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We revisit the problem of a spinning black hole immersed in a uniformly magnetized plasma within the
context of force-free electrodynamics. Such configurations have been found to relax to stationary jetlike
solutions that are powered by the rotational energy of the black hole. We write down an analytic
description for the jet solutions in the low black hole spin limit and demonstrate that it provides a good
approximation to the configurations found dynamically. For characterizing the magnetospheres of rapidly
spinning black holes, we find that the current sheet which forms in the black hole ergosphere plays an
essential role. We study the properties of the current sheet and its importance in determining the jet
solution and the rate at which energy is extracted from the black hole.
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I. INTRODUCTION

From active galactic nuclei to ultraluminous x-ray
binaries to short gamma-ray bursts, many of the most
powerful astrophysical sources of electromagnetic radiation
are thought to be associated with the magnetospheres of
black holes (BHs). A central paradigm often invoked in
explaining these observations is the Blandford-Znajek
mechanism [1], whereby a strongly magnetized plasma
can tap into a spinning BH’s reservoir of rotational energy
to power a jetted outflow of energy. In general, the
description of an accreting BH will involve complicated
fluid dynamics, radiation, thermal effects, and so on.
However, in many cases, the essential effects can be
captured using force-free electrodynamics (FFE) which
is appropriate for a tenuous plasma nearby the BH, where
the magnetic energy density dominates over the matter
density and pressure. In this description, only the dynamics
of the electromagnetic fields needs to be kept track of, with
the matter assumed to be arranged by the strong magnetic
field in such a way that the Lorentz force always vanishes.
Here we study a prototypical setup that exhibits the

Blandford-Znajek mechanism: a spinning BH immersed in
a uniformly magnetized plasma. Starting with [2], there
have been a number of studies of this problem using
numerical evolutions of the general-relativistic equations of
FFE [3–7]. These have found that the solution relaxes to a
stationary BH jet configuration with a Poynting flux
powered by the rotational energy of the BH. This provides
a simple setting to study the underlying mechanisms of
relativistic BH jets.

In [6], a whole family of stationary BH jet solutions
describing a slowly spinning BH in a uniformly magnetized
plasmawas presented. However, no sign of mode instability
on the relevant time scales was found for these solutions (see
also [8] for a study of the stability of Blandford-Znajek split-
monopole type magnetosphere configurations), and it was
left as an openquestionwhat condition picked out the unique
solution found by the numerical evolutions.
There have also been several studies [9–11] attacking this

problemby numerically solving theGrad-Shafranov equation
which governs an axisymmetric, stationary solution to the
force-free equations. Such an approach requires the prescrip-
tion of suitable boundary conditions, both at infinity, and at
any current sheets, which is not always straightforward.
In this work, we revisit this problem guided by high

accuracy solutions, again obtained by evolving the general-
relativistic force-free equations.We confirm previous results
regarding the structure of the electromagnetic fields, the
angular velocity, and luminosity from these solutions
[2,4–7]. However, we also focus on some new aspects.
For generic BH spins, we explicitly demonstrate that these
solutions obey a relation between the current and angular
velocity of magnetic field lines which can be seen as an
outgoing radiation condition at infinity. In the small-spin
regime, where the influence of the current sheet turns out to
be negligible, this condition can be used to derive a unique jet
solution. We demonstrate that this analytic solution provides
a good description of the luminosity and other properties of
the jet solutions at low, and even moderate spins.
At higher values of BH spin, we find that the current

sheet that develops within the BH ergosphere plays an
important role. As described in [2] (see also [7]), part of the
flux of energy and angular momentum from the jet can be
traced to the current sheet, as opposed to the BH horizon.*weast@perimeterinstitute.ca
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We add to this previouswork byquantifying this difference as
a function of spin, finding that roughly half of the total power
comes from the current sheet for rapidly spinning BHs. We
also discuss the breakdown of the force-free approximation at
the current sheet due to the loss of magnetic dominance, and
howdifferent treatments of this affect the field configurations.
We find that the magnitude of the jet power is actually
insensitive to the details of this treatment.
The remainder of this paper is organized as follows.

