerical data very well, although the
coefficients k1 and k2 now depend on the compactness and

the spin rate. A careful comparison shows that our results
are in good agreement with those of Spitkovsky for the
particular case C ¼ 0 and vs ¼ 0.2, which were later
reproduced by many other authors within different frame-
works (see Fig. 6 of Ref. [54] and references therein).
Moreover, our results are also consistent with Ref. [25],
which was the first to incorporate GR effects in the
misaligned rotator. Indeed, when fitting our solutions with
L=Lo ¼ aþ bsin2χ, we obtain the parameters listed in
Table I for the cases vs ¼ f0.1; 0.2g, which are only
slightly larger than to those found by Petri (Table 2 of
Ref. [25]).9

C. Braking index

One may rewrite the two fitting formulas (35) and (36)
from the last sections into a single general expression,

LðC; vs; χÞ ¼ LoFðC; vsÞ½1þ kðC; vsÞsin2ðχÞ�; ð37Þ

where Lo ¼ μ2Ω4 ≡ ðμ=R2Þ2v4s and

kðC; vsÞ ¼ 1.24þ 8.14vsC

FðC; vsÞ ¼ 1.035 − 0.41vs þ ð0.16þ 3.9vs þ 9.8v3sÞC
þ ð11vs − 0.9ÞC2:

From this approximate formula of the pulsar spin-down
luminosity and Eq. (34), one can readily obtain an
estimated braking index n. The calculation is rather
straightforward and gives n ¼ nðC; vs; χÞ in a closed form.

FIG. 9. Misaligned rotator.—Equatorial field lines of the
orthogonal rotator with vs ¼ 0.05. Red and blue lines correspond
to flat and Kerr spacetime solutions, respectively.
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FIG. 10. Misaligned rotator.—Dependence of the spin-down
luminosity with inclination angle χ. Numerical data have been
displayed along with relevant sections of expression (36). The
luminosity has been normalized to their aligned values, Lðχ ¼ 0Þ;
under this normalization, the results does not depend on the
surface velocity vs for flat spacetime cases.

9Notice that, apparently, there is a typo on the parameters of the
GR case with R=RLC ¼ 0.2 listed in Table 2 of Ref. [25].

PULSAR MAGNETOSPHERES IN GENERAL RELATIVITY PHYS. REV. D 98, 023010 (2018)

023010-11



However, the resulting expression is not very enlightening
by itself, and so, instead of writing it down, we illustrate the
results by plotting some representative curves in Fig. 11 at
constant C and vs (top and bottom panels, respectively).
These plots show a braking index ranging from n ≃ 2.8 for
a rapidly rotating star on flat spacetime up to n ≃ 4 for a
rapidly rotating and highly compact NS. Actually, for
realistic pulsars, C ≳ 0.1 and vs ≲ 0.2, the braking index
increases with both the compactness and the surface
velocity, and it would be in the range n ≃ 3.0–3.5.
Notice that, in the Newtonian regime, the braking index
does not vary with the inclination angle χ, whereas in the

relativistic case, its value increases with misalignment. We
also note that, as expected, deviations from the standard
value n ¼ 3 disappear for vs ≪ 0.1, which is the most
common case for the observed pulsars. Unfortunately, the
handful of pulsars with a reliable estimation of n have
periods of the order of 0.1 − 1 s, for which the relativistic
effects on the spin-down formula are negligible.10

IV. CONCLUSIONS

We have presented a formalism and a numerical code to
carefully analyze the force-free magnetospheres of neutron
stars, by extending previous studies on black hole mag-
netospheres. We have performed several tests to show the
correct implementation of the boundary conditions at the
stellar surface, which is the main difference with respect to
the previous code. A careful and detailed decomposition
of the eigenvectors of the evolution equations is required
to apply suitable inner boundary conditions of our domain,
which corresponds to a perfectly conducting neutron star.
We have studied, through three-dimensional time-

dependent numerical simulations, a general relativistic neu-
tron star magnetosphere within the force-free approximation.
Our results confirm other recent numerical investigations, in
particular regarding the total electromagnetic power radiated
by the neutron star. By performing suitable fits of our results,
we provide a quite generic formula for the luminosity of a
rotating dipolar magnetic field as a function of the compact-
ness of the neutron star, its angular velocity, and the
misalignment angle between the spin and the magnetic
dipolar moment. From this formula, we have estimated
deviations from the standard braking index value which will
generally depend on these adimensional parameters. These
deviations are rather modest, leading to n ¼ 3.2� 0.2 for
realistic millisecond pulsars. Unfortunately, current astro-
physical observations are not accurate enough to distinguish
such small differences on the braking index. Even for the
pulsars displaying an almost constant braking index which
could be measured with high precision, the observed values
are systematically below the standard n ¼ 3 [55,56]. As has
been confirmed in this work, these deviations cannot be
associated with relativistic effects. Therefore, we can only
conclude that, if themeasurements are correct, there must be
other physical mechanisms modifying the luminosity of a
pulsar magnetosphere which are not captured by the simple
force-free model.
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TABLE I. Best-fitting parameters a=b for the inclination
dependence of the luminosity, LðχÞ=Lo ¼ aþ b sin2ðχÞ.
vs Flat (C ¼ 0.0) Kerr (C ¼ 0.25)

0.1 0.984=1.252 1.130=1.656
0.2 0.955=1.170 1.277=2.056
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FIG. 11. Braking index.—Estimated corrections to the usual
point-dipole value, n ¼ 3. Top image: dependence on surface
velocity vs, for some values of compactness and obliquity. Notice
that on the flat spacetime limit the resulting braking index does
not change with χ. Bottom image: dependence on stellar
compactness C, for different spin rates and inclinations.

10There are many caveats regarding coherent timing analysis
that complicate a comparison: the possible occurrence of unseen
glitches, shape of the residuals, and choice of integration time,
among others.
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APPENDIX: CHARACTERISTIC
DECOMPOSITION AND BOUNDARY

OPERATORS

In thisAppendix,webuild appropriate boundary operators
LðaÞð·Þ [see Eq. (18)] to deal with a perfectly conducting
surface via penalty terms. The construction strongly relies on
the characteristic structure of the particular evolution system
under consideration. Thus, before going to the main result
concerning the full force-free system used in this paper, we
shall first illustrate the method by applying it to vacuum
electrodynamics and to a simpler version of the force-free
system. The first one is the usual linear theory with trans-
versal propagation modes and serves as an example for the
whole construction, while the second system, already non-
linear, possesses a much simpler characteristic structure that
helps to better understand the transition to the full theory.
This simpler approach to force-free electrodynamics has
beenwidely used in the literature, as in, e.g., Ref. [53], and so
it might be also interesting in its own right.
These systems can be described by the same covariant

equations,

∇bFab ¼ Ia ðA1Þ
∇bF�ab þ∇aϕ ¼ κnaϕ; ðA2Þ

where an extra dynamical field, ϕ, has been added to
handle the magnetic divergence-free constraint (e.g.,
Refs. [43–45]). If Ia ¼ 0, one recovers usual electrodynam-
ics in vacuum. On the other hand, the presence of the plasma
can be captured by an effective force-free current density,

Ia ¼ ρ

�
na þ Sa

B2

�
; ðA3Þ

which includes the drift current only. In this approach,
the force-free condition, E · B ¼ 0, needs to be enforced

separately, either by a damping strategy like the one used in
Ref. [47] or by cutting electric field at each Runge-Kutta
substep as in, e.g., Refs. [44,53]. Notice ρ ≔ 1ffiffi

γ
p ∂kð ffiffiffi

γ
p

EkÞ
represents here the electric charge density. The resulting
evolution equations are nonlinear and, as can be shown, they
constitute a strongly hyperbolic system.
Let us introduce some important notational conventions

for the remainder of this section. We shall denote the set of
dynamical fields Uμ as

Uμ ¼

0
B@

ϕ

Ei

Bi

1
CA ðA4Þ

(where the index i is used to denote spatial vectors) and its
“dual” element Θμ,

Θμ ¼ fϕ; Ei; Big: ðA5Þ
Characteristic decompositions will be taken with respect to
the wave front propagation direction, given by a unit vector
mi that will be identified in this context with the boundary
surface normal. Some useful abbreviations are defined,

Am ≡miAi; Ai
p ≡ Ai − Ammi; Ai

q ≡mkϵ
kijAj;

for any vector Ai. Notice Ai
p and Ai

q are orthogonal to each
other and both are tangent to the boundary surface.