In Sec. II, we describe the methods we use to evolve
the equations of FFE and extract relevant quantities from
the resulting BH jet solutions. In Sec. III, we describe the
relation between current, angular velocity, and flux of
magnetic field lines found in all the jet solutions, including
how it is related to an outgoing radiation condition, and
how it can be used to derive an analytic solution for slowly
spinning BHs. We present the results we find for BH jet
solutions by evolving with FFE in Sec. IV. We discuss these
and compare them to other results in the literature in Sec. V.

II. METHODS

The equations of FFE are just the Maxwell equations:
∇aFab ¼ Jb and ∇½aFbc� ¼ 0, where Fab is the field
strength tensor and Jb is the four current, supplemented
by the force-free condition FabJb ¼ 0. We discretize these
equations using fourth-order Runge-Kutta time stepping
and standard fourth-order stencils for spatial derivatives, as
described in [12]. We evolve the FFE equations on a fixed
BH spacetime with massM and dimensionless spin a using
Cartesian Kerr-Schild coordinates [13]. We restrict our-
selves to axisymmetric configurations which we evolve
using the modified cartoon method introduced in [14],
where we take our numerical domain to be the two-
dimensional half plane given by 0 ≤ x < ∞ and −∞ <
z < ∞. Spatial infinity is included on the grid through the
use of compactified coordinates. Derivatives in the y
direction are calculated by rewriting them in terms of x
and z derivatives using axisymmetry, and regularity is
imposed at the z axis. As noted in [6], evolutions of the
same configurations considered here that do not enforce
axisymmetry still find an axisymmetric relaxed state.
We use six levels of mesh refinement, with 2∶1 refine-

ment ratio to concentrate resolution around the BH. The
finest level has a resolution of least dx ≈ 0.02M, though for
some cases we use up to 4 times higher resolution. The use
of axisymmetry and mesh refinement allows us to evolve
these configurations for long times, to ensure that they have
fully relaxed towards stationary solutions, and also have
sufficient resolution to capture the effects of small and near
extremal BH spins.
For the electromagnetic fields we use a uniform mag-

netic field as the initial condition, setting Ei ¼ 0 and
Bi ¼ δizB0=

ffiffiffi
γ

p
. The factor of the determinant of the spatial

metric γ is included so that the magnetic field will be
divergenceless on the BH spacetime. At spatial infinity, we

leave the field fixed during the evolution, which is causally
disconnected from the solution in the interior where we
measure all the relevant quantities.
Here and throughout we use Lorentz-Heavyside units

with G ¼ c ¼ 1.

A. Treatment of loss of magnetic dominance

A generic occurrence when evolving the FFE equations
is the development of regions where magnetic dominance
is lost, i.e. where B2 < E2, or equivalently in terms of the
field strength tensor F2≔FabFab¼2ðB2−E2Þ<0. When
this occurs, the FFE equations are no longer hyperbolic
[15–17], and some ad hoc prescription must be applied.
Here we adopt a common prescription [2,4,18] and reduce
the magnitude of the electric field so that it no longer
exceeds that of the magnetic field,

Ei → Ei × ðB2=E2Þ1=2: ð1Þ

This acts as a source of dissipation which—though
artificial—mimics the loss of electromagnetic energy due
to a strong electric field accelerating particles. In some
circumstances this has been found to provide good agree-
ment with the electromagnetic dissipation seen in kinetic
simulations [12,19–21], though of course only the kinetic
calculation captures the resulting particle acceleration.
In the cases studied here, loss of magnetic dominance

only occurs at the current sheet which forms in the
equatorial plane of the BH ergosphere. We discuss this
in detail below, and consider how different prescriptions for
treating this region affects the resulting solution.