1. Vacuum electrodynamics

The physical modes in Maxwell electrodynamics are
transversal to the propagation direction mi and propagate
at the speed of light with eigenvalues λ� ¼ βm � α. The
associated characteristic basis (and cobasis) elements can
be written as

U�
1 ¼ 1ffiffiffi

2
p

0
B@

0

�eip

−eiq

1
CA; U�

2 ¼ 1ffiffiffi
2

p

0
B@

0

eiq

�eip

1
CA

Θ�
1 ¼ 1ffiffiffi

2
p f0;�epi;−eqig; Θ�

2 ¼ 1ffiffiffi
2

p f0; eqi;�epig;

with (eip, eiq) being any two orthogonal transversal direc-
tions. There are in this case three extra modes associated
with constraints, playing no role in the construction of the
boundary operators. The operators LðaÞð·Þ will only involve
here the physical modes and shall be written as

L1 ¼ Θþ
1 − R11Θ−

1 − R12Θ−
2

L2 ¼ Θþ
2 − R21Θ−

1 − R22Θ−
2 :

The idea is now to find the coefficients, Rij, so as to remove
from both Li the action on any free (i.e., nonrestricted)
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component of the boundary fields. That means, in our case,
to remove the components of Θþ

1 and Θþ
2 acting on the

tangential magnetic field. An immediate consequence of
such a requirement is that

R11 ¼ 1; R12 ¼ R21 ¼ 0; R22 ¼ −1:

The action on the difference dUμ ¼ Uμ
o −Uμ then reads

L1ðdUÞ ¼
ffiffiffi
2

p
ðdE · epÞ ðA6Þ

L2ðdUÞ ¼
ffiffiffi
2

p
ðdE · eqÞ: ðA7Þ

This way, we are able to control both tangential compo-
nents of the electric field at the boundary, i.e.,

Ei
pjboundary ¼ Ei

op: ðA8Þ

Notice the boundary is acting as a mirror, reflecting
back part of the outgoing waves while keeping fixed the
tangential components of the electric field.

2. Alternative force-free system

We look now at the evolution system which arises from
a standard (3þ 1)-decomposition of Eqs. (A1)–(A3). In
this system, the transversal subspace (with eigenvalues
λ� ¼ βm � α) appears slightly modified, and there is an
extra physical mode,11 which might be incoming or out-
going according to the sign of λE ≔ βm þ ασE (where
σE ¼ Sm

B2). The complete eigensystem here is

U�
0 ¼ 1ffiffiffi

2
p

0
B@

1

0

�mi

1
CA; U�

1 ¼ 1ffiffiffi
2

p

0
B@

0

�Sip

−Siq

1
CA

U�
2 ¼ 1ffiffiffi

2
p

0
B@

0

Siq

�Sip

1
CA; U3 ¼

0
B@

0

bmi − σESip

Siq

1
CA

Θ�
0 ¼ 1ffiffiffi

2
p f1; 0;�mjg

Θ�
1 ¼ 1ffiffiffi

2
p f0; a�S2pmj � Spj;−Sqjg

Θ�
2 ¼ 1ffiffiffi

2
p f0; Sqj;�Spjg

Θ3 ¼
1

b
f0; mj; 0g

where we have defined a�≡1
bð1�σEÞ; b≡B2ð1−σ2EÞ.