B. Measured quantities

As mentioned above, we use Cartesian Kerr-Schild
coordinates, and in this paper fx; y; zg refer to these
coordinates. However, we will use θ to refer to the
Boyer-Lindquist polar angle.
An axisymmetric, stationary solution can be described in

terms of a magnetic flux function ψ , polar current I, and the
angular velocity of fields lines ΩF, where the latter two
quantities are constant along magnetic field lines, and hence
are just functions of ψ . Following [22], one can define ψ by
integrating the field strength tensor along a surface S
bounded by a curve of revolution in the azimuthal direction,

ψ ¼ 1

2π

Z
S
F: ð2Þ

The other two quantities can be computed from the field
strength tensor and its dual as ΩF ¼ Fabtaθb=Fabθ

aϕb and
I ¼ 2π�Fabtaϕb, where ta and ϕa are the time and axisym-
metric Killing vectors, and θa points in the polar direction.
The flux of energy _E and angular momentum _J through

a surface generated by a polodial curve P can be written in
terms of these quantities as
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_E ¼ −
Z
P
ΩFIdψ ð3Þ

and

_J ¼ −
Z
P
Idψ : ð4Þ

We also compute two different measurements of the
energy density in the electromagnetic fields. The first is the
energy density as seen by a set observers with four velocity
na perpendicular to slices of constant coordinate time,

ρEM ¼ nanbTab ¼ 1

2
ðE2 þ B2Þ; ð5Þ

where Tab is the electromagnetic stress-energy tensor. The
second measure of energy density is the one with respect to
the timelike Killing vector of the Kerr spacetime, ρK ¼
natbTab. The volume integral of this quantity is conserved,
modulo any flux through the BH horizon, or the breakdown
of FFE. In contrast to ρEM which is always ≥ 0, ρK can
become negative within the BH ergosphere.

III. RADIATION CONDITION AND THE SLOWLY
SPINNING BLACK HOLE JET SOLUTION

In this section we motivate the relation between I, ΩF,
and ψ which we empirically find to hold in our BH jet
solutions, and use this relation to derive an analytic
description of these jet solutions in the limit of a slowly
spinning BH.

A. Outgoing radiation condition

At distances much greater than the size of the BH, it is
reasonable to assume that the jet solution becomes trans-
lationally invariant along the z-axis. As a result, ψ is a
function of the cylindrical radius ρ ≔ r sin θ. Using an
orthonormal basis: fρ̂; θ̂; ẑg, the Grad-Shafranov equation
is equivalent to

jϕ̂Bẑ − jẑBϕ̂ þ qEρ̂ ¼ 0; ð6Þ

with

jϕ̂ ¼ d
dρ

�
1

ρ

dψ
dρ

�
; jẑ ¼

1

2πρ

dI
dρ

;

Bẑ ¼
1

ρ

dψ
dρ

; Bϕ̂ ¼ I
2πρ

;

Eρ̂ ¼ ρΩFBz; q ¼ 1

ρ

d
dρ

�
ρΩF

dψ
dρ

�
: ð7Þ

Here ji is the three-current and q is the charge density.
Previous works [9–11,23] have discussed the scenarios

with Eρ̂ ¼ �Bϕ̂ or E ¼∓ ẑ ×B, which correspond to the

ingoing and outgoing “radiation condition," respectively.
In such cases, jϕ̂ ¼ 0, and Bẑ is constant within the jet,1

which implies I ¼ �4πΩFψ . Reference [24] also discuss
how having an ingoing/outgoing dynamical wave implies
that E ¼∓ n̂ ×B, where n̂ is the outgoing unit normal.
Strictly speaking, as the final jet solution is stationary in
time, it is less clear a priori whether the requirements on
its electromagnetic fields have the same physical meaning
as ingoing and outgoing conditions for dynamical fields.
We also note that due to the presence of the uniform
magnetic field, these solutions do not satisfy this outgoing
wave relation outside the jet tube.
Nevertheless, as discussed below in Sec. IV, we find that

the stationary solutions that we obtain for generic BH spins
indeed satisfy I ¼ −4πΩFψ. This condition allows for the
derivation of a unique jet solution in the limit of low BH
spin, as we will now outline.