Outgoing case, λE ≤ 0.—Here, there are two incoming
physical modes, namely, Uþ

1 and Uþ
2 . And thus the general

boundary operators12 read

L1 ¼ Θþ
1 − R11Θ−

1 − R12Θ−
2 − R13Θ3

L2 ¼ Θþ
2 − R21Θ−

1 − R22Θ−
2 − R23Θ3:

The idea is, as before, to find the coefficients which remove
from Li the action on any free component of the boundary
fields. That means to remove the components ofΘþ

1 andΘþ
2

acting on the tangential magnetic field. As a consequence,

R11 ¼ 1; R12 ¼ R21 ¼ 0; R22 ¼ −1;

while it seems there is some freedom on the other
coefficients R13 and R23. One possible choice is

R13 ¼
ffiffiffi
2

p
S2pσE; R23 ¼ 0;

which results in no explicit enforcing of the normal electric
field. The action would then read

L1ðdUÞ ¼
ffiffiffi
2

p ðdE · SpÞ
S2p

ðA9Þ

L2ðdUÞ ¼
ffiffiffi
2

p ðdE · SqÞ
S2p

: ðA10Þ

Another natural election would be to set R13 ¼ 0 and
R23 ¼ 0, obtaining

L1ðdUÞ ¼
ffiffiffi
2

p �ðdE · SpÞ
S2p

þ σE
b
dEm

�
ðA11Þ

L2ðdUÞ ¼
ffiffiffi
2

p ðdE · SqÞ
S2p

: ðA12Þ

We shall use (A11) and (A12) for the general case in
which the magnetic field is not tangential to the stellar
surface, so that the normal component of the electric field is
enforced, while for the special case where Bm ¼ 0, we shall
adopt (A9) and (A10) instead, fixing solely the tangential
components.
Incoming case, λE > 0.—Now, there are three incoming

physical modes, namely, Uþ
1 , U

þ
2 , and U3. The general

boundary operators are

11The presence of the plasma turns the characteristic mode
associated to the constraint ∇ · E ¼ 0 in vacuum electrodynamics
into a new physical propagation linked to electric charge density.

12Constraint modes are related to the components ϕ and Bm
only and decouple from the rest of the system as in the previous
case.
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L1 ¼ Θþ
1 − R11Θ−

1 − R12Θ−
2

L2 ¼ Θþ
2 − R21Θ−

1 − R22Θ−
2

L3 ¼ Θ3 − R31Θ−
1 − R32Θ−

2 :

In the present situation, the restriction to the operators
completely determines all the coefficients,

R11 ¼ 1; R12 ¼ R21 ¼ R31 ¼ R32 ¼ 0; R22 ¼ −1;

from which one obtains

L1ðdUÞ ¼
ffiffiffi
2

p �ðdE · SpÞ
S2p

þ σE
b
dEm

�
ðA13Þ

L2ðdUÞ ¼
ffiffiffi
2

p ðdE · SqÞ
S2p

ðA14Þ

L3ðdUÞ ¼ dEm

b
: ðA15Þ

We observe here, as opposed to the case λE ≤ 0, it is not
possible to enforce the tangential electric field alone. But
recall this was required only for the case in which Bm ¼ 0,
and it can be shown that λE ¼ 0 when the magnetic field is
purely tangential. Hence, there are no inconsistencies in the
scheme, and everything fits together perfectly. It seems the
extra condition for Em, arising from the force-free con-
straint, is relevant to the characteristic structure of the
theory and plays a crucial role in the construction of the
boundary operators.

3. Full force-free system

a. Characteristic structure

The fully nonlinear force-free system (8)–(10) has two
transversal modes (λ� ¼ βm � α) and two Alfvén modes of
eigenvalues λ�A ¼ βm þ ασ�A (σ�A ¼ 1

B2 ðSm � BmΔÞ). These
are modes associated with physical propagation. The
remaining modes correspond to constraints: two of them
are related to divergence cleaning propagations (of eigen-
values λ�0 ¼ βm � α), and the third one represents the
algebraic force-free constraint with λΨ ¼ βm þ α Sm

B2.
We write here the full eigensystem,

U�
T ¼

0
B@

0

Ai
�

Ci
�

1
CA; U�

A ¼

0
B@

0

½1 − ðσ�A Þ2�mi − σ�AV
i
p�

Vi
q�

1
CA

UΨ ¼

0
B@

0

Bi

−Ei

1
CA; U�

0 ¼

0
B@

1

0

�mi

1
CAþ Em

A2
�

0
B@

0

−Ci
�

Ai
�

1
CA;

with its associated cobasis,

Θ�
T ¼ 1

2A2
�
f0; A�

j ∓ Emmj; C�
j g ∓ EmBm

2A2
�

ΘΨ

Θ�
A ¼ 1

2N�
A

�
�Em

Δ
;
Bm

Δ2
Bj −mj �

Eqj

Δ
;
Bm

Δ2
Ej ∓ Bqj

Δ

�

ΘΨ ¼ 1

Δ2
f0; Bj; Ejg

Θ�
0 ¼ 1

2
f1; 0;�mjg �

Em

2
ΘΨ;

where we have defined

Ai
� ≔ Bi

q ∓ Ei
p; Ci

� ≔ Ei
q � Bi

p;

Vi
� ≔

1

B2
ðSi � ΔBiÞ; Δ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − E2

p

and the normalization, N�
A ≔ ½ðσ�A Þ2 − 1�.

b. Eigenvalues analysis

To go further into the construction of the boundary
operators, it seems necessary to better understand the
Alfvén eigenvalues, since they depend on the values that
the background fields take at each point during the
evolution. Hence, it is not obvious which of these modes
will turn out to be incoming or outgoing across the stellar
surface.
Assuming the perfect conducting condition (16) at the

boundary, we were able to perform a very general (but
rather straightforward) calculation, which gives

λ�A ¼ Bm

B2

�
ðv · BÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðα2 − v2Þ þ ðv · BÞ2

q �
; ðA16Þ

where vi ≔ βi þ Ωηi. Under very mild assumptions like,
e.g., ΩR≲ 0.5, a ≲ 0.5, and C≲ 0.8, it is possible to infer

α2 − v2 > 0: ðA17Þ

This means that there will be always an incoming and an
outgoing Alfvén mode at the stellar boundary, except in the
special case when the magnetic field is tangential to the
surface (i.e., Bm ¼ 0). Indeed, in such situations, one has
λψ ¼ λþA ¼ λ−A ¼ 0, which relates to the well-known fact
that Alfvén waves cannot propagate orthogonal to the
magnetic field.

c. Boundary operators

According to the previous analysis, we would always
have one incoming and one outgoing Alfvén mode (i.e.,
λ�A > 0 and λ∓A < 0), except in the special case where
Bm ¼ 0, where one has λþA ¼ λ−A ¼ 0. On the other hand,
we also have incoming and outgoing transversal modes
with eigenvalues λ� ¼ βm � α. So, there are always (pro-
vided Bm ≠ 0) two incoming physical modes that can be
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prescribed via penalties and an extra unphysical Ψ mode
which may be incoming or outgoing.13

Outgoing case, λΨ ≤ 0.—There are two incoming
modes: Uþ

T and U�
A (� depending on the signs of λ�A ).

The general boundary operators are

LT ¼ Θþ
T − RTTΘ−

T − R∓
TAΘ

∓
A − RTΨΘΨ − RT0Θ−

0

L�
A ¼ Θ�

A − R∓
AAΘ

∓
A − RATΘ−

T − RAΨΘΨ − RA0Θ−
0 :

The idea is to apply the operators to a generic field,14 Û,
and find the coefficients that cancel the terms containing ϕ̂

and B̂i. For convenience, we shall consider Ψ̂≡ ΘΨðÛÞ
instead of B̂m on the calculations, by means of the
relation EmB̂m ¼ Δ2Ψ̂ − BmÊm − ðEp · B̂Þ − ðBp · ÊÞ.
We shall solve first for LT. After some redefinitions

of the coefficients,

xT ≔ −
A2þ
A2
−
RTT ; x∓A ≔ −

A2þ
ΔN∓

A
R∓
TA

xΨ ≔ −2A2þRTΨ; x0 ≔ −
A2þ
Em

RT0;

we obtain the following system,

ϕ̂Þ 0 ¼ ðx0 ∓ x∓A ÞEm

B̂i
kÞ 0 ¼ x0ðEp · B̂Þ � x∓A ðBq · B̂Þ þ ðCþ þ xTC−Þ · B̂
Ψ̂Þ 0 ¼ ðxT − 1ÞEmBm þ x∓AΔBm − x0ðΔ2 þ E2