B. Low spin solution

To derive the low spin solution, we use the fact that the
spatial dependence of the flux function is unchanged
from the Schwarzschild Wald-type solution [25], to leading
order [1],

ψ ¼ 1

2
B0ρ

2; ð8Þ

where ρ ¼ r sin θ (in Boyer-Lindquist coordinates). If we
combine this with the Znajek condition that comes from
demanding regularity on the horizon,

I ¼ 2πðΩF −ΩHÞ
�
dψ
dθ

� ðr2þ þ ðaMÞ2Þ sin θ
r2þ þ a2M2cos2θ

ð9Þ

and the requirement that I ¼ −4πΩFψ , then we arrive at
the relation on the horizon,

ΩF ¼ ΩH

� j cos θj
1þ j cos θj

�
: ð10Þ

Here ΩH ¼ a
2rþ

and rþ ¼ Mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ are the BH

horizon rotational frequency and radius. We then have
that

ΩF ¼ ΩH

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ̄

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ψ̄
p

�
; ð11Þ

where ψ̄ ≔ ψ=ð2B0M2Þ, for all field lines crossing the BH
horizon. For all other field lines (i.e. those with ψ̄ ≥ 1) we

1Notice that an inconsistent expansion of the Grad-Shafranov
equation in spherical coordinates in [10] neglects the jϕ̂ term,
which should appear in the same expansion order, and con-
sequently makes the authors claim a derivation of the “radiation
conditions”.
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have that I ¼ ΩF ¼ 0. This is the same as the relation
written down in [11,26,27].
From Eqs. (8), (9), and (11), we can calculate the flux of

energy _E and angular momentum _J in the low spin limit.
They are given by

_E ¼ 128π

�
17

24
− log 2

�
B2
0M

4Ω2
H ð12Þ

and

_J ¼ 16

3
πB2

0M
4ΩH: ð13Þ

The field tensor in the slow rotation limit is then given by

F ¼ dψ ∧ ðdϕ − ΩFdtÞ þ
I
2π

dr ∧ dθ
f sin θ

¼ B0ρdρ ∧ dϕ −
B0ρΩH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ̄2

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ̄2

p dρ ∧ dt

−
B0ρ

2ΩH

f sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ̄2

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ̄2

p dr ∧ dθ; ð14Þ

with f ≔ 1 − 2M=r and ρ̄ defined to be ρ=ð2MÞ.

IV. RESULTS

We start with an asymptotically uniform magnetic field
and evolve with FFE in the presence of a BH with aligned
spin for times ≳103M. For all cases we find that the
electromagnetic fields relax to a stationary, jetlike solution
which we study for various values of the BH spin a. In
Fig. 1, we show an example of the configuration of the field
lines for one such case, consistent with previous results [2].

For all values of BH spin, we find that ψ asymptotes to
B0ρ

2=2þOð1=rÞ at large distances. This is illustrated in
Fig. 2. For each value of ψ , we can measure the polar
current I and the angular velocity of the field lines ΩF. We
find that ΩF is positive for the last field line touching the
BH horizon, and only vanishes for the last field line
entering the BH ergosphere. In between are the field lines
that hit the current sheet in the equatorial plane of
the ergosphere. This is illustrated in the top panel of
Fig. 3. The bottom panel shows polar current, which
always obeys the relationship I ¼ −4πΩFψ , and also
vanishes for field lines that do not enter the BH ergosphere.
We also show ΩF on the boundary of the ergoregion as a

function of Boyer-Lindquist polar angle θ in Fig. 4.
For small values of the BH spin (top panel), ΩF does
indeed obey Eq. (10), with any differences shrinking with
increased numerical resolution. (We recall that in the low
spin limit, the ergoregion approaches the BH horizon.)
This relation seems to approximately hold even to larger
values of a ≈ 0.8 (bottom panel). For near extremal BH
spins, ΩF=ΩH has a shallower dependence that is closer
to cos θ=2.
We can also calculate the flux of energy and angular