mÞ þ xΨ;

which can be solved to get

xT ¼ ðB2
p − E2

p þ 2SmÞ=A2
− x∓A ¼ �2EmBm=A2

−

xΨ ¼ 2EmBmB2ð1þ σ∓A − σΨÞ=A2
− x0 ¼ 2EmBm=A2

−;

and finally,

LTðdUÞ ¼ ðAþ · dEÞ
A2þ

þ EmdEm

A2þA2
−

½B2
m þ ΔjBmj − E2

p�:

ðA18Þ
Analogously, we solve now for the operator L�

A ,

xT ≔ −
ΔN�

A

A2
−

RAT ; x∓A ≔ −
N�

A

N∓
A
R∓
AA

xΨ ≔ −2ΔN�
ARAΨ; x0 ≔ −

ΔN�
A

Em
RA0;

and we obtain the following system,

ϕ̂Þ 0 ¼ ½x0 � ð1 − x∓A Þ�Em

B̂i
kÞ 0 ¼ x0ðEp · B̂Þ ∓ ð1 − x∓A ÞðBq · B̂Þ þ xTðC− · B̂Þ
Ψ̂Þ 0 ¼ ð1þ x∓A ÞΔBm þ xTEmBm − x0ðΔ2 þ E2

mÞ þ xΨ;

which can be solved to get

xT ¼ 0; x∓A ¼ 1; xΨ ¼ −2ΔBm; x0 ¼ 0:

Finally,

L�
A ðdUÞ ¼ −

dEm

N�
A
: ðA19Þ

Special case, Bm ¼ 0.—In this spacial situation, there
is just one incoming mode, namely, Uþ

T . The general
boundary operator is

LT ¼ Θþ
T − RTTΘ−

T − Rþ
TAΘ

þ
A − R−

TAΘ−
A

− RTΨΘΨ − RT0Θ−
0 :

Recall we only can prescribe the tangential electric field
here, so we need to further remove the Êm component in the
construction. Notice it will be now possible, due to the
presence of an extra Alfvén mode on the right-hand side.
We shall define again the coefficients,

xT ≔ −
A2þ
A2
−
RTT ; x∓A ≔ −

A2þ
ΔN∓

A
R∓
TA

xΨ ≔ −2A2þRTΨ; x0 ≔ −
A2þ
Em

RT0;

but now we obtain instead the system

ϕ̂Þ 0 ¼ ðx0 þ xþA − x−AÞEm

B̂i
kÞ ðxþA − x−AÞðBq · B̂Þ ¼ x0ðEp · B̂Þ þ ðCþ þ xTC−Þ · B̂

Ψ̂Þ 0 ¼ xΨ − x0ðΔ2 þ E2
mÞ

ÊmÞ 0 ¼ ðxT − 1ÞEm − ðx−A þ xþA ÞΔ;

which leads to xΨ ¼ x0 ¼ 0 and

xT ¼ ðB2
p − E2

p þ 2SmÞ=A2
−; xþA ¼ x−A ¼ −

EmE2
p

ΔA2
−
:

The operator then takes the form

LTðdUÞ ¼ 1

A2þ
ðAþ · dEÞ; ðA20Þ

and we see it only penalizes tangential components of the
electric field at the boundary.

13The remaining modes, linked to dynamical enforcement of
the constraint ∇ · B ¼ 0, will not be treated on the same footing.
This differential constraint is handled with a different method to
restrict possible incoming violations from the boundary [34].