momentum coming from the jet. Since the force-free
equations conserve energy and angular momentum in
axisymmetric, stationary spacetimes, for a stationary jet
solution, one would expect the flux of these quantities from
the jet to be equal to the flux through the BH horizon.
However, one finds instead that the energy and angular
momentum flux through a surface at or outside the ergo-
sphere is greater than through the BH horizon. The reason
for this difference is the breakdown of the force-free
equations at the current sheet. The values of _E and _J
for these two different surfaces are shown in Fig. 5. For
small spins, the role of the current sheet is unimportant and

FIG. 1. Streamlines of the magnetic (left) and electric (right)
fields around an a ¼ 0.9 BH. The streamlines indicate
the components in the x − z plane (where the BH spin and the
asymptotic magnetic field points in the z direction) while the
color indicates the out-of-plane (y) components of the fields.

FIG. 2. The magnetic potential ψ on surfaces of fixed z
coordinate, as a function of ρ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. As expected, ψ

approaches ρ2 like 1=r at large distances. This is shown for
a ¼ 0.9, but the other cases are similar.
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these quantities are well approximated by the low-spin
expressions of Eqs. (12) and (13), with negligible differ-
ence between the horizon and the boundary of the ergo-
sphere. This is consistent with the _E ∝ Ω2

H relation found in
[4]. For large spins, the difference is quite pronounced, with
roughly half the energy/angular momentum flux coming
from the current sheet. We discuss how the treatment of the
breakdown of force-free at the current sheet affects this
result below. We note in passing that, though we see no
evidence of the BH Meissner effect in this setup—i.e. near
extremal spin BHs do not expel magnetic field lines from
their horizon [3], the increase of _E and _J with ΩH does
appear to become small for near extremal spin.

A. Current sheet

Within the ergosphere, there is a discontinuity in the fields
across the equator: a current sheet. The parallel components
of the magnetic field and the perpendicular components of

the electric field flip sign across this region, as can be seen in
the top panel of Fig. 6. (We find that if we enforce that these
components are exactly zero on the current sheet, the
solution is more well-behaved in the neighborhood of the
current sheet, though elsewhere unchanged.) In the vicinity
of the current sheet, the conserved energy density ρK is
negative (while the localmeasure of energy density ρEM is of
course positive). This is illustrated in the bottom panel of
Fig. 6. Hence, locally dissipative processes occurring at the
current sheet where force-free breaks down can lead to a
positive contribution to the flux of energy from the jet.
The breakdown of force-free is signaled by the quantity

F2 evolving towards a nonpositive value. This occurs
for these BH-jet solutions on the current sheet, though
with the prescription described in Sec. II A, we force
F2 ¼ 0. However, F2 actually has a positive limiting value
approaching the current sheet from above or below, except
at the edge of the ergosphere, where F2 smoothly goes to
zero. This can be seen in Fig. 7.

FIG. 3. Top: The angular velocity of the field lines ΩF as a
function of ψ for various spins. The black dots indicate the
potential of the last field line to cross the BH horizon. The dashed
red line is the low-spin approximation given by Eq. (11). Bottom:
The polar current I as a function of ψ for various BH spins. In all
cases the dependence matches I ¼ −4πΩFψ , indicated by the
dashed, red curves.

FIG. 4. The rotational frequency of field lines ΩF on the
ergosphere, as a function of Boyer-Lindquist coordinate θ.
The top panel shows low spin cases, which approach the
dependence given by Eq. (10), modulo resolution dependent
effects. The bottom panel shows a range of spins. For high spins,
the dependence seems closer to cos θ=2 (indicated by the dotted
magenta line).
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There are two contributions to F2,

1

2
F2 ¼ B2 − E2 ¼ ðB2

k − E2⊥Þ þ ðB2⊥ − E2
kÞ: ð15Þ

The first term in parentheses is the contribution from
the parallel components of the magnetic field and the

perpendicular components of the electric field, which is
forced to vanish when these components pass through zero
in the current sheet. The second contribution is from the
field components that are continuous across the current
sheet: the perpendicular component of the magnetic field
and the parallel components of the electric field.2 As
evident in the bottom panel of Fig. 7, this second con-
tribution is negative approaching the current sheet, which

FIG. 5. The flux of energy (top and middle panels) and angular
momentum (bottom) through the BH horizon (blue squares) and
the boundary of the ergoregion (black dots). The difference
between these two is due to the current sheet that forms in the
equatorial plane of the ergoregion. The dotted red curves indicate
the low spin approximations given by Eqs. (12) and (13).

FIG. 6. Top: Quiver plot of the magnetic (left) and electric
(right) fields in the neighborhood of the current sheet for a BH
with a ¼ 0.99. The arrows indicate the components in the x − z
plane (where the BH spin and the asymptotic magnetic field
points in the z direction) while the color indicates the out-of-plane
(y) components of the fields. The dashed red line indicates the
boundary of the ergosphere. Bottom: Same as above, but showing
the two measures of energy density defined in Sec. II B.

2The covariant way to describe this would be to say that we can
decompose the field strength tensor into its pullback to the three-
dimensional world volume of the current sheet surface, and a
perpendicular component, and that the condition across the
current sheet is that the jump in the former vanishes [22]. Since
here we have fixed coordinates where the current sheet is
stationary, this is equivalent to our description in terms of electric
and magnetic fields.

WILLIAM E. EAST and HUAN YANG PHYS. REV. D 98, 023008 (2018)

023008-6



explains why magnetic dominance is lost at the current
sheet when the first contribution is zero.
The prescription we apply to handle regions of F2 ≤ 0 is

ad hoc, and ideally would by replaced by a microphysical
description of the kinetic effects of the plasma. We can see
from bottom panel of Fig. 7 that this condition forces the
nominally “continuous” field components (i.e. those that
are the same approaching the current sheet from above or
below) to jump at z ¼ 0. In lieu of doing a kinetic
calculation, we can study what happens if we apply a
different condition on the current sheet. In particular, in
addition to setting B2

k ¼ E2⊥ ¼ 0 on the current sheet, we
can enforce continuity in the other components of the
electromagnetic fields by setting them to be the average of
the points at z ¼ �dz. We apply this just to the z ¼ 0

surface within the BH ergosphere and find that F2 > 0

everywhere else. As shown in Fig. 8, with this prescription
B2⊥ − E2

k no longer jumps to zero at z ¼ 0.3 However, at the

current sheet we now have that E2 > B2. That would
indicate that within the current sheet there is a strong
unscreened electric field with E2 reaching ∼0.2B2

0 at the
BH horizon (in the frame where the magnetic field
vanishes), for this case with a ¼ 0.99. Lower spin cases
show similar behavior, though with smaller electric fields—
e.g. E2 ∼ 0.02B2

0 at the BH horizon for a ¼ 0.5. Applying
this different condition at the current sheet appears to have a
small effect on the resulting solution elsewhere and, e.g.,
the luminosity is essentially unchanged. This condition was
used for the results shown in Fig. 6.

FIG. 7. Top: The value of F2=2 ¼ B2 − E2 along lines of
constant x passing through the current sheet at z ¼ 0 for a BH
with a ¼ 0.99. The black line crosses z ¼ 0 sheet approximately
at the BH horizon, while the green line crosses z ¼ 0 at the outer
boundary of the ergosphere. The solid and dotted lines corre-
spond to a higher and lower resolution, just to illustrate that the
width of the discontinuous region is controlled by the resolution,
but not the value being approached from above or below. Bottom:
Same as the top panel, but only showing the contribution from the
components that do not jump across the current sheet.