14It is very important to keep these fields separate from those
background fields present in the cobasis elements Θi.
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Incoming case, λΨ > 0.—Now, there are three incoming
modes, namely, Uþ

T , U
�
A , and UΨ. The general boundary

operators are

LT ¼ Θþ
T − RTTΘ−

T − R∓
TAΘ

∓
A − RT0Θ−

0

L�
A ¼ Θ�

A − R∓
AAΘ

∓
A − RATΘ−

T − RA0Θ−
0

LΨ ¼ ΘΨ − RΨTΘ−
T − R∓

ΨAΘ
∓
A − RΨ0Θ−

0 :

It is important to notice that there are not enough terms
on the right-hand sides of the first two expressions above
to remove all the components we need, in particular, Ψ̂.
However, we have an extra incoming (constraint) mode that
will allow us to enforce Ψ̂ ¼ 0 through the penalty method.
That allows us to solve the system, and we get

LTðdUÞ ¼ ðAþ · dEÞ
A2þ

þ EmdEm

A2þA2
−

½B2
m þ ΔjBmj − E2

p�

−
EmBm

A2þA2
−
ðB2 þ ΔjBmjÞΘΨðdUÞ ðA21Þ

L�
A ðdUÞ ¼ −

dEm

N�
A

þ Bm

N�
A
ΘΨðdUÞ ðA22Þ

LΨðdUÞ ¼ ΘΨðdUÞ ¼ 1

Δ2
½ðB · dEÞ þ ðE · dBÞ�: ðA23Þ

d. Degeneracies

There are only three cases to consider separately from the
general one we have described so far. The first two happen
when one of the Alfvén modes collapse with one of the
magnetosonic modes (i.e., λA ¼ λ�) into a single subspace,
which is possible when Em ¼ 0; Ei

p⊥Bi
p; E2

p ¼ B2
p, and

Δ≡ jBmj. The third situation arises when this happens
for both Alfvén modes at the same time, only possible if
Ei ¼ 0 and Bi

p ¼ 0.
Case λA ¼ λþ.—The relevant cobasis elements are

Θ�
T ¼ 1

2B2
p
f0; Bqj;�Bpjg

Θþ
A ¼ 1

2B2
pB2

m
f0; ðB2

p − B2
mÞBpj þ 2B2

pBmmj; B2Bqjg

Θ−
A ¼ B2

2B2
pB2

m
f0; Bpj; Bqjg:

The boundary operators are fairly easy to solve; the only
nonvanishing coefficients are RTT ¼ −1 and RAA ¼ 1. This
leads to

LTðdUÞ ¼ ðBq · dEÞ
B2
p

ðA24Þ

Lþ
A ðdUÞ ¼

�
dEm

Bm
−
ðBp · dEÞ

B2
p

�
; ðA25Þ

where the corresponding incoming directions are

UT ¼

0
B@

0

Bi
q

Bi
p

1
CA; Uþ

A ¼

0
B@

0

−Bi
p

Bi
q

1
CA: ðA26Þ

Case λA ¼ λ−.—The relevant cobasis elements are

Θ�
T ¼ 1

2B2
p
f0; Bqj;�Bpjg

Θþ
A ¼ B2

2B2
pB2

m
f0;−Bpj; Bqjg

Θ−
A ¼ 1

2B2
pB2

m
f0; ðB2

m − B2
pÞBpj − 2B2

pBmmj; B2Bqjg:

The boundary operators are fairly easy to solve; the only
nonvanishing coefficients are RTT ¼ −1 and RAA ¼ 1. This
leads again to

LTðdUÞ ¼ ðBq · dEÞ
B2
p

ðA27Þ

Lþ
A ðdUÞ ¼

�
dEm

Bm
−
ðBp · dEÞ

B2
p

�
; ðA28Þ

but now the Alfvén direction in the penalty is given
instead by

Uþ
A ¼ 1

B2

0
B@

0

ðB2
p − B2

mÞBi
p þ 2B2

pBmmi

B2Bi
q

1
CA ðA29Þ

with λþA ¼ βm þ αðB2
m − B2

pÞ=B2 being the positive eigen-
value. Some remarks follow:

(i) The special situation in which Bm ¼ 0 does not
need any treatment, since is not allowed under these
degenerate conditions.

(ii) The penalization to the constraint mode,
LΨðdUÞ ¼ ΘΨðdUÞ, may also be considered here,
whenever λΨ > 0.

Case Ei ¼ 0 and Bi
p ¼ 0.—In such a case, the character-

istic system reduces to vacuum electrodynamics, and thus
we adopt the boundary operators discussed in Sec. A 1.
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