FIG. 8. The same as Fig. 7, but using a different treatment of the
fields on the current sheet. Instead of rescaling the electric field to
enforce magnetic dominance, we set the parallel component of
the magnetic field and perpendicular components of the electric
field by requiring continuity across the current sheet.

3There are still some numerical oscillations caused by the fact
that we use high-order finite differences that are not ideal for
handling the discontinuities in the fields across the current sheet,
but these are restricted to a small region controlled by the
numerical resolution and do not strongly affect the solution
elsewhere.
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V. DISCUSSION AND CONCLUSION

In this work we have studied the force-free jet configu-
rations obtained by evolving the FFE equations until a
stationary solution is approached and found that in the limit
of low BH spin, these are well described by the solution
derived in Sec. III B. This solution follows from demanding
an outgoing radiation condition: I ¼ −4πΩFψ , which we
find to hold for the jet configurations that we obtain at all
values of BH spin. This differs from [6], where specific
solutions in the low spin limit were identified based on
maximizing the jet luminosity, or minimizing the energy
stored within the jet, but these solutions did not satisfy the
above condition. We find that in deriving this leading-order
low spin solution, one may actually ignore the effects of the
current sheet. The values of ΩF we find via force-free
evolution also differ somewhat from those found using
similar methods in [6], which may be due to the higher
resolution and/or longer relaxation times used here.
In [9–11], the uniform magnetic field solution was

studied by solving the Grad-Shafranov equations, which
requires the choice of boundary conditions along the
nominal current sheet. In [9], several arbitrary functions
ΩFðψÞ were considered in order to obtain a solution, while
in [10,11] the authors chose to make the equator within the
ergosphere a surface of equal potential, which means that
the last field line to enter the ergosphere intersects the BH
horizon horizontally. This is different from what is found
here by evolving the FFE equations. Because of the
breakdown of the force-free equations at the current sheet,
fields lines entering the ergosphere do not necessarily
intersect the BH horizon. Obtaining similar solutions as
found here by solving the Grad-Shafranov equations
presumably requires that a different boundary condition
be placed on the equator that captures the role of the current
sheet, though it is not obvious what condition to use.
Here we have also quantified how much of the flux of

energyandangularmomentumcoming from the jet is actually
coming from the BH horizon, as opposed to being due to the
current sheet that forms on the equator within the ergosphere.
We have found that for rapidly spinning BHs, the latter
contributes roughly as much as the former. This is counter-
intuitive as one typically thinks of current sheets as being the
site of the dissipation of electromagnetic energy. However,
because it occurs within the ergosphere, it is possible for a
process that looks locally dissipative to correspond to again of
energy (or the annihilation of negative energy) as seen by a
far-away observer (see [28] for a related mechanism).

Of course, even if the force-free solution is giving the
correct solution elsewhere, it breaks down at the current
sheet and can not describe how the dissipated (positive or
negative) energy goes into accelerating or heating particles.
We have shown that the limiting values of the electromag-
netic fields approaching the current sheet obey magnetic
dominance (i.e. B2 > E2) except at the equatorial boundary
of the ergosphere (where B2 ¼ E2). Furthermore, when one
does not artificially impose magnetic dominance at the
current sheet, the limiting values approaching the current
sheet suggest that the fields should become electrically
dominated within the current sheet. This strong, unscreened
electric field could accelerate particles. Some of these
would fall into the BH horizon carrying negative energy
as seen by a distant observer, while others could escape
to power high-energy radiation, à la the original particle
Penrose process. However, determining if and how this
occurs requires a kinetic calculation, e.g. using particle-
in-cell methods, which is something that we leave for
future work.
The results obtained here also shed light on those of [29],

where it was shown that regular spacetimes with ergo-
spheres can also power jets in FFE. Since such solutions
also develop current sheets, they still have a site for the
dissipation of negative energy, even though there is no BH
horizon. For future work, it would be interesting to apply
the methods used here to study the problem of boosted BH
(s) in a uniformly magnetized plasma [30–32], in order to
understand how jets are powered in that case.
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